A convergent presentation for the simply-laced KLR algebras and the PBW property

Benjamin DUPONT

PhD Student at Université Claude Bernard Lyon 1, France. Institut Camille Jordan, UMR CNRS 5208

8, September 2017

- In higher representation theory, a natural way to study an algebraic structure is to build a categorification of it.
- These categorifications are higher dimensional categories whose split Grothendieck group is isomorphic to the aforegiven structure.
- This work is about categorification of quantum groups associated with symmetrizable Kac-Moody algebras,
 - following the work of Khovanov and Lauda,'08 or Rouquier,'08.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Objective : find bases of the KLR algebras

- Khovanov and Lauda,'08 built categorifications of these quantum groups which are 2-categories.
- The family of *KLR algebras* appear naturally.
 - They act on certain endomorphism spaces of 2-cells in these categories.
- To establish that their 2-categories are real categorifications, they used a property of non-degeneracy of a diagrammatic calculus.
- This non-degeneracy is proved by finding explicit bases of the spaces of 2-cells in the 2-categories.
- Explicit bases of the KLR algebras are used to describe bases of some of these spaces of 2-cells.

< ロ > < 同 > < 三 > < 三

- We will construct *linear* (3, 2)-*polygraphs* that present the simply-laced KLR algebras.
- We will prove the following result :

Theorem

The linear (3, 2)-polygraphs KLR are terminating and confluent.

• Application : we obtain a rewriting proof of the following algebraic result obtained by Khovanov and Lauda :

Corollary

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases

< ロ > < 同 > < 三 > < 三

- Let Γ be a graph whose set of vertices is denoted by I, and \mathbb{K} any field.
- A Cartan datum (I, ·) consists of a finite set I and a bilinear form on Z[I] the free group generated by I, taking values in Z such that :

• $i \cdot i \in \{2, 4, 6, \ldots\}$ for any $i \in I$,

- $-d_{i,j} := 2 \frac{i \cdot j}{i \cdot i} \in \{0, -1, -2, \ldots\}$ for any $i \neq j \in I$.
- Such a Cartan datum is said simply-laced if the two following conditions hold :
 - For any $i \in I$, $i \cdot i = 2$,
 - For any $i, j \in I$, $i \cdot j \in \{0, -1\}$.

<ロト <回 > < 回 > < 回 > < 回 > = 三回

- We set $\mathcal{V} = \sum_{i \in I} \nu_i \cdot i \in \mathbb{N}[I]$ an element of the free semi-group generated by I.
- We put $m := |\mathcal{V}| = \sum \mathcal{V}_i$.
- Let's also consider the set Seq(V) which consists of all sequences of vertices of Γ with length m in which the vertex i appears exactly V_i times.
 - For instance, $Seq(2i + j) = \{iij, iji, jii\}$.

- Let $Q = (Q_{i,j})_{i,j \in I}$ be a matrix with coefficients in $\mathbb{K}[u, v]$ with $Q_{i,i} = 0$ for all $i \in I$.
- Define the \mathbb{K} -algebra $H_{\mathcal{V}}(Q)$ by
 - generators : $1_i, x_{k,i}$ for $k \in \{1, \ldots, n\}$ and $\tau_{k,i}$ for $k \in \{1, \ldots, n-1\}$ and $i \in \text{Seq}(\mathcal{V})$.
 - relations :
 - (1) $1_{i}1_{j} = \delta_{i,j}1_{i}$ (3) $x_{k,i} = 1_{i}x_{k,i}1_{i}$ (2) $\tau_{k,i} = 1_{s_{k}(i)}\tau_{k,i}1_{i}$ (3) $x_{k,i}=x_{l,i}x_{k,i}$

