

Termination in linear $(2, 2)$ -categories with braidings and duals

Dupont Benjamin

Higher Dimensional Rewriting and Algebra

Oxford, 7 July 2018

Motivation: diagrammatic rewriting

- ▶ **Objective:** Study **diagrammatic algebras** arising in **representation theory** using algebraic rewriting.

Motivation: diagrammatic rewriting

- ▶ **Objective:** Study **diagrammatic algebras** arising in **representation theory** using algebraic rewriting.
 - ▶ **Khovanov-Lauda-Rouquier** (KLR) algebras for categorification of quantum groups;
 - ▶ **Temperley-Lieb** algebras in statistical mechanics;
 - ▶ **Brauer** algebras and **Birman-Wenzl** algebras in knot theory.

Motivation: diagrammatic rewriting

- ▶ **Objective:** Study **diagrammatic algebras** arising in **representation theory** using algebraic rewriting.
 - ▶ **Khovanov-Lauda-Rouquier** (KLR) algebras for categorification of quantum groups;
 - ▶ **Temperley-Lieb** algebras in statistical mechanics;
 - ▶ **Brauer** algebras and **Birman-Wenzl** algebras in knot theory.
- ▶ **Main questions:**
 - ▶ **Categorification** constructive results;
 - ▶ **Coherence** theorems;
 - ▶ Computation of **linear bases** for these algebras using rewriting methods.

Motivation: diagrammatic rewriting

- ▶ **Objective:** Study **diagrammatic algebras** arising in **representation theory** using algebraic rewriting.
 - ▶ **Khovanov-Lauda-Rouquier** (KLR) algebras for categorification of quantum groups;
 - ▶ **Temperley-Lieb** algebras in statistical mechanics;
 - ▶ **Brauer** algebras and **Birman-Wenzl** algebras in knot theory.
- ▶ **Main questions:**
 - ▶ **Categorification** constructive results;
 - ▶ **Coherence** theorems;
 - ▶ Computation of **linear bases** for these algebras using rewriting methods.
- ▶ **Diagrammatic rewriting:** 3-dimensional linear rewriting systems on diagrams

Motivation: diagrammatic rewriting

- ▶ **Objective:** Study **diagrammatic algebras** arising in **representation theory** using algebraic rewriting.
 - ▶ **Khovanov-Lauda-Rouquier** (KLR) algebras for categorification of quantum groups;
 - ▶ **Temperley-Lieb** algebras in statistical mechanics;
 - ▶ **Brauer** algebras and **Birman-Wenzl** algebras in knot theory.
- ▶ **Main questions:**
 - ▶ **Categorification** constructive results;
 - ▶ **Coherence** theorems;
 - ▶ Computation of **linear bases** for these algebras using rewriting methods.
- ▶ **Diagrammatic rewriting:** 3-dimensional linear rewriting systems on diagrams
 - ▶ The two essential properties to study are **termination** and **confluence**.

Motivations: termination issues

- ▶ Consider a diagrammatic algebra A admitting relations of the form

$$\text{Diagrammatic relation} = \text{Diagrammatic relation} - \uparrow \downarrow + \sum_{n=0}^h \sum_{r \geq 0} \text{Diagrammatic term}.$$

The diagrammatic terms are as follows:

- Leftmost term: A diagram with two vertical lines and two horizontal lines forming an 'X' shape.
- Second term: A diagram with two vertical lines and two horizontal lines forming an 'X' shape, with a blue equals sign.
- Third term: A diagram with two vertical lines and two horizontal lines forming an 'X' shape, with a blue minus sign.
- Fourth term: A diagram with two vertical lines and two horizontal lines forming an 'X' shape, with a blue plus sign.
- Summation term: A diagram with two vertical lines and two horizontal lines forming an 'X' shape, with a blue summation symbol \sum above it, and a blue $n=0$ below it.
- Summation term: A diagram with two vertical lines and two horizontal lines forming an 'X' shape, with a blue summation symbol \sum above it, and a blue $r \geq 0$ below it.
- Final term: A diagram with two vertical lines and two horizontal lines forming an 'X' shape, with a blue plus sign above it.

Motivations: termination issues

- Consider a diagrammatic algebra A admitting relations of the form

$$\text{Diagrammatic relation} = \text{Diagrammatic relation} - \uparrow \downarrow + \sum_{n=0}^h \sum_{r \geq 0} \text{Diagrammatic term}.$$

The diagrammatic terms involve various configurations of strands and loops, with labels n and r indicating specific components or indices.

one naturally asks:

- How should we orient the rules to obtain a terminating presentation of A ?

Motivations: termination issues

- ▶ Consider a diagrammatic algebra A admitting relations of the form

$$\text{Diagrammatic relation} = \text{Diagrammatic relation} - \uparrow \downarrow \sum_{n=0}^h \sum_{r \geq 0} \text{Diagrammatic term}.$$

The diagrammatic terms involve various configurations of strands and loops, with labels n and r indicating specific components or indices.

one naturally asks:

- ▶ How should we orient the rules to obtain a terminating presentation of A ?
- ▶ In this work, we construct heuristics to prove termination of some diagrammatic rewriting systems.

Motivations: termination issues

- ▶ Consider a diagrammatic algebra A admitting relations of the form

$$\text{Diagrammatic relation} = \text{Diagrammatic relation} - \uparrow \downarrow + \sum_{n=0}^h \sum_{r \geq 0} \text{Diagrammatic term}.$$

The diagrammatic terms involve various configurations of strands and loops, with labels n and r indicating specific components or indices.

one naturally asks:

- ▶ How should we orient the rules to obtain a terminating presentation of A ?
- ▶ In this work, we construct heuristics to prove termination of some diagrammatic rewriting systems.
- ▶ **Main problem:** A diagrammatic rewriting system does not always admit a monomial (total and well-founded) termination order.

Motivations: termination issues

- ▶ Consider a diagrammatic algebra A admitting relations of the form

$$\text{Diagrammatic relation} = \text{Diagrammatic relation} - \uparrow \downarrow + \sum_{n=0}^h \sum_{r \geq 0} \text{Diagrammatic term}.$$

The diagrammatic terms involve various configurations of lines and loops. The first term is a sum of two diagrams: one with two vertical lines and two diagonal lines crossing, and another with two vertical lines and two diagonal lines crossing in a different orientation. The second term is a sum of diagrams involving loops and lines, with labels n and r . The third term is a sum of diagrams involving loops and lines, with labels n and r .

one naturally asks:

- ▶ How should we orient the rules to obtain a terminating presentation of A ?
- ▶ In this work, we construct heuristics to prove termination of some diagrammatic rewriting systems.
- ▶ **Main problem:** A diagrammatic rewriting system does not always admit a monomial (total and well-founded) termination order.
- ▶ We will define termination orders similar to monomial orders, counting the generators in the diagrams, stable by contexts and well-founded, but that are not required to be total.

- I. Linear $(2, 2)$ -categories, braidings and duals
- II. Decreasing order operators
- III. Termination heuristics in particular linear $(2, 2)$ categories
- IV. Illustration on the diagrammatic rewriting system \mathcal{KLR}

I. Linear $(2, 2)$ -categories, braidings and duals

Linear $(2, 2)$ -categories

- ▶ A linear $(2, 2)$ -category \mathcal{C} is a 1-category enriched in \mathbb{K} -linear categories for a field \mathbb{K} .

