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Plan of this talk

I. Introduction : algebraic rewriting.
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Algebraic rewriting

Many algebraic properties can be formulated by equations.

Example.
Associativity : (x · y) · z = x · (y · z) ;

Commutativity : x · y = y · x ;

Lie algebra : [x, x] = 0, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Algebraic rewriting aims at orienting equations to combine abstract rewriting with the
properties of the algebraic structure in which we apply rewriting.

Compute explicit bases of vector spaces, algebras, etc. using convergent
presentations.

Study questions of coherence of algebraic structures to obtain homotopical
properties, Squier’s theorem etc.

Obtain algebraic properties : homological properties or Koszulness of an algebra.

These questions have been studied in an algebraic context for associative and
commutative algebras :

Gröbner bases to compute with ideals, Gröbner ’49 and Buchberger ’65 ;

Linear rewriting and Koszulness, Guiraud-Hoffbeck-Malbos ’2017
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Main obstructions in linear rewriting

There are two points to be careful in a linear rewriting setting :

How to define rewriting steps :
if u ⇒ v is a 2-cell, then−u ⇒ −v , so v = (u + v)− u u + v − v = u.

There are additive branchings, and without termination the critical lemma fails.

Example. Let ∆ = 〈x, y, z, t| xy α +3 xz , zt
β +3 zyt 〉.

4xyt
4αt +3 4xzt

4xβ +3 . . .

2xzt xzt+xβ

�#

2xβ .6

xyt + xzt

αt+xzt .6

xyz+xβ '/

xzt + 2xyt

3xyt αt+2xyt

<D

3αt
(0 3xzt

3xβ +3 6xyt
6αt +3 . . .
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II. Presentation of linear (2, 2)-categories.
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Presentations of linear (2, 2)-categories

A linear (2, 2)-category C is a 2-category with :

0-cells C0 ;

1-cells C1 ;

2-cells C2 such that for every p and q in C1, the space of 2-cells C2(p, q) between p
and q is a K-vector space for a field K ;

The map ?1 : C2(p, q)⊗ C2(q, r)→ C2(p, r) is linear ;

Source and targets are compatible with the linear structure.

Objectives
Compute convergent presentations of these linear (2, 2)-categories.

Compute normal forms using the theory of normal forms by rewriting.

There are two main difficulties :

The analysis of 3-dimensional critical branchings is complicated

One has to require termination to prove the critical pair lemma.
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Presentations of linear (2, 2)-categories

In these categories, the generating 2-cells have the form of a circuit as follows :

. . .

. . .

φ

p

q

where p and q are two 1-cells of the category.

• They can be composed in two ways

Horizontally Vertically

· · ·

· · ·
φ ?0

· · ·

· · ·
ψ :=

· · ·

· · ·
φ

· · ·

· · ·
ψ

· · ·

· · ·
φ ?1

· · ·

· · ·
ψ

:=

ψ

· · ·

· · ·
φ
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Presentations of linear (2, 2)-categories

• All these compositions are made modulo the exchange law of the 2-category, which is
diagrammatically depicted as :

· · ·

· · ·

φ · · ·

· · ·
ψ

=
· · ·

· · ·
φ

· · ·

· · ·
ψ =

· · ·

· · ·
φ

· · ·

· · ·

ψ

that is for every 2-cells φ1, φ2, ψ1, ψ2 one has

(ψ1 ?0 φ1) ?1 (ψ2 ?0 φ2) = (ψ1 ?1 ψ2) ?0 (φ1 ?1 φ2)

We recall that ?1 : C2(p, q)⊗ C2(q, r)→ C2(p, r) is linear and that all the sources and
target maps are compatible with the linear structure.
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Presentations of linear (2, 2)-categories

• One can also make linear combinations of these circuits with scalars in K.

An element of
the form

λ

. . .

. . .

φ

where φ is a 2-cell obtained with the previous compositions of generating 2-cells and
λ ∈ K is called a monomial in the linear (2, 2)-category.

Given a 2-cell φ, it can be uniquely decomposed into a sum of monomials φ =
∑
φi ,

called the monomial decomposition of φ.

The support of φ is the set of all the φi in that decomposition.
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Linear (3, 2)-polygraphs
These linear (2, 2)-categories can be presented by rewriting systems called
linear (3, 2)-polygraphs, Alleaume ’16.

A linear (3, 2)-polygraph is a tuple Σ = 〈Σ0,Σ1,Σ2,Σ3〉 where :

〈Σ0,Σ1,Σ2〉 is a 2-polygraph, that is a graph 〈Σ0,Σ1〉 equipped with a cellular
extension of Σ∗1 the free 1-category generated by Σ, that is a set Σ2 and two maps
s1, t1 : Σ2 → Σ∗1 such that the globular relations hold :

s0 ◦ s1 = s0 ◦ t1,t0 ◦ s1 = t0 ◦ t1.

