Coherence modulo and double groupoids

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1
joint work with Philippe Malbos

Category Theory 2019
Edinburgh, 11 July 2019
I. Introduction and motivations
II. Double groupoids
III. Polygraphs modulo
IV. Coherence modulo

I. Introduction and motivations

Motivations: algebraic context

- Algebraic rewriting: constructive methods to study algebraic structures presented by generators and relations.

Motivations: algebraic context

- Algebraic rewriting: constructive methods to study algebraic structures presented by generators and relations.
- Example. Computation of syzygies.

Motivations: algebraic context

- Algebraic rewriting: constructive methods to study algebraic structures presented by generators and relations.
- Example. Computation of syzygies.
- Squier's coherence theorem: basis of syzygies from a convergent presentation.

Motivations: algebraic context

- Algebraic rewriting: constructive methods to study algebraic structures presented by generators and relations.
- Example. Computation of syzygies.
- Squier's coherence theorem: basis of syzygies from a convergent presentation.

Motivations: algebraic context

- Algebraic rewriting: constructive methods to study algebraic structures presented by generators and relations.
- Example. Computation of syzygies.
- Squier's coherence theorem: basis of syzygies from a convergent presentation.

Motivations: algebraic context

- Algebraic rewriting: constructive methods to study algebraic structures presented by generators and relations.
- Example. Computation of syzygies.
- Squier's coherence theorem: basis of syzygies from a convergent presentation.

Motivations: algebraic context

- Algebraic rewriting: constructive methods to study algebraic structures presented by generators and relations.
- Example. Computation of syzygies.
- Squier's coherence theorem: basis of syzygies from a convergent presentation.

- If a group $G=\langle X \mid R\rangle$ is presented as a monoid $M=\langle X \amalg \bar{X}| R \cup\left\{x x^{-} \xrightarrow{\alpha_{x}} 1, x^{-} x \xrightarrow{\alpha_{x}} 1\right\}$,

Motivations: algebraic context

- Algebraic rewriting: constructive methods to study algebraic structures presented by generators and relations.
- Example. Computation of syzygies.
- Squier's coherence theorem: basis of syzygies from a convergent presentation.

- If a group $G=\langle X \mid R\rangle$ is presented as a monoid $M=\langle X \amalg \bar{X}| R \cup\left\{x x^{-} \xrightarrow{\alpha_{x}} 1, x^{-} x \xrightarrow{\alpha_{x}} 1\right\}$, the confluence diagram

is an artefact induced by the algebraic structure and should not be considered as a syzygy.
- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- Structural rules of these algebras make the study of local confluence complicated.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

$$
\bigcap=\emptyset=\emptyset \quad \bigcap \emptyset=\emptyset=\emptyset \emptyset
$$

Example: diagrammatic rewriting modulo isotopy

- Let P be the rewriting system on the set of diagrams composed of:

Example: diagrammatic rewriting modulo isotopy

- Let P be the rewriting system on the set of diagrams composed of:

- Let P be the rewriting system on the set of diagrams composed of:

- submitted to relations:

$$
\begin{aligned}
& \downarrow \rightarrow \bigcup \text {, } \downarrow \rightarrow \bigcap \downarrow, \quad ઈ \bigcup \rightarrow \uparrow, \quad \downarrow \rightarrow \curvearrowleft 9,
\end{aligned}
$$

- Let P be the rewriting system on the set of diagrams composed of:

- submitted to relations:

$$
\begin{aligned}
& \downarrow \rightarrow \bigcup \text {, } \downarrow \rightarrow \bigcap \downarrow, \quad ઈ \bigcup \rightarrow \uparrow, \quad \downarrow \rightarrow \curvearrowleft 9,
\end{aligned}
$$

- If no rewriting modulo:

- Let P be the rewriting system on the set of diagrams composed of:

- submitted to relations:
隹
- If no rewriting modulo:

Not confluent !

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence and confluence results in n-categories.
- Rewriting system R :
- Coherence and confluence results in n-categories.
- Rewriting modulo: we consider a rewriting system R and a set of equations E.
- Rewriting system R :
- Coherence and confluence results in n-categories.
- Rewriting modulo: we consider a rewriting system R and a set of equations E.
- Three paradigms of rewriting modulo:

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence and confluence results in n-categories.
- Rewriting modulo: we consider a rewriting system R and a set of equations E.
- Three paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet ' 80 .

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence and confluence results in n-categories.
- Rewriting modulo: we consider a rewriting system R and a set of equations E.
- Three paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet '80.

