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Motivation : categorification of quantum groups

In higher representation theory, a natural way to study an algebraic structure is to
build a categorification of it.

These categorifications are higher dimensional categories whose split
Grothendieck group is isomorphic to the aforegiven structure.

This work is about categorification of quantum groups associated with
symmetrizable Kac-Moody algebras,

following the work of Khovanov and Lauda,’08 or Rouquier,’08.
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Objective : find bases of the KLR algebras

Khovanov and Lauda,’08 built categorifications of these quantum groups which are
2-categories.

The family of KLR algebras appear naturally.

They act on certain endomorphism spaces of 2-cells in these categories.

To establish that their 2-categories are real categorifications, they used a property
of non-degeneracy of a diagrammatic calculus.

This non-degeneracy is proved by finding explicit bases of the spaces of 2-cells in
the 2-categories.

Explicit bases of the KLR algebras are used to describe bases of some of these
spaces of 2-cells.
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Results presented

We will construct linear (3, 2)-polygraphs that present the simply-laced KLR
algebras.

We will prove the following result :

Theorem

The linear (3, 2)-polygraphs KLR are terminating and confluent.

Application : we obtain a rewriting proof of the following algebraic result obtained
by Khovanov and Lauda :

Corollary

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases
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(Simply-laced) Cartan datum

Let Γ be a graph whose set of vertices is denoted by I, and K any field.

A Cartan datum (I, ·) consists of a finite set I and a bilinear form on Z[I] the free
group generated by I, taking values in Z such that :

i · i ∈ {2, 4, 6, . . .} for any i ∈ I,

−di,j := 2 i·j
i·i ∈ {0,−1,−2, . . .} for any i 6= j ∈ I.

Such a Cartan datum is said simply-laced if the two following conditions hold :

For any i ∈ I, i · i = 2,

For any i, j ∈ I, i · j ∈ {0,−1}.
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The set Seq(V)

We set V =
∑
i∈I

νi.i ∈ N[I] an element of the free semi-group generated by I.

We put m := |V| =
∑
Vi.

Let’s also consider the set Seq(V) which consists of all sequences of vertices of Γ
with length m in which the vertex i appears exactly Vi times.

For instance, Seq(2i+ j) = {iij, iji, jii}.
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Rouquier’s definition of the KLR algebras,’08

Let Q = (Qi,j)i,j∈I be a matrix with coefficients in K[u, v] with Qi.i = 0 for all
i ∈ I.
Define the K-algebra HV(Q) by

generators : 1i, xk,i for k ∈ {1, . . . , n} and τk,i for k ∈ {1, . . . , n− 1} and
i ∈ Seq(V).

relations :

(1) 1i1j = δi,j1i
(2) τk,i = 1sk(i)τk,i1i

(3) xk,i = 1ixk,i1i
(4) xk,ixl,i = xl,ixk,i

(5) τk,sk(i)τk,i = Qik,ik+1
(xk,i, xk+1,i)

(6) τk,sl(i)τl,i = τl,sk(i)τk,i if |k − l| > 1

(7) τk,ixl,i − xsk(l),sk(i)τk,i =

{ −1i if l = k and ik = ik+1

1i if l = k + 1 and ik = ik+1

0 otherwise
(8) τk+1,sksk+1(i)τk,sk+1(i)τk+1,i − τk,sk+1sk(i)τk+1,sk(i)τk,i ={

Qik,ik+1
(xk+2,i,xk+1,i)−Qik,ik+1

(xk,i,xk+1,i)

xk+2,i−xk,i
if ik = ik+2

0 otherwise
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Khovanov and Lauda’s definition,’08

We will consider the definition of Khovanov and Lauda that gives the following
specialization :

Qi,j(u, v) = udi,j + vdj,i ∀ i, j ∈ I

We will consider the case of a simply-laced graph : that is a graph with no loops
nor multiple edges.

From such a graph, we define a simply-laced Cartan datum as follows : let ·
be a bilinear form on Z[I] such that :{

i · i = 2
i · j = −1 if there is an edge in Γ from i to j
i · j = 0 otherwise

In this case, we have the coefficients di,j and dj,i all equal to 1 when
i · j = −1.

