A convergent presentation for the simply-laced KLR algebras and the PBW property

Benjamin DUPONT

PhD Student at Université Claude Bernard Lyon 1, France. Institut Camille Jordan, UMR CNRS 5208

8, September 2017

- In higher representation theory, a natural way to study an algebraic structure is to build a categorification of it.
- These categorifications are higher dimensional categories whose split Grothendieck group is isomorphic to the aforegiven structure.
- This work is about categorification of quantum groups associated with symmetrizable Kac-Moody algebras,
- following the work of Khovanov and Lauda,'08 or Rouquier,'08.
- Khovanov and Lauda,'08 built categorifications of these quantum groups which are 2-categories.
- The family of $K L R$ algebras appear naturally.
- They act on certain endomorphism spaces of 2 -cells in these categories.
- To establish that their 2-categories are real categorifications, they used a property of non-degeneracy of a diagrammatic calculus.
- This non-degeneracy is proved by finding explicit bases of the spaces of 2 -cells in the 2 -categories.
- Explicit bases of the KLR algebras are used to describe bases of some of these spaces of 2-cells.

Results presented

- We will construct linear (3,2)-polygraphs that present the simply-laced KLR algebras.
- We will prove the following result :

Theorem

The linear (3,2)-polygraphs KLR are terminating and confluent.

- Application : we obtain a rewriting proof of the following algebraic result obtained by Khovanov and Lauda :

Corollary

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases

- Let Γ be a graph whose set of vertices is denoted by I, and \mathbb{K} any field.
- A Cartan datum (I, \cdot) consists of a finite set I and a bilinear form on $\mathbb{Z}[I]$ the free group generated by I, taking values in \mathbb{Z} such that :
- $i \cdot i \in\{2,4,6, \ldots\}$ for any $i \in I$,
- $-d_{i, j}:=2 \frac{i \cdot j}{i \cdot i} \in\{0,-1,-2, \ldots\}$ for any $i \neq j \in I$.
- Such a Cartan datum is said simply-laced if the two following conditions hold :
- For any $i \in I, i \cdot i=\mathbf{2}$,
- For any $i, j \in I, i \cdot j \in\{0,-1\}$.
- We set $\mathcal{V}=\sum_{i \in I} \nu_{i} . i \in \mathbb{N}[I]$ an element of the free semi-group generated by I.
- We put $m:=|\mathcal{V}|=\sum \mathcal{V}_{i}$.
- Let's also consider the set $\operatorname{Seq}(\mathcal{V})$ which consists of all sequences of vertices of Γ with length m in which the vertex i appears exactly \mathcal{V}_{i} times.
- For instance, $\operatorname{Seq}(2 i+j)=\{i i j, i j i, j i i\}$.
- Let $Q=\left(Q_{i, j}\right)_{i, j \in I}$ be a matrix with coefficients in $\mathbb{K}[u, v]$ with $\boldsymbol{Q}_{i . i}=0$ for all $i \in I$.
- Define the \mathbb{K}-algebra $\boldsymbol{H}_{\mathcal{V}}(Q)$ by
- generators : $1_{\mathrm{i}}, x_{k, \mathrm{i}}$ for $k \in\{1, \ldots, n\}$ and $\tau_{k, \mathrm{i}}$ for $k \in\{1, \ldots, n-1\}$ and $\mathbf{i} \in \operatorname{Seq}(\mathcal{V})$.
- relations:
(1) $\mathbf{1}_{\mathbf{i}} \mathbf{1}_{\mathbf{j}}=\boldsymbol{\delta}_{\mathbf{i}, \mathbf{j}} \mathbf{1}_{\mathbf{i}}$
(3) $\boldsymbol{x}_{k, \mathbf{i}}=\mathbf{1}_{\mathbf{i}} \boldsymbol{x}_{k, \mathbf{i}} \mathbf{1}_{\mathbf{i}}$
(2) $\tau_{k, \mathrm{i}}=\mathbf{1}_{s_{k}(\mathrm{i})} \tau_{k, \mathrm{i}} \mathbf{1}_{\mathrm{i}}$
(4) $x_{k, \mathrm{i}} x_{l, \mathrm{i}}=x_{l, \mathrm{i}} x_{k, \mathrm{i}}$
(5) $\tau_{k, s_{k}(\mathrm{i})} \tau_{k, \mathrm{i}}=Q_{i_{k}, i_{k+1}}\left(x_{k, \mathrm{i}}, x_{k+1, \mathrm{i}}\right)$
(6) $\tau_{k, s_{l}(\mathrm{i})} \tau_{l, \mathrm{i}}=\tau_{l, s_{k}(\mathrm{i})} \tau_{k, \mathrm{i}}$ if $|k-l|>1$
(7) $\tau_{k, \mathrm{i}} x_{l, \mathrm{i}}-x_{s_{k}(l), s_{k}(\mathrm{i})} \tau_{k, \mathrm{i}}=\left\{\begin{array}{ccc}-\mathbf{1}_{\mathrm{i}} & \text { if } & l=k \text { and } i_{k}=i_{k+1} \\ \mathbf{1}_{\mathrm{i}} & \text { if } & l=k+1 \text { and } i_{k}=i_{k+1} \\ \mathbf{0} & \text { otherwise }\end{array}\right.$
(8) $\tau_{k+1, s_{k} s_{k+1}(\mathrm{i})} \tau_{k, s_{k+1}(\mathrm{i})} \tau_{k+1, \mathrm{i}}-\tau_{k, s_{k+1} s_{k}(\mathrm{i})} \tau_{k+1, s_{k}(\mathrm{i})} \tau_{k, \mathrm{i}}=$ $\left\{\begin{array}{ccc}\frac{Q_{i_{k}, i_{k+1}}\left(x_{k+2, \mathrm{i}}, x_{k+1, \mathrm{i}}\right)-Q_{i_{k}, i_{k+1}}\left(x_{k, \mathrm{i}}, x_{k+1, \mathrm{i}}\right)}{x_{k+2, \mathrm{i}}-x_{k, \mathrm{i}}} & \text { if } & i_{k}=i_{k+2} \\ 0 & \text { otherwise }\end{array}\right.$
- We will consider the definition of Khovanov and Lauda that gives the following specialization :