- ${ }_{E} R_{E}$: Rewriting with R on E-equivalence classes

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence and confluence results in n-categories.
- Rewriting modulo: we consider a rewriting system R and a set of equations E.
- Three paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet '80.

- ${ }_{E} R_{E}$: Rewriting with R on E-equivalence classes

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence and confluence results in n-categories.
- Rewriting modulo: we consider a rewriting system R and a set of equations E.
- Three paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet '80.

- ${ }_{E} R_{E}$: Rewriting with R on E-equivalence classes

- Rewriting with any system S such that $R \subseteq S \subseteq E R_{E}$, Jouannaud - Kirchner '84.

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence and confluence results in n-categories.
- Rewriting modulo: we consider a rewriting system R and a set of equations E.
- Three paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet '80.

- ${ }_{E} R_{E}$: Rewriting with R on E-equivalence classes

- Rewriting with any system S such that $R \subseteq S \subseteq E R_{E}$, Jouannaud - Kirchner '84.
- Main interest and results for ${ }_{E} R$.

II. Double groupoids

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.
- A double category is an internal category ($\left.\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}, i_{\mathbf{C}}\right)$ in Cat, Ehresmann '64.

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.
- A double category is an internal category ($\left.\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}, i_{\mathbf{C}}\right)$ in Cat, Ehresmann '64. $\left(\mathrm{C}_{0}\right)_{0}$

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.
- A double category is an internal category ($\left.\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}, i_{\mathbf{C}}\right)$ in Cat, Ehresmann '64.
$\left(\mathrm{C}_{0}\right)_{0}$
$\left(C_{0}\right)_{1} \downarrow$
\downarrow
$\left(C_{0}\right)_{0}$

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.
- A double category is an internal category ($\left.\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}, i_{\mathbf{C}}\right)$ in Cat, Ehresmann '64.
$\left(\mathrm{C}_{0}\right)_{0}$
$\left(\mathrm{C}_{0}\right)_{1} \downarrow$
$\left(\mathrm{C}_{0}\right)_{0}$
$\left(\mathrm{C}_{0}\right)_{0}$
$v^{\left(C_{0}\right)_{1}}$
(C_{0}) 0
(Co ${ }^{0}$

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }_{\mathbf{o}}^{\mathbf{C}}$, ic $)$ in Cat, Ehresmann '64.

$$
\begin{aligned}
& \quad\left(\mathrm{C}_{0}\right)_{0} \stackrel{\left(\mathrm{C}_{1}\right)_{0}}{\longrightarrow}\left(\mathrm{C}_{0}\right)_{0} \\
& \left(\mathrm{C}_{0}\right)_{1} \downarrow \\
& \left.\downarrow \mathrm{C}_{0}\right)_{0} \underset{\left(\mathrm{C}_{1}\right)_{0}}{\longrightarrow}\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }_{\mathbf{o}}^{\mathbf{C}}$, ic $)$ in Cat, Ehresmann '64.

$$
\begin{aligned}
& \left(\mathrm{C}_{0}\right)_{0} \xrightarrow{\left(\mathrm{C}_{1}\right)_{0}}\left(\mathrm{C}_{0}\right)_{0} \\
& \left(C_{0}\right)_{1} \downarrow \stackrel{\left(C_{1}\right)_{1}}{\Downarrow} \quad \downarrow^{\left(C_{0}\right)_{1}} \\
& \left(\mathrm{C}_{0}\right)_{0} \underset{\left(\mathrm{C}_{1}\right)_{0}}{ }\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}$, ic $)$ in Cat, Ehresmann '64.

$$
\begin{aligned}
& \left(\mathrm{C}_{0}\right)_{0} \xrightarrow{\left(\mathrm{C}_{1}\right)_{0}}\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathrm{C}_{0}\right)_{0} \underset{\left(\mathrm{C}_{1}\right)_{0}}{ }\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

- It gives four related categories

$$
\begin{array}{ll}
\mathbf{C}^{v o}:=\left(\mathbf{C}^{\vee}, \mathbf{C}^{o}, \partial_{-, 0}^{v}, \partial_{+, 0}^{v}, \circ^{\vee}, i_{0}^{v}\right), & \mathbf{C}^{h o}:=\left(\mathbf{C}^{h}, \mathbf{C}^{\circ}, \partial_{-, 0}^{h}, \partial_{+, 0}^{h}, \circ^{h}, i_{0}^{h}\right), \\
\mathbf{C}^{s \vee}:=\left(\mathbf{C}^{s}, \mathbf{C}^{\vee}, \partial_{-, 1}^{v}, \partial_{+, 1}^{v}, \diamond^{\vee}, i_{1}^{v}\right), & \mathbf{C}^{s h}:=\left(\mathbf{C}^{s}, \mathbf{C}^{h}, \partial_{-, 1}^{h}, \partial_{+, 1}^{h}, \diamond^{h}, i_{1}^{h}\right),
\end{array}
$$

where $\mathbf{C}^{\text {sh }}$ is the category \mathbf{C}_{1} and $\mathbf{C}^{\text {vo }}$ is the category \mathbf{C}_{0}.

