Termination in linear (2, 2)-categories with braidings and duals

Dupont Benjamin

Higher Dimensional Rewriting and Algebra
Oxford, 7 July 2018

Motivation: diagrammatic rewriting

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.

Motivation: diagrammatic rewriting

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.

Motivation: diagrammatic rewriting

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Categorification constructive results;
- Coherence theorems;
- Computation of linear bases for these algebras using rewriting methods.

Motivation: diagrammatic rewriting

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Categorification constructive results;
- Coherence theorems;
- Computation of linear bases for these algebras using rewriting methods.
- Diagrammatic rewriting: 3-dimensional linear rewriting systems on diagrams

Motivation: diagrammatic rewriting

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Categorification constructive results;
- Coherence theorems;
- Computation of linear bases for these algebras using rewriting methods.
- Diagrammatic rewriting: 3-dimensional linear rewriting systems on diagrams
- The two essential properties to study are termination and confluence.

Motivations: termination issues

- Consider a diagrammatic algebra A admitting relations of the form

Motivations: termination issues

- Consider a diagrammatic algebra A admitting relations of the form

one naturally asks:
- How should we orient the rules to obtain a terminating presentation of A ?

Motivations: termination issues

- Consider a diagrammatic algebra A admitting relations of the form

one naturally asks:
- How should we orient the rules to obtain a terminating presentation of A ?
- In this work, we construct heuristics to prove termination of some diagrammatic rewriting systems.

Motivations: termination issues

- Consider a diagrammatic algebra A admitting relations of the form

one naturally asks:
- How should we orient the rules to obtain a terminating presentation of A ?
- In this work, we construct heuristics to prove termination of some diagrammatic rewriting systems.
- Main problem: A diagrammatic rewriting system does not always admit a monomial (total and well-founded) termination order.

Motivations: termination issues

- Consider a diagrammatic algebra A admitting relations of the form

one naturally asks:
- How should we orient the rules to obtain a terminating presentation of A ?
- In this work, we construct heuristics to prove termination of some diagrammatic rewriting systems.
- Main problem: A diagrammatic rewriting system does not always admit a monomial (total and well-founded) termination order.
- We will define termination orders similar to monomial orders, counting the generators in the diagrams, stable by contexts and well-founded, but that are not required to be total.
I. Linear (2, 2)-categories, braidings and duals
II. Decreasing order operators
III. Termination heuristics in particular linear $(2,2)$ categories
IV. Illustration on the diagrammatic rewriting system $\mathcal{K} \mathcal{L} \mathcal{R}$

I. Linear (2, 2)-categories, braidings and

 duals
Linear (2, 2)-categories

- A linear (2, 2)-category \mathcal{C} is a 1-category enriched in \mathbb{K}-linear categories for a field \mathbb{K}.
- A linear (2, 2)-category \mathcal{C} is a 1-category enriched in \mathbb{K}-linear categories for a field \mathbb{K}. Explicitely, it is given by sets of 0-cells $\mathcal{C}_{0}, 1$-cells \mathcal{C}_{1} and 2-cells \mathcal{C}_{2} such that:
- A linear (2, 2)-category \mathcal{C} is a 1-category enriched in \mathbb{K}-linear categories for a field \mathbb{K}. Explicitely, it is given by sets of 0 -cells $\mathcal{C}_{0}, 1$-cells \mathcal{C}_{1} and 2 -cells \mathcal{C}_{2} such that:
- for every p and q in \mathcal{C}_{1}, the space of 2-cells $\mathcal{C}_{2}(p, q)$ between p and q is a \mathbb{K}-vector space;
- A linear (2,2)-category \mathcal{C} is a 1 -category enriched in \mathbb{K}-linear categories for a field \mathbb{K}. Explicitely, it is given by sets of 0 -cells $\mathcal{C}_{0}, 1$-cells \mathcal{C}_{1} and 2 -cells \mathcal{C}_{2} such that:
- for every p and q in \mathcal{C}_{1}, the space of 2-cells $\mathcal{C}_{2}(p, q)$ between p and q is a \mathbb{K}-vector space;
- The map $\star_{1}: \mathcal{C}_{2}(p, q) \otimes \mathcal{C}_{2}(q, r) \rightarrow \mathcal{C}_{2}(p, r)$ is linear;
- A linear (2,2)-category \mathcal{C} is a 1 -category enriched in \mathbb{K}-linear categories for a field \mathbb{K}. Explicitely, it is given by sets of 0 -cells $\mathcal{C}_{0}, 1$-cells \mathcal{C}_{1} and 2-cells \mathcal{C}_{2} such that:
- for every p and q in \mathcal{C}_{1}, the space of 2-cells $\mathcal{C}_{2}(p, q)$ between p and q is a \mathbb{K}-vector space;
- The map $\star_{1}: \mathcal{C}_{2}(p, q) \otimes \mathcal{C}_{2}(q, r) \rightarrow \mathcal{C}_{2}(p, r)$ is linear;
- Source and target maps are compatible with the linear structure.
- A linear (2,2)-category \mathcal{C} is a 1 -category enriched in \mathbb{K}-linear categories for a field \mathbb{K}. Explicitely, it is given by sets of 0 -cells $\mathcal{C}_{0}, 1$-cells \mathcal{C}_{1} and 2 -cells \mathcal{C}_{2} such that:
- for every p and q in \mathcal{C}_{1}, the space of 2-cells $\mathcal{C}_{2}(p, q)$ between p and q is a \mathbb{K}-vector space;
- The map $\star_{1}: \mathcal{C}_{2}(p, q) \otimes \mathcal{C}_{2}(q, r) \rightarrow \mathcal{C}_{2}(p, r)$ is linear;
- Source and target maps are compatible with the linear structure.
- The 2-cells in \mathcal{C} between 1-cells p and q are represented by diagrams

- A linear (2,2)-category \mathcal{C} is a 1 -category enriched in \mathbb{K}-linear categories for a field \mathbb{K}. Explicitely, it is given by sets of 0 -cells $\mathcal{C}_{0}, 1$-cells \mathcal{C}_{1} and 2-cells \mathcal{C}_{2} such that:
- for every p and q in \mathcal{C}_{1}, the space of 2-cells $\mathcal{C}_{2}(p, q)$ between p and q is a \mathbb{K}-vector space;
- The map $\star_{1}: \mathcal{C}_{2}(p, q) \otimes \mathcal{C}_{2}(q, r) \rightarrow \mathcal{C}_{2}(p, r)$ is linear;
- Source and target maps are compatible with the linear structure.
- The 2-cells in \mathcal{C} between 1 -cells p and q are represented by diagrams
- compositions of \mathcal{C} are given as follows:

- A linear (2,2)-category \mathcal{C} is a 1 -category enriched in \mathbb{K}-linear categories for a field \mathbb{K}. Explicitely, it is given by sets of 0-cells $\mathcal{C}_{0}, 1$-cells \mathcal{C}_{1} and 2-cells \mathcal{C}_{2} such that:
- for every p and q in \mathcal{C}_{1}, the space of 2-cells $\mathcal{C}_{2}(p, q)$ between p and q is a \mathbb{K}-vector space;
- The map $\star_{1}: \mathcal{C}_{2}(p, q) \otimes \mathcal{C}_{2}(q, r) \rightarrow \mathcal{C}_{2}(p, r)$ is linear;
- Source and target maps are compatible with the linear structure.
- The 2-cells in \mathcal{C} between 1-cells p and q are represented by diagrams
- compositions of \mathcal{C} are given as follows:

- modulo the exchange law of \mathcal{C}, diagrammatically depicted as

Diagrammatic rewriting systems

- We consider diagrammatic algebras interpreted as linear (2, 2)-categories, admitting a diagrammatic presentation by generators and relations with:
- a set \mathcal{C}_{1}^{g} of generating 1 -cells wrt the \star_{0}-composition;
- a set \mathcal{C}_{2}^{g} of generating 2 -cells wrt the \star_{0} and \star_{1}-compositions.

Diagrammatic rewriting systems

- We consider diagrammatic algebras interpreted as linear (2, 2)-categories, admitting a diagrammatic presentation by generators and relations with:
- a set \mathcal{C}_{1}^{g} of generating 1 -cells wrt the \star_{0}-composition;
- a set \mathcal{C}_{2}^{g} of generating 2 -cells wrt the \star_{0} and \star_{1}-compositions.
- A diagrammatic rewriting system (DRS) is a linear (3,2)-polygraph. Explictely, a DRS Σ presenting \mathcal{C} is a quadruple $\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)$ with:

Diagrammatic rewriting systems

- We consider diagrammatic algebras interpreted as linear (2, 2)-categories, admitting a diagrammatic presentation by generators and relations with:
- a set \mathcal{C}_{1}^{g} of generating 1 -cells wrt the \star_{0}-composition;
- a set \mathcal{C}_{2}^{g} of generating 2 -cells wrt the \star_{0} and \star_{1}-compositions.
- A diagrammatic rewriting system (DRS) is a linear (3,2)-polygraph. Explictely, a DRS Σ presenting \mathcal{C} is a quadruple $\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)$ with:
- $\Sigma_{0}=\mathcal{C}_{0}$;

Diagrammatic rewriting systems

- We consider diagrammatic algebras interpreted as linear (2, 2)-categories, admitting a diagrammatic presentation by generators and relations with:
- a set \mathcal{C}_{1}^{g} of generating 1 -cells wrt the \star_{0}-composition;
- a set \mathcal{C}_{2}^{g} of generating 2 -cells wrt the \star_{0} and \star_{1}-compositions.
- A diagrammatic rewriting system (DRS) is a linear (3,2)-polygraph. Explictely, a DRS Σ presenting \mathcal{C} is a quadruple $\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)$ with:
- $\Sigma_{0}=\mathcal{C}_{0}$;
- $\Sigma_{i}=\mathcal{C}_{i}^{g}$ for $1 \leq i \leq 2 ;$

Diagrammatic rewriting systems

- We consider diagrammatic algebras interpreted as linear (2, 2)-categories, admitting a diagrammatic presentation by generators and relations with:
- a set \mathcal{C}_{1}^{g} of generating 1 -cells wrt the \star_{0}-composition;
- a set \mathcal{C}_{2}^{g} of generating 2 -cells wrt the \star_{0} and \star_{1}-compositions.
- A diagrammatic rewriting system (DRS) is a linear (3, 2)-polygraph. Explictely, a DRS Σ presenting \mathcal{C} is a quadruple $\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)$ with:
- $\Sigma_{0}=\mathcal{C}_{0}$;
- $\Sigma_{i}=\mathcal{C}_{i}^{g}$ for $1 \leq i \leq 2$;
- Σ_{3} is a set equipped with two maps $s_{2}, t_{2}: \Sigma_{3} \rightarrow \Sigma_{2}$ called 2-source and 2-target maps. It is obtained by fixing an orientation for each relation in \mathcal{C}.

Diagrammatic rewriting systems

- We consider diagrammatic algebras interpreted as linear (2, 2)-categories, admitting a diagrammatic presentation by generators and relations with:
- a set \mathcal{C}_{1}^{g} of generating 1 -cells wrt the \star_{0}-composition;
- a set \mathcal{C}_{2}^{g} of generating 2 -cells wrt the \star_{0} and \star_{1}-compositions.
- A diagrammatic rewriting system (DRS) is a linear (3,2)-polygraph. Explictely, a DRS Σ presenting \mathcal{C} is a quadruple $\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)$ with:
- $\Sigma_{0}=\mathcal{C}_{0}$;
- $\Sigma_{i}=\mathcal{C}_{i}^{g}$ for $1 \leq i \leq 2$;
- Σ_{3} is a set equipped with two maps $s_{2}, t_{2}: \Sigma_{3} \rightarrow \Sigma_{2}$ called 2-source and 2-target maps. It is obtained by fixing an orientation for each relation in \mathcal{C}.
- Example. Let \mathcal{C} be the linear (2,2)-category with one 0-cell, one 1-cell, two generating 2-cells

satisfying the following relations:

Diagrammatic rewriting systems

- We consider diagrammatic algebras interpreted as linear (2, 2)-categories, admitting a diagrammatic presentation by generators and relations with:
- a set \mathcal{C}_{1}^{g} of generating 1 -cells wrt the \star_{0}-composition;
- a set \mathcal{C}_{2}^{g} of generating 2 -cells wrt the \star_{0} and \star_{1}-compositions.
- A diagrammatic rewriting system (DRS) is a linear (3,2)-polygraph. Explictely, a DRS Σ presenting \mathcal{C} is a quadruple $\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)$ with:
- $\Sigma_{0}=\mathcal{C}_{0}$;
- $\Sigma_{i}=\mathcal{C}_{i}^{g}$ for $1 \leq i \leq 2$;
- Σ_{3} is a set equipped with two maps $s_{2}, t_{2}: \Sigma_{3} \rightarrow \Sigma_{2}$ called 2-source and 2-target maps. It is obtained by fixing an orientation for each relation in \mathcal{C}.
- Example. Let \mathcal{C} be the linear (2,2)-category with one 0 -cell, one 1-cell, two generating 2-cells

satisfying the following relations:

Braidings and adjunctions

- A braiding on a linear (2,2)-category \mathcal{C} is a family of 2-cells $\sigma_{p, q}: p \star_{0} q \rightarrow q \star_{0} p$
for any p, q in \mathcal{C}_{1}^{g}, represented by

Braidings and adjunctions

- A braiding on a linear (2,2)-category \mathcal{C} is a family of 2 -cells $\sigma_{p, q}: p \star_{0} q \rightarrow q \star_{0} p$ for any p, q in \mathcal{C}_{1}^{g}, represented by
 axioms yielding to the Yang-Baxter equation:

for any p, q, r in \mathcal{C}_{1}^{g}

Braidings and adjunctions

- A braiding on a linear (2,2)-category \mathcal{C} is a family of 2 -cells $\sigma_{p, q}: p \star_{0} q \rightarrow q \star_{0} p$ for any p, q in \mathcal{C}_{1}^{g}, represented by

) satisying some naturality
axioms yielding to the Yang-Baxter equation:

for any p, q, r in \mathcal{C}_{1}^{g}
- Let $p: x \rightarrow y$ be a 1-cell of \mathcal{C}. We say that a 1-cell $q: y \rightarrow x$ is a left-adjoint of p, denoted by $q=\hat{p}$ if there exists 2-cells $\varepsilon: p \star_{0} \hat{p} \Rightarrow 1_{y}$ and $\eta: 1_{x} \Rightarrow \hat{p} \star_{0} p$ respectively represented by

Braidings and adjunctions

- A braiding on a linear (2,2)-category \mathcal{C} is a family of 2 -cells $\sigma_{p, q}: p \star_{0} q \rightarrow q \star_{0} p$
for any p, q in \mathcal{C}_{1}^{g}, represented by

q	p
p	q

$\underbrace{q}_{p} \quad p$
axioms yielding to the Yang-Baxter equation:

for any p, q, r in \mathcal{C}_{1}^{g}

- Let $p: x \rightarrow y$ be a 1-cell of \mathcal{C}. We say that a 1-cell $q: y \rightarrow x$ is a left-adjoint of p, denoted by $q=\hat{p}$ if there exists 2-cells $\varepsilon: p \star_{0} \hat{p} \Rightarrow 1_{y}$ and $\eta: 1_{x} \Rightarrow \hat{p} \star_{0} p$ respectively represented by

Braidings and adjunctions

- A braiding on a linear (2, 2)-category \mathcal{C} is a family of 2-cells $\sigma_{p, q}: p \star_{0} q \rightarrow q \star_{0} p$ for any p, q in \mathcal{C}_{1}^{g}, represented by

satisying some naturality
axioms yielding to the Yang-Baxter equation:

for any p, q, r in \mathcal{C}_{1}^{g}
- Let $p: x \rightarrow y$ be a 1-cell of \mathcal{C}. We say that a 1 -cell $q: y \rightarrow x$ is a left-adjoint of p, denoted by $q=\hat{p}$ if there exists 2-cells $\varepsilon: p \star_{0} \hat{p} \Rightarrow 1_{y}$ and $\eta: 1_{x} \Rightarrow \hat{p} \star_{0} p$ respectively represented by

Cyclic 2-cells

- Given a pair of 1-cells $p, q: x \rightarrow y$ in \mathcal{C} with chosen biadjoints ($\hat{p}, \eta_{p}, \hat{\eta}_{p}, \varepsilon_{p}, \hat{\varepsilon}_{p}$) and ($\hat{q}, \eta_{q}, \hat{\eta}_{q}, \varepsilon_{q}, \hat{\varepsilon}_{q}$), then for any 2-cell $\alpha: p \Rightarrow q$, we construct two duals * α and $\alpha *: \hat{q} \Rightarrow \hat{p}$ as follows:

Cyclic 2-cells

- Given a pair of 1-cells $p, q: x \rightarrow y$ in \mathcal{C} with chosen biadjoints ($\hat{p}, \eta_{p}, \hat{\eta}_{p}, \varepsilon_{p}, \hat{\varepsilon}_{p}$) and ($\hat{q}, \eta_{q}, \hat{\eta}_{q}, \varepsilon_{q}, \hat{\varepsilon}_{q}$), then for any 2-cell $\alpha: p \Rightarrow q$, we construct two duals * α and $\alpha *: \hat{q} \Rightarrow \hat{p}$ as follows:

- A 2-cell $\alpha: p \Rightarrow q$ is said cyclic if the equation ${ }^{*} \alpha=\alpha^{*}$ is satisfied, or either of the equivalent conditions ${ }^{* *} \alpha=\alpha$ or $\alpha^{* *}=\alpha$ are satisfied, yielding relations of the form

Cyclic 2-cells

- Given a pair of 1-cells $p, q: x \rightarrow y$ in \mathcal{C} with chosen biadjoints ($\hat{p}, \eta_{p}, \hat{\eta}_{p}, \varepsilon_{p}, \hat{\varepsilon}_{p}$) and ($\hat{q}, \eta_{q}, \hat{\eta}_{q}, \varepsilon_{q}, \hat{\varepsilon}_{q}$), then for any 2-cell $\alpha: p \Rightarrow q$, we construct two duals * α and $\alpha *: \hat{q} \Rightarrow \hat{p}$ as follows:

- A 2-cell $\alpha: p \Rightarrow \boldsymbol{q}$ is said cyclic if the equation ${ }^{*} \alpha=\alpha^{*}$ is satisfied, or either of the equivalent conditions ${ }^{* *} \alpha=\alpha$ or $\alpha^{* *}=\alpha$ are satisfied, yielding relations of the form

- A linear (2,2)-category \mathcal{C} in which any 2 -cell α is cyclic is called a pivotal category.

II. Decreasing order operators

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
- counting some characteristics of the diagrammatic 2-cells;

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
- counting some characteristics of the diagrammatic 2-cells;
- these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
- counting some characteristics of the diagrammatic 2-cells;
- these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;
- which is compatible with contexts and well-founded, but not required to be total.

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
- counting some characteristics of the diagrammatic 2-cells;
- these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3 -cells;
- which is compatible with contexts and well-founded, but not required to be total.
- Example.

