

Coherence modulo relations

Dupont Benjamin - Malbos Philippe

International Workshop on Confluence

Oxford, 7 July 2018

Motivations: algebraic context

- ▶ This work is part of **algebraic rewriting**, consisting in applying rewriting methods to study intrinsic properties of algebraic structures presented by generators and relations.

- ▶ This work is part of **algebraic rewriting**, consisting in applying rewriting methods to study intrinsic properties of algebraic structures presented by generators and relations.
- ▶ For instance, computation of **syzygies** (relations among relations): for the group $\mathbb{Z}^3 = \langle x, y, z \mid [x, y] = 1, [y, z] = 1, [z, x] = 1 \rangle$, the Jacobi identity

$$[x^y, [y, z]][y^z, [z, x]][z^x, [x, y]] = 1$$

is such a syzygy, with $[x, y] = xyx^{-1}y^{-1}$ and $x^y = y^{-1}xy$.

Motivations: algebraic context

- ▶ This work is part of **algebraic rewriting**, consisting in applying rewriting methods to study intrinsic properties of algebraic structures presented by generators and relations.
- ▶ For instance, computation of **syzygies** (relations among relations): for the group $\mathbb{Z}^3 = \langle x, y, z \mid [x, y] = 1, [y, z] = 1, [z, x] = 1 \rangle$, the Jacobi identity

$$[x^y, [y, z]][y^z, [z, x]][z^x, [x, y]] = 1$$

is such a syzygy, with $[x, y] = xyx^-y^-$ and $x^y = y^-xy$.

- ▶ For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, **Guiraud-Malbos '09**, **Gaussent-Guiraud-Malbos '14**, **Hage-Malbos '16**.

- ▶ This work is part of **algebraic rewriting**, consisting in applying rewriting methods to study intrinsic properties of algebraic structures presented by generators and relations.
- ▶ For instance, computation of **syzygies** (relations among relations): for the group $\mathbb{Z}^3 = \langle x, y, z \mid [x, y] = 1, [y, z] = 1, [z, x] = 1 \rangle$, the Jacobi identity

$$[x^y, [y, z]][y^z, [z, x]][z^x, [x, y]] = 1$$

is such a syzygy, with $[x, y] = xyx^{-1}y^{-1}$ and $x^y = y^{-1}xy$.

- ▶ For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, **Guiraud-Malbos '09**, **Gaussent-Guiraud-Malbos '14**, **Hage-Malbos '16**.
- ▶ Seeing a group $G = \langle X \mid R \rangle$ as a monoid $M = \langle X \coprod \overline{X} \mid R \cup \{xx^{-1} \xrightarrow{\alpha_x} 1, x^{-1}x \xrightarrow{\overline{\alpha_x}} 1\}_{x \in X}$, the confluence diagram

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Motivation: main objectives

- ▶ Develop a rewriting theory in any algebraic structure.

Motivation: main objectives

- ▶ Develop a rewriting theory in any algebraic structure.
 - ▶ Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.

Motivation: main objectives

- ▶ Develop a rewriting theory in any algebraic structure.
 - ▶ Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.
 - ▶ A **Peiffer branching** for monoids can be seen as a branching modulo the set of associativity axioms as follows:

Motivation: main objectives

- ▶ Develop a rewriting theory in any algebraic structure.
 - ▶ Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.
 - ▶ A **Peiffer branching** for monoids can be seen as a branching modulo the set of associativity axioms as follows:

- ▶ Obtain coherence results and computations of linear bases in rewriting modulo with two main objectives:

Motivation: main objectives

- ▶ Develop a rewriting theory in any algebraic structure.
 - ▶ Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.
 - ▶ A **Peiffer branching** for monoids can be seen as a branching modulo the set of associativity axioms as follows:

- ▶ Obtain coherence results and computations of linear bases in rewriting modulo with two main objectives:
 - ▶ Rewriting in groups, and in particular Artin groups: $B_3 = \langle s, t \mid stst^{-1}s^{-1}t^{-1} = 1 \rangle$.

$$s = \text{X} |, \quad t = | \text{X}$$

Motivation: main objectives

- ▶ Develop a rewriting theory in any algebraic structure.
 - ▶ Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.
 - ▶ A **Peiffer branching** for monoids can be seen as a branching modulo the set of associativity axioms as follows:

- ▶ Obtain coherence results and computations of linear bases in rewriting modulo with two main objectives:

- ▶ Rewriting in groups, and in particular Artin groups: $B_3 = \langle s, t \mid stst^{-1}s^{-1}t^{-1} = 1 \rangle$.

$$s = \text{X|}, \quad t = |\text{X}$$

- ▶ Rewriting in higher dimensional diagrammatic algebras, modulo the axioms of vector spaces and isotopies diagrams given by relations of the form

$$\cap = | ;$$

$$\cup = | ;$$

$$\cap \bullet = | = \cup \bullet$$

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .
- ▶ The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

$$s \Rightarrow_{R/E} t \text{ iff } \exists s', t' \text{ such that } s \approx_E s', t \approx_E t' \text{ and } s' \Rightarrow_R t'$$

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .
- ▶ The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

$$s \Rightarrow_{R/E} t \text{ iff } \exists s', t' \text{ such that } s \approx_E s', t \approx_E t' \text{ and } s' \Rightarrow_R t'$$

- ▶ This is inefficient for computations.

