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Motivation : categorification of quantum groups

@ In higher representation theory, a natural way to study an algebraic structure is to
build a categorification of it.

@ These categorifications are higher dimensional categories whose split
Grothendieck group is isomorphic to the aforegiven structure.

@ This work is about categorification of quantum groups associated with
symmetrizable Kac-Moody algebras,

o following the work of Khovanov and Lauda, 08 or Rouquier, 08.
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Objective : find bases of the KLR algebras

@ Khovanov and Lauda, 08 built categorifications of these quantum groups which are
2-categories.

@ The family of KLR algebras appear naturally.

e They act on certain endomorphism spaces of 2-cells in these categories.

@ To establish that their 2-categories are real categorifications, they used a property
of non-degeneracy of a diagrammatic calculus.

@ This non-degeneracy is proved by finding explicit bases of the spaces of 2-cells in
the 2-categories.

@ Explicit bases of the KLR algebras are used to describe bases of some of these
spaces of 2-cells.
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Results presented

@ We will construct linear (3, 2)-polygraphs that present the simply-laced KLR
algebras.

@ We will prove the following result :

The linear (3, 2)-polygraphs KLR are terminating and confluent.

@ Application : we obtain a rewriting proof of the following algebraic result obtained
by Khovanov and Lauda :

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases
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(Simply-laced) Cartan datum

@ Let T be a graph whose set of vertices is denoted by I, and K any field.
@ A Cartan datum (I, -) consists of a finite set I and a bilinear form on Z[I] the free
group generated by I, taking values in Z such that :
ei-1€ {2,4,6,...}foranyi € I,
o —d;; :=2% € {0,—-1,-2,...}foranyi # j € I.

@ Such a Cartan datum is said simply-laced if the two following conditions hold :

o ForanyieI,i-i=2,
o Foranyi,j € 1,i-j € {0,—1}.
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The set Seq(V)

@ WesetV = > v;.i € N[I] an element of the free semi-group generated by I.
el

e Weputm := |V| = > V.
@ Let’s also consider the set Seq(V) which consists of all sequences of vertices of I'

with length m in which the vertex i appears exactly V; times.

o Forinstance, Seq(2i + 5) = {iij, iji, jii}.
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Rouquier’s definition of the KLR algebras, 08

o Let Q = (Q;,;)i,jer be a matrix with coefficients in K[u, v] with Q;.; = 0 for all
i€ 1.

@ Define the K-algebra Hy (Q) by
e generators : 1j, ki fork € {1,...,n}and 7,ifork € {1,...,n — 1} and

i € Seq(V).

o relations :
(1) 1i1j = 6i,j1i (3) Lr,i — 1imk,i1i
(2) Tr,i = Loy (i) T ili (4) xp,iT,i = T1,iTh,i

(5) Thysio () Thyi = Qi yr (Theyis Thot1,i)
(6) Thoysy () TLi = Th,sp, (i) Thoi I K — 1| > 1
—1; If l=Fk and i = tpt1
(7) T ji®Li — Tsy (1), 55 (1) Thoi = i if l=k4+1 and ix = tk+1
0 otherwise
(8) Thet1,spspps () Thyspops () Th+1i — Thysgys sk () Tht1,s5 (1) Thyi =
{ Qigrigrq (Brt2,1®ht1,1) = Qigig g (B, @Thp1,i) i

T = Tht2
otherwise

Tp42,i Lk,i
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Khovanov and Lauda’s definition, 08

@ We will consider the definition of Khovanov and Lauda that gives the following
specialization :

Qi,j(u,v) = udii 4 p%ii v i,j €T

@ We will consider the case of a simply-laced graph : that is a graph with no loops
nor multiple edges.

e From such a graph, we define a simply-laced Cartan datum as follows : let -
be a bilinear form on Z[I] such that :
1-1=2
1.3 =—1 ifthereisanedgein I' fromito j
1-3=0 otherwise

e In this case, we have the coefficients d;,; and d;,; all equal to 1 when
i-j=—1.
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A diagrammatic definition

@ Khovanov and Lauda provided a diagrammatic approach for these algebras : for
i=11...9m € Seq(V), we represent the generators by the diagrams :

o Th) = _{ for1 < k < m,i=ii...im € Seq(V)
° Tgi= . >< for
i1 s ipt1 im,

1<k<m-—1,i=41...%m € Seq(V)
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A diagrammatic definition