Double groupoids

- We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }_{\mathbf{O}}^{\mathbf{C}}$, ic $)$ in Cat, Ehresmann '64.

$$
\begin{aligned}
& \quad\left(\mathrm{C}_{0}\right)_{0} \stackrel{\left(\mathrm{C}_{1}\right)_{0}}{\longrightarrow}\left(\mathrm{C}_{0}\right)_{0} \\
& \left.\left.\left(\mathrm{C}_{0}\right)_{1} \downarrow \downarrow \mathrm{C}_{1}^{\|}\right)_{1} \downarrow \mathrm{C}_{0}\right)_{1} \\
& \quad\left(\mathrm{C}_{0}\right)_{0} \underset{\left(\mathrm{C}_{1}\right)_{0}}{\rangle_{0}}\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

- It gives four related categories

$$
\begin{array}{ll}
\mathbf{C}^{v o}:=\left(\mathbf{C}^{\vee}, \mathbf{C}^{o}, \partial_{-, 0}^{v}, \partial_{+, 0}^{v}, \circ^{\vee}, i_{0}^{\vee}\right), & \mathbf{C}^{h o}:=\left(\mathbf{C}^{h}, \mathbf{C}^{o}, \partial_{-, 0}^{h}, \partial_{+, 0}^{h}, \circ^{h}, i_{0}^{h}\right), \\
\mathbf{C}^{s v}:=\left(\mathbf{C}^{s}, \mathbf{C}^{\vee}, \partial_{-, 1}^{v}, \partial_{+, 1}^{v}, \diamond^{\vee}, i_{1}^{v}\right), & \mathbf{C}^{s h}:=\left(\mathbf{C}^{s}, \mathbf{C}^{h}, \partial_{-, 1}^{h}, \partial_{+, 1}^{h}, \diamond^{h}, i_{1}^{h}\right),
\end{array}
$$

where $\mathbf{C}^{\text {sh }}$ is the category \mathbf{C}_{1} and $\mathbf{C}^{\text {vo }}$ is the category \mathbf{C}_{0}.

- Elements of \mathbf{C}° : point cells, elements of \mathbf{C}^{h} and \mathbf{C}^{v} : horizontal cells and vertical cells.

Double groupoids

- Elements of C_{s} are square cells:

$$
\partial_{-, \mathbf{1}}^{v}(A) \stackrel{\Vdash_{A}}{\downarrow} \downarrow_{\partial_{+, \mathbf{1}}^{h}(A)}^{\partial_{-, \mathbf{1}}^{v}(A)}
$$

Double groupoids

- Elements of C_{s} are square cells:

Double groupoids

- Elements of C_{s} are square cells:
- Compositions
for all x_{i}, y_{i}, z_{i} in \mathbf{C}^{o}, f_{i} in $\mathbf{C}^{h}, e_{i}, e_{i}^{\prime}$ in \mathbf{C}^{v} and A, A^{\prime}, B in \mathbf{C}^{s};

Double groupoids

- Elements of C_{s} are square cells:

- Compositions
for all x_{i}, y_{i}, z_{i} in \mathbf{C}^{o}, f_{i} in $\mathbf{C}^{h}, e_{i}, e_{i}^{\prime}$ in \mathbf{C}^{v} and A, A^{\prime}, B in $\mathbf{C}^{s} ;$

Double groupoids

- These compositions satisfy the middle four interchange law:

Double groupoids

- These compositions satisfy the middle four interchange law:

Double groupoids

- These compositions satisfy the middle four interchange law:

Double groupoids

- These compositions satisfy the middle four interchange law:

$x_{2} \xrightarrow{f_{2}} x_{3}$

$$
y_{1}-g_{1} \rightarrow y_{2}
$$

\diamond^{v}
$\begin{array}{ccc}y_{2} \xrightarrow{g_{2}} y_{3} \\ e_{\mathbf{2}}^{\prime} \\ \downarrow & \Downarrow_{B^{\prime}} & \downarrow_{3} \\ z_{2} & -h_{\mathbf{2}}> & z_{3}\end{array}$

