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Plan of this talk

l. Introduction : algebraic rewriting.
Il. Presentation of linear (2, 2)-categories.

lll. Quiver Hecke algebras and Poincaré-Birkhoff-Witt bases.
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Algebraic rewriting

@ Many algebraic properties can be formulated by equations.
Example.
Associativity : (x - y)-z=x-(y - 2);
Commutativity : x -y =y - X;
Lie algebra : [x, x] = 0, [x, [y, 2]] + [V, [z, X]] + [2, [x, ¥]] = O.
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Algebraic rewriting

@ Many algebraic properties can be formulated by equations.
Example.
Associativity : (x - ¥) -z = x-(y - 2);
Commutativity : x - yy - x;
Lie algebra : [x, x]0, [x, [¥, 2]] + v, [z, x]] + [z, [x, y¥]]O.

@ Algebraic rewriting aims at orienting equations to combine abstract rewriting with the
properties of the algebraic structure in which we apply rewriting.

@ Compute explicit bases of vector spaces, algebras, etc. using convergent
presentations.

@ Study questions of coherence of algebraic structures to obtain homotopical
properties, Squier’s theorem etc.

@ Obtain algebraic properties : homological properties or Koszulness of an algebra.

@ These questions have been studied in an algebraic context for associative and
commutative algebras :

@ Grdbner bases to compute with ideals, and ;

@ Linear rewriting and Koszulness,
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Main obstructions in linear rewriting

@ There are two points to be careful in a linear rewriting setting :
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Main obstructions in linear rewriting

@ There are two points to be careful in a linear rewriting setting :

@ How to define rewriting steps :
if u=-visa2-cel then —u= —v,sov=(U+Vv) —u=tu+v—v=u

@ There are additive branchings, and without termination the critical lemma fails.

Example. Let A = (x,y,2,t| Xy ——> xz , zt £ zyt ).
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Il. Presentation of linear (2, 2)-categories.
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Presentations of linear (2, 2)-categories

@ Alinear (2,2)-category C is a 2-category with :
@ 0-cellsCp;
@ 1-cells Cq;

@ 2-cells Cy such that for every p and q in Cq, the space of 2-cells Ca(p, q) between p
and q is a K-vector space for a field K ;
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@ Alinear (2,2)-category C is a 2-category with :
@ 0-cellsCp;
@ 1-cells Cq;

@ 2-cells Cy such that for every p and q in Cq, the space of 2-cells Ca(p, q) between p
and q is a K-vector space for a field K ;

@ The map %1 : C2(p, q) ® C2(q, r) — Ca(p, r) is linear;
@ Source and targets are compatible with the linear structure.

Objectives

@ Compute convergent presentations of these linear (2, 2)-categories.

@ Compute normal forms using the theory of normal forms by rewriting.

@ There are two main difficulties :

@ The analysis of 3-dimensional critical branchings is complicated

@ One has to require termination to prove the critical pair lemma.
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Presentations of linear (2, 2)-categories

@ In these categories, the generating 2-cells have the form of a circuit as follows :

where p and q are two 1-cells of the category.
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Presentations of linear (2, 2)-categories

@ In these categories, the generating 2-cells have the form of a circuit as follows :

where p and q are two 1-cells of the category.

e They can be composed in two ways
Horizontally Vertically
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Presentations of linear (2, 2)-categories

e All these compositions are made modulo the exchange law of the 2-category, which is
diagrammatically depicted as :

that is for every 2-cells ¢4, ¢2, 11, 12 one has

(Y1 %0 P1) *1 (2 x0 P2) = (VY1 *1 P2) %0 (H1 %1 P2)
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Presentations of linear (2, 2)-categories

e All these compositions are made modulo the exchange law of the 2-category, which is
diagrammatically depicted as :

that is for every 2-cells ¢4, ¢2, 11, 12 one has

(Y1 %0 P1) *1 (2 x0 P2) = (VY1 *1 P2) %0 (H1 %1 P2)

@ We recall that x1 : C2(p, q) ® Ca(q, r) — Ca(p, r) is linear and that all the sources and
target maps are compatible with h finear structure.
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Presentations of linear (2, 2)-categories

e One can also make linear combinations of these circuits with scalars in K.
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Presentations of linear (2, 2)-categories

e One can also make linear combinations of these circuits with scalars in K. An element of

the form
A

where ¢ is a 2-cell obtained with the previous compositions of generating 2-cells and
A € Kis called a monomial in the linear (2, 2)-category.

@ Given a 2-cell ¢, it can be uniquely decomposed into a sum of monomials ¢ = > ¢,
called the monomial decomposition of ¢.