Benjamin DUPONT 8/ 44



A diagrammatic definition

Khovanov and Lauda provided a diagrammatic approach for these algebras : for
i = i1 . . . im ∈ Seq(V), we represent the generators by the diagrams :

xk,i =

i1

. . .

ik

• . . .

im

for 1 ≤ k ≤ m, i = i1 . . . im ∈ Seq(V)

τk,i =

i1

. . .

ik ik+1

. . .

im

for

1 ≤ k ≤ m− 1, i = i1 . . . im ∈ Seq(V)
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A diagrammatic definition

The local relations are represented by :
i) For any i ∈ I,

i i

= 0

ii) For any i, j ∈ I such that i · j = 0,

i j

=

i j

iii) For any i, j ∈ I such that i · j = −1,

i j

=

i

•

j

+

i j

•

iv) For any i, j ∈ I,

•

i j

=
•

i j

and •

i j

=
•

i j
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A diagrammatic definition

The local relations are represented by :
v) For any i ∈ I,

•

i i

=
•

i i

+

i i

and •

i i

=
•

i i

−

i i

vi) For any i, j, k ∈ I, and unless i = k and i · j = −1,

i j k

=

i j k

vii) For any i, j ∈ I such that i · j = −1,

i j i

=

i j i

+

i j i

They correspond respectively to the relations (5), (7) and (8).
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The simply-laced KLR algebras

We denote by R(V) the aforegiven algebra : we call it the simply-laced KLR
Algebra.

For i and j ∈ Seq(V), we define the set jR(V)i as the set of "braid-like diagrams"
from i to j, that is :

Each strand is labelled by a vertex of Γ ;

A brand does not intersect with itself ;

One has to read i (resp. j) at the bottom (resp. at the top) of the diagram

These algebras can be seen as 2-categories with :

One 0-cell,

The 1-cells are the elements of Seq(V),

The 2-cells between two sequences i and i are jR(V)i.
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The structure of linear (2, 2)-categories

The space of 2-cells jR(V)i is a vector space.

The simply-laced KLR algebras are linear (2, 2)-categories.

Linear (2, 2)-categories are categories enriched in linear categories.

Explicitely, such a category C has 0-cells C0, 1-cells C1 and 2-cells C2
For every p and q in C1, the space of 2-cells C2(p, q) between p and q is a
vector space.

Benjamin DUPONT 13/ 44



Linear (3, 2)-polygraphs

According to Alleaume ’16, these linear (2, 2)-categories can be presented by
rewriting systems called linear (3, 2)-polygraphs.

In those rewriting systems, the generating 2-cells have the form of a circuit as
follows :

. . .

. . .

φ

p

q

where p and q are two 1-cells of the category.
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Compositions of 2-cells in linear (3, 2)-polygraphs

• These generators can be composed in two ways

Horizontally Vertically

· · ·

· · ·
φ ?0

· · ·

· · ·
ψ :=

· · ·

· · ·
φ
· · ·

· · ·
ψ

· · ·

· · ·
φ ?1

· · ·

· · ·
ψ

:=

ψ
· · ·

· · ·
φ

• All these compositions are made modulo the exchange law of the 2-category, that
is for every 2-cells φ1, φ2, ψ1, ψ2 one has

(ψ1 ?0 φ1) ?1 (ψ2 ?0 φ2) = (ψ1 ?1 ψ2) ?0 (φ1 ?1 φ2)

which is diagrammatically depicted as :

· · ·

· · ·

φ · · ·

· · ·
ψ

=

· · ·

· · ·
φ

· · ·

· · ·
ψ =

· · ·

· · ·
φ

· · ·

· · ·

ψ

Benjamin DUPONT 15/ 44



The linear structure

• One can also make linear combinations of these circuits with scalars in a ground
field K. An element of the form

λ

. . .

. . .
φ

where φ is a 2-cell obtained with the previous compositions of generating 2-cells
and λ ∈ K is called a monomial in the linear (3, 2)-polygraph.

Given a 2-cell φ, it can be uniquely decomposed into a sum of monomials
φ =

∑
φi, called the monomial decomposition of φ.

The support of φ is the set of all the φi in that decomposition.

Benjamin DUPONT 16/ 44



Rewriting steps

• A rewriting step of Σ is a 3-cell of the form

λm1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 + u V

λm1 ?1 (m2 ?0 t2(α) ?0 m3) ?1 m4 + u

where s2(α) and t2(α) are two parallel 2-cells such that the monomial
λm1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the monomial
decomposition of u.

• A rewriting sequence of Σ is a finite or infinite sequence :

u0
*4 · · · *4 un

*4 · · ·

of rewriting steps of Σ.

• A normal form is a 2-cell that can’t be reduced by any rewriting step.
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Branchings

• A branching of Σ is
v

u

f
-7

g '1 w

• A branching is confluent if it can be completed by rewriting sequences f ′ and g′ as
follows :

v
f′

� 
u

f

1>

g

 -

u′

w

g′

?L

• A local branching of Σ is a pair of rewriting steps of Σ with the same 2-source.
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Termination, confluence, left monomiality

• A linear (3, 2)-polygraph is :

- confluent (resp. locally confluent) if all its (resp. local) branchings are
confluent.