$$
Q_{i, j}(u, v)=u^{d_{i, j}}+v^{d_{j, i}} \quad \forall \quad i, j \in I
$$

- We will consider the case of a simply-laced graph : that is a graph with no loops nor multiple edges.
- From such a graph, we define a simply-laced Cartan datum as follows : let be a bilinear form on $\mathbb{Z}[\boldsymbol{I}]$ such that:

$$
\left\{\begin{array}{c}
i \cdot i=2 \\
i \cdot j=-1
\end{array} \quad \text { if there is an edge in } \Gamma \quad \text { from } i \text { to } j\right.
$$

- In this case, we have the coefficients $d_{i, j}$ and $d_{j, i}$ all equal to 1 when $i \cdot j=-1$.
- Khovanov and Lauda provided a diagrammatic approach for these algebras : for $\mathbf{i}=i_{1} \ldots i_{m} \in \operatorname{Seq}(\mathcal{V})$, we represent the generators by the diagrams :
$\left.\left.\left.\bullet \boldsymbol{x}_{\boldsymbol{k}, \mathrm{i}=}\right|_{i_{1}} \ldots\right|_{i_{k}} \ldots\right|_{i_{m}} \operatorname{for} 1 \leq \boldsymbol{k} \leq \boldsymbol{m}, \mathbf{i}=\boldsymbol{i}_{1} \ldots \boldsymbol{i}_{m} \in \operatorname{Seq}(\mathcal{V})$