Σ3 is a cellular extension of the linear (2, 2)-category Σl
2 generated by 〈Σ0,Σ1,Σ2〉,

that is a set equipped with two applications s2, t2 : Σ3 → Σl
2 such that the globular

relations hold :
s0 ◦ s1 = s0 ◦ t1, t0 ◦ s1 = t0 ◦ t1,
s1 ◦ s2 = s1 ◦ t2, t1 ◦ s2 = t1 ◦ t2.
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Linear (3, 2)-polygraphs

Example. Let C be the linear (2, 2)-category with one 0-cell, one 1-cell, two generating
2-cells

•

and two 3-cells :

• =
•

+ and • =
•

+ .

This category can be presented by the linear (3, 2)-polygraph defined with the same 0-cell,
1-cell and 2-cells and the relations being oriented in the following way :

• V
•

+ and • V
•

+ .
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Rewriting properties of linear (3, 2)-polygraphs

• A rewriting step of Σ is a 3-cell of the form

λ s2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u V λ t2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u

where s2(α) and t2(α) are two parallel 2-cells such that the monomial
λm1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the monomial decomposition of u.

A rewriting sequence of Σ is a finite or infinite sequence :

u0 *4 · · · *4 un *4 · · ·

of rewriting steps of Σ.

A normal form is a 2-cell that can’t be reduced by any rewriting step.
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· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u

where s2(α) and t2(α) are two parallel 2-cells such that the monomial
λm1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the monomial decomposition of u.

A rewriting sequence of Σ is a finite or infinite sequence :

u0 *4 · · · *4 un *4 · · ·

of rewriting steps of Σ.

A normal form is a 2-cell that can’t be reduced by any rewriting step.
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Rewriting properties of linear (3, 2)-polygraphs
A branching of Σ is a pair of 3-cells with the same 2-source :

v

u

f
.9

g %/ w

A branching is confluent if it can be completed by rewriting sequences f ′ and g′ as follows :

v
f ′

��
u

f
1=

g  -

u′

w
g′

@M

A local branching of Σ is a pair of rewriting steps of Σ with the same 2-source.

Letv be the order on monomials of Σ such that f v g if g = m1 ?1 (m2 ?0 f ?0 m3) ?1 m4
for monomials mi . A critical branching is a branching such that its source is minomal forv.

• A linear (3, 2)-polygraph is :

- confluent (resp. locally confluent) if all its (resp. local) branchings are confluent.

- terminating if it has no infinite rewriting sequence.

- left monomial is every source of a 3-cell in Σ is a monomial.
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Rewriting results

• In this setting, we have a version of classic rewriting results such as Noetherian’s induction
principle and Newman’s lemma.

Proposition

A terminating linear (3, 2)-polygraph is confluent if and only if all its critical branchings are
confluent.

Proposition (Alleaume,’16)

Let Σ be a confluent and terminating left-monomial linear (3, 2)-polygraph and C be the
linear (2, 2)-category presented by Σ. Then, for any 1-cells u and v of C with same 0-source and
0-target, the set of monomials of Σ in normal form from u to v gives a basis of C(u, v).

Benjamin DUPONT 15/ 35



Rewriting results

• In this setting, we have a version of classic rewriting results such as Noetherian’s induction
principle and Newman’s lemma.

Proposition

A terminating linear (3, 2)-polygraph is confluent if and only if all its critical branchings are
confluent.

Proposition (Alleaume,’16)

Let Σ be a confluent and terminating left-monomial linear (3, 2)-polygraph and C be the
linear (2, 2)-category presented by Σ. Then, for any 1-cells u and v of C with same 0-source and
0-target, the set of monomials of Σ in normal form from u to v gives a basis of C(u, v).

Benjamin DUPONT 15/ 35



Rewriting results

• In this setting, we have a version of classic rewriting results such as Noetherian’s induction
principle and Newman’s lemma.

Proposition

A terminating linear (3, 2)-polygraph is confluent if and only if all its critical branchings are
confluent.

Proposition (Alleaume,’16)

Let Σ be a confluent and terminating left-monomial linear (3, 2)-polygraph and C be the
linear (2, 2)-category presented by Σ. Then, for any 1-cells u and v of C with same 0-source and
0-target, the set of monomials of Σ in normal form from u to v gives a basis of C(u, v).