- terminating if it has no infinite rewriting sequence.

- left monomial is every source of a 3-cell in Σ is a monomial.

• Example. Here, an example of linear (3, 2)-polygraph with one 0-cell, one 1-cell,
two generating 2-cells

•

and two 3-cells :

• V
•

+ and • V
•

+
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Rewriting results

• In this setting, we have a version of classic rewriting results such as Noetherian’s
induction principle and Newman’s lemma.

Proposition

A terminating linear (3, 2)-polygraph is confluent if and only if all its critical branchings
are confluent.

Proposition (Alleaume,’16)

Let Σ be a confluent and terminating left-monomial linear (3, 2)-polygraph and C be
the linear (2, 2)-category presented by Σ. Then, for any 1-cells u and v of C with same
0-source and 0-target, the set of monomials of Σ in normal form from u to v gives a
basis of C(u, v).
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The linear (3, 2)-polygraphs KLR

We define the linear (3, 2)-polygraphs KLR by :
- One 0-cell {∗}

- The 1-cells are i ∈ Seq(V) so that the generating 1-cells are i ∈ I

- The 2-cells between two 1-cells i and j are given by the braid-like diagrams
which link i to j.

- The 3-cells are given by the diagrammatic relations oriented as follows.
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The 3-cells in Γ

i) For any i ∈ I,

i i

V 0

ii) For any i, j ∈ I such that i · j = 0,

i j

V

i j

iii) For any i, j ∈ I such that i · j = −1,

i j

V

i

•

j

+

i j

•

iv) For any i, j ∈ I,

•

i j

V
•

i j

and •

i j

V
•

i j
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The 3-cells in Γ

v) For any i ∈ I,

•

i i

V
•

i i

+

i i

and •

i i

V
•

i i

−

i i

vi) For any i, j, k ∈ I, and unless i = k and i · j = −1,

i j k

V

i j k

vii) For any i, j ∈ I such that i · j = −1,

i j i

V

i j i

+

i j i
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Idea of the proof of the main theorem

We split the proof in two parts :

First of all, we prove that KLR is terminating.

Then, we show that it is confluent by examining all the critical branchings.
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The idea of the process of termination (Guiraud,’06)

Each 2-cell is seen as an electronical circuit whose components are given by the
generating 2-cells

Fix a value for each component ;

With this value, each output of the circuit receives a certain intensity of
courant.

The heat produced by a fixed component is calculated this way :

A component is arbitrarily chosen.

Currents are propagated through the other components to the chosen one.

One compute the intensities of currents transmitted when the incoming
current is known.
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The idea of the process of termination (Guiraud,’06)

One repeats the same procedure for each component.

One gets the heat produced by a circuit by summing the heat produced by all its
components.

Two circuits with the same number of inputs and the same number of outputs are
compared this way.

We build a reduction order by comparing all the sources and targets of 2-cells
following this method.
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Generalization of this idea

Guiraud-Malbos ’09 generalized this idea in a categorical framework.

The theorem lays on a construction of a derivation d and a 2-functor.

They are defined on the generating 2-cells of the polygraph.

One has to check that : X(sα) ≥ X(tα) and d(sα) > d(tα) for every
3-cell α.

We adapt this theorem in a linear setting :

The conditions we have to check are X(sα) ≥ X(g) and d(sα) > d(g) for
every g ∈ Supp(tα).
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The 2-functor X

In our case, we define a 2-functor X : KLR∗2 → Ord on generating 2-cells by :

X

( )
(i) = i; X

(
•

)
(i) = i+1; X

( )
(i, j) = (j+1, i) ∀i, j ∈ N.

We have the following inequalities :

X

( )
(i, j) = (i+1, j+1) ≥ (i+1, j+1) = max

(
X

(
•

)
, X

(
•

))
(i, j);

X

(
•

)
(i, j) = (j + 2, i) ≥ (j + 2, i) = max

(
X

(
•

)
, X

( ))
(i, j);

X

(
•

)
= (j+1, i+1) ≥ (j+1, i+1) = max

(
X

(
•

)
(i, j), X

( ))
(i, j);

X

( )
(i, j, k) = (k + 2, j + 1, i) ≥ max

(
X

( )
, X

( ))
(i, j, k).
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The derivation d

We now define the derivation d of KLR∗2 into MX,∗,Z given on the generators by

d

( )
(i, j) = i; d

( )
(i) = 0 = d

(
•

)
(i).