Linear $(2, 2)$ -categories

- ▶ A linear $(2, 2)$ -category \mathcal{C} is a 1 -category enriched in \mathbb{K} -linear categories for a field \mathbb{K} . Explicitely, it is given by sets of 0 -cells \mathcal{C}_0 , 1 -cells \mathcal{C}_1 and 2 -cells \mathcal{C}_2 such that:

Linear $(2, 2)$ -categories

- ▶ A linear $(2, 2)$ -category \mathcal{C} is a 1 -category enriched in \mathbb{K} -linear categories for a field \mathbb{K} . Explicitely, it is given by sets of 0 -cells \mathcal{C}_0 , 1 -cells \mathcal{C}_1 and 2 -cells \mathcal{C}_2 such that:
 - ▶ for every p and q in \mathcal{C}_1 , the space of 2 -cells $\mathcal{C}_2(p, q)$ between p and q is a \mathbb{K} -vector space;

Linear $(2, 2)$ -categories

- ▶ A linear $(2, 2)$ -category \mathcal{C} is a 1-category enriched in \mathbb{K} -linear categories for a field \mathbb{K} . Explicitely, it is given by sets of 0-cells \mathcal{C}_0 , 1-cells \mathcal{C}_1 and 2-cells \mathcal{C}_2 such that:
 - ▶ for every p and q in \mathcal{C}_1 , the space of 2-cells $\mathcal{C}_2(p, q)$ between p and q is a \mathbb{K} -vector space;
 - ▶ The map $\star_1 : \mathcal{C}_2(p, q) \otimes \mathcal{C}_2(q, r) \rightarrow \mathcal{C}_2(p, r)$ is linear;

Linear $(2, 2)$ -categories

- ▶ A linear $(2, 2)$ -category \mathcal{C} is a 1-category enriched in \mathbb{K} -linear categories for a field \mathbb{K} . Explicitely, it is given by sets of 0-cells \mathcal{C}_0 , 1-cells \mathcal{C}_1 and 2-cells \mathcal{C}_2 such that:
 - ▶ for every p and q in \mathcal{C}_1 , the space of 2-cells $\mathcal{C}_2(p, q)$ between p and q is a \mathbb{K} -vector space;
 - ▶ The map $\star_1 : \mathcal{C}_2(p, q) \otimes \mathcal{C}_2(q, r) \rightarrow \mathcal{C}_2(p, r)$ is linear;
 - ▶ Source and target maps are compatible with the linear structure.

Linear $(2, 2)$ -categories

- ▶ A linear $(2, 2)$ -category \mathcal{C} is a 1-category enriched in \mathbb{K} -linear categories for a field \mathbb{K} . Explicitely, it is given by sets of 0-cells \mathcal{C}_0 , 1-cells \mathcal{C}_1 and 2-cells \mathcal{C}_2 such that:
 - ▶ for every p and q in \mathcal{C}_1 , the space of 2-cells $\mathcal{C}_2(p, q)$ between p and q is a \mathbb{K} -vector space;
 - ▶ The map $\star_1 : \mathcal{C}_2(p, q) \otimes \mathcal{C}_2(q, r) \rightarrow \mathcal{C}_2(p, r)$ is linear;
 - ▶ Source and target maps are compatible with the linear structure.
- ▶ The 2-cells in \mathcal{C} between 1-cells p and q are represented by diagrams

Linear $(2, 2)$ -categories

- ▶ A linear $(2, 2)$ -category \mathcal{C} is a 1-category enriched in \mathbb{K} -linear categories for a field \mathbb{K} . Explicitely, it is given by sets of 0-cells \mathcal{C}_0 , 1-cells \mathcal{C}_1 and 2-cells \mathcal{C}_2 such that:
 - ▶ for every p and q in \mathcal{C}_1 , the space of 2-cells $\mathcal{C}_2(p, q)$ between p and q is a \mathbb{K} -vector space;
 - ▶ The map $\star_1 : \mathcal{C}_2(p, q) \otimes \mathcal{C}_2(q, r) \rightarrow \mathcal{C}_2(p, r)$ is linear;
 - ▶ Source and target maps are compatible with the linear structure.
- ▶ The 2-cells in \mathcal{C} between 1-cells p and q are represented by diagrams
 - ▶ compositions of \mathcal{C} are given as follows:

The image shows two diagrams illustrating the composition of 2-cells. The top diagram shows a 2-cell φ (represented as a rectangle with labels p and q at the top and bottom) composed with a 2-cell ψ (represented as a rectangle with labels q and r at the top and bottom). The result is a 2-cell $\psi \circ \varphi$ (represented as a rectangle with labels p and r at the top and bottom). The bottom diagram shows the composition $\varphi \circ \psi$ (represented as a rectangle with labels p and r at the top and bottom), which is defined as the composition of φ and ψ via the map \star_1 .

$$\begin{array}{c} \varphi \circ \psi := \varphi \star_1 \psi = \psi \circ \varphi \end{array}$$

Linear $(2, 2)$ -categories

- ▶ A linear $(2, 2)$ -category \mathcal{C} is a 1-category enriched in \mathbb{K} -linear categories for a field \mathbb{K} . Explicitely, it is given by sets of 0-cells \mathcal{C}_0 , 1-cells \mathcal{C}_1 and 2-cells \mathcal{C}_2 such that:
 - ▶ for every p and q in \mathcal{C}_1 , the space of 2-cells $\mathcal{C}_2(p, q)$ between p and q is a \mathbb{K} -vector space;
 - ▶ The map $\star_1 : \mathcal{C}_2(p, q) \otimes \mathcal{C}_2(q, r) \rightarrow \mathcal{C}_2(p, r)$ is linear;
 - ▶ Source and target maps are compatible with the linear structure.
- ▶ The 2-cells in \mathcal{C} between 1-cells p and q are represented by diagrams
 - ▶ compositions of \mathcal{C} are given as follows:

- ▶ modulo the exchange law of \mathcal{C} , diagrammatically depicted as

Diagrammatic rewriting systems

- We consider diagrammatic algebras interpreted as linear $(2, 2)$ -categories, admitting a diagrammatic presentation by generators and relations with:
 - a set \mathcal{C}_1^g of generating 1-cells wrt the \star_0 -composition;
 - a set \mathcal{C}_2^g of generating 2-cells wrt the \star_0 and \star_1 -compositions.

Diagrammatic rewriting systems

- ▶ We consider diagrammatic algebras interpreted as linear $(2, 2)$ -categories, admitting a diagrammatic presentation by generators and relations with:
 - ▶ a set \mathcal{C}_1^g of generating 1-cells wrt the \star_0 -composition;
 - ▶ a set \mathcal{C}_2^g of generating 2-cells wrt the \star_0 and \star_1 -compositions.
- ▶ A **diagrammatic rewriting system** (DRS) is a **linear $(3, 2)$ -polygraph**. Explicitly, a $\text{DRS}\Sigma$ presenting \mathcal{C} is a quadruple $(\Sigma_0, \Sigma_1, \Sigma_2, \Sigma_3)$ with:

Diagrammatic rewriting systems

- ▶ We consider diagrammatic algebras interpreted as linear $(2, 2)$ -categories, admitting a diagrammatic presentation by generators and relations with:
 - ▶ a set \mathcal{C}_1^g of generating 1-cells wrt the \star_0 -composition;
 - ▶ a set \mathcal{C}_2^g of generating 2-cells wrt the \star_0 and \star_1 -compositions.
- ▶ A **diagrammatic rewriting system** (DRS) is a **linear $(3, 2)$ -polygraph**. Explicitly, a DRS^Σ presenting \mathcal{C} is a quadruple $(\Sigma_0, \Sigma_1, \Sigma_2, \Sigma_3)$ with:
 - ▶ $\Sigma_0 = \mathcal{C}_0$;

Diagrammatic rewriting systems

- ▶ We consider diagrammatic algebras interpreted as linear $(2, 2)$ -categories, admitting a diagrammatic presentation by generators and relations with:
 - ▶ a set \mathcal{C}_1^g of generating 1-cells wrt the \star_0 -composition;
 - ▶ a set \mathcal{C}_2^g of generating 2-cells wrt the \star_0 and \star_1 -compositions.
- ▶ A **diagrammatic rewriting system** (DRS) is a **linear $(3, 2)$ -polygraph**. Explicitly, a DRS^Σ presenting \mathcal{C} is a quadruple $(\Sigma_0, \Sigma_1, \Sigma_2, \Sigma_3)$ with:
 - ▶ $\Sigma_0 = \mathcal{C}_0$;
 - ▶ $\Sigma_i = \mathcal{C}_i^g$ for $1 \leq i \leq 2$;

Diagrammatic rewriting systems

- ▶ We consider diagrammatic algebras interpreted as linear $(2, 2)$ -categories, admitting a diagrammatic presentation by generators and relations with:
 - ▶ a set \mathcal{C}_1^g of generating 1-cells wrt the \star_0 -composition;
 - ▶ a set \mathcal{C}_2^g of generating 2-cells wrt the \star_0 and \star_1 -compositions.
- ▶ A **diagrammatic rewriting system** (DRS) is a **linear $(3, 2)$ -polygraph**. Explicitly, a DRS^Σ presenting \mathcal{C} is a quadruple $(\Sigma_0, \Sigma_1, \Sigma_2, \Sigma_3)$ with:
 - ▶ $\Sigma_0 = \mathcal{C}_0$;
 - ▶ $\Sigma_i = \mathcal{C}_i^g$ for $1 \leq i \leq 2$;
 - ▶ Σ_3 is a set equipped with two maps $s_2, t_2 : \Sigma_3 \rightarrow \Sigma_2$ called **2-source** and **2-target** maps. It is obtained by fixing an orientation for each relation in \mathcal{C} .