A diagrammatic definition

- The local relations are represented by :
i) For any $i \in I$,

ii) For any $i, j \in I$ such that $i \cdot j=0$,

iii) For any $i, j \in I$ such that $i \cdot j=-1$,

iv) For any $i, j \in I$,

- The local relations are represented by :
v) For any $i \in I$,

vi) For any $i, j, k \in I$, and unless $i=k$ and $i \cdot j=-1$,

vii) For any $i, j \in I$ such that $i \cdot j=-1$,

- They correspond respectively to the relations (5), (7) and (8).
- We denote by $\boldsymbol{R}(\mathcal{V})$ the aforegiven algebra : we call it the simply-laced $K L R$ Algebra.
- For \mathbf{i} and $\mathbf{j} \in \operatorname{Seq}(\mathcal{V})$, we define the $\operatorname{set}_{\mathrm{j}} \boldsymbol{R}(\mathcal{V})_{\mathrm{i}}$ as the set of "braid-like diagrams" from \mathbf{i} to j , that is :
- Each strand is labelled by a vertex of Γ;
- A brand does not intersect with itself;
- One has to read \mathbf{i} (resp. \mathbf{j}) at the bottom (resp. at the top) of the diagram
- These algebras can be seen as 2-categories with :
- One 0-cell,
- The 1-cells are the elements of $\operatorname{Seq}(\mathcal{V})$,
- The 2 -cells between two sequences i and i are ${ }_{\mathrm{j}} R(\mathcal{V})_{\mathrm{i}}$.
- The space of 2 -cells ${ }_{\mathrm{j}} R(\mathcal{V})_{\mathrm{i}}$ is a vector space.
- The simply-laced KLR algebras are linear (2, 2)-categories.
- Linear (2, 2)-categories are categories enriched in linear categories.
- Explicitely, such a category \mathcal{C} has 0 -cells $\mathcal{C}_{0}, 1$-cells \mathcal{C}_{1} and 2 -cells \mathcal{C}_{2}
- For every p and q in \mathcal{C}_{1}, the space of 2 -cells $\mathcal{C}_{2}(p, q)$ between p and q is a vector space.

Linear (3, 2)-polygraphs

- According to Alleaume '16, these linear (2, 2)-categories can be presented by rewriting systems called linear $(3,2)$-polygraphs.
- In those rewriting systems, the generating 2 -cells have the form of a circuit as follows :

where p and q are two 1-cells of the category.
- These generators can be composed in two ways

Horizontally
Vertically

- All these compositions are made modulo the exchange law of the 2 -category, that is for every 2 -cells $\phi_{1}, \phi_{2}, \psi_{1}, \psi_{2}$ one has

$$
\left(\psi_{1} \star_{0} \phi_{1}\right) \star_{1}\left(\psi_{2} \star_{0} \phi_{2}\right)=\left(\psi_{1} \star_{1} \psi_{2}\right) \star_{0}\left(\phi_{1} \star_{1} \phi_{2}\right)
$$

which is diagrammatically depicted as :

- One can also make linear combinations of these circuits with scalars in a ground field \mathbb{K}. An element of the form

$$
\lambda \begin{array}{c|c|}
\hline \boldsymbol{\theta} \\
\hline \cdots \\
\hline \cdots
\end{array}
$$

where ϕ is a 2-cell obtained with the previous compositions of generating 2-cells and $\lambda \in \mathbb{K}$ is called a monomial in the linear $(3,2)$-polygraph.

- Given a 2 -cell ϕ, it can be uniquely decomposed into a sum of monomials $\phi=\sum \phi_{i}$, called the monomial decomposition of ϕ.
- The support of ϕ is the set of all the ϕ_{i} in that decomposition.
- A rewriting step of Σ is a 3-cell of the form

$$
\begin{gathered}
\lambda m_{1} \star_{1}\left(m_{2} \star_{0} s_{2}(\alpha) \star_{0} m_{3}\right) \star_{1} m_{4}+u \Rightarrow \\
\lambda m_{1} \star_{1}\left(m_{2} \star_{0} t_{2}(\alpha) \star_{0} m_{3}\right) \star_{1} m_{4}+u
\end{gathered}
$$

where $s_{2}(\alpha)$ and $t_{2}(\alpha)$ are two parallel 2 -cells such that the monomial $\lambda m_{1} \star_{1}\left(m_{2} \star_{0} s_{2}(\alpha) \star_{0} m_{3}\right) \star_{1} m_{4}$ does not appear in the monomial decomposition of u.

