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1. INTRODUCTION

This work is part of a research project aiming at developing rewriting methods to study diagrammatic
algebras. These diagrammatic algebras appear in various domains of mathematics and physics, as for
instance Temperley-Lieb algebras [22] in statistical mechanics, Brauer algebras [3] in representation
theory or Birman-Wenzl algebras [21] and Jones’ planar algebras [13] in knot theory. Moreover, in
representation theory, a new approach has emerged with the idea of studying categorifications of algebras,
that is actions of algebras on higher dimensional categories. In this process, some new diagrammatic
algebras with a categorical structure appear, such as KLR algebras [16, 20] or Khovanov’s diagram
algebras [5], and one of the main issue is to compute linear bases of these algebras. Diagrammatic
calculus also appear in many other areas of mathematics such as quantum calculus, see for instance
[2, 19]. The categories studied in this paper are presented by higher dimensional rewriting systems called
3-polygraphs [10], and rewriting theory provides new methods to study these diagrammatic presentations
using termination and confluence properties.

The main issue with equational presentations of these diagrammatic algebras is that there is a huge
number of relations, leading to a combinatorial explosion to prove termination and compute critical
branchings, and in particular when these algebras can be interpreted as linear categories with additional
structure of a pivotal category in which all the diagrams are drawn up by isotopies. For instance, a
well-known example is provided by the relation (4) appearing in the Khovanov-Lauda 2-category cate-
gorifying a quantum group [17] which is a relation leading to an obstruction for confluence if we consider
isotopies as rewriting rules. To deal with this problem, we introduce a context of rewriting modulo iso-
topy for studying presentations by generators and relations of pivotal 2-categories. This is part of a work
aiming at developing rewriting theories in any algebraic structure using rewriting modulo the axioms of
the algebraic structure. In this work, I will present a method allowing to obtain coherent presentations
modulo mimicking the usual Squier’s completion method [11] in a non-modulo setting. In [8], a proof
of this result was given using a set theoretical construction for the compositions of the elements of the
homotopy basis. In this work, we introduce the notion of 3-dimensional rewriting systems modulo and of
(4, 2)-fold polygraph generating 2-categories enriched in double groupoids, in which the elements of the
homotopy bases modulo live. In these double groupoids, the horizontal category deals for the rewritings
and the vertical category encodes the modulo. The detailed construction of the free 2-categories enriched
in double groupoids generated by a (4, 2)-fold polygraph and the proof of the main result (Theorem 4.7)
can be found in a forecoming paper [9]. We illustrate this result on an exemple of a pivotal 2-category in
which the coherent presentation modulo isotopy corresponds to the usual non-modulo coherent presen-
tation.

2. REWRITING IN PIVOTAL 2-CATEGORIES

Computation of coherent presentations for diagrammatic algebras may lead to a combinatorial explosion
due to the computation of critical pairs. In particular, we illustrate this problem with the case of diagram-
matic algebras that can be interpreted as pivotal 2-categories, that is 2-categories in which all 2-cells are
drawn up to isotopy. These algebras arise in many situations in representation theory. We motivate the
use of rewriting modulo to study presentations by generators and relations of these pivotal 2-categories.



2.1. Adjunctions in a 2-category. Let C be a 2-category with sets of 0-cells, 1-cells and 2-cells respec-
tively denoted by C0, C1 and C2. For any 1-cell p in C1, a right adjoint of p is a 1-cell p̂ : y→ x equipped
with two 2-cells ε and η in C defined as follows:
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called the counit and unit of the adjunction, such that the equalities
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hold. We denote the fact that p is a left adjoint of p̂ by p a p̂. In a string diagrammatic notation, these
units and counits are represented by caps and cups as follows:
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The axioms of an adjunction require that the equalities between composites of 2-morphisms
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are satisfied. When we are in the situation where p̂ is also a left-adjoint of p, that is p and p̂ are biadjoint,
that we denote by p a p̂ a p, the symmetric zig-zag relations hold similarly.

2.2. Mateship under adjunction. We recall following [18] the 2-category theoretic notion of mateship
under adjunction introduced by Kelly and Street in [15]. This is a certain correspondence between 2-cells
in the presence of adjoints.

