

Linear rewriting : motivations

- The theory of linear rewriting has been developed to provide algorithmic methods :
 - to compute linear bases of linear algebraic structures ;
 - to compute homological invariants ;
 - to obtain coherence theorems.
- Objectives :**
 - to extend the set theoretical 2-dimensional linear rewriting techniques (string rewriting) to higher-dimensional linear rewriting issues.
 - to generalize the notions of (non) commutative Gröbner basis from Bergman, Bokut, Buchberger in higher-dimensional algebraic structures.

Termination and confluence properties in a linear setting

- Termination** : The definition of the rewriting steps has to take into account the linear setting, otherwise we lose termination.

Example. With the rule $xy \Rightarrow zx$, then $-xy \Rightarrow -zx$ so

$$zx = (xy + zx) - xy \Rightarrow (xy + zx) - zx = xy.$$

- Confluence** : Without termination the critical pair lemma may fail.

Example. With the rules $x \xrightarrow{\alpha} y$ and $y \xrightarrow{\beta} -x$, there is no critical branching but a non confluent additive branching :

$$2y \xleftarrow{\alpha+y} x + y \xrightarrow{x+\beta} 0$$

Linear (2, 2)-categories

- A linear (2, 2)-category \mathcal{C} over a field \mathbb{K} is a 2-category with :
 - a set \mathcal{C}_0 of 0-cells, and a set \mathcal{C}_1 of 1-cells denoted by p, q, \dots ;
 - a set \mathcal{C}_2 of 2-cells such that for every p and q in \mathcal{C}_1 , the space $\mathcal{C}_2(p, q)$ of 2-cells of source p and target q is a \mathbb{K} -vector space ;
 - The map $\star_1 : \mathcal{C}_2(p, q) \times \mathcal{C}_2(q, r) \rightarrow \mathcal{C}_2(p, r)$ is bilinear ;
 - Source and target maps are compatible with the linear structure.
- A 2-cell ϕ in \mathcal{C} can be pictured as a circuit as follows :

- 2-cells can be composed in two ways :

Horizontally

$$\phi \star_0 \psi := \phi \psi$$

Vertically

$$\phi \star_1 \psi := \phi$$

- Compositions satisfy the **exchange law**, diagrammatically depicted as :

$$\begin{array}{c} q \\ \phi \\ p \end{array} \star_0 \begin{array}{c} q' \\ \psi \\ p' \end{array} = \begin{array}{c} q \\ \phi \\ p \end{array} \star_1 \begin{array}{c} q' \\ \psi \\ p' \end{array} = \begin{array}{c} q \\ \phi \\ p \end{array} \star_1 \begin{array}{c} q' \\ \psi \\ p' \end{array}$$

that is, for every 1-cells p, q, p', q' and 2-cells ϕ, ψ , the following relation hold :

$$(\phi \star_0 \text{id}_q) \star_1 (\psi \star_0 \text{id}_{p'}) = (\phi \star_0 \text{id}_{q'}) \star_1 (\psi \star_0 \text{id}_p)$$

- We consider presentations of linear (2, 2)-categories given by :
 - generating 1-cells w.r.t \star_0 ;
 - generating 2-cells w.r.t \star_0 and \star_1 .
- A 2-cell ϕ obtained with the previous compositions of generating 2-cells is called a **monomial** in \mathcal{C} .
- Given a 2-cell ϕ , it can be uniquely decomposed into a sum of monomials $\phi = \sum \phi_i$, called the **monomial decomposition** of ϕ .
- The **support** of ϕ is the set of all the ϕ_i in that decomposition.

3-dimensional linear rewriting

- A (monomial) **rewriting rule** is a 3-cell $s(\alpha) \xrightarrow{\alpha} t(\alpha)$ where $s(\alpha)$ is a monomial in \mathcal{C} .
- We define a **rewriting step** between two parallel 2-cells as a 3-cell with the following shape :

$$\lambda m_2 s_2(\alpha) m_3 + u \Rightarrow \lambda m_2 t_2(\alpha) m_3 + u$$

where α is a rewriting rule, and such that the monomial $m_1 \star_1 (m_2 \star_0 s_2(\alpha) \star_0 m_3) \star_1 m_4$ does not appear in the monomial decomposition of u .

- The set of these rewriting steps defines an abstract rewriting system, called a 3-dimensional linear rewriting system (3-LRS).
- The objective is to study properties such as **termination**, **normal forms**, **branchings**, **critical branchings**, **confluence** of this system.
- 3-LRSs present linear (2, 2)-categories as 2-LRSs present algebras.
- The critical branchings have the following shape :

- Regular critical branchings :

- Inclusion critical branchings :

- Right-indexed (also left-indexed, multi-indexed) critical branchings :

Theorem. A terminating 3-LRS is confluent if and only if all its critical branchings are confluent.

