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> Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
> Temperley-Lieb algebras in statistichal mechanics;

> Brauer algebras and Birman-Wenzl algebras in knot theory.

» Main questions:

» Categorification constructive results;
» Coherence theorems;

» Computation of linear bases for these algebras using rewriting methods.

» Diagrammatic rewriting: 3-dimensional linear rewriting systems on diagrams

> The two essential properties to study are termination and confluence.
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Motivations: termination issues

» Consider a diagrammatic algebra A admitting relations of the form

sl I

one naturally asks:
> How should we orient the rules to obtain a terminating presentation of A ?

> In this work, we construct heuristics to prove termination of some diagrammatic

rewriting systems.

» Main problem: A diagrammatic rewriting system does not always admit a
monomial (total and well-founded) termination order.

» We will define termination orders similar to monomial orders, counting the
generators in the diagrams, stable by contexts and well-founded, but that are not

required to be total.
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space;

> The map x1 : C2(p, q) ® C2(q, r) — C2(p, r) is linear;

> Source and target maps are compatible with the linear structure.

> The 2-cells in C between 1-cells p and g are represented by diagrams

» compositions of C are given as follows:

> modulo the exchange law of C, diagrammatically depicted as
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> A braiding on a linear (2,2)-category C is a family of 2-cells o5 g : p*xo g — g0 p
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for any p, q in C%, represented b S or satisying some naturality
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> Let p: x — y be a 1-cell of C. We say that a 1-cell g: y — x is a left-adjoint of p,
denoted by g = p if there exists 2-cells e : pxo p= 1, and n: 1. = p*o p
respectively represented by

X X

X
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» Given a pair of 1-cells p, g : x — y in C with chosen biadjoints (5, 1p, fip, €p, €p) and
(4,mq9,fq,€4q,€4). then for any 2-cell  : p = g, we construct two duals *« and
ax : § = p as follows:
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> A 2-cell @: p = qis said cyclic if the equation *a = ™ is satisfied, or either of the
equivalent conditions **« = a or &™* = « are satisfied, yielding relations of the

I3 4 I3 4 q P q 13
U _ U *“ U o U (1 )
g np & g
y y ? X i X

> A linear (2, 2)-category C in which any 2-cell « is cyclic is called a pivotal category.

form
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» Crs is terminating by the DOO &, , counting the number yb(D) of occurences of
2-cells op.q x0 id, in a diagram D, for p,q and r in Crs;.

» Let Crs' be the DRS defined by
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» We add as first component to the ®, , defined for Crs a component counting the
number of crossings of the diagrams.
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Termination with braid relations and additional 2-cells

v

Let Crs*¥ be a DRS defined by

q
Crs*¥d = (Crs(/],Crsll,Crs;u +a for g in Crs; ,Crs;)

q

Assume that Crs*¥ admits a 3-cell of the following form

>< = >< +lower terms for the previous DOO
P q P q :

We define a new DOO as follows: for p, g € Crsy, we set m := max(£(p), ¢(q)).
We add to ®p, g the components (ck(D))1<k<m defined by:

v

v

> 0 if there is no e on the k-th strand and if the k-strand is not a through strand, but
this can not occur with only braidings.

> the number of crossings below the upper dot of the k-th strand.

v

Example. For
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Example: the nil Hecke algebra

> generators §; =

. + ‘ forl1<i<nand9; =

1 i n 1

» For n € N, let us consider the Nil-Hecke algebra N'H2 which is a K-algebra for a
1<i<nm

field K defined by:
>< ‘ for
> relations:

oo TR KR KR

» [I NHS form a linear (2,2)-category with only one 0-cell, the 1-cells are
nEN*

permutations and 2-cells are braiding diagrams.

> Let ¥ be a DRS presenting J] N'H2 with relations oriented as above.
neN*

> We prove that X is terminating using the following DOO: for a given diagram D in
NH (o, 7),

®,.+(D) = (¢(D),yb(D), cr(D), ..., ca(D)).
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> Let C be a linear (2,2)-category whose 1-cells are equipped with biadjunctions,
yielding isotopy relations of the form

AV VAR

> If there is an additional 2-cell « which is cyclic wrt biadjunction p - g F p, we have
to impose some new relations of the form:

RUMNEA

> The DRS given by these orientations is not confluent: the first Knuth-Bendix step
imposes to add the following relations:

M= J-\U.
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Prototypical example: the 3-polygraph of pearls

> Let Pearl be the DRS defined by:
> only one 0-cell x;

> only one 1-cell p;

> generating 2-cells: + 8 U7 m?