Given adjoints η, ε : p a q : x→ y and η ′, ε ′ : p ′ a q ′ : x ′ → y ′ in the 2-category C, for any 1-cells
f : x→ x ′ and g : y→ y ′ in C, there is a bijection M between 2-cells ξ ∈ C(g ?0 q, q ′ ?0 f) and 2-cells
ζ ∈ C(p ′ ?0 g, f ?0 p), where ζ is given in terms of ξ by the composite:

M : C(g ?0 q, q ′ ?0 f) −→ C(p ′ ?0 g, f ?0 p)

ξ 7→ (
p ′ ?0 g

p ′?0gη +3 p ′ ?0 g ?0 q ?0 p
p ′?0ξ?0p+3 p ′ ?0 q

′ ?0 f ?0 p
ε ′?0f?0p+3 f ?0 p

)
= ζ ,

and ξ is given in terms of ζ by the composite:

M−1 : C(p ′ ?0 g, f ?0 p) −→ C(g ?0 q, q ′ ?0 f)

ζ 7→ (
g ?0 q

η ′?0g?0q+3 q ′ ?0 p
′ ?0 g ?0 q

q ′?0ζ?0q+3 q ′ ?0 f ?0 p ?0 q
q ′?0f?0ε+3 q ′ ?0 f

)
= ξ .

We then say that ξ and ζ are mates under adjunction. Diagrammatically, this notion of mateship under
adjunction can be expressed as:
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2.3. Cyclic 2-cells and pivotality. Given a pair of 1-cells p, q : x→ ywith chosen biadjoints (p̂, ηp, η̂p, εp, ε̂p)
and (q̂, ηq, η̂q, εq, ε̂q), then any 2-cell α : p ⇒ q has two obvious duals ∗α,α∗ : q̂ ⇒ p̂, or mates, one
constructed using the left adjoint structure, the other using the right adjoint structure. Diagrammatically
the two mates are given by

∗α := •α

y

x

q̂

p̂

εq

ηp

α∗ := •α

x

y

q̂

p̂

ε̂p

η̂q

(2)

We will call α∗ the right dual of α because it is obtained from α as its mate using the right adjoints of p
and q. Similarly, ∗α is called the left dual of α because it is obtained from α as its mate using the left
adjoints of p and q.

In general there is no reason why ∗α should be equal to α∗, see [18] for a simple counterexample.

2.4 Definition ([6]). Given biadjoints (p, p̂, ηp, η̂p, εp, ε̂p) and (q, q̂, ηq, η̂q, εq, ε̂q) and a 2-cell α : p⇒
q define α∗ := p̂η̂q.ε̂pq̂ and ∗α := εGp̂.̂ηq as above. Then a 2-cell α is called a cyclic 2-cell if the
equation ∗α = α∗ is satisfied, or either of the equivalent conditions ∗∗α = α or α∗∗ = α are satisfied.

A 2-category in which all the 2-cells are cyclic with respect to some biadjunction is called a pivotal
2-category. In this categorical structure, on gets that all string diagram representing 2-cells are drawn up
by isotopy from the following theorem:

2.5 Theorem ([6]). Given a string diagram representing a cyclic 2-cell, between 1-cells with chosen
biadjoints, then any isotopy of the diagram represents the same 2-cell.

2.6. Example. We consider a 3-polygraph Σ with

• only one 0-cell ∗;

• two 1-cells ∧ and ∨;

• the 2-cells of Σ are defined by

• •

• the 3-cells of Σ are given by:

– the 3-cells of the polygraphs of pearls from [10], making ∧ and ∨ biadjoints and • a cyclic
2-cell:

V ; V ; = ; =

• V • , • V • , • V • , • V • ; (3)

• V • , • V • , • V • , • V •
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– the 3-cells of the 3-polygraph of permutations for both upward and downward orientations
of strands:

α±
V ,

β±
V .

– an additional 3-cell
γ

V
(4)

which is a well-known example of relation arising in representation theory, see for instance
Khovanov-Lauda’s 2-category [17] which categorifies quantum groups associated with sym-
metrizable Kac-Moody algebras.

One can check that this 3-polygraph is not confluent since the branching

4B

�,

(5)

is not confluent. However, the isotopy relations are part of the algebraic structure, and should not be
considered as rewriting rules for the study of confluence. To solve this problem, we introduce a concept
of rewriting modulo isotopy.

3. REWRITING MODULO

As we have just seen, the main objective is to handle confluence obstructions coming from relations
inherent to the algebraic structure, such for instance isotopies in pivotal 2-categories. We introduce the
notion of rewriting system modulo and enounce a critical pair lemma in that context.