@ The support of ¢ is the set of all the ¢; in that decomposition.
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Linear (3, 2)-polygraphs

@ These linear (2, 2)-categories can be presented by rewriting systems called
linear (3, 2)-polygraphs,
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linear (3, 2)-polygraphs,

@ Alinear (3, 2)-polygraph is a tuple X = (Xg, X1, X3, X3) where :

@ (%o, X4, X5) is a2-polygraph, that is a graph (Xg, 1) equipped with a cellular
extension of X} the free 1-category generated by ¥, that is a set X5 and two maps
sy, 1 : X3 — X7 such that the globular relations hold :
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Linear (3, 2)-polygraphs

@ Example. Let C be the linear (2, 2)-category with one 0-cell, one 1-cell, two generating

2-cells
and two 3-cells :
X=X | [ X=X+ ] ]
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Linear (3, 2)-polygraphs

@ Example. Let C be the linear (2, 2)-category with one 0-cell, one 1-cell, two generating

2-cells
and two 3-cells :
X=X | [ X=X+ ] ]

This category can be presented by the linear (3, 2)-polygraph defined with the same 0-cell,
1-cell and 2-cells and the relations being oriented in the following way :

XX e X=X+
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Rewriting properties of linear (3, 2)-polygraphs

e A rewriting step of X is a 3-cell of the form

where sy(a) and () are two parallel 2-cells such that the monomial
Amy %1 (Mg xg Sa(a) xg m3) %1 my does not appear in the monomial decomposition of u.
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Rewriting properties of linear (3, 2)-polygraphs

e A rewriting step of X is a 3-cell of the form

where sy(a) and () are two parallel 2-cells such that the monomial
Amy %1 (Mg xg Sa(a) xg m3) %1 my does not appear in the monomial decomposition of u.

@ A rewriting sequence of X is a finite or infinite sequence :

up up

of rewriting steps of x.

@ A normal formis a 2-cell that can’t be reduced by any rewriting step.
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Rewriting properties of linear (3, 2)-polygraphs

@ A branching of £ is a pair of 3-cells with the same 2-source :
v
7
u
N
w
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Benjamin DUPONT 14/ 35



Rewriting properties of linear (3, 2)-polygraphs

@ A branching of X is a pair of 3-cells with the same 2-source
@ A branching is confluent if it can be completed by rewriting sequences f’ and g’ as follows :

7N
oA

@ A Jocal branching of X is a pair of rewriting steps of £ with the same 2-source.

@ Let L be the order on monomials of X such that f T g if g = my %1 (M2 o f xo M3) *1 My
for monomials m;. A critical branching is a branching such that its source is minomal for C.

e Alinear (3,2)-polygraphis :
- confluent (resp. locally confluent) if all its (resp. local) branchings are confluent.

- terminating if it has no infinite rewriting sequence.
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@ A Jocal branching of X is a pair of rewriting steps of £ with the same 2-source.

@ Let L be the order on monomials of X such that f T g if g = my %1 (M2 o f xo M3) *1 My
for monomials m;. A critical branching is a branching such that its source is minomal for C.

e Alinear (3,2)-polygraphis :
- confluent (resp. locally confluent) if all its (resp. local) branchings are confluent.
- terminating if it has no infinite rewriting sequence.

- left monomial is every source of a 3-cell in X is a monomial.
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Rewriting results

e In this setting, we have a version of classic rewriting results such as Noetherian’s induction
principle and Newman'’s lemma.
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Rewriting results

e In this setting, we have a version of classic rewriting results such as Noetherian’s induction
principle and Newman'’s lemma.

Proposition

A terminating linear (3, 2)-polygraph is confluent if and only if all its critical branchings are
confluent.

Proposition (Alleaume, 16)

Let X be a confluent and terminating left-monomial linear (3, 2)-polygraph and C be the
linear (2, 2)-category presented by X. Then, for any 1-cells u and v of C with same 0-source and
0-target, the set of monomials of X in normal form from u to v gives a basis of C(u, v).
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Critical branchings for linear (3, 2)-polygraphs

@ There exists 3 kinds of non-aspherical critical branchings in that setting :
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Confluence of indexed critical branchings

o and : To prove confluence of an indexed critical branching, it
suffices to prove its confluence for instances k in normal form.
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Confluence of indexed critical branchings

@ Lafont 03 and Guiraud-Malbos '09 : To prove confluence of an indexed critical branching, it
suffices to prove its confluence for instances k in normal form.
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lll. Quiver Hecke algebras and Poincaré-Birkhoff-Witt bases
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KLR algebras for categorification of quantum groups

@ In higher dimensional representation theory, a natural way to study an algebraic structure is
to extend actions of it on categories rather than vector spaces.
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KLR algebras for categorification of quantum groups

@ In higher dimensional representation theory, a natural way to study an algebraic structure is
to extend actions of it on categories rather than vector spaces.