@ The local relations are represented by :
i) Forany: € I,

;izo

i

i) Forany ¢,j € I suchthati.j =0,

iv) Foranyi,j € I,
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A diagrammatic definition

@ The local relations are represented by :
v) Foranyi € I,

XXH”‘"XX

Vi) Foranyz,g,k:eI andunIeSSz_kandz j=

Salise!

vii) Forany i,j € I suchthati-j = —1,

i 3 i i J i

@ They correspond respectively to the relations (5), (7) and (8).
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The simply-laced KLR algebras

@ We denote by R(V) the aforegiven algebra : we call it the simply-laced KLR
Algebra.

@ Foriandj € Seq(V), we define the set {R(V); as the set of "braid-like diagrams”
fromito j, thatis :

e Each strand is labelled by a vertex of T';
e A brand does not intersect with itself;
e One has to read i (resp. j) at the bottom (resp. at the top) of the diagram

@ These algebras can be seen as 2-categories with :

o One O-cell,
e The 1-cells are the elements of Seq(V),
e The 2-cells between two sequences i and i are jR(V);.
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The structure of linear (2, 2)-categories

@ The space of 2-cells jR(V); is a vector space.
@ The simply-laced KLR algebras are linear (2, 2)-categories.

@ Linear (2, 2)-categories are categories enriched in linear categories.

e Explicitely, such a category C has 0-cells Co, 1-cells C1 and 2-cells C-

e For every p and g in C1, the space of 2-cells C2(p, q) between p and g is a
vector space.
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Linear (3, 2)-polygraphs

@ According to Alleaume 16, these linear (2, 2)-categories can be presented by
rewriting systems called linear (3, 2)-polygraphs.

@ In those rewriting systems, the generating 2-cells have the form of a circuit as
follows :

where p and g are two 1-cells of the category.
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Compositions of 2-cells in linear (3, 2)-polygraphs

e These generators can be composed in two ways
Horizontally Vertically

Y
e All these compositions are made modulo the exchange law of the 2-category, that

is for every 2-cells ¢1, ¢2, Y1, 12 one has

(11 %0 ¢1) *1 (2 %0 ¢2) = (Y1 *1 P2) %o (P1 *1 P2)
which is diagrammatically depicted as :
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The linear structure

e One can also make linear combinations of these circuits with scalars in a ground

field K. An element of the form
A

where ¢ is a 2-cell obtained with the previous compositions of generating 2-cells
and A € K is called a monomial in the linear (3, 2)-polygraph.

@ Given a 2-cell ¢, it can be uniquely decomposed into a sum of monomials
@ = > ¢, called the monomial decomposition of ¢.

@ The support of ¢ is the set of all the ¢, in that decomposition.
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Rewriting steps

e A rewriting step of 3 is a 3-cell of the form

)\ml *1 (mz *0 Sz(a) *0 m3) *1 M4 + u =

Aml *1 (m2 *0 t2(a) *0 m3) *1 M4 + u

where sz (a) and t2 () are two parallel 2-cells such that the monomial
Amy x1 (M2 xo s2(a) xo m3) *x1 my4 does not appear in the monomial
decomposition of u.

e A rewriting sequence of X is a finite or infinite sequence :

Uo e Un,

of rewriting steps of 3.

e A normal form is a 2-cell that can’t be reduced by any rewriting step.
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Branchings

e A branching of X is

e A branching is confluent if it can be completed by rewriting sequences f’ and g’ as

\

e A local branching of 3 is a pair of rewriting steps of X with the same 2-source.

7N
A
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Termination, confluence, left monomiality

e Alinear (3, 2)-polygraph is :

- confluent (resp. locally confluent) if all its (resp. local) branchings are
confluent.

- terminating if it has no infinite rewriting sequence.
- left monomial is every source of a 3-cell in 3 is a monomial.

e Example. Here, an example of linear (3, 2)-polygraph with one 0-cell, one 1-cell,
two generating 2-cells
and two 3-cells :

><3><+ ‘and><3><+
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Rewriting results

e In this setting, we have a version of classic rewriting results such as Noetherian’s
induction principle and Newman’s lemma.