Double groupoids

- These compositions satisfy the middle four interchange law:
$x_{1} \xrightarrow{f_{1}}>x_{2}$
$e_{\mathbf{1}} \downarrow \quad \forall A \quad{ }^{2} e_{2}$
$y_{1}-g_{1}>y_{2}$
$\diamond^{h} \quad \diamond^{v}$
$x_{2} \xrightarrow{f_{2}} x_{3}$
$e_{2} \downarrow \quad \forall B \quad{ }^{2} \quad e_{3}$
$y_{2}-g_{2}>y_{3}$
$\begin{array}{ccc}y_{1} & \xrightarrow{g_{1}} y_{2} \\ e_{1}^{\prime} & \forall A^{\prime} & \downarrow^{\prime} e_{2}^{\prime} \\ \Downarrow & & \\ z_{1} & -h_{1}>z_{2}\end{array}$

$$
\begin{gathered}
y_{2} \xrightarrow{g_{2}} y_{3} \\
e_{2}^{\prime} \downarrow \underset{B^{\prime}}{\Downarrow_{2}} \downarrow_{3}^{\prime} e_{3}^{\prime} \\
z_{2}-h_{2}>z_{3}
\end{gathered}
$$

Double groupoids

- These compositions satisfy the middle four interchange law:

$$
\begin{aligned}
& \begin{array}{c}
x_{1} \xrightarrow{f_{1}}>x_{2} \\
e_{1} \downarrow \quad \forall A \quad{ }^{2} \\
\forall
\end{array} \\
& x_{2} \xrightarrow{f_{2}} x_{3} \\
& y_{1}-g_{1}>y_{2}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \xrightarrow{f_{1}} x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \diamond^{h} \quad \diamond^{v} \\
& \diamond^{\vee} \quad \diamond^{h}= \\
& \begin{array}{ccc}
y_{1} & \xrightarrow{g_{1}}>y_{2} \\
e_{1}^{\prime} \| & \Downarrow A^{\prime} & \downarrow^{\prime} e_{2}^{\prime} \\
\Downarrow & & \\
z_{1} & -h_{1}>z_{2}
\end{array} \\
& \begin{array}{ccc}
y_{2} & \xrightarrow{g_{2}}>y_{3} \\
e_{2}^{\prime} \downarrow & \Downarrow_{B^{\prime}} \quad{ }^{\prime} e_{3}^{\prime} \\
z_{2} & -h_{2}> & z_{3}
\end{array}
\end{aligned}
$$

Double groupoids

- These compositions satisfy the middle four interchange law:

$$
\begin{aligned}
& \begin{array}{c}
x_{1} \xrightarrow{f_{1}}>x_{2} \\
e_{\mathbf{1}} \downarrow \quad \forall A \quad{ }^{2} \\
\forall
\end{array} \\
& \begin{array}{c}
x_{2} \xrightarrow{f_{2}} x_{3} x_{3}{ }^{e_{2}} \downarrow \quad \Downarrow_{B} \quad e_{3}
\end{array} \\
& x_{1} \xrightarrow{f_{1}} x_{2} \\
& y_{2}-g_{2} \rightarrow y_{3} \quad y_{1}-g_{1}>y_{2} \\
& x_{2} \xrightarrow{f_{2}} x_{3} \\
& y_{1}-g_{1}>y_{2} \\
& \diamond^{v} \\
& \begin{array}{c}
y_{2} \xrightarrow{g_{2}} y_{3} \\
e_{2}^{\prime} \downarrow \begin{array}{l}
\Downarrow B^{\prime} \quad{ }_{3}^{\prime} \\
z_{2} \\
z_{2}
\end{array} h_{2}>z_{3}
\end{array} \\
& \begin{array}{cc}
y_{1} \xrightarrow{g_{1}}>y_{2} \\
e_{1}^{\prime} \downarrow & \forall A^{\prime} \quad{ }^{\downarrow} e_{2}^{\prime} \\
z_{1} & -h_{1}>z_{2}
\end{array} \\
& \begin{array}{cc}
y_{2} \xrightarrow{g_{2}}>y_{3} \\
\diamond^{v} e_{2}^{\prime} \|_{\downarrow} & \forall B^{\prime} \\
z_{2} & \downarrow_{2} e_{3}^{\prime} \\
h_{2}> & z_{3}
\end{array}
\end{aligned}
$$

Double groupoids

- These compositions satisfy the middle four interchange law:

$x_{2} \xrightarrow{f_{2}}>x_{3}$
$e_{2} \downarrow \quad \forall B \quad{ }^{2} e_{3}$
\forall
$x_{1} \xrightarrow{f_{1}}>x_{2}$
$e_{1} \underset{y_{1}}{\forall} \underset{y_{1}}{ } \quad \forall g_{1}>y_{2}$

$y_{2} — g_{2} \rightarrow y_{3}$
$=$
$\begin{array}{cc}y_{1} \xrightarrow{g_{1}}>y_{2} \\ e_{\mathbf{1}}^{\prime} \downarrow & \forall A^{\prime} \quad \downarrow^{e_{\mathbf{2}}^{\prime}} \\ z_{1} & -h_{\mathbf{1}}>z_{2}\end{array}$ \diamond^{h}
$\begin{array}{ccc}y_{1} & \xrightarrow{g_{1}}>y_{2} \\ e_{1}^{\prime} & & \Downarrow A^{\prime} \\ \Downarrow & \downarrow e_{2}^{\prime} \\ z_{1} & -h_{1}> & z_{2}\end{array}$

\[

\]

$$
\pm-2
$$

- Double groupoid: double category in which horizontal, vertical and square cells are invertible.

Double groupoids

- These compositions satisfy the middle four interchange law:

- Double groupoid: double category in which horizontal, vertical and square cells are invertible.
- n-category enriched in double groupoids: n-category \mathcal{C} such that any homset $\mathcal{C}_{n}(x, y)$ is a double groupoid.

Double groupoids

- These compositions satisfy the middle four interchange law:

$y_{1}-g_{1} \rightarrow y_{2}$

$=$

- Double groupoid: double category in which horizontal, vertical and square cells are invertible.
- n-category enriched in double groupoids: n-category \mathcal{C} such that any homset $\mathcal{C}_{n}(x, y)$ is a double groupoid.
- Horizontal $(n+1)$-category: category of rewritings, vertical $(n+1)$-category: category of modulo rules.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.
- An n-polygraph generates a free n-category.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.
- An n-polygraph generates a free n-category.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.
- An n-polygraph generates a free n-category.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.
- An n-polygraph generates a free n-category.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.
- An n-polygraph generates a free n-category.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.
- An n-polygraph generates a free n-category.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.
- An n-polygraph generates a free n-category.

Polygraphs

- Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.
- An n-polygraph generates a free n-category.

- An ($n-1$)-category \mathcal{C} is presented by an n-polygraph $\left(P_{0}, \ldots, P_{n}\right)$ if

$$
\mathcal{C} \simeq P_{n-1}^{*} / \equiv P_{n}
$$

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data $\left(P^{v}, P^{h}, P^{s}\right)$ made of:

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{v}, P^{h}, P^{s}) made of:
- two ($n+1$)-polygraphs P^{v} and P^{h} such that $P_{k}^{v}=P_{k}^{h}$ for $k \leq n$,

$$
P_{n+\mathbf{1}}^{v} \Longrightarrow P_{n}^{*} \longleftarrow P_{n+\mathbf{1}}^{h}
$$

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{v}, P^{h}, P^{s}) made of:
- two ($n+1$)-polygraphs P^{\vee} and P^{h} such that $P_{k}^{\vee}=P_{k}^{h}$ for $k \leq n$,

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{v}, P^{h}, P^{s}) made of:
- two $(n+1)$-polygraphs P^{\vee} and P^{h} such that $P_{k}^{v}=P_{k}^{h}$ for $k \leq n$,
- a 2-square extension P^{s} of the pair of $(n+1)$-categories $\left(\left(P^{v}\right)^{*},\left(P^{h}\right)^{*}\right)$, that is a set equipped with four maps making Γ a 2 -cubical set.

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{v}, P^{h}, P^{s}) made of:
- two $(n+1)$-polygraphs P^{\vee} and P^{h} such that $P_{k}^{\vee}=P_{k}^{h}$ for $k \leq n$,
- a 2-square extension P^{s} of the pair of $(n+1)$-categories $\left(\left(P^{v}\right)^{*},\left(P^{h}\right)^{*}\right)$, that is a set equipped with four maps making Γ a 2 -cubical set.

- A double $(n+2, n)$-polygraph is a double n-polygraph in which P^{s} is defined on $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$.