@ One wants to build a categorification of it, that is an higher dimensional category whose
Grothendieck group is isomorphic to it.

@ This work was done for a process of categorification of quantum groups associated with
symmetrizable Kac-Moody algebras, following and .

@ The KLR algebras (or quiver Hecke algberas) are a family of algebras that arise naturally in
this process.
@ They admit a diagrammatic presentation by generators and relations,

@ They can be seen as linear (2, 2)-categories.
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Poincaré-Birkhoff-Witt bases

@ We will explicit linear (3, 2)-polygraphs that present the simply-laced KLR algebras and
prove that they are convergent.

@ We will obtain a rewriting proof of the following algebraic result obtained by Khovanov and
Lauda :

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases

@ These PBW bases have interesting algebraic and homological features.

@ They are linear bases.
@ They are build from a monomial order < on a generating set of the algebra.

@ The product of two elements of the basis is greater for < than every element in its
monomial decomposition.
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Definition of the KLR algebras

@ Let I be a graph whose set of vertices is denoted by I. We set V = > v;.i € N[/] an
i€l
element of the free semi-group generated by /.

@ Let - be a bilinear form defined on Z[/] with values in Z such that i - j € {0, —1} for all
i,jelL
@ Weputm:=|V| =3 V.

@ We consider the set Seq(V) which consists of all sequences of vertices of I' with length m
in which the vertex i appears exactly V; times.

@ Foriandj € Seq(V), we define the set jR(V); as the set of "braid-like diagrams” from i to
j, thatis :

@ Each strand is labelled by a vertex of T';

@ A brand does not intersect with itself ;
@ One has toread i (resp. j) at the bottom (resp. at the top) of the diagram
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Definition of the KLR algebras

@ These algebras are given by a diagrammatic presentation by generators and relations.

@ Fori=ii...im € Seq(V), we represent the generators by :

° xei= | .. + for1 <k <mi=i...imc Seq(V)
iq ik im

o = >< for1 <k<m—1,i=i...imc Seq(V)
iy ik iK1 im

@ These algebras can be seen as linear (2, 2)-categories with :
@ One 0-cell,
@ The 1-cells are the elements of Seq(V),

@ The 2-cells between two sequences i and i are jR(V);.
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Definition of the KLR algebras

@ The local relations are represented by :

i) Foriel, v) Fori € I,

S = =X
N
ii) Fori,j e Isuchthati-j=0, >< >< ‘ ‘
(A t vi) Fori,j,k € I,and unless i = k and
iy Fori,j € Isuchthati.j= —1, i-j=-1,

ii - + : + -
; i i i i
i ik i i k

iv) Fori,j € I,

>< _ >< vii) Fori,j € I'suchthati-.-j= —1,
| | f I E}% ) }{j+ ‘
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The linear (3, 2)-polygraphs KLR

@ The 3-cells of the linear (3, 2)-polygraph KLR are given by :

i) Foriel, v) Fori € I,

70 ]
i) Fori,j € I'suchthati-j=0, >< >< ‘ ‘

L vi) For i, /,k € I, and unless i = k and
i) Fori,j € I'suchthati.j= —1, i-j=-1,

RIS Sehise!

iv) Fori,j € I,

=

i i

vii) Fori,jEIsuchthat,-,=_ ,
X=X
| | i | E}%S }{j+ ‘
> = Co
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The linear (3, 2)-polygraphs KLR

@ We prove the following result :

The linear (3, 2)-polygraphs KLR are convergent.
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The linear (3, 2)-polygraphs KLR

@ We prove the following result :

The linear (3, 2)-polygraphs KLR are convergent.

@ The proof is split into two parts :

@ We prove that KLR is terminating.

@ Then, we show that it is confluent by examining all the critical branchings.

@ The monomials in normal form give a basis for each space of 2-cells, which provide a basis
of the algebra. It turns out to be a Poincaré-Birkhoff-Witt basis.

@ There is no exhaustive methods to prove termination in dimension 3. However, some
techniques exist. We used a theorem of generalising in a categorical
framework an idea of .
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Study of the critical branchings

@ We have 4 different forms for the sources of 3-cells :

for every i, jand k in 1.
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Study of the critical branchings

@ We have 4 different forms for the sources of 3-cells :

for every i, jand k in 1.

@ They depend on the vertices i, j and k at the bottom.