We can then check the following inequalities :

d

( )
(i, j) = i+ j + 1 > 0 = max

(
d

(
•

)
, d

(
•

)
, d

( ))
(i, j);

d

( )
(i, j, k) = 2i+ j + 1 > 2i+ j = max

(
d

( )
, d

( ))
(i, j, k);

d

(
•

)
(i, j) = i+ 1 > i = max

(
d

(
•

)
, d

( ))
(i, j);

d

(
•

)
(i, j) = i+ 1 > i = max

(
d

(
•

)
, d

( ))
(i, j).

Thus, KLR is terminating.
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Sources of the 3-cells

We have 4 different forms for the sources of 3-cells :

•

i j

•

i j

i j

i j k

for every i, j and k in I.

They depend on the vertices i, j and k at the bottom.

The critical branchings have to be computed for each sequence of vertices
and each values of the bilinear form.

Benjamin DUPONT 30/ 44



Examples of critical branchings

Sequence iik

Value of · 0 or −1

Branching
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Examples of critical branchings

Sequence ijj

Value of · 0

Branching
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Examples of critical branchings

Sequence ijj

Value of · −1

Branching
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Families of critical branchings

There exists 6 main families of critical branchings ;

They are characterized by the pair of 2-cells which form the branching.

They are the following ones

Crossings with two dots : • and •

Triple crossings : with itself

Double crossings with dots : • or • with

Double Yang-Baxter : with itself

Yang-Baxter with crossings : with

Yang-Baxter with dots : with • or •
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The indexed critical branchings

There is another kind of critical branchings, namely the right indexations, that is
critical branchings with the form

where k is a diagram that can be plugged in the Yang-Baxter-equation.

It was proved by Guiraud and Malbos that it is sufficient to check for the instances
k in normal form, according to the following diagram :
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The indexed critical branchings
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Study of the normal forms

Thus, we have now to determine which are the normal forms that we can plug in
the previous diagram.

Guiraud-Malbos ’09 made a full study of the normal forms of the 3-polygraph of
permutations ∆ which has

One 0-cell ;

One 1-cell ;

One 2-cell ;

The following two 3-cells :

*4 and *4 .
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Study of the normal forms : crossings

The set of normal forms of that polygraph is given by the set N of 2-cells of ∆∗

given by the following inductive graphical scheme :

= ∗ or or

where is itself defined inductively by

= or .

The Coxeter presentation of the symmetric group Sm is given by

〈(si)1≤i≤m−1; s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi if|i− j| > 1〉

where si = (i i+ 1) ∈ Sm.
Length of a permutation = min{r ∈ N;∃si1 , . . . , sir\σ = si1 . . . sir}
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Study of the normal forms : dots

We can add dots wherever on the diagrams. We consider a map

f : R(V) → N
m

D 7→ (c1(D), . . . , cm(D))

where for every 1 ≤ k ≤ m, ck(D) is the number of crossing under the upper
dot on the k-th strand of D.

If a diagram D is such that f(D) > (0, . . . , 0), then it can be reduce by making
the dot go down.

The result gives a linear combination of diagrams
∑
λiDi such that for all i,

f(D) > f(Di) for the lexicographic order.

The monomials in normal form are the normal forms of the polygraph of
permutations for which the image by f is 0.
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Representation of normal forms

They correspond to the diagrams :

which contain a minimal number of crossings, that is the length of the
associated permutation ;

with all the elements τk+1,sksk+1(i)τk,sk+1(i)τk+1,i are replaced by
τk,sk+1sk(i)τk+1,sk(i)τk,i ;

which contain dots that are all placed at the bottom of the diagram.

There are two families of normal forms that can be plugged :

• n for all n ∈ N ( just the identity if n = 0 )

•n
for all n ∈ N
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The Poincaré Birkhoff-Witt property

Let {si1 , . . . , sir}(i1,...,im)∈Seq(V) be a set of minimal length representative of
elements of Sn.

Rouquier,’08 defined a Poincaré -Birkhoff-Witt property, that is equivalent to the
fact that

S = {τi1,si2 ...sir (j) . . . τir,jx
a1
1,j . . . x

am
m,j}(i1,...,ir)∈J,(a1,...,am)∈Nm,j∈Seq(V)

is a basis of the algebra HV(Q).

Khovanov and Lauda,’08 looked at a basis for the diagrams with source i and
target j.

It contains the diagrams of the required form.
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Conclusion

We proved that the linear (3, 2) polygraphs KLR were convergent.

The set of monomials in normal form of these polygraphs form bases of these
algebras.

This corresponds exactly to the PBW bases, so we proved the following
result :

Corollary

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases
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ANY QUESTIONS ?
Thanks for your attention.
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