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Fiche 1

Exercice 1 (Changement de base R2 → R2.) Soit E = R2 avec la base canonique B = {e1, e2}.

Pour deux vecteurs arbitraires U =

(
a
b

)
, V =

(
a′

b′

)
on définie une forme bilinéaire β par la formule

β(U, V ) = aa′ + 2ab′ + 4a′b+ 5bb′. Soit B′ une base formée de vecteurs f1 =

(
1
1

)
, f2 =

(
1
−1

)
.

1. Expliciter M, la matrice de β dans la base canonique B.
2. Calculer la matrice de la forme β dans la base B′ de deux façons différentes :

(a) en multipliant les vecteurs fi et fj pour tous i, j ∈ {1, 2} ;

(b) en calculant la matrice de passage P de la base canonique vers la base B′ et en utilisant la
formule M ′ = tPMP.

(c) Decomposer la matrice M en somme de la matrice symétrique et antisymétrique. Presenter
la forme bilinéaire β comme la somme de la forme bilinéaire symétrique et de la forme
bilinéaire anti-symétrique.

Exercice 2 (Changement de base R3 → R3.) Soit E = R3 avec la base canonique. Pour deux

vecteurs arbitraires v1 =

 x1
x2
x3

 , v2 =

 y1
y2
y3

 on définie une forme bilinéaire φ par la formule

φ(v1, v2) = x1y1 + 2x2y2 + 3x3y3. Soit M la matrice de la forme billinéaire φ dans la base canonique
(expliciter !)

Soit B une base formée de vecteurs h1 =

 1
1
1

 , h2 =

 1
1
−1

 , h3 =

 1
−1
−1


Calculer la matrice de la forme φ dans cette base B de deux façons différentes :

1. en multipliant les vecteurs hi et hj pour tous i, j ∈ {1, 2, 3} ;

2. en calculant la matrice de passage C de la base canonique vers la base B et en utilisant la
formule M ′ = tCMC.

Exercice 3 (Matrice orthogonale) Soit E un espace réel de dimension fini n et Be = {ei} et Bf =
{fi}, i ∈ {1, · · · , n} deux bases de cet espace. Soit C la matrice de passage de Be vers Bf .

1. Soit A une matrice d’une appplication linéaire φ : E → E dans la base Be. Exprimer la matrice
de φ dans la base Bf en fonction de A et C. Notons la A′.

2. On considère la forme bilinéaire β : E × E → R donnée par la même matrice A dans la base
Be. Exprimer la matrice de β dans la base Bf en fonction de A et C. Notons la A′′.

3. On suppose que C−1 = tC. Remarquer que alors on a C · tC = I, où I est la matrice d’identité.
En plus pour une telle matrice de passage on a A′ = A′′. Soient (cij)i,j∈{1,··· ,n} - les entrées de

la matrice C. On considère les vecteurs-colonnes de C : vi =


c1i
c2i
· · ·
cni

 .

(a) Montrer que : a. c21i + c22i + · · ·+ c2ni = 1, ∀ i ∈ {1, · · · , n},
b. c1ic1j + c2ic2j + · · ·+ cnicnj = 0, si i 6= j, c. |cij | ≤ 1, ∀ i, j ∈ {1, · · · , n}.
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(b) Que peut-on dire sur l’ensemble de vecteurs vi, i ∈ {1, · · · , n} ?

(c) Trouver les conditions similaires aux a. et b. sur les entrées des vecteurs wi =


ci1
ci2
· · ·
cin

 .

Exercice 4 (Produit scalaire : exemples élémentaires)

1. Les formes suivantes sont-elles des produits scalaires ?

(a) L’application β : R2×R2 −→ R qui au couple de vecteurs (u, u′) associe xx′+yy′+xy′+yx′

si u = (x, y) et u′ = (x′, y′) dans une base fixée.

(b) L’application β : R2×R2 −→ R qui au couple de vecteurs (u, u′) associe 2xx′+3yy′+2xy′+
2x′y si u = (x, y) et u′ = (x′, y′) dans une base fixée.

(c) Soient a, b ∈ R tels que a < b et soit E l’espace des fonctions continues f : [a, b] −→ R. On

définit β : E × E −→ R par β(f, g) =
∫ b
a f(t)g(t)dt.

2. Quelles sont les conditions sur a, b ∈ R pour que l’application β : R2 × R2 −→ R définie par
β((x, y), (x′, y′)) = axx′ + 2bxy′ + 2bx′y + byy′ soit un produit scalaire.

3. On notera V les nombres complexes que l’on verra comme un R-espace vectoriel. Vérifier que
b : V ×V −→ R qui à chaque paire de nombres complexes (α, β) associe Re(αβ̄) est un produit
scalaire.

Exercice 5 (D’autres exemples, orthogonalité) Les applications suivantes définissent-elles des
produits scalaires sur les espaces vectoriels considérés ? Si oui, (et lorsque cela a un sens) préciser si
la base canonique de l’espace vectoriel considéré est orthogonale pour ce produit scalaire.

1. Soit n ∈ N. On considère l’application ϕ définie sur (Rn[X])2 par :

∀P,Q ∈ Rn[X], ϕ(P,Q) =
n∑
k=0

P (k)Q(k).