@ The critical branchings have to be computed for each sequence of vertices and each
values of the bilinear form.
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Examples of critical branchings

@ Sequence : iik
@ Valueof - : 0 or —1

@ Branching :
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Examples of critical branchings

@ Sequence : ijj
@ Valueof-:0

@ Branching :
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Examples of critical branchings

@ Sequence : ijj

@ Valueof - : —1

Dl
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@ Branching :
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Study of the critical branchings

@ There exists 6 main families of critical branchings :
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Study of the critical branchings

@ There exists 6 main families of critical branchings :

@ Crossings with two dots : >< and ><

Triple crossings : ;i with itself

Double crossings with dots : >< or >< with ;é

Double Yang-Baxter : E}% with itself

Yang-Baxter with crossings : E}% with ;é
Yang-Baxter with dots : E}% with >< or ><
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Study of the critical branchings

@ There is right indexed branchings with the form :

where k is a diagram that can be plugged in the Yang-Baxter-equation.

Benjamin DUPONT 30/ 35



Study of the critical branchings

@ There is right indexed branchings with the form :
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@ There are two families of normal forms that can be plugged :

° + ~forall n € N (just the identity if n = 0)

) >< foralln € N
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Study of the critical branchings

@ There is right indexed branchings with the form :

where k is a diagram that can be plugged in the Yang-Baxter-equation.

@ There are two families of normal forms that can be plugged :

° + ~forall n € N (just the identity if n = 0)

) >< foralln € N

@ The two families of indexed critical branchings are confluent, so is the
linear (3, 2)-polygraph KLR.
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Study of the normal forms : crossings
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Study of the normal forms : crossings

o and made a full study of the normal forms of the 3-polygraph
of permutations A which has

@ One O-cell;
@ One 1-cell;

@ One 2-cell >< :

@ The following two 3-cells : ;j — ‘ ‘ and E}{E%{j
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Study of the normal forms : crossings

o and made a full study of the normal forms of the 3-polygraph
of permutations A which has

@ One O-cell;
@ One 1-cell;

@ One 2-cell >< ;
@ The following two 3-cells : ;j — ‘ ‘ and E}{E%{j

@ The set of normal forms of this polygraph correspond to braid diagrams with a minimal
number of crossings, that is they are given by permutations whose length is minimal for the
Coxeter presentation of Sm.
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Study of the normal forms : dots

@ Starting from a diagram

here the D}OW are diagrams with less crossings.
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Study of the normal forms : dots

@ Starting from a diagram

= (£Dl*v)

where the D}OW are diagrams with less crossings.
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Study of the normal forms : dots

@ Starting from a diagram

= (D) = ... (£ D)

where the D}OW are diagrams with less crossings.
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Study of the normal forms : dots

@ Starting from a diagram

- (D) = ... = (X Do)

where the D}PW are diagrams with less crossings.

@ The monomial in normal forms are exactly the diagrams which have a minimal number of
crossings and all dots placed at the bottom of the strands.
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Conclusion

o defined an algebraic Poincaré -Birkhoff-Witt property ;

@ ltis equivalent to the fact that these diagrams with dots at the bottom and a minimal
number of crossings form a basis of the algebra.
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o defined an algebraic Poincaré -Birkhoff-Witt property ;

@ ltis equivalent to the fact that these diagrams with dots at the bottom and a minimal
number of crossings form a basis of the algebra.

(] looked at a basis for jR(V);.

@ [t contains the diagrams of the required form.

@ The proof of the generating part used the idea of reducing the number of crossings
and making the dots go down.

@ The proof of the freeness was done by defining an action of the family on a
polynomial ring.
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Conclusion

o defined an algebraic Poincaré -Birkhoff-Witt property ;

@ ltis equivalent to the fact that these diagrams with dots at the bottom and a minimal
number of crossings form a basis of the algebra.

(] looked at a basis for jR(V);.

@ [t contains the diagrams of the required form.

@ The proof of the generating part used the idea of reducing the number of crossings
and making the dots go down.

@ The proof of the freeness was done by defining an action of the family on a
polynomial ring.

@ Using linear rewriting techniques, we proved that the simply-laced KLR algebra admits
bases of type Poincaré Birkhoff-Witt.
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Work in progress :

@ The theorem of categorification lays on the fact that one can find explicit bases for each
space of 2-cells in the "candidate" 2-category.
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Work in progress :

@ The theorem of categorification lays on the fact that one can find explicit bases for each
space of 2-cells in the "candidate" 2-category.

@ There is an action of the KLR algebras on some of these spaces of 2-cells ; and we can find
bases for them using our PBW bases.

@ To recover all the bases for general spaces of 2-cells, there are adjunction morphisms (cup
and cap) that appear and the rewriting techniques become more complicated.
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