$$\begin{array}{ll} \text{(5)} & \tau_{k,s_{k}(\mathbf{i})}\tau_{k,\mathbf{i}} = Q_{i_{k},i_{k+1}}(x_{k,\mathbf{i}},x_{k+1,\mathbf{i}}) \\ \text{(6)} & \tau_{k,s_{l}(\mathbf{i})}\tau_{l,\mathbf{i}} = \tau_{l,s_{k}(\mathbf{i})}\tau_{k,\mathbf{i}} \text{ if } |k-l| > 1 \\ \text{(7)} & \tau_{k,\mathbf{i}}x_{l,\mathbf{i}} - x_{s_{k}(l),s_{k}(\mathbf{i})}\tau_{k,\mathbf{i}} = \begin{cases} -1_{\mathbf{i}} & \text{if } l = k \text{ and } i_{k} = i_{k+1} \\ 1_{\mathbf{i}} & \text{if } l = k+1 \text{ and } i_{k} = i_{k+1} \\ 0 & \text{otherwise} \end{cases} \\ \text{(8)} & \tau_{k+1,s_{k}s_{k+1}(\mathbf{i})}\tau_{k,s_{k+1}(\mathbf{i})}\tau_{k+1,\mathbf{i}} - \tau_{k,s_{k+1}s_{k}(\mathbf{i})}\tau_{k+1,s_{k}(\mathbf{i})}\tau_{k,\mathbf{i}} = \\ \begin{cases} \frac{Q_{i_{k},i_{k+1}}(x_{k+2,\mathbf{i}},x_{k+1,\mathbf{i}}) - Q_{i_{k},i_{k+1}}(x_{k,\mathbf{i}},x_{k+1,\mathbf{i}})}{x_{k+2,\mathbf{i}}-x_{k,\mathbf{i}}} & \text{if } i_{k} = i_{k+2} \\ 0 & \text{otherwise} \end{cases} \end{array}$$

- 2

・ロト ・四ト ・ ヨト ・ ヨト

• We will consider the definition of Khovanov and Lauda that gives the following specialization :

 $Q_{i,j}(u,v) = u^{d_{i,j}} + v^{d_{j,i}} \hspace{0.2cm} orall \hspace{0.2cm} i,j \in I$

- We will consider the case of a *simply-laced graph* : that is a graph with no loops nor multiple edges.
 - From such a graph, we define a simply-laced Cartan datum as follows : let
 be a bilinear form on Z[I] such that :

$$\begin{cases} i \cdot i = 2\\ i \cdot j = -1\\ i \cdot j = 0 \end{cases}$$
 if there is an edge in Γ from *i* to *j* otherwise

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

3

• In this case, we have the coefficients $d_{i,j}$ and $d_{j,i}$ all equal to 1 when $i \cdot j = -1$.

• Khovanov and Lauda provided a diagrammatic approach for these algebras : for $\mathbf{i} = i_1 \dots i_m \in \text{Seq}(\mathcal{V})$, we represent the generators by the diagrams :

•
$$x_{k,i} = \left| \begin{array}{c} \dots \\ i_1 \end{array} \right|_{i_k} \quad i_m \quad \text{for } 1 \le k \le m, i = i_1 \dots i_m \in \text{Seq}(\mathcal{V})$$

• $\tau_{k,i} = \left| \begin{array}{c} \dots \\ i_1 \end{array} \right|_{i_k} \quad i_{k+1} \quad i_m \quad \text{for} \quad \\ 1 \le k \le m-1, i = i_1 \dots i_m \in \text{Seq}(\mathcal{V})$

The local relations are represented by :
 i) For any *i* ∈ *I*,

 $\sum_{i} = 0$

ii) For any $i, j \in I$ such that $i \cdot j = 0$,

iii) For any $i, j \in I$ such that $i \cdot j = -1$,

iv) For any $i, j \in I$,

• They correspond respectively to the relations (5), (7) and (8).

- We denote by R(v) the aforegiven algebra : we call it *the simply-laced KLR* Algebra.
- For i and $j \in \text{Seq}(\mathcal{V})$, we define the set $_{j}R(\mathcal{V})_{i}$ as the set of "braid-like diagrams" from i to j, that is :
 - Each strand is labelled by a vertex of Γ ;
 - A brand does not intersect with itself;
 - One has to read i (resp. j) at the bottom (resp. at the top) of the diagram
- These algebras can be seen as 2-categories with :
 - One 0-cell,
 - The 1-cells are the elements of $Seq(\mathcal{V})$,
 - The 2-cells between two sequences i and i are $_{j}R(\mathcal{V})_{i}$.

- The space of 2-cells $_{j}R(\mathcal{V})_{i}$ is a vector space.
- The simply-laced KLR algebras are *linear* (2, 2)-categories.
- Linear (2, 2)-categories are categories enriched in linear categories.
 - Explicitely, such a category C has 0-cells C_0 , 1-cells C_1 and 2-cells C_2
 - For every p and q in C_1 , the space of 2-cells $C_2(p,q)$ between p and q is a vector space.

- According to Alleaume '16, these linear (2, 2)-categories can be presented by rewriting systems called linear (3, 2)-polygraphs.
- In those rewriting systems, the generating 2-cells have the form of a circuit as follows :

.

where p and q are two 1-cells of the category.