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .
- ▶ The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

$$s \Rightarrow_{R/E} t \text{ iff } \exists s', t' \text{ such that } s \approx_E s', t \approx_E t' \text{ and } s' \Rightarrow_R t'$$

- ▶ This is inefficient for computations.
- ▶ Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E .

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .
- ▶ The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

$$s \Rightarrow_{R/E} t \text{ iff } \exists s', t' \text{ such that } s \approx_E s', t \approx_E t' \text{ and } s' \Rightarrow_R t'$$

- ▶ This is inefficient for computations.
- ▶ Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E .
 - ▶ Newman's lemma and critical pair lemma.

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .
- ▶ The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

$$s \Rightarrow_{R/E} t \text{ iff } \exists s', t' \text{ such that } s \approx_E s', t \approx_E t' \text{ and } s' \Rightarrow_R t'$$

- ▶ This is inefficient for computations.
- ▶ Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E .
 - ▶ Newman's lemma and critical pair lemma.
- ▶ Jouannaud-Kirchner extended this approach by studying any rewriting system S such that $R \subseteq S \subseteq R/E$.

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .
- ▶ The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

$$s \Rightarrow_{R/E} t \text{ iff } \exists s', t' \text{ such that } s \approx_E s', t \approx_E t' \text{ and } s' \Rightarrow_R t'$$

- ▶ This is inefficient for computations.
- ▶ Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E .
 - ▶ Newman's lemma and critical pair lemma.
- ▶ Jouannaud-Kirchner extended this approach by studying any rewriting system S such that $R \subseteq S \subseteq R/E$.
 - ▶ For $S :=_E R = \{u \Rightarrow v \mid \exists u' \text{ such that } u \approx_E u' \text{ and } u' \Rightarrow v \text{ is in } R\}$, they give a critical pair lemma involving E -unification and a completion procedure.

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .
- ▶ The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

$$s \Rightarrow_{R/E} t \text{ iff } \exists s', t' \text{ such that } s \approx_E s', t \approx_E t' \text{ and } s' \Rightarrow_R t'$$

- ▶ This is inefficient for computations.
- ▶ Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E .
 - ▶ Newman's lemma and critical pair lemma.
- ▶ Jouannaud-Kirchner extended this approach by studying any rewriting system S such that $R \subseteq S \subseteq R/E$.
 - ▶ For $S :=_E R = \{u \Rightarrow v \mid \exists u' \text{ such that } u \approx_E u' \text{ and } u' \Rightarrow v \text{ is in } R\}$, they give a critical pair lemma involving E -unification and a completion procedure.
 - ▶ Bachmair-Dershowitz generalized this completion procedure for infinite set of equations E .

Different approaches in rewriting modulo

- ▶ We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E .
- ▶ The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

$$s \Rightarrow_{R/E} t \text{ iff } \exists s', t' \text{ such that } s \approx_E s', t \approx_E t' \text{ and } s' \Rightarrow_R t'$$

- ▶ This is inefficient for computations.
- ▶ Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E .
 - ▶ Newman's lemma and critical pair lemma.
- ▶ Jouannaud-Kirchner extended this approach by studying any rewriting system S such that $R \subseteq S \subseteq R/E$.
 - ▶ For $S :=_E R = \{u \Rightarrow v \mid \exists u' \text{ such that } u \approx_E u' \text{ and } u' \Rightarrow v \text{ is in } R\}$, they give a critical pair lemma involving E -unification and a completion procedure.
 - ▶ Bachmair-Dershowitz generalized this completion procedure for infinite set of equations E .
- ▶ In this work, we use Huet's approach and generalize Squier's theorem for SRS to a coherence result modulo.

I. Confluence modulo

II. Coherence from confluence modulo

I. Confluence modulo

Categorical formulations for string rewriting systems

- We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.

Categorical formulations for string rewriting systems

- ▶ We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- ▶ Consider the free X^* on X , seen as a 1-category with only one 0-cell and 1-cells are strings on elements of X .