Proposition

A terminating linear (3, 2)-polygraph is confluent if and only if all its critical branchings
are confluent.

Proposition (Alleaume,'16)

Let X be a confluent and terminating left-monomial linear (3, 2)-polygraph and C be
the linear (2, 2)-category presented by . Then, for any 1-cells w and v of C with same
0-source and 0-target, the set of monomials of 3 in normal form from u to v gives a
basis of C(u, v).
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The linear (3, 2)-polygraphs KLR

@ We define the linear (3, 2)-polygraphs KLR by :
- One 0-cell {*}

- The 1-cells are i € Seq(V) so that the generating 1-cellsare ¢ € I

- The 2-cells between two 1-cells i and j are given by the braid-like diagrams
which link i to j.

- The 3-cells are given by the diagrammatic relations oriented as follows.
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The 3-cellsin T

i) Foranyi € I,

iv) Foranyi,j € I,

XX = e X

Benjamin DUPONT 22/ 44



The 3-cellsin T

v) Foranyi € I,

><3><+i and ><s><

vi) Foranyi,j,k € I,andunlessi = kandi-j =

E}%%ii

vii) Forany ¢,j € I suchthati-j = —1,
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Idea of the proof of the main theorem

@ We split the proof in two parts :

o First of all, we prove that KLR is terminating.
e Then, we show that it is confluent by examining all the critical branchings.
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The idea of the process of termination (Guiraud, 06)

@ Each 2-cell is seen as an electronical circuit whose components are given by the
generating 2-cells

@ Fix a value for each component;

o With this value, each output of the circuit receives a certain intensity of
courant.

@ The heat produced by a fixed component is calculated this way :
e A component is arbitrarily chosen.
e Currents are propagated through the other components to the chosen one.

e One compute the intensities of currents transmitted when the incoming
current is known.
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The idea of the process of termination (Guiraud, 06)

@ One repeats the same procedure for each component.

@ One gets the heat produced by a circuit by summing the heat produced by all its
components.

@ Two circuits with the same number of inputs and the same number of outputs are
compared this way.

@ We build a reduction order by comparing all the sources and targets of 2-cells
following this method.
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Generalization of this idea

@ Guiraud-Malbos '09 generalized this idea in a categorical framework.

e The theorem lays on a construction of a derivation d and a 2-functor.
o They are defined on the generating 2-cells of the polygraph.

e One has to check that : X (sar) > X (tax) and d(sa) > d(tc) for every
3-cell a.

@ We adapt this theorem in a linear setting :

e The conditions we have to check are X (sa) > X (g) and d(sa) > d(g) for
every g € Supp(ta).
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The 2-functor X

@ In our case, we define a 2-functor X : KLR3 — Ord on generating 2-cells by :

x < | ) @=is X <+> () =i+l X <><) (i:d) = (4+1.1) Vij €N.
> We have the following inequalies :

x () G = G140 2 g0 = ma (x (1) x (1 1)) G
x () @i =G+2i 2 G2 =mx(x () x (] |)) G

x (1) = G+ritn 2 Gy = ma (X () @ x (| 1)) Gy

X <§>{) (iaj’k) = (k—{—2,j—{—1,'i) > max <X (}{j) 3X<‘ ‘ )) (’L,J,k:)
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The derivation d

@ We now define the derivation d of KLR3 into M x .,z given on the generators by

d(><>(i,j)=i; d()(i):o:d@)(i).

@ We can then check the following inequalities :

d(;é)(i,j)=i+j+1>0=max<d<} ‘),d(‘ +>,d(‘ ‘))(i,j);
d(i}%) (i,j,k)=2i+j+1>2i+j=max<d(%{j),d( | ))(i,j,kz);
a(s ) @i =i+t > i=mn (a(5) (] 1)) G

)

||
d(><>(i,j):i+1>i:max<d(>< ,d<‘ ‘))(i,j).

@ Thus, KLR is terminating.