3.1. 3-dimensional rewriting systems modulo. A 3-dimensional rewriting system modulo is the data
of a quadruple (P, R, E, S) where:

• P is a 1-polygraph;

• R is a 3-polygraph admitting P as underlying 1-polygraph;

• E is a 3-polygraph admitting P as underlying 1-polygraph and such that E2 ⊆ P2;

• S is a cellular extension of R∗2 which depend on E in the following sense: any element of S is a
3-cell in P∗2(E)[R] the free 2-category of rewritings with respect to R modulo E, which is defined
by:

P∗2(E)[R] = (E ∪ E ∪ R)∗/Inverse(E, E)

where E is defined by the set of formal inverses of elements of E and Inverse(E, E) is given by
relations f ?2 f = 1s1(f) and f ?2 f = 1t1(f) for any 2-cell f in E∗.

4



We denote by E> the free (3, 2)-category generated by E, and we say that two 2-cells u and v in
P∗2 are E-equivalent if they are linked by a 3-cell of E>, and we denote this by u ≈E v. In the liter-
ature [12, 14, 1], a 3-dimensional rewriting system modulo (P, R, E, S) corresponds to a 3-dimensional
rewriting system S satisfying R ⊆ S ⊆ ERE, where ERE is the rewriting system defined by rewriting on
E-equivalence classes, that is rules uV v iff there exists u ′ and v ′ in P∗2 such that u ′ ≈E u, v ′ ≈E v and
u ′ V v ′ in R.

3.2. Critical pair lemma modulo. A branching modulo E for a 3-polygraph S is a pair (f, g) of 3-cells
of S∗ such that s1(f) ≈E s1(g) as depicted by

u ′

u

f ,6

e
�
v

g (2 v ′

. (6)

Following [9, 14], for a terminating 3-dimensional rewriting system S modulo E, the property of
confluence modulo E is equivalent to the confluence of the critical branchings modulo of the following
form:

u ′

w

u

f
/;

g (2 v

u ′

w

u

f
/;

xx

e �� v

for any 2-cells f in S∗, g in R∗ and e in E> each of length 1.

4. COHERENCE MODULO

Let us introduce all the categorical material needed to enounce the coherence theorem modulo. Then,
we illustrate this result on the example above to obtain an homotopy basis modulo isotopy.

4.1. Double groupoids . We denote by Cat the category of all (small) categories and functors. A
groupoid is a category G whose any 1-cell is invertible. We denote by Grpd the category of groupoids
and functors.

A double category (resp. double groupoid) is an internal category (C1, C0, ∂C−, ∂C+, ◦C , iC) in Cat
(resp. Grpd). A double category (resp. double groupoid) C gives four related categories (resp. groupoids)

Csh := (Cs, Ch, ∂h−,1, ∂h+,1, �h, ih1 ), Csv := (Cs, Cv, ∂v−,1, ∂v+,1, �v, iv1),
Cho := (Ch, Co, ∂h−,0, ∂h+,0, ◦hih0 ), Cvo := (Cv, Co, ∂v−,0, ∂v+,0, ◦v, iv0).

where Csh is the category C1 and Cvo is the category C0. The sources and target maps

Cs
∂v+,1

""∂v−,1 ""
∂h−,1{{

∂h+,1

{{

Ch
∂h+,0

##∂h−,0 ##

Cv

∂v−,0||

∂v+,0

||

Co

satisfies the following relations:
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i) ∂hα,0∂
h
β,1 = ∂

v
β,0∂

v
α,1 for all α,β in {−,+},

ii) ∂vα,0i
h
1 = i0∂

h
α,0, ∂

h
α,0i

v
1 = i

h
0∂
v
α,0, for all α in {−,+},

iii) iv1i
v
0 = i

h
1 i
h
0 ,

iv) ∂µα,1(A �
µ B) = ∂

µ
α,1(A) ◦

µ ∂
µ
α,1(B), for all α ∈ {−,+}, µ ∈ {v, h} and any squares A,B such that

both sides are defined.

v) exchange law : (A �v A ′) �h (B �h B ′) = (A �h B) �v (A ′ �h B ′), for any squares A,A ′, B, B ′ such
that both sides are defined.

Elements of Ch and Cv and Cs are respectively called horizontal arrows, vertical arrows and squares and
can be pictured as follows:

x1
f // x2

x1

e

��
x2

·
∂h−,1(A)//

∂v−,1(A)

��

·
∂v+,1(A)

��
·
∂h+,1(A)

// ·
A��

Compositions in such a double groupoid are defined as follows:

x1
f1 //

e1

��

x2

e2

��

f2 // x3

e3

��
y1 g1

// y2

A
��

g2
// y3

B
��

 

x1
f1◦hf2 //

e1

��

x3

e3

��
y1

g1◦hg2
// y3

A�hB
��

for all xi, yi in Co, fi, gi in Ch, ei in Cv and A,B in Cs,

x1
f //

e1

��

x2

e2

��
y1 g

//

e ′1

��

y2

e ′2

��

A
��

z1
h

// z2

A ′��

 

x1
f //

e1◦ve ′1

��

x2

e2◦ve ′2

��
z1

h
// z2

A�vA ′

��

for all xi, yi, zi in Co, f, g, h in Ch, ei, e ′i in Cv and A,A ′ in Cs.

