Linear rewriting : motivations

- The theory of linear rewriting has been developed to provide algorithmic methods :
- to compute linear bases of linear algebraic structures;
- to compute homological invariants;
- to obtain coherence theorems.

- Objectives :

- to extend the set theoretical 2-dimensional linear rewriting techniques (string rewriting) to higher-dimensional linear rewriting issues.
- to generalize the notions of (non) commutative Gröbner basis from Bergman, Bokut, Buchberger in higher-dimensional algebraic structures.

Termination and confluence properties in a linear setting

- Termination : The definition of the rewriting steps has to take into account the linear setting, otherwise we lose termination.
Example. With the rule $x y \Rightarrow z x$, then $-x y \Rightarrow-z x$ so

$$
z x=(x y+z x)-x y \Rightarrow(x y+z x)-z x=x y
$$

- Confluence : Without termination the critical pair lemma may fail.

Example. With the rules $x \stackrel{\alpha}{\Rightarrow} y$ and $y \stackrel{\beta}{\Rightarrow}-x$, there is no critical branching but a non confluent additive branching :

$$
2 y \stackrel{\alpha+y}{\rightleftharpoons} x+y \stackrel{x+\beta}{\Rightarrow} 0
$$

Linear (2, 2)-categories

- A linear $(2,2)$-category \mathcal{C} over a field \mathbb{K} is a 2 -category with
- a set \mathcal{C}_{0} of 0 -cells, and a set \mathcal{C}_{1} of 1 -cells denoted by p, q, \ldots;
- a set \mathcal{C}_{2} of 2 -cells such that for every p and q in \mathcal{C}_{1}, the space $\mathcal{C}_{2}(p, q)$ of 2 -cells of source p and target q is a \mathbb{K}-vector space ;
- The map $\star_{1}: \mathcal{C}_{2}(p, q) \times \mathcal{C}_{2}(q, r) \rightarrow \mathcal{C}_{2}(p, r)$ is bilinear;
- Source and target maps are compatible with the linear structure.
- A 2 -cell ϕ in \mathcal{C} can be pictured as a circuit as follows :

$$
\begin{aligned}
& p \\
& \phi \\
& \hline
\end{aligned}
$$

- 2-cells can be composed in two ways :

> Horizontally

Vertically
$\phi \star_{0} \psi:=\phi \psi$

- Compositions satisfy the exchange law, diagrammatically depicted as :
that is, for every 1 -cells $p, q, p^{\prime}, q^{\prime}$ and 2 -cells ϕ, ψ, the following relation hold :

$$
\left(\phi \star_{0} \operatorname{id}_{q}\right) \star_{1}\left(\psi \star_{0} \mathrm{id}_{p^{\prime}}\right)=\left(\phi \star_{0} \mathrm{id}_{q^{\prime}}\right) \star_{1}\left(\psi \star_{0} \mathrm{id}_{p}\right)
$$

- We consider presentations of linear $(2,2)$-categories given by :
- generating 1-cells w.r.t \star_{0};
- generating 2 -cells w.r.t \star_{0} and \star_{1}.
- A 2 -cell ϕ obtained with the previous compositions of generating 2 -cells is called a monomial in \mathcal{C}.
- Given a 2 -cell ϕ, it can be uniquely decomposed into a sum of monomials $\phi=\sum \phi_{i}$, called the monomial decomposition of ϕ.
- The support of ϕ is the set of all the ϕ_{i} in that decomposition.

3-dimensional linear rewriting

- A (monomial) rewriting rule is a 3 -cell $s(\alpha) \stackrel{\alpha}{\Rightarrow} t(\alpha)$ where $s(\alpha)$ is a monomial in \mathcal{C}.
- We define a rewriting step between two parallel 2 -cells as a 3 -cell with the following shape :

where α is a rewriting rule, and such that the monomial $m_{1} \star_{1}\left(m_{2} \star_{0} s_{2}(\alpha) \star_{0} m_{3}\right) \star_{1} m_{4}$ does not appear in the monomial decomposition of u.
- The set of these rewriting steps defines an abstract rewriting system, called a 3 -dimensional linear rewriting system (3-LRS).
- The objective is to study properties such as termination, normal forms, branchings, critical branchings, confluence of this system.
- 3-LRSs present linear (2,2 -categories as 2 -LRSs present algebras.
- The critical branchings have the following shape :
- Regular critical branchings

- Inclusion critical branchings

- Right-indexed (also left-indexed, multi-indexed) critical branchings :

Theorem. A terminating 3-LRS is confluent if and only if all its critical branchings are confluent.
Proposition. (Alleaume, '16) Let Σ be a confluent and terminating 3-LRS presenting a linear $(2,2)$-category \mathcal{C}. Then, the set of monomials of $\mathcal{C}_{2}(p, q)$ in normal form wrt Σ gives a linear basis of $\mathcal{C}_{2}(p, q)$.

Application to a family of algebras arising in representation theory

- Let I be a set of vertices of a graph and $\mathcal{V}=\sum_{i \in I} \mathcal{V}_{i} \cdot i \in \mathbb{N}[I]$. Denote by $\operatorname{Seq}(\mathcal{V})$ the set of sequences of elements of I in which i appears exactly \mathcal{V}_{i} times and $m:=\sum_{i \in I} \mathcal{V}_{i}$. Fix \cdot a bilinear pairing on I such that $i \cdot j \in\{0,-1\}$ for any i, j. The simply-laced KLR algebra is the \mathbb{K}-algebra presented by :

- generators :

i) For any $i \in I$,

ii) For any $i, j \in I$ such that $i \cdot j=0$,

iii) For any $i, j \in I$ such that $i \cdot j=-1$,

iv) For any $i, j \in I$,

v) For any $i \in I$,

vi) For any $i, j, k \in I$, and unless $i=k$ and $i \cdot j=-1$,

vii) For any $i, j \in I$ such that $i \cdot j=-1$,

- Above oriented relations form a family of 3 -LRS KLR \mathcal{V} presenting the simply-laced KLR algebras.
Theorem. The 3-LRSs KLR \mathcal{V} are terminating and confluent. Moreover, diagrams with source i and source j having a minimal number of crossings and all dots placed at the bottom form a Poincaré-Birkhoff-Witt basis of $\operatorname{KLR}_{\mathcal{V}}(\mathbf{i}, \mathbf{j})$.

Work in progress

- We would like to extend these methods to higher-dimensional linear categories with an additionnal structure, for categories with duals or pivotal categories in which two isotopic diagrams represent the same 2 -cell.
- The isotopy relations may be source of problems for the termination and confluence of our system. We develop a theory of rewriting modulo this equational theory to obtain termination proofs and confluence criteria in that context.