2. Soit n ∈ N∗. On considère l’application ψ définie sur (Mn(R))2 par :

∀A,B ∈Mn(R), ψ(A,B) = Tr(tAB).

3. On note E = C([−1; 1];R) et on considère l’application définie par

∀f, g ∈ E, b(f, g) =

∫ 1

−1
f(t)g(t)(1− t2)dt.

Exercice 6 (Cauchy-Schwarz) En utilisant l’inégalité de Cauchy-Schwarz, montrer pour tout

f ∈ C([a; b],R) on a

(∫ b

a
|f(t)|dt

)2

≤ (b− a)

∫ b

a
f(t)2dt. Préciser le cas d’égalité.

Exercice 7 (Cauchy-Schwarz) Soient A et B deux matrices n× n symétriques. En choisissant un
produit scalaire sur l’espace des matrices n× n montrer que (tr(AB +BA))2 ≤ 4trA2 · trB2.

Exercice 8 (Caractérisation d’un produit scalaire)

1. Soit (E, 〈 , 〉) un espace préhilbertien réel. On note ‖ ‖ la norme associée à ce produit scalaire.
Montrer les trois formules de polarisations :

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2) =

1

2
(‖x+ y‖2 − ‖x‖2 − ‖y‖2) =

1

2
(‖x‖2 + ‖y‖2 − ‖x− y‖2).

Montrer que ‖ ‖ vérifie l’identité du parallélogramme, i.e.

∀x, y ∈ E, ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).
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2. Soit E un R-espace vectoriel muni d’une norme ‖ ‖ vérifiant l’identité du parallélogramme. Pour

tout (x, y) ∈ E2, on pose ϕ(x, y) =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

(a) Montrer que pour tous x, y ∈ E, ϕ(x, y) = ϕ(y, x) et ϕ(x, x) = ‖x‖2.
(b) Montrer que pour tout x, y ∈ E, ϕ(x, 2y) = 2ϕ(x, y). Indication : démarrer avec ‖x+2y‖2 +
‖x‖2.

(c) Montrer que pour tous x, y, z ∈ E, ϕ(x+ z, y) = ϕ(x, y) + ϕ(z, y).

(d) Montrer que pour tout λ ∈ N, pour tous x, y ∈ E, ϕ(λx, y) = λϕ(x, y). Montrer que ceci
est encore vrai pour tout λ ∈ Q puis pour tout λ ∈ R.

(e) En déduire que toute norme vérifiant l’identité du parallélogramme est induite par un
produit scalaire.

3. Montrer que la norme ‖(x1, x2)‖1 = |x1|+ |x2| sur R2 n’est pas associée à un produit scalaire.

Exercice 9 (Produits scalaires complexes, les matrices)

1. Montrer que l’application 〈 , 〉 : Mn(C)2 → C définie par 〈A,B〉 = Tr(tA · B) est un produit
scalaire.

2. Soient A,B ∈Mn(C). On note A = (aij) et B = (bij). Montrer que 〈A,B〉 =
∑

1≤i,j≤n
aij · bij .

Exercice 10 (Produits scalaires complexes, les polynômes) Soit ϕ : C[X]2 → C définie par :

ϕ(P,Q) =
1

2π

∫ π

−π
P (eit)Q(eit)dt.

1. Montrer que ϕ est un produit scalaire hermitien.

2. Montrer que la base canonique de C[X] est une base orthonormée.

Soient a0, . . . , an−1 ∈ C et Q = a0 + a1X + · · ·+ an−1X
n−1 +Xn.

3. Calculer ‖Q‖2 en fonction des ai.

4. Soit M = sup{|Q(z)| ; z ∈ C, |z| = 1}.
Montrer que M ≥ 1 et que : M = 1 if and only if Q = Xn.

Exercice 11 (Des complexes aux réels) Soit (E, 〈 , 〉) un espace préhilbertien complexe. Soit
ϕ : E ×E → R définie par ϕ(x, y) = Re(〈x, y〉). Montrer que ϕ est un produit scalaire sur le R-espace
vectoriel E.

Exercice 12 (Produit scalaire, bases) Soient a1, . . . , an ∈ R et A ∈Mn(R) la matrice diagonale
dont la diagonale est constituée de a1, . . . , an. Soit ϕ :Mn×1(R)2 → R définie par ϕ(X,Y ) = tX ·A ·Y .
Notez que ϕ est à valeurs dans M1(R) mais on identifie ce dernier à R par un abus de notations.

1. Donner une condition nécessaire et suffisante sur les ai pour que ϕ soit un produit scalaire.

2. Sous cette condition, montrer que la base canonique de Mn×1(R) est une base orthogonale.

3. Toujours sous la même condition, déterminer une base orthonormée de Mn×1(R).

Exercice 13 (Familles indépendantes infinies) On se place dans l’espace vectoriel E = C ([0; 1],R)
muni du produit scalaire usuel : ∀f, g ∈ E, ϕ(f, g) =

∫ 1
0 f(t)g(t)dt. Pour tout n ∈ N, on considère

l’application hn : t ∈ [0; 1] 7−→ cos(2πnt).

1. Montrer que la famille d’applications (hn)n∈N est orthogonale.

2. En raisonnant par l’absurde, montrer que l’espace vectoriel E n’est pas de dimension finie.
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