Compositions of 2-cells in linear (3, 2)-polygraphs

• All these compositions are made modulo the exchange law of the 2-category, that is for every 2-cells ϕ_1 , ϕ_2 , ψ_1 , ψ_2 one has

 $(\psi_1 \star_0 \phi_1) \star_1 (\psi_2 \star_0 \phi_2) = (\psi_1 \star_1 \psi_2) \star_0 (\phi_1 \star_1 \phi_2)$

which is diagrammatically depicted as :

$$\begin{array}{c} & & & \\ \phi \\ \phi \\ & & \\ \end{array} \begin{array}{c} & \\ \psi \\ \end{array} \end{array} = \begin{array}{c} & & \\ \phi \\ \phi \\ \end{array} \begin{array}{c} & \\ \psi \\ \phi \\ \end{array} \end{array} = \begin{array}{c} & & \\ \phi \\ \phi \\ \end{array} \begin{array}{c} & \\ \psi \\ \phi \\ \end{array} \end{array}$$

- One can also make linear combinations of these circuits with scalars in a ground field $\mathbb{K}.$ An element of the form

where ϕ is a 2-cell obtained with the previous compositions of generating 2-cells and $\lambda \in \mathbb{K}$ is called a *monomial* in the linear (3, 2)-polygraph.

- Given a 2-cell ϕ , it can be uniquely decomposed into a sum of monomials $\phi = \sum \phi_i$, called the *monomial decomposition* of ϕ .
- The *support* of ϕ is the set of all the ϕ_i in that decomposition.

A rewriting step of ∑ is a 3-cell of the form

```
\lambda m_1 \star_1 (m_2 \star_0 s_2(lpha) \star_0 m_3) \star_1 m_4 + u \Rrightarrow
```

 $\lambda m_1 \star_1 (m_2 \star_0 t_2(lpha) \star_0 m_3) \star_1 m_4 + u$

where $s_2(\alpha)$ and $t_2(\alpha)$ are two parallel 2-cells such that the monomial $\lambda m_1 \star_1 (m_2 \star_0 s_2(\alpha) \star_0 m_3) \star_1 m_4$ does not appear in the monomial decomposition of u.

• A *rewriting sequence* of Σ is a finite or infinite sequence :

 $u_0 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

of rewriting steps of Σ .

• A *normal form* is a 2-cell that can't be reduced by any rewriting step.

• A *branching* of Σ is

• A branching is *confluent* if it can be completed by rewriting sequences f' and g' as follows :

• A *local branching* of Σ is a pair of rewriting steps of Σ with the same 2-source.

- A linear (3, 2)-polygraph is :
 - confluent (resp. locally confluent) if all its (resp. local) branchings are confluent.
 - *terminating* if it has no infinite rewriting sequence.
 - *left monomial* is every source of a 3-cell in Σ is a monomial.

• Example. Here, an example of linear (3, 2)-polygraph with one 0-cell, one 1-cell, two generating 2-cells

・ロト ・四ト ・ ヨト ・ ヨト

 In this setting, we have a version of classic rewriting results such as Noetherian's induction principle and Newman's lemma.

Proposition

A terminating linear (3, 2)-polygraph is confluent if and only if all its critical branchings are confluent.

Proposition (Alleaume,'16)

Let Σ be a confluent and terminating left-monomial linear (3, 2)-polygraph and C be the linear (2, 2)-category presented by Σ . Then, for any 1-cells u and v of C with same 0-source and 0-target, the set of monomials of Σ in normal form from u to v gives a basis of C(u, v).

< ロ > < 同 > < 三 > < 三

- We define the linear (3, 2)-polygraphs KLR by :
 - One 0-cell {*}
 - The 1-cells are $\mathbf{i} \in \text{Seq}(\mathcal{V})$ so that the generating 1-cells are $i \in I$
 - The 2-cells between two 1-cells i and j are given by the braid-like diagrams which link i to j.
 - The 3-cells are given by the diagrammatic relations oriented as follows.

i) For any $i \in I$,

ii) For any $i, j \in I$ such that $i \cdot j = 0$,

iii) For any $i, j \in I$ such that $i \cdot j = -1$,

iv) For any $i, j \in I$,

v) For any $i \in I$,

- We split the proof in two parts :
 - First of all, we prove that KLR is terminating.
 - Then, we show that it is confluent by examining all the critical branchings.

The idea of the process of termination (Guiraud,'06)

- Each 2-cell is seen as an electronical circuit whose components are given by the generating 2-cells
- Fix a value for each component;
 - With this value, each output of the circuit receives a certain intensity of courant.
- The heat produced by a fixed component is calculated this way :
 - A component is arbitrarily chosen.
 - Currents are propagated through the other components to the chosen one.

伺き くきき くき

• One compute the intensities of currents transmitted when the incoming current is known.