Diagrammatic rewriting systems

- ▶ We consider diagrammatic algebras interpreted as linear $(2, 2)$ -categories, admitting a diagrammatic presentation by generators and relations with:
 - ▶ a set \mathcal{C}_1^g of generating 1-cells wrt the \star_0 -composition;
 - ▶ a set \mathcal{C}_2^g of generating 2-cells wrt the \star_0 and \star_1 -compositions.
- ▶ A **diagrammatic rewriting system** (DRS) is a **linear $(3, 2)$ -polygraph**. Explicitly, a DRS Σ presenting \mathcal{C} is a quadruple $(\Sigma_0, \Sigma_1, \Sigma_2, \Sigma_3)$ with:
 - ▶ $\Sigma_0 = \mathcal{C}_0$;
 - ▶ $\Sigma_i = \mathcal{C}_i^g$ for $1 \leq i \leq 2$;
 - ▶ Σ_3 is a set equipped with two maps $s_2, t_2 : \Sigma_3 \rightarrow \Sigma_2$ called **2-source** and **2-target** maps. It is obtained by fixing an orientation for each relation in \mathcal{C} .
- ▶ **Example.** Let \mathcal{C} be the linear $(2, 2)$ -category with one 0-cell, one 1-cell, two generating 2-cells

satisfying the following relations:

and

Diagrammatic rewriting systems

- ▶ We consider diagrammatic algebras interpreted as linear $(2, 2)$ -categories, admitting a diagrammatic presentation by generators and relations with:
 - ▶ a set \mathcal{C}_1^g of generating 1-cells wrt the \star_0 -composition;
 - ▶ a set \mathcal{C}_2^g of generating 2-cells wrt the \star_0 and \star_1 -compositions.
- ▶ A **diagrammatic rewriting system** (DRS) is a **linear $(3, 2)$ -polygraph**. Explicitly, a DRS Σ presenting \mathcal{C} is a quadruple $(\Sigma_0, \Sigma_1, \Sigma_2, \Sigma_3)$ with:
 - ▶ $\Sigma_0 = \mathcal{C}_0$;
 - ▶ $\Sigma_i = \mathcal{C}_i^g$ for $1 \leq i \leq 2$;
 - ▶ Σ_3 is a set equipped with two maps $s_2, t_2 : \Sigma_3 \rightarrow \Sigma_2$ called **2-source** and **2-target** maps. It is obtained by fixing an orientation for each relation in \mathcal{C} .
- ▶ **Example.** Let \mathcal{C} be the linear $(2, 2)$ -category with one 0-cell, one 1-cell, two generating 2-cells

satisfying the following relations:

$$\begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \text{---} \quad \text{---} \end{array} \Rightarrow \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \text{---} \quad \text{---} \\ \bullet \end{array} + \begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} \quad \text{and} \quad \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \text{---} \quad \text{---} \\ \bullet \end{array} \Rightarrow \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \text{---} \quad \text{---} \\ \bullet \end{array} + \begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} \quad \begin{array}{c} \text{---} \\ | \\ \text{---} \end{array}$$

Braidings and adjunctions

- ▶ A **braiding** on a linear $(2, 2)$ -category \mathcal{C} is a family of 2-cells $\sigma_{p,q} : p \star_0 q \rightarrow q \star_0 p$

for any p, q in \mathcal{C}_1^g , represented by

Braidings and adjunctions

- A **braiding** on a linear $(2, 2)$ -category \mathcal{C} is a family of 2-cells $\sigma_{p,q} : p \star_0 q \rightarrow q \star_0 p$

for any p, q in \mathcal{C}_1^g , represented by (or

axioms yielding to the **Yang-Baxter** equation:

for any p, q, r in \mathcal{C}_1^g

Braidings and adjunctions

- ▶ A **braiding** on a linear $(2, 2)$ -category \mathcal{C} is a family of 2-cells $\sigma_{p,q} : p \star_0 q \rightarrow q \star_0 p$

for any p, q in \mathcal{C}_1^g , represented by (or) satisfying some naturality axioms yielding to the **Yang-Baxter** equation:

$$\text{for any } p, q, r \text{ in } \mathcal{C}_1^g$$

- ▶ Let $p : x \rightarrow y$ be a 1-cell of \mathcal{C} . We say that a 1-cell $q : y \rightarrow x$ is a **left-adjoint** of p , denoted by $q = \hat{p}$ if there exists 2-cells $\varepsilon : p \star_0 \hat{p} \Rightarrow 1_y$ and $\eta : 1_x \Rightarrow \hat{p} \star_0 p$ respectively represented by

Braidings and adjunctions

- A **braiding** on a linear $(2, 2)$ -category \mathcal{C} is a family of 2-cells $\sigma_{p,q} : p \star_0 q \rightarrow q \star_0 p$

for any p, q in \mathcal{C}_1^g , represented by

(or) satisfying some naturality

axioms yielding to the **Yang-Baxter** equation:

for any p, q, r in \mathcal{C}_1^g

- Let $p : x \rightarrow y$ be a 1-cell of \mathcal{C} . We say that a 1-cell $q : y \rightarrow x$ is a **left-adjoint** of p , denoted by $q = \hat{p}$ if there exists 2-cells $\varepsilon : p \star_0 \hat{p} \Rightarrow 1_y$ and $\eta : 1_x \Rightarrow \hat{p} \star_0 p$ respectively represented by

Braidings and adjunctions

- A **braiding** on a linear $(2, 2)$ -category \mathcal{C} is a family of 2-cells $\sigma_{p,q} : p \star_0 q \rightarrow q \star_0 p$

for any p, q in \mathcal{C}_1^g , represented by

(or) satisfying some naturality

axioms yielding to the **Yang-Baxter** equation:

for any p, q, r in \mathcal{C}_1^g

- Let $p : x \rightarrow y$ be a 1-cell of \mathcal{C} . We say that a 1-cell $q : y \rightarrow x$ is a **left-adjoint** of p , denoted by $q = \hat{p}$ if there exists 2-cells $\varepsilon : p \star_0 \hat{p} \Rightarrow 1_y$ and $\eta : 1_x \Rightarrow \hat{p} \star_0 p$ respectively represented by

and satisfying

Cyclic 2-cells

- Given a pair of 1-cells $p, q : x \rightarrow y$ in \mathcal{C} with chosen biadjoints $(\hat{p}, \eta_p, \hat{\eta}_p, \varepsilon_p, \hat{\varepsilon}_p)$ and $(\hat{q}, \eta_q, \hat{\eta}_q, \varepsilon_q, \hat{\varepsilon}_q)$, then for any 2-cell $\alpha : p \Rightarrow q$, we construct two duals ${}^*\alpha$ and $\alpha* : \hat{q} \Rightarrow \hat{p}$ as follows:

$$\begin{array}{ccc} {}^*\alpha := & \begin{array}{c} \text{Diagram of } {}^*\alpha \\ \text{A 2-cell } \alpha \text{ in the middle, with } \varepsilon_q \text{ above and } \eta_p \text{ below.} \end{array} & \alpha^* := \\ & \begin{array}{c} \text{Diagram of } \alpha^* \\ \text{A 2-cell } \alpha \text{ in the middle, with } \hat{\eta}_q \text{ above and } \hat{\varepsilon}_p \text{ below.} \end{array} & \end{array}$$

Cyclic 2-cells

- Given a pair of 1-cells $p, q : x \rightarrow y$ in \mathcal{C} with chosen biadjoints $(\hat{p}, \eta_p, \hat{\eta}_p, \varepsilon_p, \hat{\varepsilon}_p)$ and $(\hat{q}, \eta_q, \hat{\eta}_q, \varepsilon_q, \hat{\varepsilon}_q)$, then for any 2-cell $\alpha : p \Rightarrow q$, we construct two duals ${}^*\alpha$ and $\alpha* : \hat{q} \Rightarrow \hat{p}$ as follows:

$$\begin{aligned} {}^*\alpha &:= \begin{array}{c} \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \end{array} \\ \alpha^* &:= \begin{array}{c} \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \end{array} \end{aligned}$$

Diagrams illustrating the construction of dual 2-cells:

- ${}^*\alpha$ (left): A 2-cell α from p to q is dualized to a 2-cell ${}^*\alpha$ from \hat{q} to \hat{p} . The diagram shows a vertical line from x to y with a curved arrow from \hat{q} to \hat{p} . The curved arrow is labeled ε_q above and η_p below. The vertical line is labeled α at its midpoint.
- α^* (right): A 2-cell α from p to q is dualized to a 2-cell α^* from x to y . The diagram shows a vertical line from x to y with a curved arrow from \hat{p} to \hat{q} . The curved arrow is labeled $\hat{\eta}_q$ above and $\hat{\varepsilon}_p$ below. The vertical line is labeled α at its midpoint.