\rightsquigarrow number of crossings.
- Given a DRS Σ, one defines a decreasing order operator (DOO) for Σ as a family of functions $\Phi_{p, q}: \Sigma_{2}(p, q) \rightarrow \mathbb{N}^{m(p, q)} \times \mathbb{Z}$ indexed by 1-cells p and q, satisfying:

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
- counting some characteristics of the diagrammatic 2-cells;
- these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3 -cells;
- which is compatible with contexts and well-founded, but not required to be total.
- Example.
 \rightsquigarrow number of crossings.
- Given a DRS Σ, one defines a decreasing order operator (DOO) for Σ as a family of functions $\Phi_{p, q}: \Sigma_{2}(p, q) \rightarrow \mathbb{N}^{m(p, q)} \times \mathbb{Z}$ indexed by 1-cells p and q, satisfying:
- For any 3-cell $\alpha: D_{1} \Rightarrow D_{2}$ with D_{1}, D_{2} in $\Sigma_{2}(p, q)$, the function $\Phi_{p, q}$ satisfy

$$
\Phi_{p, q}\left(D_{1}\right)>\Phi_{p, q}\left(D^{\prime}\right)
$$

where $>$ is the lexicographic order on $\mathbb{N}^{m(p, q)} \times \mathbb{Z}$ and D^{\prime} is a monomial in D_{2}. We denote this by $D_{1}>_{\text {lex }} D_{2}$.

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
- counting some characteristics of the diagrammatic 2-cells;
- these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3 -cells;
- which is compatible with contexts and well-founded, but not required to be total.
- Example.

\rightsquigarrow number of crossings.
- Given a DRS Σ, one defines a decreasing order operator (DOO) for Σ as a family of functions $\Phi_{p, q}: \Sigma_{2}(p, q) \rightarrow \mathbb{N}^{m(p, q)} \times \mathbb{Z}$ indexed by 1-cells p and q, satisfying:
- For any 3-cell $\alpha: D_{1} \Rightarrow D_{2}$ with D_{1}, D_{2} in $\Sigma_{2}(p, q)$, the function $\Phi_{p, q}$ satisfy

$$
\Phi_{p, q}\left(D_{1}\right)>\Phi_{p, q}\left(D^{\prime}\right)
$$

where $>$ is the lexicographic order on $\mathbb{N}^{m(p, q)} \times \mathbb{Z}$ and D^{\prime} is a monomial in D_{2}. We denote this by $D_{1}>_{\text {lex }} D_{2}$.

- The $\Phi_{p, q}$ are stable by context: for any D_{1} and D_{2} in $\Sigma_{2}(p, q)$ and any context C of Σ, if $D_{1}>_{\text {lex }} D_{2}$, then $C\left[D_{1}\right]>_{\text {lex }} C\left[D_{2}\right]$.

Decreasing order operators

- We want to construct a termination order on the set of 2-cells of a DRS Σ :
- counting some characteristics of the diagrammatic 2-cells;
- these characteristics are strictly greater on the sources of 3-cells than on each monomial in the targets of 3-cells;
- which is compatible with contexts and well-founded, but not required to be total.
- Example.

\rightsquigarrow number of crossings.
- Given a DRS Σ, one defines a decreasing order operator (DOO) for Σ as a family of functions $\Phi_{p, q}: \Sigma_{2}(p, q) \rightarrow \mathbb{N}^{m(p, q)} \times \mathbb{Z}$ indexed by 1-cells p and q, satisfying:
- For any 3-cell $\alpha: D_{1} \Rightarrow D_{2}$ with D_{1}, D_{2} in $\Sigma_{2}(p, q)$, the function $\Phi_{p, q}$ satisfy

$$
\Phi_{p, q}\left(D_{1}\right)>\Phi_{p, q}\left(D^{\prime}\right)
$$

where $>$ is the lexicographic order on $\mathbb{N}^{m(p, q)} \times \mathbb{Z}$ and D^{\prime} is a monomial in D_{2}. We denote this by $D_{1}>_{\text {lex }} D_{2}$.

- The $\Phi_{p, q}$ are stable by context: for any D_{1} and D_{2} in $\Sigma_{2}(p, q)$ and any context C of Σ, if $D_{1}>_{\text {lex }} D_{2}$, then $C\left[D_{1}\right]>_{\text {lex }} C\left[D_{2}\right]$.
- The $\Phi_{p, q}$ are stable by exchange law.

III. Termination heuristics in particular linear (2, 2) categories

Termination with braid relations

- Let Crs be the DRS having: only one 0-cell, a set of generating 1-cells Crs_{1}, for 2-cells the braidings $\sigma_{p, q}$ for each p and q in Crs_{1}, and 3-cells as follows:

Termination with braid relations

- Let Crs be the DRS having: only one 0-cell, a set of generating 1-cells Crs_{1}, for 2-cells the braidings $\sigma_{p, q}$ for each p and q in Crs_{1}, and 3-cells as follows:

- Crs is terminating by the $\mathrm{DOO} \Phi_{p, q}$ counting the number $\mathrm{yb}(D)$ of occurences of 2-cells $\sigma_{p, q} \star_{0}$ id $_{r}$ in a diagram D, for p, q and r in Crs_{1}.

Termination with braid relations

- Let Crs be the DRS having: only one 0-cell, a set of generating 1-cells Crs_{1}, for 2-cells the braidings $\sigma_{p, q}$ for each p and q in Crs_{1}, and 3-cells as follows:

- Crs is terminating by the $\mathrm{DOO} \Phi_{p, q}$ counting the number $\mathrm{yb}(D)$ of occurences of 2-cells $\sigma_{p, q} \star_{0}$ id $_{r}$ in a diagram D, for p, q and r in Crs_{1}.
- Let Crs' be the DRS defined by

$$
\left.\mathrm{Crs}^{\prime}=\left.\left.\operatorname{Crs} \cup\{ \}_{\rho} \Rightarrow\right|_{p}\right|_{q}\right\}
$$

Termination with braid relations

- Let Crs be the DRS having: only one 0-cell, a set of generating 1-cells Crs_{1}, for 2-cells the braidings $\sigma_{p, q}$ for each p and q in Crs_{1}, and 3-cells as follows:

- Crs is terminating by the $\mathrm{DOO} \Phi_{p, q}$ counting the number $\mathrm{yb}(D)$ of occurences of 2-cells $\sigma_{p, q} \star_{0}$ id $_{r}$ in a diagram D, for p, q and r in Crs_{1}.
- Let Crs' be the DRS defined by

$$
\left.\operatorname{Crs}^{\prime}=\left.\left.\operatorname{Crs} \cup\{ \}_{p} \Rightarrow\right|_{p}\right|_{q}\right\}
$$

- We add as first component to the $\Phi_{p, q}$ defined for Crs a component counting the number of crossings of the diagrams.