Proposition. (Albeamme, '16) Let Σ be a confluent and terminating 3-LRS presenting a linear (2, 2)-category \mathcal{C} . Then, the set of monomials of $\mathcal{C}_2(p, q)$ in normal form wrt Σ gives a linear basis of $\mathcal{C}_2(p, q)$.

Application to a family of algebras arising in representation theory

- Let \mathcal{I} be a set of vertices of a graph and $\mathcal{V} = \sum_{i \in \mathcal{I}} \mathcal{V}_i \cdot i \in \mathbb{N}[\mathcal{I}]$. Denote by $\text{Seq}(\mathcal{V})$ the set of sequences of elements of \mathcal{I} in which i appears exactly \mathcal{V}_i times and $\mathbf{m} := \sum_{i \in \mathcal{I}} \mathcal{V}_i \cdot i$. Fix a bilinear pairing on \mathcal{I} such that $i \cdot j \in \{0, -1\}$ for any i, j . The **simply-laced KLR algebra** is the \mathbb{K} -algebra presented by :

- generators :

$$x_{k,i} = \begin{array}{c} \dots \\ \bullet \\ \dots \end{array} \quad \text{for } 1 \leq k \leq m, i = i_1 \dots i_m \in \text{Seq}(\mathcal{V})$$

$$\tau_{k,i} = \begin{array}{c} \dots \\ \times \\ \dots \end{array} \quad \text{for } 1 \leq k \leq m-1, i = i_1 \dots i_m \in \text{Seq}(\mathcal{V})$$

- relations :

- i) For any $i \in \mathcal{I}$,

$$\begin{array}{c} \times \\ i \\ i \end{array} \Rightarrow 0$$

- ii) For any $i, j \in \mathcal{I}$ such that $i \cdot j = 0$,

$$\begin{array}{c} \times \\ i \\ i \\ \times \\ j \\ j \end{array} \Rightarrow \begin{array}{c} | \\ i \\ j \end{array}$$

- iii) For any $i, j \in \mathcal{I}$ such that $i \cdot j = -1$,

$$\begin{array}{c} \times \\ i \\ i \\ \times \\ j \\ j \end{array} \Rightarrow \begin{array}{c} | \\ i \\ j \end{array} + \begin{array}{c} | \\ i \\ j \end{array}$$

- iv) For any $i, j \in \mathcal{I}$,

$$\begin{array}{c} \bullet \\ i \\ j \\ \times \\ j \\ i \end{array} \Rightarrow \begin{array}{c} \bullet \\ i \\ j \end{array} + \begin{array}{c} | \\ i \\ j \end{array} \quad \text{and} \quad \begin{array}{c} \times \\ i \\ j \\ \bullet \\ j \\ i \end{array} \Rightarrow \begin{array}{c} \bullet \\ i \\ j \end{array} - \begin{array}{c} | \\ i \\ j \end{array}$$

- v) For any $i \in \mathcal{I}$,

$$\begin{array}{c} \times \\ i \\ i \\ \times \\ i \\ i \end{array} \Rightarrow \begin{array}{c} \times \\ i \\ i \end{array} \quad \text{and} \quad \begin{array}{c} \times \\ i \\ i \\ \times \\ i \\ i \end{array} \Rightarrow \begin{array}{c} \times \\ i \\ i \end{array}$$

- vi) For any $i, j, k \in \mathcal{I}$, and unless $i = k$ and $i \cdot j = -1$,

$$\begin{array}{c} \times \\ i \\ j \\ k \\ i \\ j \\ k \end{array} \Rightarrow \begin{array}{c} \times \\ i \\ j \\ k \\ i \\ j \\ k \end{array}$$

- vii) For any $i, j \in \mathcal{I}$ such that $i \cdot j = -1$,

$$\begin{array}{c} \times \\ i \\ j \\ i \\ i \\ j \\ i \end{array} \Rightarrow \begin{array}{c} \times \\ i \\ j \\ i \\ i \\ j \\ i \end{array} + \begin{array}{c} | \\ i \\ j \\ i \end{array}$$

- Above oriented relations form a family of 3-LRS $\text{KLR}_{\mathcal{V}}$ presenting the simply-laced KLR algebras.

Theorem. The 3-LRSs $\text{KLR}_{\mathcal{V}}$ are terminating and confluent. Moreover, diagrams with source i and source j having a minimal number of crossings and all dots placed at the bottom form a **Poincaré-Birkhoff-Witt basis** of $\text{KLR}_{\mathcal{V}}(i, j)$.

Work in progress

- We would like to extend these methods to higher-dimensional linear categories with an additional structure, for **categories with duals** or **pivotal categories** in which two isotopic diagrams represent the same 2-cell.
- The **isotopy relations** may be source of problems for the termination and confluence of our system. We develop a theory of **rewriting modulo** this equational theory to obtain termination proofs and confluence criteria in that context.