- A 2-cell $\alpha : p \Rightarrow q$ is said **cyclic** if the equation ${}^*\alpha = \alpha^*$ is satisfied, or either of the equivalent conditions ${}^{**}\alpha = \alpha$ or $\alpha^{**} = \alpha$ are satisfied, yielding relations of the form

$$\begin{array}{c} \text{---} \\ \text{---} \end{array} = \begin{array}{c} \text{---} \\ \text{---} \end{array} \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} = \begin{array}{c} \text{---} \\ \text{---} \end{array} \quad (1)$$

Diagrams illustrating cyclic 2-cell relations:

- Left relation: A 2-cell α from p to q is equated to its dual ${}^*\alpha$ from \hat{q} to \hat{p} . The diagram shows two vertical lines from x to y with curved arrows from p to q and \hat{q} to \hat{p} . The curved arrows are labeled η_q and η_p respectively.
- Right relation: A 2-cell α from p to q is equated to its double dual α^{**} from x to y . The diagram shows two vertical lines from x to y with curved arrows from \hat{q} to \hat{p} and p to q . The curved arrows are labeled $\hat{\varepsilon}_q$ and $\hat{\varepsilon}_p$ respectively.

Cyclic 2-cells

- Given a pair of 1-cells $p, q : x \rightarrow y$ in \mathcal{C} with chosen biadjoints $(\hat{p}, \eta_p, \hat{\eta}_p, \varepsilon_p, \hat{\varepsilon}_p)$ and $(\hat{q}, \eta_q, \hat{\eta}_q, \varepsilon_q, \hat{\varepsilon}_q)$, then for any 2-cell $\alpha : p \Rightarrow q$, we construct two duals ${}^*\alpha$ and $\alpha* : \hat{q} \Rightarrow \hat{p}$ as follows:

$${}^*\alpha := \begin{array}{c} x \\ \curvearrowright \\ \hat{q} \end{array} \quad \begin{array}{c} \hat{p} \\ \curvearrowright \\ y \end{array}$$

$$\alpha^* := \begin{array}{c} \hat{p} \\ \curvearrowright \\ x \end{array} \quad \begin{array}{c} \hat{\eta}_q \\ \curvearrowright \\ \alpha \\ \curvearrowright \\ \hat{\varepsilon}_p \\ y \end{array}$$

- A 2-cell $\alpha : p \Rightarrow q$ is said **cyclic** if the equation ${}^*\alpha = \alpha^*$ is satisfied, or either of the equivalent conditions ${}^{**}\alpha = \alpha$ or $\alpha^{**} = \alpha$ are satisfied, yielding relations of the form

$$\begin{array}{c} p \\ \curvearrowright \\ \alpha \\ \curvearrowright \\ \eta_q \\ y \end{array} = \begin{array}{c} p \\ \curvearrowright \\ \eta_p \\ \curvearrowright \\ \hat{q} \\ y \end{array} \quad \begin{array}{c} \hat{q} \\ \curvearrowright \\ \alpha \\ \curvearrowright \\ \hat{\varepsilon}_q \\ x \end{array} = \begin{array}{c} \hat{q} \\ \curvearrowright \\ \hat{\varepsilon}_p \\ \curvearrowright \\ p \\ x \end{array} \quad (1)$$

- A linear $(2, 2)$ -category \mathcal{C} in which any 2-cell α is cyclic is called a **pivotal category**.

II. Decreasing order operators

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :

Decreasing order operators

- ▶ We want to construct a termination order on the set of 2-cells of a DRS Σ :
 - ▶ counting some characteristics of the diagrammatic 2-cells;

Decreasing order operators

- ▶ We want to construct a termination order on the set of 2-cells of a DRS Σ :
 - ▶ counting some characteristics of the diagrammatic 2-cells;
 - ▶ these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;

Decreasing order operators

- ▶ We want to construct a termination order on the set of 2-cells of a DRS Σ :
 - ▶ counting some characteristics of the diagrammatic 2-cells;
 - ▶ these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;
 - ▶ which is compatible with contexts and well-founded, but not required to be total.

Decreasing order operators

- ▶ We want to construct a termination order on the set of 2-cells of a DRS Σ :
 - ▶ counting some characteristics of the diagrammatic 2-cells;
 - ▶ these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;
 - ▶ which is compatible with contexts and well-founded, but not required to be total.

- ▶ Example. \leadsto number of crossings.

- ▶ Given a DRS Σ , one defines a **decreasing order operator** (DOO) for Σ as a family of functions $\Phi_{p,q} : \Sigma_2(p, q) \rightarrow \mathbb{N}^{m(p,q)} \times \mathbb{Z}$ indexed by 1-cells p and q , satisfying:

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
 - counting some characteristics of the diagrammatic 2-cells;
 - these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;
 - which is compatible with contexts and well-founded, but not required to be total.

- Example. = \rightsquigarrow number of crossings.

- Given a DRS Σ , one defines a **decreasing order operator** (DOO) for Σ as a family of functions $\Phi_{p,q} : \Sigma_2(p, q) \rightarrow \mathbb{N}^{m(p,q)} \times \mathbb{Z}$ indexed by 1-cells p and q , satisfying:
 - For any 3-cell $\alpha : D_1 \Rightarrow D_2$ with D_1, D_2 in $\Sigma_2(p, q)$, the function $\Phi_{p,q}$ satisfy

$$\Phi_{p,q}(D_1) > \Phi_{p,q}(D')$$

where $>$ is the lexicographic order on $\mathbb{N}^{m(p,q)} \times \mathbb{Z}$ and D' is a monomial in D_2 . We denote this by $D_1 >_{\text{lex}} D_2$.

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
 - counting some characteristics of the diagrammatic 2-cells;
 - these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;
 - which is compatible with contexts and well-founded, but not required to be total.

- Example. = \rightsquigarrow number of crossings.

- Given a DRS Σ , one defines a **decreasing order operator** (DOO) for Σ as a family of functions $\Phi_{p,q} : \Sigma_2(p, q) \rightarrow \mathbb{N}^{m(p,q)} \times \mathbb{Z}$ indexed by 1-cells p and q , satisfying:

- For any 3-cell $\alpha : D_1 \Rightarrow D_2$ with D_1, D_2 in $\Sigma_2(p, q)$, the function $\Phi_{p,q}$ satisfy

$$\Phi_{p,q}(D_1) > \Phi_{p,q}(D')$$

where $>$ is the lexicographic order on $\mathbb{N}^{m(p,q)} \times \mathbb{Z}$ and D' is a monomial in D_2 . We denote this by $D_1 >_{\text{lex}} D_2$.

- The $\Phi_{p,q}$ are stable by context: for any D_1 and D_2 in $\Sigma_2(p, q)$ and any context C of Σ , if $D_1 >_{\text{lex}} D_2$, then $C[D_1] >_{\text{lex}} C[D_2]$.

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
 - counting some characteristics of the diagrammatic 2-cells;
 - these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;
 - which is compatible with contexts and well-founded, but not required to be total.

- Example. = \rightsquigarrow number of crossings.

- Given a DRS Σ , one defines a **decreasing order operator** (DOO) for Σ as a family of functions $\Phi_{p,q} : \Sigma_2(p, q) \rightarrow \mathbb{N}^{m(p,q)} \times \mathbb{Z}$ indexed by 1-cells p and q , satisfying:

- For any 3-cell $\alpha : D_1 \Rightarrow D_2$ with D_1, D_2 in $\Sigma_2(p, q)$, the function $\Phi_{p,q}$ satisfy

$$\Phi_{p,q}(D_1) > \Phi_{p,q}(D')$$

where $>$ is the lexicographic order on $\mathbb{N}^{m(p,q)} \times \mathbb{Z}$ and D' is a monomial in D_2 . We denote this by $D_1 >_{\text{lex}} D_2$.