> the following 3-cells:

me, ma, mam Uau

> Pearl is terminating, using the following DOO ®,, ,(D) = (/(D),1-dot(D)) where:

> I(D) corresponds to the number of caps and cups in D;

> 1-dot(D) corresponds to the number of positively left-dotted caps and cups, that is
the number of elements m and U (with at least one o) appearing in D with

the convention
ot (1Y) = 1-dot ( mh_J) :=n

» Adding a *o and x1-context to D, we add a constant number of cups and caps, and

l-dot(D) can not increase since a dot cannot move from right of a cap/cup to its
lef+ aven by addine 2 conteyt
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Termination or quasi-termination 7

> If we choose different orientation for the dot move relations, we create rewriting

O-020-0-0

cycles

> In a DRS X, there are indexed critical branchings of the following form:

where f,g,h,k are 2-cells of X and «, 3 are 3-cells of X.
» With dot moves oriented as in Pearl, there is an indexed branching for each 2-cell

that can be plugged in the following diagram
n

Example. If X contains braiding 2-cells 0,4 for any p,q in X1, there are infinitely

many indexed critical branchings in X for each n € N.



Quasi-termination

v

A DRS X is quasi-terminating if for each rewriting sequence (un)nen of 2-cells of L,

it contains an infinite number of occurences of the same 2-cell.

v

Let X be a DRS containing the following 3-cells:

IR U=

¥ is not terminating, one wants to study its quasi-termination.

v

A quasi-reduced monomial in X is a monomial on which we can only apply the rules

» We may prove that X is quasi-terminating by constructing a DOO on the sets
Q-red(X2(p, q)) of quasi-reduced monomials between two 1-cells p and gq.

> This DOO does not take into account the number of left-dotted cups and caps.

> It ensures that there is no other obstruction to termination than the bubble cycles.
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General heuristics

> Let C be a linear (2,2)-category endowed with braidings, duals and some
additionnal cyclic 2-cells which admits a presentation by generators and relations
containing further of the following:

> Yang-Baxter relations;
> relations making the number of braidings decrease as symmetric group relations;

» commutation of some of the cyclic 2-cells with the braidings, eventually creating
residues with lower crossings;

> the isotopy relations coming from the adjunctions and the cyclicity of the 2-cells;

> some other relations that make the number of crossings or the number of cups and
caps decrease;

> (in a Z-graded context, some relations making the degree decrease with a lower
bound on the degree under which all diagrams are zero).

> There is a DRS X presenting C in which the relations are oriented in
such a way that ®, 4(s(a)) > ®p,q(t(c)) for a DOO of X constructed as above and
any 3-cell «, and thus X is terminating.



V. lllustration on the
linear (3,2)-polygraph LR
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> Let LR be the linear (3, 2)-polygraph defined by:
» KLRg is a set X corresponding to the weight lattice of a Kac-Moody algebra;
> KLR1 = {§ = (&‘1,. .. ,6@(5)) with g; € {—,+}}.

> KLR> admits for generating 2-cells:
_ _ _ A _
N _
+ + +
» The 3-cells in KLR3 are given by:
> The 3-cells of the nilHecke algebras described previously.

> The isotopy 3-cells;

> Some bubble conditions 3-cells:

nO/\ 3{ i, ifn=h-1

0 ifn<h-—1

AOH 3{ 1, ifn=—h—1

0 ifn<—-h—1



The linear (3,2)-polygraph LR

» The 3-cells in LR35 are given by:



The linear (3,2)-polygraph LR

» The 3-cells in LR35 are given by:

> the infinite Grassmanniann relation: for any A € X and o > 0,
e Ol g OO
7 = 7 i

where h is a number given by the Kac-Moody algebra.



The linear (3,2)-polygraph LR
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> the infinite Grassmanniann relation: for any A € X and o > 0,
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The linear (3,2)-polygraph LR

» The 3-cells in LR35 are given by:

> the infinite Grassmanniann relation: for any A € X and o > 0,

[e3 — — —h—
e Op g st OO
7 72 7 7

where h is a number given by the Kac-Moody algebra.

> Some invertibility 3-cells:

%Aa -Th {;2 (}n,z,

> Some "sl>" 3-cells:

—h—1

L
3 E4 *lT)\ +z_;) Z:o —n—r—C
n=0 r> ﬁ



The linear (3,2)-polygraph LR

> KLR is terminating using the following DOO:

O, KLR2(g,€') — N x 7
D —  (¢(D),ci(D),...,cm(D),ybg(D), (D),l-dot(D), deg,(D))

with:

» ¢(D) is the number of crossings between strands in D;

» for 1 < k < m, ck(D) is defined as above;

> ybg(D) defined as above;

» /(D) corresponds to the number of rightward caps and leftward cups that appear in
D;

> |-dot(D) corresponds to the number of positively leftward dotted caps and cups as
described above.

#{bubbles in D} + > deg(w) if D is a diagram with

7 clockwise bubble in D
deg,(D) :==4 o if D is a diagram withc
e if D=0.



Conclusion

» We presented heuristics to prove termination of some DRS presenting
diagrammatic algebras coming from representation theory.

» The next question to study is confluence of these DRS.

» The diagrammatic structure yield a combinatorial explosion for computation of
critical pairs, as for instance isotopy relations.

> Isotopy should not be considered as rewrite rules, but as equations we have to take
into account when rewriting.

> Develop a context of rewriting modulo isotopy, and obtain linear bases and coherence
results in that setting.