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{\vee}, P^{h}, P^{s}) made of:
- two $(n+1)$-polygraphs P^{\vee} and P^{h} such that $P_{k}^{\vee}=P_{k}^{h}$ for $k \leq n$,
- a 2-square extension P^{s} of the pair of $(n+1)$-categories $\left(\left(P^{v}\right)^{*},\left(P^{h}\right)^{*}\right)$, that is a set equipped with four maps making Γ a 2 -cubical set.

- A double $(n+2, n)$-polygraph is a double n-polygraph in which P^{s} is defined on $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$.
- A double $(n+2, n)$-polygraph $\left(P^{v}, P^{h}, P^{s}\right)$ generates a free $(n-1)$-category enriched in double groupoids, denoted by $\left(P^{v}, P^{h}, P^{s}\right) \pi$.

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square

$$
S=\left(P^{v}\right)^{\top} \stackrel{\cdot}{\stackrel{\left(P^{h}\right)^{\top}}{\downarrow}} \underset{\left(P^{h}\right)^{\top}}{\longrightarrow}{ }^{\top} \cdot\left(P^{v}\right)^{\top}
$$

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square
there exists a square $(n+1)$-cell A in $\left(P^{v}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square
there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.
- A 2 -fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square
there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.
- A 2 -fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic
- Example: Let E be a convergent ($n+1$)-polygraph.

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square
there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.
- A 2 -fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic
- Example: Let E be a convergent $(n+1)$-polygraph. $\operatorname{Cd}(E):=$ square extension containing

$$
\stackrel{e_{1} \star_{n-1} e_{1}^{\prime}}{\downarrow \underset{=}{\longrightarrow} \Downarrow^{e_{2} \star_{n-1} e_{\mathbf{2}}^{\prime}} .}
$$

for a choice of confluence of any critical branching $\left(e_{1}, e_{2}\right)$ of E.

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square
there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.
- A 2 -fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic
- Example: Let E be a convergent $(n+1)$-polygraph. $\operatorname{Cd}(E):=$ square extension containing

$$
\begin{aligned}
& e_{\mathbf{1}} \star_{n-\mathbf{1}} e_{\mathbf{1}}^{\prime} \\
& \Downarrow \stackrel{=}{=} ね^{=} .
\end{aligned}
$$

for a choice of confluence of any critical branching $\left(e_{1}, e_{2}\right)$ of E.

- From Squier's theorem, $(E, \emptyset, \operatorname{Cd}(E))$ is a 2-fold coherent presentation of \mathbf{C}.

III. Polygraphs modulo

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,
- S is a cellular extension of R_{n-1}^{*} such that $R \subseteq S \subseteq E R_{E}$,

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,
- S is a cellular extension of R_{n-1}^{*} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by

$$
\gamma^{E} R_{E}:{ }_{E} R_{E} \rightarrow \operatorname{Sph}_{n-1}\left(R_{n-1}^{*}\right)
$$

where ${ }_{E} R_{E}$ is the set of triples (e, f, e^{\prime}) in $E^{\top} \times R^{*(1)} \times E^{\top}$ such that

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,
- S is a cellular extension of R_{n-1}^{*} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by

$$
\gamma^{E} R_{E}:{ }_{E} R_{E} \rightarrow \operatorname{Sph}_{n-1}\left(R_{n-1}^{*}\right)
$$

where ${ }_{E} R_{E}$ is the set of triples $\left(e, f, e^{\prime}\right)$ in $E^{\top} \times R^{*(1)} \times E^{\top}$ such that

and the map $\gamma^{E} R_{E}$ is defined by $\gamma^{E} R_{E}\left(e, f, e^{\prime}\right)=\left(\partial_{-, n-1}(e), \partial_{+, n-1}\left(e^{\prime}\right)\right)$.

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple (f, e, g) where f and g are in S_{n}^{*} and e is in E_{n}^{\top}, such that:

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple $(f, e, g$) where f and g are in S_{n}^{*} and e is in E_{n}^{\top}, such that:

- It is local if f is in $S_{n}^{*(1)}, g$ is in S_{n}^{*} and e in E_{n}^{\top} such that $\ell(g)+\ell(e)=1$.