- The $\Phi_{p,q}$ are stable by context: for any D_1 and D_2 in $\Sigma_2(p, q)$ and any context C of Σ , if $D_1 >_{\text{lex}} D_2$, then $C[D_1] >_{\text{lex}} C[D_2]$.
- The $\Phi_{p,q}$ are stable by exchange law.

III. Termination heuristics in particular linear (2, 2) categories

Termination with braid relations

- Let \mathbf{Crs} be the DRS having: only one 0-cell, a set of generating 1-cells \mathbf{Crs}_1 , for 2-cells the braidings $\sigma_{p,q}$ for each p and q in \mathbf{Crs}_1 , and 3-cells as follows:

Termination with braid relations

- Let \mathbf{Crs} be the DRS having: only one 0-cell, a set of generating 1-cells \mathbf{Crs}_1 , for 2-cells the braidings $\sigma_{p,q}$ for each p and q in \mathbf{Crs}_1 , and 3-cells as follows:

- \mathbf{Crs} is terminating by the DOO $\Phi_{p,q}$ counting the number $\text{yb}(D)$ of occurrences of 2-cells $\sigma_{p,q} *_0 \text{id}_r$ in a diagram D , for p, q and r in \mathbf{Crs}_1 .

Termination with braid relations

- Let \mathbf{Crs} be the DRS having: only one 0-cell, a set of generating 1-cells \mathbf{Crs}_1 , for 2-cells the braidings $\sigma_{p,q}$ for each p and q in \mathbf{Crs}_1 , and 3-cells as follows:

- \mathbf{Crs} is terminating by the DOO $\Phi_{p,q}$ counting the number $yb(D)$ of occurrences of 2-cells $\sigma_{p,q} *_0 id_r$ in a diagram D , for p, q and r in \mathbf{Crs}_1 .
- Let \mathbf{Crs}' be the DRS defined by

$$\mathbf{Crs}' = \mathbf{Crs} \cup \left\{ \begin{array}{ccc} \text{braiding diagram} & \Rightarrow & \text{two strands} \\ p \qquad \qquad \qquad q & & p \qquad \qquad \qquad q \end{array} \right\}$$

Termination with braid relations

- Let \mathbf{Crs} be the DRS having: only one 0-cell, a set of generating 1-cells \mathbf{Crs}_1 , for 2-cells the braidings $\sigma_{p,q}$ for each p and q in \mathbf{Crs}_1 , and 3-cells as follows:

- \mathbf{Crs} is terminating by the DOO $\Phi_{p,q}$ counting the number $yb(D)$ of occurrences of 2-cells $\sigma_{p,q} *_0 \text{id}_r$ in a diagram D , for p, q and r in \mathbf{Crs}_1 .
- Let \mathbf{Crs}' be the DRS defined by

$$\mathbf{Crs}' = \mathbf{Crs} \cup \left\{ \begin{array}{ccc} \text{braiding diagram} & \Rightarrow & \text{empty diagram} \end{array} \right\}$$

- We add as first component to the $\Phi_{p,q}$ defined for \mathbf{Crs} a component counting the number of crossings of the diagrams.

Termination with braid relations and additional 2-cells

- Let $\mathbf{Crs}^{\text{add}}$ be a DRS defined by

$$\mathbf{Crs}^{\text{add}} = (\mathbf{Crs}'_0, \mathbf{Crs}'_1, \mathbf{Crs}'_2 \cup \left\{ \begin{array}{c} q \\ \bullet \alpha \\ q \end{array} \quad \text{for } q \text{ in } \mathbf{Crs}'_1 \right\}, \mathbf{Crs}'_3)$$

Termination with braid relations and additional 2-cells

- Let $\mathbf{Crs}^{\text{add}}$ be a DRS defined by

$$\mathbf{Crs}^{\text{add}} = (\mathbf{Crs}'_0, \mathbf{Crs}'_1, \mathbf{Crs}'_2 \cup \left\{ \begin{array}{c} q \\ \bullet \alpha \\ q \end{array} \right. \text{ for } q \text{ in } \mathbf{Crs}'_1, \mathbf{Crs}'_3)$$

- Assume that $\mathbf{Crs}^{\text{add}}$ admits a 3-cell of the following form

Termination with braid relations and additional 2-cells

- Let $\mathbf{Crs}^{\text{add}}$ be a DRS defined by

$$\mathbf{Crs}^{\text{add}} = (\mathbf{Crs}'_0, \mathbf{Crs}'_1, \mathbf{Crs}'_2 \cup \left\{ \begin{array}{c} q \\ \bullet \alpha \\ q \end{array} \quad \text{for } q \text{ in } \mathbf{Crs}'_1 \right\}, \mathbf{Crs}'_3)$$

- Assume that $\mathbf{Crs}^{\text{add}}$ admits a 3-cell of the following form

- We define a new DOO as follows: for $p, q \in \mathbf{Crs}'_1$, we set $m := \max(\ell(p), \ell(q))$. We add to $\Phi p, q$ the components $(c_k(D))_{1 \leq k \leq m}$ defined by:

Termination with braid relations and additional 2-cells

- Let $\mathbf{Crs}^{\text{add}}$ be a DRS defined by

$$\mathbf{Crs}^{\text{add}} = (\mathbf{Crs}'_0, \mathbf{Crs}'_1, \mathbf{Crs}'_2 \cup \left\{ \begin{array}{c} q \\ \bullet \alpha \\ q \end{array} \right. \text{ for } q \text{ in } \mathbf{Crs}'_1, \mathbf{Crs}'_3)$$

- Assume that $\mathbf{Crs}^{\text{add}}$ admits a 3-cell of the following form

+ lower terms for the previous DOO

- We define a new DOO as follows: for $p, q \in \mathbf{Crs}'_1$, we set $m := \max(\ell(p), \ell(q))$. We add to $\Phi p, q$ the components $(c_k(D))_{1 \leq k \leq m}$ defined by:
 - 0 if there is no \bullet on the k -th strand and if the k -strand is not a **through strand**, but this can not occur with only braidings.

Termination with braid relations and additional 2-cells

- Let $\mathbf{Crs}^{\text{add}}$ be a DRS defined by

$$\mathbf{Crs}^{\text{add}} = (\mathbf{Crs}'_0, \mathbf{Crs}'_1, \mathbf{Crs}'_2 \cup \left\{ \begin{array}{c} q \\ \bullet \alpha \\ q \end{array} \quad \text{for } q \text{ in } \mathbf{Crs}'_1 \right\}, \mathbf{Crs}'_3)$$

- Assume that $\mathbf{Crs}^{\text{add}}$ admits a 3-cell of the following form

- We define a new DOO as follows: for $p, q \in \mathbf{Crs}'_1$, we set $m := \max(\ell(p), \ell(q))$. We add to $\Phi p, q$ the components $(c_k(D))_{1 \leq k \leq m}$ defined by:
 - 0 if there is no \bullet on the k -th strand and if the k -strand is not a **through strand**, but this can not occur with only braidings.
 - the number of crossings below the upper dot of the k -th strand.
- Example. For

Example: the nil Hecke algebra

- ▶ For $n \in \mathbb{N}$, let us consider the *Nil-Hecke algebra* \mathcal{NH}_n^0 which is a \mathbb{K} -algebra for a field \mathbb{K} defined by:

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the *Nil-Hecke algebra* \mathcal{NH}_n^0 which is a \mathbb{K} -algebra for a field \mathbb{K} defined by:

- generators $\xi_i = \begin{array}{c|c|c|c|c} & \dots & \bullet & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i \leq n$ and $\partial_i = \begin{array}{c|c|c|c|c} & \dots & \diagup & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i < n$;

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the *Nil-Hecke algebra* \mathcal{NH}_n^0 which is a \mathbb{K} -algebra for a field \mathbb{K} defined by:

- generators $\xi_i = \begin{array}{c|c|c|c|c} & \dots & \bullet & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i \leq n$ and $\partial_i = \begin{array}{c|c|c|c|c} & \dots & \times & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i < n$;

- relations:

$$\text{Diagram: } \begin{array}{c} \text{X} \\ \text{X} \end{array} = 0,$$

$$\text{Diagram: } \begin{array}{c} \text{X} \\ \text{X} \\ \text{X} \end{array} = \begin{array}{c} \text{X} \\ \text{X} \\ \text{X} \end{array},$$

$$\text{Diagram: } \begin{array}{c} \bullet \\ \text{X} \end{array} = \begin{array}{c} \text{X} \\ \bullet \end{array} + \begin{array}{c} | \\ | \end{array}$$

$$\text{Diagram: } \begin{array}{c} \bullet \\ \text{X} \end{array} = \begin{array}{c} \text{X} \\ \bullet \end{array} - \begin{array}{c} | \\ | \end{array}$$