4.2. Square extensions. Given two 3-polygraphs S and E with the same underlying 1-polygraph P, a
2-square extension of the pair of 3-categories (S>, E>) is a set Ss4 equipped with four maps ∂v−,1, ∂

v
+,1 :

Ss4 → E>3 and ∂h−,1, ∂
h
+,1 : S

s
4 → S>3 satisfying the following cubical relations making Ss4 a 2-cubical set

in the sense of [4]:
∂hα,0∂

h
β,1 = ∂

v
β,0∂

v
α,1 for all α,β in {−,+}.

An element of Ss4 is called a 2-square in (S>, E>), and is depicted as follows

· f1 *4

e1


�

·
e2


�
·

f2

*4 ·

with fi ∈ S> and ei ∈ E>.
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4.3. (4, 2)-fold polygraphs. We introduce the notion of (4, 2)-fold polygraph, which is the structure
corresponding to a coherent presentation modulo of two 3-polygraphs E and R as in 3.1. The number
4 deals for the dimension of rewriting, and 2 = 4 − 2 encodes for the enrichment in 2-fold categories
(double categories) in a sense that we will explicit.

A (4, 2)-fold polygraph is the data of a tuple (P, E, S, Γ) where:

• S a 3-dimensional rewriting system modulo and E a 3-polygraph with the same underlying 1-
polygraph P, and E2 ⊆ S2;

• Γ is a 2-square extension of (S>, E>).

This corresponds to the following diagram:

Γ

∂v−,1

��
∂v+,1

��

∂h−,1

��

∂h+,1

��

S>3

∂v−,0

��
∂v+,0

��

E>3

∂h−,0

��

∂v+,0

��

S3 //

//

OO

S∗2

∂−,1

��

∂+,1

��

E3oo

oo

OO

P∗1

4.4. Free 2-category enriched in double groupoids generated by a (4, 2)-fold polygraph. We recall
that a 2-category enriched in double groupoids is a 2-category C such that for any p, q in C1 the homset
C(p, q) has a double groupoid structure, where the set C(p, q)o is the set of 2-cells in C1(p, q). We will
denote by Cv3 (resp. Ch3 , Cs4) the sets C(p, q)v (resp. C(p, q)h, C(p, q)s) for all p, q in C1. A 4-cell A in
Cs4 can be represented by the following diagrams:

u
f *4

e


�

v

e ′


�
u ′

g
*4 v ′

A
��

with u, u ′, v, v ′ ∈ C2(p, q), f, g ∈ Ch2 and e, e ′ ∈ Cv2.
The composition ?1 of 4-cells along 1-cells is induced by the functor of double categories

?p,q,r1 : C1(p, q)× C1(q, r) → C1(p, r)

for any 1-cells p, q, r, and are denoted as follows: the 1-composite of a 4-cell A in C(p, q) with a 4-cell
B in C(q, r) such that

u1
f1 *4

e1


�

v1

e ′1


�
u ′1 g1

*4 v ′1

A
��

u2
f2 *4

e2


�

v2

e ′2


�
u ′2 g2

*4 v ′2

B
��
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with u1, u ′1, v1, v
′
1 in C2(p, q),

u1 ?1 u2
f1?1f2 *4

e1?1e2


�

v1 ?1 v2

e ′1?1e
′
2


�
u ′1 ?1 u

′
2 g1?1g2

*4 v ′1 ?1 v
′
2

A?1B

��

The other compositions in C(p, q) are given by the vertical and horizontal compositions of the double
groupoid as in 4.1.

Given a (4, 2)-fold polygraph Σ = (P, E, S, Γ), we denote by Σ

|=

the free 2-category enriched in
double groupoids generated by Σ. Its underlying 2-category is the free 2-category S∗2, and for any 1-cells
p and q in P∗1 , we define a double groupoid S∂(x, y) by the following diagram:

Γ>
∂v+,1

""∂v−,1 ""
∂h−,1||

∂h+,1

||

S>3
∂h+,0

""∂h−,0 ""

E>3

∂v−,0||

∂v+,0

||

S∗2

where ∂h±,0 and ∂v±,0 correspond to 2-source and 2-target maps of the free 3-categories S> and E>, and
Γ> is obtained by ?0, ?1-compositions of any 4-cells A in S∂(x, y) and B in S∂(y,z) and their formal in-
verses defined fonctorially as above, and vertical and horizontal compositions of 4-cells and their formal
inverses in each double groupoid S∂(x,y).