- One repeats the same procedure for each component.
- One gets the heat produced by a circuit by summing the heat produced by all its components.
- Two circuits with the same number of inputs and the same number of outputs are compared this way.
- We build a reduction order by comparing all the sources and targets of 2-cells following this method.

.

- Guiraud-Malbos '09 generalized this idea in a categorical framework.
 - The theorem lays on a construction of a derivation *d* and a 2-functor.
 - They are defined on the generating 2-cells of the polygraph.
 - One has to check that : $X(s\alpha) \ge X(t\alpha)$ and $d(s\alpha) > d(t\alpha)$ for every 3-cell α .
- We adapt this theorem in a linear setting :
 - The conditions we have to check are $X(s\alpha) \ge X(g)$ and $d(s\alpha) > d(g)$ for every $g \in \text{Supp}(t\alpha)$.

• In our case, we define a 2-functor $X : KLR_2^* \rightarrow Ord$ on generating 2-cells by :

$$X\left(\; | \;
ight)(i)=i; \quad X\left(\; rac{1}{2}
ight)(i)=i{+}1; \quad X\left(igwedge
ight)(i,j)=(j{+}1,i) \;\; orall i,j\in \mathbb{N}.$$

• We have the following inequalities :

$$\begin{split} X\left(\underset{i}{\bowtie}\right)(i,j) &= (i+1,j+1) \ge (i+1,j+1) = \max\left(X\left(\begin{array}{c} \mid \mid \right), X\left(\mid \mid \right)\right)(i,j);\\ X\left(\underset{i}{\infty}\right)(i,j) &= (j+2,i) \ge (j+2,i) = \max\left(X\left(\underset{i}{\infty}\right), X\left(\mid \mid \right)\right)(i,j);\\ X\left(\underset{i}{\infty}\right) &= (j+1,i+1) \ge (j+1,i+1) = \max\left(X\left(\underset{i}{\infty}\right)(i,j), X\left(\mid \mid \right)\right)(i,j);\\ X\left(\underset{i}{\infty}\right)(i,j,k) &= (k+2,j+1,i) \ge \max\left(X\left(\underset{i}{\infty}\right), X\left(\mid \mid \mid \right)\right)(i,j,k). \end{split}$$

1

• We now define the derivation d of KLR^{*} into $M_{X,*,\mathbb{Z}}$ given on the generators by

$$d\left(igwedge)\left(i,j
ight)=i; \qquad \ \ d\left(igwedge\left(igwedge
ight)\left(i
ight)=0=d\left(igwedge\left(igwedge
ight)\left(i
ight).$$

• We can then check the following inequalities :

$$d\left(\bigotimes\right)(i,j) = i+j+1 > 0 = \max\left(d\left(\mid\mid\right), d\left(\mid\mid\right), d\left(\mid\mid\right)\right)(i,j);$$

$$d\left(\bigotimes\right)(i,j,k) = 2i+j+1 > 2i+j = \max\left(d\left(\bigotimes\right), d\left(\mid\mid\mid\right)\right)(i,j,k);$$

$$d\left(\bigotimes\right)(i,j) = i+1 > i = \max\left(d\left(\bigotimes\right), d\left(\mid\mid\right)\right)(i,j);$$

$$d\left(\bigotimes\right)(i,j) = i+1 > i = \max\left(d\left(\bigotimes\right), d\left(\mid\mid\right)\right)(i,j).$$

• Thus, KLR is terminating.

• We have 4 different forms for the sources of 3-cells :

for every i, j and k in I.

- They depend on the vertices *i*, *j* and *k* at the bottom.
- The critical branchings have to be computed for each sequence of vertices and each values of the bilinear form.

Examples of critical branchings

Examples of critical branchings

Sequence	ijj
Value of •	0
Branching	i)]

) ► (< Ξ)

-> -< ≣

æ

(日) ト イヨト イヨ

- There exists 6 main families of critical branchings;
 - They are characterized by the pair of 2-cells which form the branching.
- They are the following ones
 - \bullet Crossings with two dots : \checkmark and \checkmark
 - Triple crossings : \bigotimes with itself
 - Double crossings with dots : \bigwedge or \bigwedge with \bigotimes
 - Double Yang-Baxter : with itself
 - Yang-Baxter with crossings : K with
 - Yang-Baxter with dots : with X or X

イロト イ団ト イヨト イヨト 二臣

• There is another kind of critical branchings, namely the *right indexations*, that is critical branchings with the form

where k is a diagram that can be plugged in the Yang-Baxter-equation.