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the *Nil-Hecke algebra* \mathcal{NH}_n^0 which is a \mathbb{K} -algebra for a field \mathbb{K} defined by:

- generators $\xi_i = \begin{array}{c|c|c|c|c} & \dots & \bullet & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i \leq n$ and $\partial_i = \begin{array}{c|c|c|c|c} & \dots & \times & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i < n$;

- relations:

$$\text{Diagram: } \text{Braid relation } 1 = 0,$$

$$\text{Diagram: } \text{Braid relation } 2 = \text{Diagram: } \text{Braid relation } 3,$$

$$\text{Diagram: } \text{Braid relation } 4 = \text{Diagram: } \text{Braid relation } 5 + \text{Diagram: } \text{Braid relation } 6,$$

$$\text{Diagram: } \text{Braid relation } 7 = \text{Diagram: } \text{Braid relation } 8 - \text{Diagram: } \text{Braid relation } 9,$$

- $\coprod_{n \in \mathbb{N}^*} \mathcal{NH}_n^0$ form a linear $(2, 2)$ -category with only one 0-cell, the 1-cells are permutations and 2-cells are braiding diagrams.

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the *Nil-Hecke algebra* \mathcal{NH}_n^0 which is a \mathbb{K} -algebra for a field \mathbb{K} defined by:

- generators $\xi_i = \begin{array}{c|c|c|c|c} & \dots & \bullet & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i \leq n$ and $\partial_i = \begin{array}{c|c|c|c|c} & \dots & \times & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i < n$;

- relations:

$$\begin{array}{c} \text{Diagram: } \text{X} \text{ (cross)} \Rightarrow 0, \\ \text{Diagram: } \text{X} \text{ (cross)} \Rightarrow \text{X} \text{ (cross)}, \\ \text{Diagram: } \bullet \text{ (dot)} \Rightarrow \text{X} \text{ (cross)} + \text{I} \text{ (vertical line)} \\ \text{Diagram: } \bullet \text{ (dot)} \Rightarrow \text{X} \text{ (cross)} - \text{I} \text{ (vertical line)} \end{array}$$

- $\coprod_{n \in \mathbb{N}^*} \mathcal{NH}_n^0$ form a linear $(2, 2)$ -category with only one 0-cell, the 1-cells are permutations and 2-cells are braiding diagrams.
- Let Σ be a DRS presenting $\coprod_{n \in \mathbb{N}^*} \mathcal{NH}_n^0$ with relations oriented as above.

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the *Nil-Hecke algebra* \mathcal{NH}_n^0 which is a \mathbb{K} -algebra for a field \mathbb{K} defined by:

- generators $\xi_i = \begin{array}{c|c|c|c|c} & \dots & \bullet & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i \leq n$ and $\partial_i = \begin{array}{c|c|c|c|c} & \dots & \diagup & \dots & \\ \hline 1 & & i & & n \end{array}$ for $1 \leq i < n$;
- relations:

$$\begin{array}{c} \text{Diagram 1} \end{array} \Rightarrow 0, \quad \begin{array}{c} \text{Diagram 2} \end{array} \Rightarrow \begin{array}{c} \text{Diagram 3} \end{array}, \quad \begin{array}{c} \text{Diagram 4} \end{array} \Rightarrow \begin{array}{c} \text{Diagram 5} \end{array} + \begin{array}{c} | \end{array} \quad \begin{array}{c} \text{Diagram 6} \end{array} \Rightarrow \begin{array}{c} \text{Diagram 7} \end{array} - \begin{array}{c} | \end{array}$$

- $\coprod_{n \in \mathbb{N}^*} \mathcal{NH}_n^0$ form a linear $(2, 2)$ -category with only one 0-cell, the 1-cells are permutations and 2-cells are braiding diagrams.
- Let Σ be a DRS presenting $\coprod_{n \in \mathbb{N}^*} \mathcal{NH}_n^0$ with relations oriented as above.
- We prove that Σ is terminating using the following DOO: for a given diagram D in $\mathcal{NH}_n^0(\sigma, \tau)$,

$$\Phi_{\sigma, \tau}(D) = (c(D), \text{yb}(D), c_1(D), \dots, c_n(D)).$$

Termination with adjunctions

- Let \mathcal{C} be a linear $(2, 2)$ -category whose 1-cells are equipped with biadjunctions, yielding isotopy relations of the form

$$\cap = | ; \cup = |$$

Termination with adjunctions

- Let \mathcal{C} be a linear $(2, 2)$ -category whose 1-cells are equipped with biadjunctions, yielding isotopy relations of the form

$$\text{N} = | ; \quad \text{U} = |$$

- If there is an additional 2-cell α which is cyclic wrt biadjunction $p \vdash q \dashv p$, we have to impose some new relations of the form:

$$\text{N} \bullet = | = \text{U} \bullet$$

Termination with adjunctions

- Let \mathcal{C} be a linear $(2, 2)$ -category whose 1-cells are equipped with biadjunctions, yielding isotopy relations of the form

$$\text{N} \Rightarrow | ; \quad \text{U} \Rightarrow |$$

- If there is an additional 2-cell α which is cyclic wrt biadjunction $p \vdash q \vdash p$, we have to impose some new relations of the form:

$$\text{N} \bullet \Rightarrow | \Leftarrow \text{U} \bullet$$

- The DRS given by these orientations is not confluent: the first Knuth-Bendix step imposes to add the following relations:

$$\text{N} = \text{N} \bullet, \quad \text{U} = \text{U} \bullet.$$

Prototypical example: the 3-polygraph of pearls

- ▶ Let **Pearl** be the DRS defined by:

- ▶ only one 0-cell $*$;

- ▶ only one 1-cell p ;

- ▶ generating 2-cells: , , ;

- ▶ the following 3-cells:

$$\cap \Rightarrow |, \quad \cap \Rightarrow |, \quad \cap \Rightarrow \cap, \quad \cup \Rightarrow \cup.$$

Prototypical example: the 3-polygraph of pearls

- ▶ Let **Pearl** be the DRS defined by:

- ▶ only one 0-cell $*$;

- ▶ only one 1-cell p ;

- ▶ generating 2-cells: , , ;

- ▶ the following 3-cells:

$$\cap \Rightarrow |, \quad \cup \Rightarrow |, \quad \bullet \cap \Rightarrow \cap \bullet, \quad \bullet \cup \Rightarrow \cup \bullet.$$

- ▶ **Pearl** is terminating, using the following DOO $\Phi_{p,p}(D) = (I(D), \text{l-dot}(D))$ where:

Prototypical example: the 3-polygraph of pearls

- ▶ Let **Pearl** be the DRS defined by:

- ▶ only one 0-cell $*$;

- ▶ only one 1-cell p ;

- ▶ generating 2-cells: , , ;

- ▶ the following 3-cells:

$$\cap \Rightarrow |, \quad \cup \Rightarrow |, \quad \bullet \cap \Rightarrow \cap \bullet, \quad \bullet \cup \Rightarrow \cup \bullet.$$

- ▶ **Pearl** is terminating, using the following DOO $\Phi_{p,p}(D) = (I(D), \text{l-dot}(D))$ where:

- ▶ $I(D)$ corresponds to the number of caps and cups in D ;

Prototypical example: the 3-polygraph of pearls

- ▶ Let **Pearl** be the DRS defined by:

- ▶ only one 0-cell $*$;

- ▶ only one 1-cell p ;

- ▶ generating 2-cells: , , ;

- ▶ the following 3-cells:

$$\cap \Rightarrow |, \quad \cup \Rightarrow |, \quad \bullet \cap \Rightarrow \cap \bullet, \quad \bullet \cup \Rightarrow \cup \bullet.$$

- ▶ **Pearl** is terminating, using the following DOO $\Phi_{p,p}(D) = (I(D), \text{l-dot}(D))$ where:

- ▶ $I(D)$ corresponds to the number of caps and cups in D ;

- ▶ $\text{l-dot}(D)$ corresponds to the number of positively left-dotted caps and cups, that is the number of elements and (with at least one \bullet) appearing in D with the convention

$$\text{l-dot} \left(\underset{n}{\bullet} \cap \right) = \text{l-dot} \left(\underset{n}{\bullet} \cup \right) := n$$