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple $(f, e, g$) where f and g are in S_{n}^{*} and e is in E_{n}^{\top}, such that:

- It is local if f is in $S_{n}^{*(1)}, g$ is in S_{n}^{*} and e in E_{n}^{\top} such that $\ell(g)+\ell(e)=1$.
- It is confluent modulo E if there exists f^{\prime}, g^{\prime} in S_{n}^{*} and e^{\prime} in E_{n}^{\top} :

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple $(f, e, g$) where f and g are in S_{n}^{*} and e is in E_{n}^{\top}, such that:

- It is local if f is in $S_{n}^{*(1)}, g$ is in S_{n}^{*} and e in E_{n}^{\top} such that $\ell(g)+\ell(e)=1$.
- It is confluent modulo E if there exists f^{\prime}, g^{\prime} in S_{n}^{*} and e^{\prime} in E_{n}^{\top} :

- Confluence modulo E (resp. local confluence modulo E): any branching (resp. local branching) of S modulo E is confluent modulo E.
IV. Coherence modulo

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist f^{\prime}, g^{\prime} in S_{n}^{*}, e^{\prime} in E_{n}^{\top}

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist f^{\prime}, g^{\prime} in S_{n}^{*}, e^{\prime} in E_{n}^{\top} and a square-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)){ }^{\Pi, v}$:

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist f^{\prime}, g^{\prime} in S_{n}^{*}, e^{\prime} in E_{n}^{\top} and a square-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)) \Pi, v$:

- $(E, S,-)^{\pi, v}$ is the free n-category enriched in double categories generated by $(E, S,-)$, in which all vertical cells are invertible.

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist f^{\prime}, g^{\prime} in S_{n}^{*}, e^{\prime} in E_{n}^{\top} and a square-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)) \Pi, v$:

- $(E, S,-)^{\pi, v}$ is the free n-category enriched in double categories generated by $(E, S,-)$, in which all vertical cells are invertible.
- $\operatorname{Peiff}(E, S)$ is the 2-square extension containing the following squares for all $e, e^{\prime} \in E^{\top}$ and $f \in S^{*}$.

$$
\begin{gathered}
u \star_{i} v \stackrel{f \star_{i} v}{\longrightarrow} u^{\prime} \star_{i} v \\
u \star_{i} e \downarrow \\
u \star_{i} v^{\prime} \xrightarrow[f \star_{i} v^{\prime}]{>} u^{\prime} \star_{i} v^{\prime}{\star_{i} e}^{l}
\end{gathered}
$$

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist f^{\prime}, g^{\prime} in S_{n}^{*}, e^{\prime} in E_{n}^{\top} and a square-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)))^{\Pi, v}$:

- $(E, S,-)^{\pi, v}$ is the free n-category enriched in double categories generated by $(E, S,-)$, in which all vertical cells are invertible.
- $\operatorname{Peiff}(E, S)$ is the 2-square extension containing the following squares for all $e, e^{\prime} \in E^{\top}$ and $f \in S^{*}$.

$$
\begin{gathered}
u \star_{i} v \xrightarrow{f \star_{i} v} u^{\prime} \star_{i} v \\
u \star_{i} e V_{V} \psi^{u^{\prime} \star_{i} e} \\
u \star_{i} v^{\prime} \xrightarrow[f \star_{i} v^{\prime}]{>} u^{\prime} \star_{i} v^{\prime}
\end{gathered}
$$

- $E \rtimes \Gamma$ is to avoid "redundant" elements in Γ for different squares corresponding to the same branching of S modulo E :

and

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties $\mathbf{a})$ and \mathbf{b}):
a):

b):

for any local branching of S modulo E.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties \mathbf{a}) and \mathbf{b}):
a):

b):

for any local branching of S modulo E.
- S satisfies properties \mathbf{a}) and $\mathbf{b})$ for any critical branching of S modulo E.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties \mathbf{a}) and \mathbf{b}):
a):

b):

for any local branching of S modulo E.
- S satisfies properties \mathbf{a}) and $\mathbf{b})$ for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties \mathbf{a}) and \mathbf{b}):
a):

b):

for any local branching of S modulo E.
- S satisfies properties \mathbf{a}) and $\mathbf{b})$ for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties \mathbf{a}) and \mathbf{b}):
a):

b):

for any local branching of S modulo E.
- S satisfies properties \mathbf{a}) and $\mathbf{b})$ for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties \mathbf{a}) and \mathbf{b}):
a):

b):

for any local branching of S modulo E.
- S satisfies properties \mathbf{a}) and $\mathbf{b})$ for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherence modulo

- A set X of $(n-1)$-cells in R_{n-1}^{*} is E-normalizing with respect to S if for any u in X,

$$
\operatorname{NF}(S, u) \cap \operatorname{Irr}(E) \neq \emptyset .
$$

Coherence modulo

- A set X of $(n-1)$-cells in R_{n-1}^{*} is E-normalizing with respect to S if for any u in X,

$$
\operatorname{NF}(S, u) \cap \operatorname{Irr}(E) \neq \emptyset
$$

- Theorem. [D.-Malbos '18] Let (R, E, S) be an n-polygraph modulo, and Γ be a square extension of $\left(E^{\top}, S^{*}\right)$ such that
- E is convergent,
- S is Γ-confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S,
- ${ }_{E} R_{E}$ is terminating,
then $E \rtimes \Gamma \cup \operatorname{Peiff}(E, S) \cup \operatorname{Cd}(E)$ is acyclic.