Termination with braid relations and additional 2-cells

- Let Crs $^{\text {add }}$ be a DRS defined by

$$
\mathrm{Crs}^{\mathrm{add}}=\left(\mathrm{Crs}_{0}^{\prime}, \mathrm{Crs}_{1}^{\prime}, \mathrm{Crs}_{2}^{\prime} \cup\left\{\begin{array}{l}
q \\
\phi_{q}^{\alpha} \\
\text { for } q \text { in } \mathrm{Crs}_{1}^{\prime}
\end{array}\right\}, \mathrm{Crs}_{3}^{\prime}\right)
$$

- Let $\mathrm{Crs}^{\text {add }}$ be a DRS defined by

$$
\mathrm{Crs}^{\mathrm{add}}=\left(\mathrm{Crs}_{0}^{\prime}, \mathrm{Crs}_{1}^{\prime}, \mathrm{Crs}_{2}^{\prime} \cup\left\{\begin{array}{l}
q \\
\left.\left.\oint_{q}^{\alpha} \quad \text { for } q \text { in } \mathrm{Crs}_{1}^{\prime}\right\}, \mathrm{Crs}_{3}^{\prime}\right), ~(, ~
\end{array}\right\}\right.
$$

- Assume that $\mathrm{Crs}^{\text {add }}$ admits a 3-cell of the following form

- Let $\mathrm{Crs}^{\text {add }}$ be a DRS defined by

$$
\mathrm{Crs}^{\mathrm{add}}=\left(\mathrm{Crs}_{0}^{\prime}, \mathrm{Crs}_{1}^{\prime}, \mathrm{Crs}_{2}^{\prime} \cup\left\{\begin{array}{l}
q \\
\phi_{q}^{\alpha} \quad \text { for } q \text { in } \mathrm{Crs}_{1}^{\prime}
\end{array}\right\}, \mathrm{Crs}_{3}^{\prime}\right)
$$

- Assume that $\mathrm{Crs}^{\text {add }}$ admits a 3-cell of the following form

- We define a new DOO as follows: for $p, q \in \mathrm{Crs}_{1}^{\prime}$, we set $m:=\max (\ell(p), \ell(q))$. We add to $\Phi p, q$ the components $\left(c_{k}(D)\right)_{1 \leq k \leq m}$ defined by:
- Let $\mathrm{Crs}^{\text {add }}$ be a DRS defined by

$$
\mathrm{Crs}^{\mathrm{add}}=\left(\mathrm{Crs}_{0}^{\prime}, \mathrm{Crs}_{1}^{\prime}, \mathrm{Crs}_{2}^{\prime} \cup\left\{\begin{array}{l}
q \\
\left.\left.\oint_{q}^{\alpha} \quad \text { for } q \text { in } \mathrm{Crs}_{1}^{\prime}\right\}, \mathrm{Crs}_{3}^{\prime}\right), ~(, ~
\end{array}\right\}\right.
$$

- Assume that $\mathrm{Crs}^{\text {add }}$ admits a 3-cell of the following form

$$
\sum_{\rho} \Rightarrow \underbrace{}_{p}+\text { lower terms for the previous } \mathrm{DOO}
$$

- We define a new DOO as follows: for $p, q \in \mathrm{Crs}_{1}^{\prime}$, we set $m:=\max (\ell(p), \ell(q))$. We add to $\Phi p, q$ the components $\left(c_{k}(D)\right)_{1 \leq k \leq m}$ defined by:
- 0 if there is no - on the k-th strand and if the k-strand is not a through strand, but this can not occur with only braidings.
- Let $\mathrm{Crs}^{\text {add }}$ be a DRS defined by

$$
\mathrm{Crs}^{\text {add }}=\left(\mathrm{Crs}_{0}^{\prime}, \mathrm{Crs}_{1}^{\prime}, \mathrm{Crs}_{2}^{\prime} \cup\left\{\begin{array}{l}
q \\
\phi_{\alpha}^{\alpha} \\
\text { for } q \text { in } \mathrm{Crs}_{1}^{\prime}
\end{array}\right\}, \mathrm{Crs}_{3}^{\prime}\right)
$$

- Assume that $\mathrm{Crs}^{\text {add }}$ admits a 3-cell of the following form

- We define a new DOO as follows: for $p, q \in \operatorname{Crs}_{1}^{\prime}$, we set $m:=\max (\ell(p), \ell(q))$. We add to $\Phi p, q$ the components $\left(c_{k}(D)\right)_{1 \leq k \leq m}$ defined by:
- 0 if there is no - on the k-th strand and if the k-strand is not a through strand, but this can not occur with only braidings.
- the number of crossings below the upper dot of the k-th strand.
- Example. For

$$
D=
$$

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the Nil-Hecke algebra $\mathcal{N} \mathcal{H}_{n}^{0}$ which is a \mathbb{K}-algebra for a field \mathbb{K} defined by:

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the Nil-Hecke algebra $\mathcal{N} \mathcal{H}_{n}^{0}$ which is a \mathbb{K}-algebra for a field \mathbb{K} defined by:
- generators $\xi_{i}=\left.\left.\left.\right|_{1} \ldots\right|_{i} \cdots\right|_{n}$ for $1 \leq i \leq n$ and $\partial_{i}=\left.|\cdots\rangle_{i+1} \cdots\right|_{n}$ for

$$
1 \leq i<n ;
$$

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the Nil-Hecke algebra $\mathcal{N} \mathcal{H}_{n}^{0}$ which is a \mathbb{K}-algebra for a field \mathbb{K} defined by:
- generators $\xi_{i}=\left.\left.\right|_{1} \ldots \dagger_{i} \cdots\right|_{n}$ for $1 \leq i \leq n$ and $\partial_{i}=\left|\cdots \searrow_{i+1} \ldots\right|_{n}$ for $1 \leq i<n ;$
- relations:

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the Nil-Hecke algebra $\mathcal{N} \mathcal{H}_{n}^{0}$ which is a \mathbb{K}-algebra for a field \mathbb{K} defined by:
- generators $\xi_{i}=\left.\left.\left.\right|_{1} \cdots\right|_{i} \cdots\right|_{n}$ for $1 \leq i \leq n$ and $\partial_{i}=\left.\left.\right|_{1} \ldots \sum_{i+1} \ldots\right|_{n}$ for $1 \leq i<n ;$
- relations:

- $\coprod_{n \in \mathbb{N}^{*}} \mathcal{N} \mathcal{H}_{n}^{0}$ form a linear (2,2)-category with only one 0 -cell, the 1 -cells are permutations and 2-cells are braiding diagrams.