Prototypical example: the 3-polygraph of pearls

- ▶ Let **Pearl** be the DRS defined by:

- ▶ only one 0-cell $*$;

- ▶ only one 1-cell p ;

- ▶ generating 2-cells: , , ;

- ▶ the following 3-cells:

$$\cap \Rightarrow |, \quad \cup \Rightarrow |, \quad | \cap \Rightarrow \cap, \quad | \cup \Rightarrow \cup.$$

- ▶ **Pearl** is terminating, using the following DOO $\Phi_{p,p}(D) = (I(D), \text{l-dot}(D))$ where:

- ▶ $I(D)$ corresponds to the number of caps and cups in D ;

- ▶ $\text{l-dot}(D)$ corresponds to the number of positively left-dotted caps and cups, that is the number of elements and (with at least one \bullet) appearing in D with the convention

$$\text{l-dot} \left(\underset{n}{\cap} \right) = \text{l-dot} \left(\underset{n}{\cup} \right) := n$$

- ▶ Adding a \star_0 and \star_1 -context to D , we add a constant number of cups and caps, and $\text{l-dot}(D)$ can not increase since a dot cannot move from right of a cap/cup to its left even by adding a context

Termination or quasi-termination ?

- ▶ If we choose different orientation for the dot move relations, we create rewriting cycles

$$\bullet \circ = \circ \bullet \Rightarrow \circ \bullet = \bullet \circ \Rightarrow \bullet \circ$$

Termination or quasi-termination ?

- If we choose different orientation for the dot move relations, we create rewriting cycles

$$\bullet \circ = \circ \bullet \Rightarrow \circ \bullet = \circ \bullet \Rightarrow \bullet \circ$$

- In a DRS Σ , there are **indexed critical branchings** of the following form:

where f, g, h, k are 2-cells of Σ and α, β are 3-cells of Σ .

Termination or quasi-termination ?

- If we choose different orientation for the dot move relations, we create rewriting cycles

- In a DRS Σ , there are **indexed critical branchings** of the following form:

where f, g, h, k are 2-cells of Σ and α, β are 3-cells of Σ .

- With dot moves oriented as in **Pearl**, there is an indexed branching for each 2-cell that can be plugged in the following diagram

Example. If Σ contains braiding 2-cells $\sigma_{p,q}$ for any p, q in Σ_1 , there are infinitely many indexed critical branchings in Σ for each $n \in \mathbb{N}$.

Termination or quasi-termination ?

- If we choose different orientation for the dot move relations, we create rewriting cycles

- In a DRS Σ , there are **indexed critical branchings** of the following form:

where f, g, h, k are 2-cells of Σ and α, β are 3-cells of Σ .

- With dot moves oriented as in **Pearl**, there is an indexed branching for each 2-cell that can be plugged in the following diagram

Example. If Σ contains braiding 2-cells $\sigma_{p,q}$ for any p, q in Σ_1 , there are infinitely many indexed critical branchings in Σ for each $n \in \mathbb{N}$.

Quasi-termination

- ▶ A DRS Σ is **quasi-terminating** if for each rewriting sequence $(u_n)_{n \in \mathbb{N}}$ of 2-cells of Σ , it contains an infinite number of occurrences of the same 2-cell.
- ▶ Let Σ be a DRS containing the following 3-cells:

Σ is not terminating, one wants to study its quasi-termination.

- ▶ A **quasi-reduced** monomial in Σ is a monomial on which we can only apply the rules

- ▶ We may prove that Σ is quasi-terminating by constructing a DOO on the sets $Q\text{-red}(\Sigma_2(p, q))$ of quasi-reduced monomials between two 1-cells p and q .
 - ▶ This DOO does not take into account the number of left-dotted cups and caps.
 - ▶ It ensures that there is no other obstruction to termination than the bubble cycles.

General heuristics

- ▶ Let \mathcal{C} be a linear $(2, 2)$ -category endowed with braidings, duals and some additionnal cyclic 2-cells which admits a presentation by generators and relations containing further of the following:

General heuristics

- ▶ Let \mathcal{C} be a linear $(2, 2)$ -category endowed with braidings, duals and some additionnal cyclic 2-cells which admits a presentation by generators and relations containing further of the following:
 - ▶ Yang-Baxter relations;

General heuristics

- ▶ Let \mathcal{C} be a linear $(2, 2)$ -category endowed with braidings, duals and some additionnal cyclic 2-cells which admits a presentation by generators and relations containing further of the following:
 - ▶ Yang-Baxter relations;
 - ▶ relations making the number of braidings decrease as symmetric group relations;

General heuristics

- ▶ Let \mathcal{C} be a linear $(2, 2)$ -category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
 - ▶ Yang-Baxter relations;
 - ▶ relations making the number of braidings decrease as symmetric group relations;
 - ▶ commutation of some of the cyclic 2 -cells with the braidings, eventually creating residues with lower crossings;

General heuristics

- ▶ Let \mathcal{C} be a linear $(2, 2)$ -category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
 - ▶ Yang-Baxter relations;
 - ▶ relations making the number of braidings decrease as symmetric group relations;
 - ▶ commutation of some of the cyclic 2 -cells with the braidings, eventually creating residues with lower crossings;
 - ▶ the isotopy relations coming from the adjunctions and the cyclicity of the 2 -cells;

General heuristics

- ▶ Let \mathcal{C} be a linear $(2, 2)$ -category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
 - ▶ Yang-Baxter relations;
 - ▶ relations making the number of braidings decrease as symmetric group relations;
 - ▶ commutation of some of the cyclic 2 -cells with the braidings, eventually creating residues with lower crossings;
 - ▶ the isotopy relations coming from the adjunctions and the cyclicity of the 2 -cells;
 - ▶ some other relations that make the number of crossings or the number of cups and caps decrease;

General heuristics

- ▶ Let \mathcal{C} be a linear $(2, 2)$ -category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
 - ▶ Yang-Baxter relations;
 - ▶ relations making the number of braidings decrease as symmetric group relations;
 - ▶ commutation of some of the cyclic 2 -cells with the braidings, eventually creating residues with lower crossings;
 - ▶ the isotopy relations coming from the adjunctions and the cyclicity of the 2 -cells;
 - ▶ some other relations that make the number of crossings or the number of cups and caps decrease;
 - ▶ (in a \mathbb{Z} -graded context, some relations making the degree decrease with a lower bound on the degree under which all diagrams are zero).

General heuristics

- ▶ Let \mathcal{C} be a linear $(2, 2)$ -category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
 - ▶ Yang-Baxter relations;
 - ▶ relations making the number of braidings decrease as symmetric group relations;
 - ▶ commutation of some of the cyclic 2 -cells with the braidings, eventually creating residues with lower crossings;
 - ▶ the isotopy relations coming from the adjunctions and the cyclicity of the 2 -cells;
 - ▶ some other relations that make the number of crossings or the number of cups and caps decrease;
 - ▶ (in a \mathbb{Z} -graded context, some relations making the degree decrease with a lower bound on the degree under which all diagrams are zero).
- ▶ **Proposition.** There is a DRS Σ presenting \mathcal{C} in which the relations are oriented in such a way that $\Phi_{p,q}(s(\alpha)) > \Phi_{p,q}(t(\alpha))$ for a DOO of Σ constructed as above and any 3 -cell α , and thus Σ is terminating.

IV. Illustration on the linear $(3, 2)$ -polygraph \mathcal{KLR}

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- ▶ Let \mathcal{KLR} be the linear $(3, 2)$ -polygraph defined by:

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- ▶ Let \mathcal{KLR} be the linear $(3, 2)$ -polygraph defined by:
 - ▶ \mathcal{KLR}_0 is a set X corresponding to the weight lattice of a Kac-Moody algebra;

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- ▶ Let \mathcal{KLR} be the linear $(3, 2)$ -polygraph defined by:
 - ▶ \mathcal{KLR}_0 is a set X corresponding to the weight lattice of a Kac-Moody algebra;
 - ▶ $\mathcal{KLR}_1 = \{\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)})$ with $\varepsilon_i \in \{-, +\}\}$.