4.5. Acyclicity. Let S be a 3-dimensional rewriting system and E be a 3-polygraph with the same
underlying 1-polygraph P. A 2-square extension Γ of (S>, E>) is said acyclic if for any 2-square

u
f *4

e


�

v

e ′


�
u ′

g
*4 v ′

in (S>, E>), there exists a 4-cell A in the free 2-category enriched in double groupoids generated by the
(4, 2)-fold polygraph (P, E, S, Γ) such that

u
f *4

e


�

v

e ′


�
u ′

g
*4 v ′

A
��

4.6. Squier’s completion modulo. Let (P, R, E, S) be a 3-dimensional rewriting system modulo. A
Squier’s completion modulo E of the 3-dimensional rewriting system S is a 2-square extension of (S>, E>)
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whose elements are the 4-cells Af,g or Bf,e of the following form:

u ′ f ′

�(

Af,g��

w
e ′
�u

f
/;

g $/
w ′

v
g ′

5D

u ′ f ′

�(

Bf,e��

w
e ′
�u

f
/;

rr

e ��

w ′

v
g ′

5D

for any critical branching (f, g) and (f, e) of S modulo F, where f, g and e belongs to S∗, R∗ and F>.
Note that such completion is not unique in general and depends on the rewriting sequences f ′, g ′ and the
equivalence e ′ used to obtain the confluence diagrams. These confluence diagrams corresponds to the
following 2-squares in (E>, S>):

u

e


�

f?2f
′
*4 w

1u


�
u

g?2g
′
*4 w ′

Af,g

��

u

e


�

f?2f
′
*4 w

e ′


�
v

g
*4 w ′

Bf,e

��

4.7 Theorem ([9]). Let (P, R, E, S) be a 3-dimensional rewriting system modulo such that S is termi-
nating and confluent modulo E. Then any Squier’s completion of S modulo E is an acyclic 2-square
extension.

4.8. Example. In this subsection, we illustrate this on a 3-dimensional diagrammatic rewriting system
modulo isotopies. We consider the 3-polygraph E which has:

• only one 0-cell ∗;

• two 1-cells ∧ and ∨;

• four 2-cells defined by

• the isotopy 3-cells of the 3-polygraph of pearls (3).

We consider the 3-polygraph R which has the same i-cells than the 3-polygraph Σ of 2.6 for 0 ≤ i ≤ 2
and whose set of 3-cells is given by (α±, β±, γ) and let S be the 3-dimensional rewriting system modulo
defined by 3-cells u V v whenever there exists u ′ in R∗2 such that u ≈E u ′ and u ′ V v is a rewriting
step in R.

Following [9], the only critical branchings we have to consider in that exemple are the pairs (f, g) for
f in S∗ and g in R∗ both of length 1. Notice that the branching (5) is not such a critical branching because
the top 3-cell lives in E>, and the top-right 2-cell is not reducible by R. More over, one can check that
the only critical branchings modulo E in Σ are given by pairs (f, g) of 3-cells both in R∗ of length 1. As
relation γ does not overlap with any other 3-cell, the only critical branchings we have to consider are
those of the 3-polygraph of permutations [10], with either upward or downward orientated strands. This
lead to the following elements of the homotopy basis defined for both orientations of strands:

α±

�#

α±

;I
A±
~�
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α± *4

β±

�$

β±
*4

B±

��

α±

:I

β± *4

α±

�$

β±

:I

α±
*4

C±

��

α± *4

α±

�"

β±

;J

β±

�#

α±
*4

α±

<J
D±

��

β± *4 β± *4

β±

�$

β±

:I

β±

�$

β±
*4

β±
*4

β±

:I

E±

��

CONCLUSION

In this work, we presented a method allowing to compute coherent presentations using rewriting mod-
ulo. We illustrated the main result on an example showing that if some rules such as isotopies (3) are
not considered as axioms for which we rewrite modulo, it is hopeless to obtain homotopy bases using
convergent presentations for diagrammatic algebras. The works in progress attempt to apply these meth-
ods in various algebraic structures, to obtain coherence results for instance for groups, or commutative
monoids or algebras.
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