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the Nil-Hecke algebra $\mathcal{N} \mathcal{H}_{n}^{0}$ which is a \mathbb{K}-algebra for a field \mathbb{K} defined by:
- generators $\xi_{i}=\left.\left.\left.\right|_{1} \ldots\right|_{i} \cdots\right|_{n}$ for $1 \leq i \leq n$ and $\partial_{i}=\left.\left.\right|_{1} \ldots \sum_{i+1} \ldots\right|_{n}$ for $1 \leq i<n ;$
- relations:

- $\coprod_{n \in \mathbb{N}^{*}} \mathcal{N} \mathcal{H}_{n}^{0}$ form a linear (2,2)-category with only one 0 -cell, the 1 -cells are permutations and 2-cells are braiding diagrams.
- Let Σ be a DRS presenting $\coprod_{n \in \mathbb{N}^{*}} \mathcal{N} \mathcal{H}_{n}^{0}$ with relations oriented as above.

Example: the nil Hecke algebra

- For $n \in \mathbb{N}$, let us consider the Nil-Hecke algebra $\mathcal{N} \mathcal{H}_{n}^{0}$ which is a \mathbb{K}-algebra for a field \mathbb{K} defined by:
- generators $\xi_{i}=\left.\left.\left.\right|_{1} \cdots\right|_{i} \cdots\right|_{n}$ for $1 \leq i \leq n$ and $\partial_{i}=\left.\left.\right|_{1} \ldots \sum_{i+1} \ldots\right|_{n}$ for $1 \leq i<n ;$
- relations:

- $\coprod_{n \in \mathbb{N}^{*}} \mathcal{N} \mathcal{H}_{n}^{0}$ form a linear (2,2)-category with only one 0 -cell, the 1 -cells are permutations and 2-cells are braiding diagrams.
- Let Σ be a DRS presenting $\coprod_{n \in \mathbb{N}^{*}} \mathcal{N} \mathcal{H}_{n}^{0}$ with relations oriented as above.
- We prove that Σ is terminating using the following DOO: for a given diagram D in $\mathcal{N} \mathcal{H}_{n}^{0}(\sigma, \tau)$,

$$
\Phi_{\sigma, \tau}(D)=\left(c(D), \mathrm{yb}(D), c_{1}(D), \ldots, c_{n}(D)\right)
$$

Termination with adjunctions

- Let \mathcal{C} be a linear (2,2)-category whose 1-cells are equipped with biadjunctions, yielding isotopy relations of the form

$$
\bigcap \quad \cap \quad \mid \quad \cap=1
$$

Termination with adjunctions

- Let \mathcal{C} be a linear (2,2)-category whose 1-cells are equipped with biadjunctions, yielding isotopy relations of the form

$$
\bigcap=1 ; \quad \bigcup=1
$$

- If there is an additional 2-cell α which is cyclic wrt biadjunction $p \vdash q \vdash p$, we have to impose some new relations of the form:

$$
\cap J==\|
$$

Termination with adjunctions

- Let \mathcal{C} be a linear (2,2)-category whose 1-cells are equipped with biadjunctions, yielding isotopy relations of the form

$$
\bigcap \Rightarrow 1 ; \quad \bigcap \Rightarrow 1
$$

- If there is an additional 2-cell α which is cyclic wrt biadjunction $p \vdash q \vdash p$, we have to impose some new relations of the form:

$$
\bigcap 引 \Rightarrow \mid \Leftarrow \oint
$$

- The DRS given by these orientations is not confluent: the first Knuth-Bendix step imposes to add the following relations:

$$
\cap=\bigcap, \quad \downarrow=\bigcup .
$$

Prototypical example: the 3-polygraph of pearls

- Let Pearl be the DRS defined by:
- only one 0-cell *;
- only one 1-cell p;
- generating 2-cells:

\cup,

- the following 3-cells:

$$
0 \geqslant 1 \cdot u=1 .
$$

$\downarrow \Rightarrow \bigcup$.

- Let Pearl be the DRS defined by:
- only one 0-cell *;
- only one 1-cell p;
- generating 2-cells:
 U,
- the following 3-cells:

$$
\bigcap \Rightarrow|, \quad \bigcup \Rightarrow|, \quad \bigcap \Rightarrow \bigcap, \quad \bigcup \Rightarrow \bigcup .
$$

- Pearl is terminating, using the following $\mathrm{DOO} \Phi_{p, p}(D)=(I(D), \mathrm{l}-\operatorname{dot}(D))$ where:
- Let Pearl be the DRS defined by:
- only one 0-cell *;
- only one 1-cell p;
- generating 2-cells:
 U, \cap
- the following 3-cells:

$$
\bigcap \Rightarrow|, \quad \bigcup \Rightarrow|, \quad \bigcap \Rightarrow \bigcap, \quad \bigcup \Rightarrow \bigcup .
$$

- Pearl is terminating, using the following $\mathrm{DOO} \Phi_{p, p}(D)=(I(D), \mathrm{l}-\operatorname{dot}(D))$ where:
- $I(D)$ corresponds to the number of caps and cups in D;
- Let Pearl be the DRS defined by:
- only one 0-cell *;
- only one 1-cell p;
- generating 2-cells:
 $\bigcap ;$
- the following 3-cells:

$$
\bigcap \Rightarrow|, \quad \bigcup \Rightarrow|, \quad \bigcap \Rightarrow \bigcap, \quad \bigcup \Rightarrow \bigcup .
$$

- Pearl is terminating, using the following $\mathrm{DOO} \Phi_{p, p}(D)=(I(D), \mathrm{l}-\operatorname{dot}(D))$ where:
- I(D) corresponds to the number of caps and cups in D;
- l- dot (D) corresponds to the number of positively left-dotted caps and cups, that is the number of elements and (with at least one \bullet) appearing in D with the convention

$$
1-\operatorname{dot}(n \bigcap)=1-\operatorname{dot}(n \downarrow):=n
$$

- Let Pearl be the DRS defined by:
- only one 0-cell *;
- only one 1-cell p;
- generating 2-cells:
〇;
- the following 3-cells:

$$
\bigcap \Rightarrow|, \quad \bigcup \Rightarrow|, \quad \bigcap \Rightarrow \bigcap, \quad \bigcup \Rightarrow \bigcup .
$$

- Pearl is terminating, using the following $\mathrm{DOO} \Phi_{p, p}(D)=(I(D), \mathrm{l}-\operatorname{dot}(D))$ where:
- I(D) corresponds to the number of caps and cups in D;
- l- dot (D) corresponds to the number of positively left-dotted caps and cups, that is the number of elements and (with at least one \bullet) appearing in D with the convention

$$
1-\operatorname{dot}(n \curvearrowleft)=1-\operatorname{dot}(n \bigcup):=n
$$

- Adding a \star_{0} and \star_{1}-context to D, we add a constant number of cups and caps, and l-dot (D) can not increase since a dot cannot move from right of a cap/cup to its left even by adding a context

Termination or quasi-termination ?

- If we choose different orientation for the dot move relations, we create rewriting cycles

$$
0=0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0
$$

Termination or quasi-termination ?