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- Let \mathcal{KLR} be the linear $(3, 2)$ -polygraph defined by:
 - \mathcal{KLR}_0 is a set X corresponding to the weight lattice of a Kac-Moody algebra;
 - $\mathcal{KLR}_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)})$ with $\varepsilon_i \in \{-, +\}\}$.
 - \mathcal{KLR}_2 admits for generating 2-cells:

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- Let \mathcal{KLR} be the linear $(3, 2)$ -polygraph defined by:
 - \mathcal{KLR}_0 is a set X corresponding to the weight lattice of a Kac-Moody algebra;
 - $\mathcal{KLR}_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)})$ with $\varepsilon_i \in \{-, +\}\}$.
 - \mathcal{KLR}_2 admits for generating 2-cells:

- The 3-cells in \mathcal{KLR}_3 are given by:

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- Let \mathcal{KLR} be the linear $(3, 2)$ -polygraph defined by:
 - \mathcal{KLR}_0 is a set X corresponding to the weight lattice of a Kac-Moody algebra;
 - $\mathcal{KLR}_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)})$ with $\varepsilon_i \in \{-, +\}\}$.
 - \mathcal{KLR}_2 admits for generating 2-cells:

- The 3-cells in \mathcal{KLR}_3 are given by:
 - The 3-cells of the nilHecke algebras described previously.

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- Let \mathcal{KLR} be the linear $(3, 2)$ -polygraph defined by:
 - \mathcal{KLR}_0 is a set X corresponding to the weight lattice of a Kac-Moody algebra;
 - $\mathcal{KLR}_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)})$ with $\varepsilon_i \in \{-, +\}\}$.
 - \mathcal{KLR}_2 admits for generating 2-cells:

- The 3-cells in \mathcal{KLR}_3 are given by:
 - The 3-cells of the nilHecke algebras described previously.
 - The isotopy 3-cells;

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- Let \mathcal{KLR} be the linear $(3, 2)$ -polygraph defined by:
 - \mathcal{KLR}_0 is a set X corresponding to the weight lattice of a Kac-Moody algebra;
 - $\mathcal{KLR}_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)})$ with $\varepsilon_i \in \{-, +\}\}$.
 - \mathcal{KLR}_2 admits for generating 2-cells:

- The 3-cells in \mathcal{KLR}_3 are given by:
 - The 3-cells of the nilHecke algebras described previously.
 - The isotopy 3-cells;
 - Some bubble conditions 3-cells:

$$n \circlearrowleft \lambda \Rightarrow \begin{cases} 1_{1_\lambda} & \text{if } n = h-1 \\ 0 & \text{if } n < h-1 \end{cases}$$

$$\lambda \circlearrowleft n \Rightarrow \begin{cases} 1_{1_\lambda} & \text{if } n = -h-1 \\ 0 & \text{if } n < -h-1 \end{cases}$$

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- ▶ The 3-cells in \mathcal{KLR}_3 are given by:

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- The 3-cells in \mathcal{KLR}_3 are given by:

- the infinite Grassmannian relation: for any $\lambda \in X$ and $\alpha > 0$,

$$\text{Diagram: } \text{A circular arrow with a dot at the top-left labeled } h-1+\alpha \text{ and } i \text{ at the bottom. A blue } \lambda \text{ is placed near the arrow.} \Rightarrow - \sum_{l=1}^{\alpha} \text{Diagram: } \text{A circular arrow with a dot at the top-left labeled } h-1+\alpha-l \text{ and } i \text{ at the bottom. A blue } \lambda \text{ is placed near the arrow.} \text{ and } \text{Diagram: } \text{A circular arrow with a dot at the top-left labeled } -h-1+l \text{ and } i \text{ at the bottom. A blue } \lambda \text{ is placed near the arrow.}$$

where h is a number given by the Kac-Moody algebra.

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- The 3-cells in \mathcal{KLR}_3 are given by:

- the infinite Grassmannian relation: for any $\lambda \in X$ and $\alpha > 0$,

$$\text{Diagram: } h-1+\alpha \text{ (a circle with dot and label } i\text{)} \xrightarrow{\lambda} - \sum_{l=1}^{\alpha} \text{ (a circle with dot and label } i\text{)}^{h-1+\alpha-l} \text{ (a circle with dot and label } i\text{)}^{h-1+l}$$

where h is a number given by the Kac-Moody algebra.

- Some invertibility 3-cells:

$$\text{Diagram: } \text{A complex 3-cell with label } \lambda \xrightarrow{\lambda} -\uparrow\downarrow + \sum_{n=0}^{h-1} \sum_{r \geq 0} \text{ (Diagram with label } \lambda\text{)}^{h-1-n-r-2} , \text{ (Diagram with label } \lambda\text{)}^{h-1-n-r-2}$$

The linear $(3,2)$ -polygraph \mathcal{KLR}

- The 3-cells in \mathcal{KLR}_3 are given by:

- ▶ the infinite Grassmannian relation: for any $\lambda \in X$ and $\alpha > 0$,

where h is a number given by the Kac-Moody algebra.

► Some invertibility 3-cells:

$$\begin{aligned}
 \text{Diagram 1: } & \Rightarrow -\uparrow\downarrow + \sum_{n=0}^{h-1} \sum_{r \geq 0} \text{Diagram 2} \\
 \text{Diagram 2: } & \Rightarrow -\downarrow\uparrow + \sum_{n=0}^{-h-1} \sum_{r \geq 0} \text{Diagram 3}
 \end{aligned}$$

► Some " \mathfrak{sl}_2 " 3-cells:

$$\text{Diagram 1: } \text{Left: } \text{A loop with a self-intersection and a crossing point labeled } \lambda. \text{ Right: } \text{A sum } \sum_{n=0}^h \text{ with } n \text{ terms. Each term } n \text{ shows a loop with a self-intersection and a crossing point labeled } \lambda, \text{ with a dot at the crossing point labeled } -n-1. \text{ The label } \lambda \text{ is placed below the crossing point.} \\ \text{Diagram 2: } \text{Left: } \text{A loop with a self-intersection and a crossing point labeled } \lambda. \text{ Right: } \text{A sum } -\sum_{n=0}^{-h} \text{ with } -n-1 \text{ terms. Each term } -n-1 \text{ shows a loop with a self-intersection and a crossing point labeled } \lambda, \text{ with a dot at the crossing point labeled } n. \text{ The label } \lambda \text{ is placed below the crossing point.}$$

$$\text{Diagram 1: } \text{Left: } \text{A loop with two cusps and a self-intersection point. Right: } \Rightarrow - \sum_{n=0}^{-h} \text{ }_{-n-1} \text{ }_{n} \text{ ; Diagram 2: } \text{Left: } \text{A loop with two cusps and a self-intersection point. Right: } \Rightarrow \sum_{n=0}^h \text{ }_{n} \text{ }_{-n-1} \text{ .}$$

The linear $(3, 2)$ -polygraph \mathcal{KLR}

- \mathcal{KLR} is terminating using the following DDO:

$$\begin{array}{ccc} \Phi_{\varepsilon, \varepsilon'} : \mathcal{KLR}_2(\varepsilon, \varepsilon') & \rightarrow & \mathbb{N}^{m+4} \times \mathbb{Z} \\ D & \mapsto & (c(D), c_1(D), \dots, c_m(D), \text{ybg}(D), I(D), \text{l-dot}(D), \deg_b(D)) \end{array}$$

with:

- $c(D)$ is the number of crossings between strands in D ;
- for $1 \leq k \leq m$, $c_k(D)$ is defined as above;
- $\text{ybg}(D)$ defined as above;
- $I(D)$ corresponds to the number of rightward caps and leftward cups that appear in D ;
- $\text{l-dot}(D)$ corresponds to the number of positively leftward dotted caps and cups as described above.
-

$$\deg_b(D) := \begin{cases} \#\{\text{bubbles in } D\} + \sum_{\pi \text{ clockwise bubble in } D} \deg(\pi) & \text{if } D \text{ is a diagram with bubbles} \\ 0 & \text{if } D \text{ is a diagram without bubbles} \\ -\infty & \text{if } D = 0. \end{cases}$$

- ▶ We presented heuristics to prove termination of some DRS presenting diagrammatic algebras coming from representation theory.
- ▶ The next question to study is confluence of these DRS.
 - ▶ The diagrammatic structure yield a combinatorial explosion for computation of critical pairs, as for instance isotopy relations.
 - ▶ Isotopy should not be considered as rewrite rules, but as equations we have to take into account when rewriting.
 - ▶ Develop a context of **rewriting modulo isotopy**, and obtain linear bases and coherence results in that setting.