Benjamin DUPONT 15/ 35



Critical branchings for linear (3, 2)-polygraphs

There exists 3 kinds of non-aspherical critical branchings in that setting :

Regular critical branchings :

Inclusion critical branchings :

Left-indexed (also left-indexed, multi-indexed) critical branchings :
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Confluence of indexed critical branchings

Lafont ’03 and Guiraud-Malbos ’09 : To prove confluence of an indexed critical branching, it
suffices to prove its confluence for instances k in normal form.
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III. Quiver Hecke algebras and Poincaré-Birkhoff-Witt bases

Benjamin DUPONT 18/ 35



KLR algebras for categorification of quantum groups

In higher dimensional representation theory, a natural way to study an algebraic structure is
to extend actions of it on categories rather than vector spaces.

One wants to build a categorification of it, that is an higher dimensional category whose
Grothendieck group is isomorphic to it.

This work was done for a process of categorification of quantum groups associated with
symmetrizable Kac-Moody algebras, following Khovanov-Lauda ’08 and Rouquier ’08.

The KLR algebras (or quiver Hecke algberas) are a family of algebras that arise naturally in
this process.

They admit a diagrammatic presentation by generators and relations,
Khovanov-Lauda ’08

They can be seen as linear (2, 2)-categories.
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Poincaré-Birkhoff-Witt bases

We will explicit linear (3, 2)-polygraphs that present the simply-laced KLR algebras and
prove that they are convergent.

We will obtain a rewriting proof of the following algebraic result obtained by Khovanov and
Lauda :

Theorem

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases

These PBW bases have interesting algebraic and homological features.

They are linear bases.

They are build from a monomial order� on a generating set of the algebra.

The product of two elements of the basis is greater for� than every element in its
monomial decomposition.
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Definition of the KLR algebras

Let Γ be a graph whose set of vertices is denoted by I . We set V =
∑
i∈I
νi .i ∈ N[I] an

element of the free semi-group generated by I .

Let · be a bilinear form defined on Z[I] with values in Z such that i · j ∈ {0,−1} for all
i, j ∈ I .

We put m := |V| =
∑
Vi .

We consider the set Seq(V) which consists of all sequences of vertices of Γ with length m
in which the vertex i appears exactly Vi times.

For instance, Seq(2i + j) = {iij, iji, jii}.

For i and j ∈ Seq(V), we define the set jR(V)i as the set of "braid-like diagrams" from i to
j, that is :

Each strand is labelled by a vertex of Γ ;

A brand does not intersect with itself ;

One has to read i (resp. j) at the bottom (resp. at the top) of the diagram
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Definition of the KLR algebras

These algebras are given by a diagrammatic presentation by generators and relations.

For i = i1 . . . im ∈ Seq(V), we represent the generators by :

xk,i =

i1

. . .

ik

• . . .

im

for 1 ≤ k ≤ m, i = i1 . . . im ∈ Seq(V)

τk,i =

i1

. . .

ik ik+1

. . .

im

for 1 ≤ k ≤ m − 1, i = i1 . . . im ∈ Seq(V)

These algebras can be seen as linear (2, 2)-categories with :

One 0-cell,

The 1-cells are the elements of Seq(V),

The 2-cells between two sequences i and i are jR(V)i.
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Definition of the KLR algebras

The local relations are represented by :

i) For i ∈ I ,

i i

= 0

ii) For i, j ∈ I such that i · j = 0,

i j

=

i j

iii) For i, j ∈ I such that i · j = −1,

i j

=

i

•

j

+

i j

•

iv) For i, j ∈ I ,

•

i j

=
•

i j

•

i j

=
•

i j

v) For i ∈ I ,

•

i i

=
•

i i

+

i i

•

i i

=
•

i i

−

i i

vi) For i, j, k ∈ I , and unless i = k and
i · j = −1,

i j k

=

i j k

vii) For i, j ∈ I such that i · j = −1,

i j i

=

i j i

+

i j i
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The linear (3, 2)-polygraphs KLR

The 3-cells of the linear (3, 2)-polygraph KLR are given by :

i) For i ∈ I ,

i i

V 0

ii) For i, j ∈ I such that i · j = 0,

i j

V

i j

iii) For i, j ∈ I such that i · j = −1,

i j

V

i

•

j

+

i j

•

iv) For i, j ∈ I ,

•

i j

V
•

i j

•

i j

V
•

i j

v) For i ∈ I ,

•

i i

V
•

i i

+

i i

•

i i

V
•

i i

−

i i

vi) For i, j, k ∈ I , and unless i = k and
i · j = −1,

i j k

V

i j k

vii) For i, j ∈ I such that i · j = −1,

i j i

V

i j i

+

i j i
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The linear (3, 2)-polygraphs KLR

We prove the following result :

Theorem

The linear (3, 2)-polygraphs KLR are convergent.