- If we choose different orientation for the dot move relations, we create rewriting cycles

$$
\mathrm{O}=\mathrm{O} \Rightarrow \mathrm{O}=\mathrm{O} \Rightarrow \mathrm{O}
$$

- In a DRS Σ, there are indexed critical branchings of the following form:

where f, g, h, k are 2 -cells of Σ and α, β are 3 -cells of Σ.

Termination or quasi-termination ?

- If we choose different orientation for the dot move relations, we create rewriting cycles

$$
\mathrm{O}=\mathrm{O} \Rightarrow \mathrm{O}=\mathrm{O} \Rightarrow \mathrm{O}
$$

- In a DRS Σ, there are indexed critical branchings of the following form:

where f, g, h, k are 2 -cells of Σ and α, β are 3 -cells of Σ.
- With dot moves oriented as in Pearl, there is an indexed branching for each 2-cell that can be plugged in the following diagram

Example. If Σ contains braiding 2 -cells $\sigma_{p, q}$ for any p, q in Σ_{1}, there are infinitely many indexed critical branchings in Σ for each $n \in \mathbb{N}$.

Termination or quasi-termination ?

- If we choose different orientation for the dot move relations, we create rewriting cycles

$$
\mathrm{O}=\mathrm{O} \Rightarrow \mathrm{O}=\mathrm{O} \Rightarrow \mathrm{O}
$$

- In a DRS Σ, there are indexed critical branchings of the following form:

where f, g, h, k are 2 -cells of Σ and α, β are 3 -cells of Σ.
- With dot moves oriented as in Pearl, there is an indexed branching for each 2-cell that can be plugged in the following diagram

Example. If Σ contains braiding 2-cells $\sigma_{p, q}$ for any p, q in Σ_{1}, there are infinitely many indexed critical branchings in Σ for each $n \in \mathbb{N}$.

Quasi-termination

- A DRS Σ is quasi-terminating if for each rewriting sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ of 2-cells of Σ, it contains an infinite number of occurences of the same 2-cell.
- Let Σ be a DRS containing the following 3-cells:

$$
\Longrightarrow \Rightarrow 9
$$

$$
\bigcup \Rightarrow \downarrow
$$

Σ is not terminating, one wants to study its quasi-termination.

- A quasi-reduced monomial in Σ is a monomial on which we can only apply the rules

- We may prove that Σ is quasi-terminating by constructing a DOO on the sets Q-red $\left(\Sigma_{2}(p, q)\right)$ of quasi-reduced monomials between two 1 -cells p and q.
- This DOO does not take into account the number of left-dotted cups and caps.
- It ensures that there is no other obstruction to termination than the bubble cycles.

General heuristics

- Let \mathcal{C} be a linear (2,2)-category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:

General heuristics

- Let \mathcal{C} be a linear (2,2)-category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
- Yang-Baxter relations;

General heuristics

- Let \mathcal{C} be a linear (2,2)-category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
- Yang-Baxter relations;
- relations making the number of braidings decrease as symmetric group relations;

General heuristics

- Let \mathcal{C} be a linear (2,2)-category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
- Yang-Baxter relations;
- relations making the number of braidings decrease as symmetric group relations;
- commutation of some of the cyclic 2-cells with the braidings, eventually creating residues with lower crossings;

General heuristics

- Let \mathcal{C} be a linear (2,2)-category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
- Yang-Baxter relations;
- relations making the number of braidings decrease as symmetric group relations;
- commutation of some of the cyclic 2-cells with the braidings, eventually creating residues with lower crossings;
- the isotopy relations coming from the adjunctions and the cyclicity of the 2-cells;

General heuristics

- Let \mathcal{C} be a linear (2,2)-category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
- Yang-Baxter relations;
- relations making the number of braidings decrease as symmetric group relations;
- commutation of some of the cyclic 2-cells with the braidings, eventually creating residues with lower crossings;
- the isotopy relations coming from the adjunctions and the cyclicity of the 2-cells;
- some other relations that make the number of crossings or the number of cups and caps decrease;

General heuristics

- Let \mathcal{C} be a linear (2,2)-category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
- Yang-Baxter relations;
- relations making the number of braidings decrease as symmetric group relations;
- commutation of some of the cyclic 2-cells with the braidings, eventually creating residues with lower crossings;
- the isotopy relations coming from the adjunctions and the cyclicity of the 2-cells;
- some other relations that make the number of crossings or the number of cups and caps decrease;
- (in a \mathbb{Z}-graded context, some relations making the degree decrease with a lower bound on the degree under which all diagrams are zero).

General heuristics

- Let \mathcal{C} be a linear (2,2)-category endowed with braidings, duals and some additionnal cyclic 2 -cells which admits a presentation by generators and relations containing further of the following:
- Yang-Baxter relations;
- relations making the number of braidings decrease as symmetric group relations;
- commutation of some of the cyclic 2-cells with the braidings, eventually creating residues with lower crossings;
- the isotopy relations coming from the adjunctions and the cyclicity of the 2-cells;
- some other relations that make the number of crossings or the number of cups and caps decrease;
- (in a \mathbb{Z}-graded context, some relations making the degree decrease with a lower bound on the degree under which all diagrams are zero).
- Proposition. There is a DRS Σ presenting \mathcal{C} in which the relations are oriented in such a way that $\Phi_{p, q}(s(\alpha))>\Phi_{p, q}(t(\alpha))$ for a DOO of Σ constructed as above and any 3 -cell α, and thus Σ is terminating.

IV. Illustration on the
 linear (3, 2)-polygraph $\mathcal{K} \mathcal{L} \mathcal{R}$

- Let $\mathcal{K} \mathcal{L} \mathcal{R}$ be the linear (3,2)-polygraph defined by:

The linear (3, 2)-polygraph $\mathcal{K} \mathcal{L} \mathcal{R}$

- Let $\mathcal{K} \mathcal{L R}$ be the linear (3,2)-polygraph defined by:
- $\mathcal{K} \mathcal{L R}_{0}$ is a set X corresponding to the weight lattice of a Kac-Moody algebra;
- Let $\mathcal{K} \mathcal{L R}$ be the linear (3,2)-polygraph defined by:
- $\mathcal{K L R}_{0}$ is a set X corresponding to the weight lattice of a Kac-Moody algebra;
- $\mathcal{K L R}_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- Let $\mathcal{K} \mathcal{L R}$ be the linear (3,2)-polygraph defined by:
- $\mathcal{K} \mathcal{L R}_{0}$ is a set X corresponding to the weight lattice of a Kac-Moody algebra;
- $\mathcal{K} \mathcal{L} \mathcal{R}_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{K} \mathcal{L R}_{2}$ admits for generating 2-cells:
- Let $\mathcal{K} \mathcal{L R}$ be the linear (3,2)-polygraph defined by:
- $\mathcal{K} \mathcal{L R}_{0}$ is a set X corresponding to the weight lattice of a Kac-Moody algebra;
- $\mathcal{K} \mathcal{L} \mathcal{R}_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{K} \mathcal{L R}_{2}$ admits for generating 2-cells:

- The 3-cells in $\mathcal{K} \mathcal{L R}_{3}$ are given by:
- Let $\mathcal{K} \mathcal{L} \mathcal{R}$ be the linear (3,2)-polygraph defined by:
- $\mathcal{K} \mathcal{L R}_{0}$ is a set X corresponding to the weight lattice of a Kac-Moody algebra;
- $\mathcal{K} \mathcal{L} \mathcal{R}_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{K} \mathcal{L R}_{2}$ admits for generating 2-cells:

- The 3-cells in $\mathcal{K} \mathcal{L R}_{3}$ are given by:
- The 3-cells of the nilHecke algebras described previously.
- Let $\mathcal{K} \mathcal{L} \mathcal{R}$ be the linear (3,2)-polygraph defined by:
- $\mathcal{K} \mathcal{L R}_{0}$ is a set X corresponding to the weight lattice of a Kac-Moody algebra;
- $\mathcal{K} \mathcal{L} \mathcal{R}_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{K} \mathcal{L R}_{2}$ admits for generating 2-cells:

- The 3-cells in $\mathcal{K} \mathcal{L R}_{3}$ are given by:
- The 3-cells of the nilHecke algebras described previously.
- The isotopy 3-cells;
- Let $\mathcal{K} \mathcal{L} \mathcal{R}$ be the linear (3,2)-polygraph defined by:
- $\mathcal{K} \mathcal{L R}_{0}$ is a set X corresponding to the weight lattice of a Kac-Moody algebra;
- $\mathcal{K} \mathcal{L R}_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{K} \mathcal{L R}_{2}$ admits for generating 2-cells:
+

- The 3-cells in $\mathcal{K} \mathcal{L R}_{3}$ are given by:
- The 3-cells of the nilHecke algebras described previously.
- The isotopy 3-cells;
- Some bubble conditions 3-cells:

$$
\begin{aligned}
{ }^{n}{ }^{\lambda} & \Rightarrow \begin{cases}1_{1_{\lambda}} & \text { if } n=h-1 \\
0 & \text { if } n<h-1\end{cases} \\
{ }^{\lambda}{ }^{n} & \Rightarrow \begin{cases}1_{1_{\lambda}} & \text { if } n=-h-1 \\
0 & \text { if } n<-h-1\end{cases}
\end{aligned}
$$

The linear (3, 2)-polygraph $\mathcal{K} \mathcal{L} \mathcal{R}$

- The 3-cells in $\mathcal{K} \mathcal{L R}_{3}$ are given by:
- The 3-cells in $\mathcal{K} \mathcal{L R}_{3}$ are given by:
- the infinite Grassmanniann relation: for any $\lambda \in X$ and $\alpha>0$,

$$
h-\mathbf{1}+\alpha \bigcup_{i} \lambda \Rightarrow-\sum_{l=1}^{\alpha} h-1+\alpha-1 \quad \bigcup_{i} \lambda \bigcup_{i}^{-h-1+l}
$$

where h is a number given by the Kac-Moody algebra.

- The 3-cells in $\mathcal{K} \mathcal{L R}_{3}$ are given by:
- the infinite Grassmanniann relation: for any $\lambda \in X$ and $\alpha>0$,

$$
{ }^{h-1+\alpha} \bigcup_{i} \lambda-\sum_{l=1}^{\alpha} h-\mathbf{1 + \alpha - 1} \quad \bigcup_{i} \times \bigcup^{-h-1+l}
$$

where h is a number given by the Kac-Moody algebra.

- Some invertibility 3-cells:

- The 3-cells in $\mathcal{K} \mathcal{L R}_{3}$ are given by:
- the infinite Grassmanniann relation: for any $\lambda \in X$ and $\alpha>0$,

$$
{ }^{h-1+\alpha} \bigcup_{i} \Rightarrow-\sum_{l=1}^{\alpha}{ }^{h-1+\alpha-1} \quad \bigcup_{i}^{-h-1+l}
$$

where h is a number given by the Kac-Moody algebra.

- Some invertibility 3-cells:

- Some " $\mathfrak{s l}_{2}$ " 3-cells:

$$
\sum_{n=0}^{n} \overbrace{n}^{n} \overbrace{\lambda}^{-n-1} ;-\sum_{n=0}^{-h}
$$

The linear $(3,2)$-polygraph $\mathcal{K} \mathcal{L} \mathcal{R}$

- $\mathcal{K} \mathcal{L R}$ is terminating using the following DOO:

$$
\begin{array}{clc}
\Phi_{\varepsilon, \varepsilon^{\prime}}: \mathcal{K} \mathcal{L} \mathcal{R}_{2}\left(\varepsilon, \varepsilon^{\prime}\right) & \rightarrow & \mathbb{N}^{m+4} \times \mathbb{Z} \\
D & \mapsto & \left(c(D), c_{1}(D), \ldots, c_{m}(D), \operatorname{ybg}(D), I(D), l-\operatorname{dot}(D), \operatorname{deg}_{b}(D)\right)
\end{array}
$$

with:

- $c(D)$ is the number of crossings between strands in D;
- for $1 \leq k \leq m, c_{k}(D)$ is defined as above;
- $\operatorname{ybg}(D)$ defined as above;
- $I(D)$ corresponds to the number of rightward caps and leftward cups that appear in D;
- I-dot (D) corresponds to the number of positively leftward dotted caps and cups as described above.

$$
\operatorname{deg}_{b}(D):= \begin{cases}\#\{\text { bubbles in } D\}+\sum_{\pi \text { clockwise bubble in } D} \operatorname{deg}(\pi) & \text { if } D \text { is a diagram with } \\ 0 & \text { if } D \text { is a diagram witho } \\ -\infty & \text { if } D=0 .\end{cases}
$$

Conclusion

- We presented heuristics to prove termination of some DRS presenting diagrammatic algebras coming from representation theory.
- The next question to study is confluence of these DRS.
- The diagrammatic structure yield a combinatorial explosion for computation of critical pairs, as for instance isotopy relations.
- Isotopy should not be considered as rewrite rules, but as equations we have to take into account when rewriting.
- Develop a context of rewriting modulo isotopy, and obtain linear bases and coherence results in that setting.