Coherent completion

- Coherent completion modulo E of S : square extension of $\left(E^{\top}, S^{\top}\right)$ containing square cells $A_{f, g}$ and $B_{f, e}$:

for any critical branchings (f, g) and (f, e) of S modulo E.

Coherent completion

- Coherent completion modulo E of S : square extension of $\left(E^{\top}, S^{\top}\right)$ containing square cells $A_{f, g}$ and $B_{f, e}$:

for any critical branchings (f, g) and (f, e) of S modulo E.
- Corollary. [D.-Malbos '18] Let (R, E, S) be an n-polygraph modulo such that
- E is convergent,
- S is confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S,
- ${ }_{E} R_{E}$ is terminating,

For any coherent completion Γ of S modulo $E, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S) \cup \operatorname{Cd}(E)$ is acyclic.

Coherent completion

- Coherent completion modulo E of S : square extension of $\left(E^{\top}, S^{\top}\right)$ containing square cells $A_{f, g}$ and $B_{f, e}$:

for any critical branchings (f, g) and (f, e) of S modulo E.
- Corollary. [D.-Malbos '18] Let (R, E, S) be an n-polygraph modulo such that
- E is convergent,
- S is confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S,
- ${ }_{E} R_{E}$ is terminating,

For any coherent completion Γ of S modulo $E, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S) \cup \operatorname{Cd}(E)$ is acyclic.

- Corollary: Usual Squier's theorem. $(E=\emptyset)$

Example: diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:

Example: diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,

Example: diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,

Example: diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,
- $E_{2}=\{\curvearrowleft, \cup, \cap \cup, \uparrow, \downarrow\}$
- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,
- $E_{2}=\{\curvearrowleft, \uparrow, \Omega \downarrow \bigcup, \downarrow, \downarrow\}$
 $\downarrow \Rightarrow \bigcup, ~ \curvearrowleft \neg \neg \downarrow, \uparrow \Rightarrow \uparrow \downarrow, \curvearrowleft \Rightarrow \downarrow \uparrow\}$
- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,
- $E_{2}=\left\{\curvearrowleft, \uparrow, \Omega \downarrow \bigcup R_{2}=E_{2} \amalg\{\right.$, $\uparrow \downarrow, \downarrow, \searrow, \downarrow$
 $\downarrow \Rightarrow \bigcup, ~ \curvearrowleft \neg \neg \downarrow, \uparrow \Rightarrow \uparrow \downarrow, \curvearrowleft \Rightarrow \downarrow \uparrow\}$
- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,

- $R_{3}=$

$$
\{\underset{\sim}{s} \Rightarrow \uparrow, \quad \leftrightarrow \downarrow \downarrow,
$$

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,

 $\downarrow \Rightarrow \downarrow \downarrow, \downarrow \downarrow \downarrow$
- $R_{3}=$

- Facts:
- E is convergent.
- ${ }_{E} R_{E}$ is terminating.
- $E_{E} R$ is confluent modulo E.

Conclusion

- We proved a coherence result for polygraphs modulo.

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?
- Explicit a quotient of a square extension by all modulo rules.
- Constructions extended to the linear setting.
- Linear bases from termination (or quasi-termination) or ${ }_{E} R_{E}$ and confluence of R modulo E.

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?
- Explicit a quotient of a square extension by all modulo rules.
- Constructions extended to the linear setting.
- Linear bases from termination (or quasi-termination) or ${ }_{E} R_{E}$ and confluence of R modulo E.
- Work in progress:

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?
- Explicit a quotient of a square extension by all modulo rules.
- Constructions extended to the linear setting.
- Linear bases from termination (or quasi-termination) or ${ }_{E} R_{E}$ and confluence of R modulo E.
- Work in progress:
- Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?
- Explicit a quotient of a square extension by all modulo rules.
- Constructions extended to the linear setting.
- Linear bases from termination (or quasi-termination) or ${ }_{E} R_{E}$ and confluence of R modulo E.
- Work in progress:
- Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.
- Formalize these constructions with rewriting modulo all the algebraic axioms.

Thank you!