• It was proved by Guiraud and Malbos that it is sufficient to check for the instances *k* in normal form, according to the following diagram :

The indexed critical branchings

2

イロト イ団ト イヨト イヨト

- Thus, we have now to determine which are the normal forms that we can plug in the previous diagram.
- Guiraud-Malbos '09 made a full study of the normal forms of the 3-polygraph of permutations △ which has
 - One 0-cell;
 - One 1-cell;
 - One 2-cell \searrow ;
 - The following two 3-cells :

.

 The set of normal forms of that polygraph is given by the set N of 2-cells of Δ* given by the following inductive graphical scheme :

$$= * \text{ or } | = 1 \text{ or } |$$

where kis itself defined inductively by

$$\rightarrow$$
 or \rightarrow .

• The *Coxeter presentation* of the symmetric group S_m is given by

 $\begin{array}{l} \langle (s_i)_{1 \leq i \leq m-1}; s_i^2 = 1, s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, s_i s_j = s_j s_i \quad \text{if} |i-j| > 1 \rangle \\ \text{where } s_i = (i \quad i+1) \in \mathcal{S}_m. \\ \bullet \ \textit{Length} \text{ of a permutation} = \min\{r \in \mathbb{N}; \exists s_{i_1}, \ldots, s_{i_r} \setminus \sigma = s_{i_1} \ldots s_{i_r}\} \end{array}$

• We can add dots wherever on the diagrams. We consider a map

$$egin{array}{cccc} f & : & R(\mathcal{V}) &
ightarrow & \mathbb{N}^m \ & D & \mapsto & (c_1(D),\ldots,c_m(D)) \end{array}$$

where for every $1 \le k \le m$, $c_k(D)$ is the number of crossing under the upper dot on the *k*-th strand of D.

- If a diagram D is such that $f(D) > (0, \ldots, 0)$, then it can be reduce by making the dot go down.
 - The result gives a linear combination of diagrams $\sum \lambda_i D_i$ such that for all i, $f(D) > f(D_i)$ for the lexicographic order.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The monomials in normal form are the normal forms of the polygraph of permutations for which the image by f is 0.

- They correspond to the diagrams :
 - which contain a minimal number of crossings, that is the length of the associated permutation;
 - with all the elements $\tau_{k+1,s_ks_{k+1}(i)}\tau_{k,s_{k+1}(i)}\tau_{k+1,i}$ are replaced by $\tau_{k,s_{k+1}s_k(i)}\tau_{k+1,s_k(i)}\tau_{k,i}$,
 - which contain dots that are all placed at the bottom of the diagram.
- There are two families of normal forms that can be plugged :

```
• for all n \in N (just the identity if n = 0)
```

• for all
$$n \in \mathbb{N}$$

- Let $\{s_{i_1}, \ldots, s_{i_r}\}_{(i_1, \ldots, i_m) \in Seq(\mathcal{V})}$ be a set of minimal length representative of elements of S_n .
- Rouquier,'08 defined a Poincaré -Birkhoff-Witt property, that is equivalent to the fact that

 $S = \{\tau_{i_1, s_{i_2} \dots s_{i_r}(\mathbf{j})} \dots \tau_{i_r, \mathbf{j}} x_{1, \mathbf{j}}^{a_1} \dots x_{m, \mathbf{j}}^{a_m} \}_{(i_1, \dots, i_r) \in J, (a_1, \dots, a_m) \in \mathbb{N}^m, \mathbf{j} \in \mathsf{Seq}(\mathcal{V})}$

is a basis of the algebra $H_{\mathcal{V}}(Q)$.

- Khovanov and Lauda,'08 looked at a basis for the diagrams with source i and target j.
 - It contains the diagrams of the required form.

<ロ> <四> <四> <四> <四> <四> <四</p>

- We proved that the linear (3, 2) polygraphs KLR were convergent.
- The set of monomials in normal form of these polygraphs form bases of these algebras.
 - This corresponds exactly to the PBW bases, so we proved the following result :

Corollary

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases

[1]-C. Alleaume, *Rewriting in higher dimensional linear categories and application to the affine Oriented Brauer category*, 2016, arXiv : 1603.02592, Journal of Pure and Applied Algebra (to be published).

[2]- Y. Guiraud, P. Malbos, *Higher dimensional categories with finite derivation type*, 2009, Theory and Applications of Categories Vol 22, p.420–478.

[3]-R. Rouquier, 2-Kac-Moody algebras, 2008, arXiv :0812.5023.

[4]-M. Khovanov, A. Lauda A diagrammatic approach to categorification of quantum groups III, 2018, arXiv :0807.3250.

[5]- Y. Guiraud, *Termination orders for three dimensional rewriting*, 2006, J. Pure Appl. Algebra, 207(2) :341-371.

ANY QUESTIONS? Thanks for your attention.