Sources of the 3-cells

@ We have 4 different forms for the sources of 3-cells :

=

% J
for every i, 5 and k in I.

e They depend on the vertices i, j and k at the bottom.

e The critical branchings have to be computed for each sequence of vertices
and each values of the bilinear form.
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Examples of critical branchings

Sequence iik
Value of - Oor —1
0

V.

i i k\

Branching
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Examples of critical branchings

Sequence (]

Value of - 0

7N

TN/

Branching
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Examples of critical branchings

Sequence (XK]
Value of - -1
tg ol
;ﬁ ry Pl <]
AN
fﬁg Qﬁ fﬁg ﬁJ a1l ><|
Branching
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Families of critical branchings

@ There exists 6 main families of critical branchings;

e They are characterized by the pair of 2-cells which form the branching.

@ They are the following ones
e Crossings with two dots : >< and ><

o Triple crossings : ;é with itself

Double crossings with dots : >< or >< with ;é

Double Yang-Baxter : E}% with itself

Yang-Baxter with crossings : E}% with ;ﬁ
Yang-Baxter with dots : E}% with >< or ><
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The indexed critical branchings

@ There is another kind of critical branchings, namely the right indexations, that is
critical branchings with the form

where k is a diagram that can be plugged in the Yang-Baxter-equation.

@ It was proved by Guiraud and Malbos that it is sufficient to check for the instances
k in normal form, according to the following diagram :
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The indexed critical branchings

CItA[F])

CIAIfI reger ClAlgll Al
ClsA[F]l
CIBlgll - CIB]

CItBIF]

/

ClsBIFI|

ClBIf]

\
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Study of the normal forms

@ Thus, we have now to determine which are the normal forms that we can plug in
the previous diagram.

@ Guiraud-Malbos ‘09 made a full study of the normal forms of the 3-polygraph of
permutations A which has

o One 0-cell;
e One 1-cell;

o One 2-cell >< :

e The following two 3-cells :

;ég‘ | andﬁ%g%g.
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Study of the normal forms : crossings

@ The set of normal forms of that polygraph is given by the set IV of 2-cells of A™*
given by the following inductive graphical scheme :

where S is itself defined inductively by

*:Xor%.

@ The Coxeter presentation of the symmetric group S, is given by
((8i)1<i<m—138; = 1,8i8i418i = Si418iSi41,8i8; = 8;8; if|[i — j| > 1)

wheres; = (¢ i+ 1) € Sm.
e Length of a permutation = min{r € N;3s;,,...,8:,.\0 = Si; ... Si,.}
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Study of the normal forms : dots

@ We can add dots wherever on the diagrams. We consider a map

f : R(V) — N™
D —  (c1(D),...,cm(D))

where for every 1 < k < m, ¢ (D) is the number of crossing under the upper
dot on the k-th strand of D.

@ If adiagram D is such that f(D) > (0,...,0), then it can be reduce by making
the dot go down.

e The result gives a linear combination of diagrams > A; D; such that for all <,
f(D) > f(D;) for the lexicographic order.

@ The monomials in normal form are the normal forms of the polygraph of
permutations for which the image by f is 0.
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Representation of normal forms

@ They correspond to the diagrams :

e which contain a minimal number of crossings, that is the length of the
associated permutation;

o with all the elements Tht1,8% 8541 () Thysi 1 () Tht-1,i @re replaced by
Thyspt15k () Tht1,85 (1) Thyi s

e which contain dots that are all placed at the bottom of the diagram.

@ There are two families of normal forms that can be plugged :

° + nforallm € N (justtheidentityifn =0)

° >< forallm € N
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The Poincaré Birkhoff-Witt property

@ Let {siy,---5Si, }(ir,....im)eSeq(v) D€ @ set of minimal length representative of
elements of S,,.

@ Rouquier,08 defined a Poincaré -Birkhoff-Witt property, that is equivalent to the
fact that

S = {Tir o5y i)+ +  Tird T+ Ty Fseensin) €J,(@150ensam ) ENT,iESeq(V)
is a basis of the algebra Hyv,(Q).
@ Khovanov and Lauda, 08 looked at a basis for the diagrams with source i and
target j.

e |t contains the diagrams of the required form.
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Conclusion

@ We proved that the linear (3, 2) polygraphs KLR were convergent.

@ The set of monomials in normal form of these polygraphs form bases of these
algebras.

e This corresponds exactly to the PBW bases, so we proved the following
result :

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases
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ANY QUESTIONS ?

Thanks for your attention.
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