- A rewriting sequence of Σ is a finite or infinite sequence :

$$
u_{0} \Longrightarrow \cdots \Longrightarrow u_{n} \Longrightarrow \cdots
$$

of rewriting steps of $\boldsymbol{\Sigma}$.

- A normal form is a 2 -cell that can't be reduced by any rewriting step.

Branchings

- A branching of $\boldsymbol{\Sigma}$ is

- A branching is confluent if it can be completed by rewriting sequences f^{\prime} and g^{\prime} as follows :

- A local branching of $\boldsymbol{\Sigma}$ is a pair of rewriting steps of $\boldsymbol{\Sigma}$ with the same 2-source.
- A linear (3, 2)-polygraph is :
- confluent (resp. locally confluent) if all its (resp. local) branchings are confluent.
- terminating if it has no infinite rewriting sequence.
- left monomial is every source of a 3 -cell in $\boldsymbol{\Sigma}$ is a monomial.
- Example. Here, an example of linear (3,2)-polygraph with one 0 -cell, one 1 -cell, two generating 2-cells

and two 3 -cells :

Rewriting results

- In this setting, we have a version of classic rewriting results such as Noetherian's induction principle and Newman's lemma.

Proposition

A terminating linear $(3,2)$-polygraph is confluent if and only if all its critical branchings are confluent.

Proposition (Alleaume,'16)

Let Σ be a confluent and terminating left-monomial linear (3,2)-polygraph and \mathcal{C} be the linear $(2,2)$-category presented by Σ. Then, for any 1-cells u and v of \mathcal{C} with same 0 -source and 0 -target, the set of monomials of $\boldsymbol{\Sigma}$ in normal form from u to v gives a basis of $\mathcal{C}(u, v)$.

- We define the linear $(3,2)$-polygraphs KLR by :
- One 0-cell $\{*\}$
- The 1-cells are $\mathbf{i} \in \operatorname{Seq}(\mathcal{V})$ so that the generating 1-cells are $i \in I$
- The 2 -cells between two 1 -cells \mathbf{i} and \mathbf{j} are given by the braid-like diagrams which link i to j.
- The 3 -cells are given by the diagrammatic relations oriented as follows.

The 3 -cells in Γ
i) For any $i \in I$,

$$
\lessgtr_{i} \Rightarrow 0
$$

ii) For any $i, j \in I$ such that $i \cdot j=0$,

iii) For any $i, j \in I$ such that $i \cdot j=-1$,

iv) For any $i, j \in I$,

v) For any $i \in I$,

vi) For any $i, j, k \in I$, and unless $i=k$ and $i \cdot j=-1$,

vii) For any $i, j \in I$ such that $i \cdot j=-1$,

- We split the proof in two parts :
- First of all, we prove that KLR is terminating.
- Then, we show that it is confluent by examining all the critical branchings.
- Each 2-cell is seen as an electronical circuit whose components are given by the generating 2 -cells
- Fix a value for each component;
- With this value, each output of the circuit receives a certain intensity of courant.
- The heat produced by a fixed component is calculated this way :
- A component is arbitrarily chosen.
- Currents are propagated through the other components to the chosen one.
- One compute the intensities of currents transmitted when the incoming current is known.
- One repeats the same procedure for each component.
- One gets the heat produced by a circuit by summing the heat produced by all its components.
- Two circuits with the same number of inputs and the same number of outputs are compared this way.
- We build a reduction order by comparing all the sources and targets of 2 -cells following this method.
- Guiraud-Malbos '09 generalized this idea in a categorical framework.
- The theorem lays on a construction of a derivation d and a 2 -functor.
- They are defined on the generating 2 -cells of the polygraph.
- One has to check that: $X(s \alpha) \geq X(t \alpha)$ and $d(s \alpha)>d(t \alpha)$ for every 3 -cell α.
- We adapt this theorem in a linear setting :
- The conditions we have to check are $X(s \alpha) \geq X(g)$ and $d(s \alpha)>d(g)$ for every $g \in \operatorname{Supp}(t \alpha)$.
- In our case, we define a 2 -functor $\boldsymbol{X}: \mathrm{KLR}_{2}^{*} \rightarrow$ Ord on generating 2 -cells by :
$X(\mid)(i)=i ; \quad X(\downarrow)(i)=i+1 ; \quad X(\nless)(i, j)=(j+1, i) \quad \forall i, j \in \mathbb{N}$.
- We have the following inequalities:

$$
\begin{aligned}
& X(\underset{\text { K }}{ })(i, j)=(i+1, j+1) \geq(i+1, j+1)=\max (X(\dagger \mid), X(\mid \dagger))(i, j) ; \\
& X(\Varangle)(i, j)=(j+2, i) \geq(j+2, i)=\max \left(X\left(X^{\prime}\right), X(| |)\right)(i, j) ; \\
& X(X)=(j+1, i+1) \geq(j+1, i+1)=\max (X(X)(i, j), X(| |))(i, j) ;
\end{aligned}
$$

- We now define the derivation d of KLR_{2}^{*} into $M_{X, *, Z}$ given on the generators by

$$
d(X)(i, j)=i ; \quad d(\mid)(i)=0=d(t)(i)
$$

- We can then check the following inequalities :

$$
\begin{aligned}
& d(\nprec)(i, j)=i+j+1>0=\max (d(| |), d(\mid \dagger), d(| |))(i, j) ;
\end{aligned}
$$

$$
\begin{aligned}
& d(X)(i, j)=i+1>i=\max (d(X), d(| |))(i, j) ; \\
& d(X)(i, j)=i+1>i=\max (d(X), d(| |))(i, j) .
\end{aligned}
$$

- Thus, KLR is terminating.
- We have 4 different forms for the sources of 3 -cells :

for every i, j and k in I.
- They depend on the vertices i, j and k at the bottom.
- The critical branchings have to be computed for each sequence of vertices and each values of the bilinear form.

Examples of critical branchings

Sequence	$i i k$
Value of .	0 or -1
Branching	

Examples of critical branchings
Sequence \quad Value of .

Examples of critical branchings

- There exists 6 main families of critical branchings;
- They are characterized by the pair of 2-cells which form the branching.
- They are the following ones
- Crossings with two dots :
 and
- Triple crossings :
 with itself
- Double crossings with dots :
 with
- Double Yang-Baxter : with itself
- Yang-Baxter with crossings:
- Yang-Baxter with dots: with or
- There is another kind of critical branchings, namely the right indexations, that is critical branchings with the form

where k is a diagram that can be plugged in the Yang-Baxter-equation.
- It was proved by Guiraud and Malbos that it is sufficient to check for the instances k in normal form, according to the following diagram :

The indexed critical branchings

- Thus, we have now to determine which are the normal forms that we can plug in the previous diagram.
- Guiraud-Malbos '09 made a full study of the normal forms of the 3-polygraph of permutations Δ which has
- One 0-cell;
- One 1-cell;
- One 2-cell

- The following two 3 -cells :

- The set of normal forms of that polygraph is given by the set N of 2 -cells of Δ^{*} given by the following inductive graphical scheme :

where is itself defined inductively by

- The Coxeter presentation of the symmetric group \mathcal{S}_{m} is given by

$$
\left\langle\left(s_{i}\right)_{1 \leq i \leq m-1} ; s_{i}^{2}=1, s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, s_{i} s_{j}=s_{j} s_{i} \quad \text { if }\right| i-j|>1\rangle
$$

where $s_{i}=\left(\begin{array}{ll}i & i+1) \in \mathcal{S}_{m} .\end{array}\right.$