The proof is split into two parts :

We prove that KLR is terminating.

Then, we show that it is confluent by examining all the critical branchings.

The monomials in normal form give a basis for each space of 2-cells, which provide a basis
of the algebra. It turns out to be a Poincaré-Birkhoff-Witt basis.

There is no exhaustive methods to prove termination in dimension 3. However, some
techniques exist. We used a theorem of Guiraud-Malbod ’09 generalising in a categorical
framework an idea of Guiraud ’06.
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Study of the critical branchings

We have 4 different forms for the sources of 3-cells :

•

i j

•

i j

i j

i j k

for every i, j and k in I .

They depend on the vertices i, j and k at the bottom.

The critical branchings have to be computed for each sequence of vertices and each
values of the bilinear form.
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Examples of critical branchings

Sequence : iik

Value of · : 0 or−1

Branching :
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Examples of critical branchings
Sequence : ijj

Value of · : 0

Branching :
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Examples of critical branchings

Sequence : ijj

Value of · :−1

Branching :
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Study of the critical branchings

There exists 6 main families of critical branchings :

Crossings with two dots : • and •

Triple crossings : with itself

Double crossings with dots : • or • with

Double Yang-Baxter : with itself

Yang-Baxter with crossings : with

Yang-Baxter with dots : with • or •
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Study of the critical branchings

There is right indexed branchings with the form :

where k is a diagram that can be plugged in the Yang-Baxter-equation.

There are two families of normal forms that can be plugged :

• n for all n ∈ N ( just the identity if n = 0 )

•n
for all n ∈ N

The two families of indexed critical branchings are confluent, so is the
linear (3, 2)-polygraph KLR.
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Study of the normal forms : crossings

Lafont ’03 and Guiraud-Malbos ’09 made a full study of the normal forms of the 3-polygraph
of permutations ∆ which has

One 0-cell ;

One 1-cell ;

One 2-cell ;

The following two 3-cells : *4 and *4 .

The set of normal forms of this polygraph correspond to braid diagrams with a minimal
number of crossings, that is they are given by permutations whose length is minimal for the
Coxeter presentation of Sm.

Benjamin DUPONT 31/ 35



Study of the normal forms : crossings

Lafont ’03 and Guiraud-Malbos ’09 made a full study of the normal forms of the 3-polygraph
of permutations ∆ which has

One 0-cell ;

One 1-cell ;

One 2-cell ;

The following two 3-cells : *4 and *4 .

The set of normal forms of this polygraph correspond to braid diagrams with a minimal
number of crossings, that is they are given by permutations whose length is minimal for the
Coxeter presentation of Sm.

Benjamin DUPONT 31/ 35



Study of the normal forms : crossings

Lafont ’03 and Guiraud-Malbos ’09 made a full study of the normal forms of the 3-polygraph
of permutations ∆ which has

One 0-cell ;

One 1-cell ;

One 2-cell ;

The following two 3-cells : *4 and *4 .

The set of normal forms of this polygraph correspond to braid diagrams with a minimal
number of crossings, that is they are given by permutations whose length is minimal for the
Coxeter presentation of Sm.

Benjamin DUPONT 31/ 35



Study of the normal forms : dots

Starting from a diagram

• •

•

•

•

•

here the D low
i are diagrams with less crossings.
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Study of the normal forms : dots

Starting from a diagram
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V
•

•

•

•

•

•

(
±D low

1
)
V . . .V

•
•• •

•

•

(
±
∑
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where the D low
i are diagrams with less crossings.

The monomial in normal forms are exactly the diagrams which have a minimal number of
crossings and all dots placed at the bottom of the strands.
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Conclusion

Rouquier ’08 defined an algebraic Poincaré -Birkhoff-Witt property ;

It is equivalent to the fact that these diagrams with dots at the bottom and a minimal
number of crossings form a basis of the algebra.

Khovanov and Lauda ’08 looked at a basis for jR(V)i.

It contains the diagrams of the required form.

The proof of the generating part used the idea of reducing the number of crossings
and making the dots go down.

The proof of the freeness was done by defining an action of the family on a
polynomial ring.

Using linear rewriting techniques, we proved that the simply-laced KLR algebra admits
bases of type Poincaré Birkhoff-Witt.
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Work in progress :

The theorem of categorification lays on the fact that one can find explicit bases for each
space of 2-cells in the "candidate" 2-category.

There is an action of the KLR algebras on some of these spaces of 2-cells ; and we can find
bases for them using our PBW bases.

To recover all the bases for general spaces of 2-cells, there are adjunction morphisms (cup
and cap) that appear and the rewriting techniques become more complicated.
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