- Length of a permutation $=\min \left\{r \in \mathbb{N} ; \exists s_{i_{1}}, \ldots, s_{i_{r}} \backslash \sigma=s_{i_{1}} \ldots s_{i_{r}}\right\}$
- We can add dots wherever on the diagrams. We consider a map

$$
\begin{array}{cccc}
f: \quad R(\mathcal{V}) & \rightarrow & \mathbb{N}^{m} \\
D & \mapsto & \left(c_{1}(D), \ldots, c_{m}(D)\right)
\end{array}
$$

where for every $1 \leq k \leq m, c_{k}(D)$ is the number of crossing under the upper dot on the k-th strand of D.

- If a diagram D is such that $f(D)>(0, \ldots, 0)$, then it can be reduce by making the dot go down.
- The result gives a linear combination of diagrams $\sum \boldsymbol{\lambda}_{i} D_{i}$ such that for all i, $f(D)>f\left(D_{i}\right)$ for the lexicographic order.
- The monomials in normal form are the normal forms of the polygraph of permutations for which the image by f is 0 .
- They correspond to the diagrams :
- which contain a minimal number of crossings, that is the length of the associated permutation;
- with all the elements $\tau_{k+1, s_{k} s_{k+1}}$ (i) $\tau_{k, s_{k+1}}$ (i) $\tau_{k+1, \mathrm{i}}$ are replaced by $\tau_{k, s_{k+1} s_{k}(\mathrm{i})} \tau_{k+1, s_{k}(\mathrm{i})} \tau_{k, \mathrm{i}}$;
- which contain dots that are all placed at the bottom of the diagram.
- There are two families of normal forms that can be plugged :
- . n for all $n \in N$ (just the identity if $n=0$)
- 2 for all $n \in \mathbb{N}$
- Let $\left\{s_{i_{1}}, \ldots, s_{i_{r}}\right\}_{\left(i_{1}, \ldots, i_{m}\right) \in \operatorname{Seq}(\mathcal{V})}$ be a set of minimal length representative of elements of \mathcal{S}_{n}.
- Rouquier,'08 defined a Poincaré -Birkhoff-Witt property, that is equivalent to the fact that

$$
S=\left\{\tau_{i_{1}, s_{i_{2}} \ldots s_{i_{r}}(\mathrm{j})} \ldots \tau_{i_{r}, \mathrm{j}} x_{1, \mathrm{j}}^{a_{1}} \ldots x_{m, \mathrm{j}}^{a_{m}}\right\}_{\left(i_{1}, \ldots, i_{r}\right) \in J,\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{N}^{m}, \mathrm{j} \in \operatorname{Seq}(\mathcal{V})}
$$

is a basis of the algebra $H_{\mathcal{V}}(Q)$.

- Khovanov and Lauda,'08 looked at a basis for the diagrams with source i and target \mathbf{j}.
- It contains the diagrams of the required form.
- We proved that the linear $(3,2)$ polygraphs KLR were convergent.
- The set of monomials in normal form of these polygraphs form bases of these algebras.
- This corresponds exactly to the PBW bases, so we proved the following result :

Corollary

The simply-laced KLR algebras admit Poincaré-Birkhoff-Witt bases
[1]-C. Alleaume, Rewriting in higher dimensional linear categories and application to the affine Oriented Brauer category, 2016, arXiv : 1603.02592, Journal of Pure and Applied Algebra (to be published).
[2]- Y. Guiraud, P. Malbos, Higher dimensional categories with finite derivation type, 2009, Theory and Applications of Categories Vol 22, p.420-478.
[3]-R. Rouquier, 2-Kac-Moody algebras, 2008, arXiv :0812.5023.
[4]-M. Khovanov, A. Lauda A diagrammatic approach to categorification of quantum groups III, 2018, arXiv :0807.3250.
[5]- Y. Guiraud, Termination orders for three dimensional rewriting, 2006, J. Pure Appl. Algebra, 207(2) :341-371.

ANY QUESTIONS?
 Thanks for your attention.