Categorical formulations for string rewriting systems

- ▶ We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- ▶ Consider the free X^* on X , seen as a 1-category with only one 0-cell and 1-cells are strings on elements of X .
 - ▶ Any two 1-cells of X^* are composable and the composition corresponds to concatenation of strings.

Categorical formulations for string rewriting systems

- ▶ We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- ▶ Consider the free X^* on X , seen as a 1-category with only one 0-cell and 1-cells are strings on elements of X .
 - ▶ Any two 1-cells of X^* are composable and the composition corresponds to concatenation of strings.
- ▶ We construct R^* the free 2-category of **rewritings** generated by (X, R) as follows:

Categorical formulations for string rewriting systems

- ▶ We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- ▶ Consider the free X^* on X , seen as a 1-category with only one 0-cell and 1-cells are strings on elements of X .
 - ▶ Any two 1-cells of X^* are composable and the composition corresponds to concatenation of strings.
- ▶ We construct R^* the free 2-category of **rewritings** generated by (X, R) as follows:
 - ▶ It has only one 0-cell, its 1-cells are strings on X and its 2-cells are rewriting paths of R .

Categorical formulations for string rewriting systems

- ▶ We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- ▶ Consider the free X^* on X , seen as a 1-category with only one 0-cell and 1-cells are strings on elements of X .
 - ▶ Any two 1-cells of X^* are composable and the composition corresponds to concatenation of strings.
- ▶ We construct R^* the free 2-category of **rewritings** generated by (X, R) as follows:
 - ▶ It has only one 0-cell, its 1-cells are strings on X and its 2-cells are rewriting paths of R .
 - ▶ The \star_0 -composition in R^* corresponds to concatenation of strings, and the \star_1 -composition is the sequential composition of rewritings of R .

Categorical formulations for string rewriting systems

- ▶ We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- ▶ Consider the free X^* on X , seen as a 1-category with only one 0-cell and 1-cells are strings on elements of X .
 - ▶ Any two 1-cells of X^* are composable and the composition corresponds to concatenation of strings.
- ▶ We construct R^* the free 2-category of **rewritings** generated by (X, R) as follows:
 - ▶ It has only one 0-cell, its 1-cells are strings on X and its 2-cells are rewriting paths of R .
 - ▶ The \star_0 -composition in R^* corresponds to concatenation of strings, and the \star_1 -composition is the sequential composition of rewritings of R .
 - ▶ Each 2-cell f of R^* can be decomposed into a sequence $f = f_1 \star_1 f_2 \star_1 \dots \star_1 f_k$, where each f_i is a 2-cell corresponding to a rewriting step of the form:

Categorical formulations for string rewriting systems

- ▶ The free $(2, 1)$ -category of equivalences R^\top generated by (X, R) is the free 2 -category R^* in which all the 2 -cells are invertible with respect to the \star_1 -composition.

Categorical formulations for string rewriting systems

- ▶ The free $(2,1)$ -category of equivalences R^\top generated by (X, R) is the free 2 -category R^* in which all the 2 -cells are invertible with respect to the \star_1 -composition.
- ▶ For any 2 -cell $f : u \Rightarrow v$ in R^* , there exist a 2 -cell $f^- : v \Rightarrow u$ in R^\top such that

$$\begin{array}{ccc} \text{Diagram 1: } & \text{Diagram 2: } & \text{Diagram 3: } \\ \text{Left: } \begin{array}{c} u \\ \text{---} \\ \text{---} \\ \text{---} \\ w \end{array} & \text{Left: } \begin{array}{c} u \\ \text{---} \\ \text{---} \\ \text{---} \\ u \end{array} & \text{Left: } \begin{array}{c} v \\ \text{---} \\ \text{---} \\ \text{---} \\ v \end{array} \\ \text{Right: } \begin{array}{c} u \\ \text{---} \\ \text{---} \\ \text{---} \\ w \end{array} & \text{Right: } \begin{array}{c} u \\ \text{---} \\ \text{---} \\ \text{---} \\ u \end{array} & \text{Right: } \begin{array}{c} v \\ \text{---} \\ \text{---} \\ \text{---} \\ v \end{array} \\ \text{Bottom: } \begin{array}{c} \Psi_f \\ \text{---} \\ \text{---} \\ \text{---} \\ \Psi_{f^-} \end{array} & \text{Bottom: } \begin{array}{c} \downarrow \mathbf{1}_u \\ \text{---} \\ \text{---} \\ \text{---} \\ \downarrow \mathbf{1}_u \end{array} & \text{Bottom: } \begin{array}{c} \Psi_{f^-} \\ \text{---} \\ \text{---} \\ \text{---} \\ \Psi_f \end{array} \\ \text{Bottom: } \begin{array}{c} \Psi_f \\ \text{---} \\ \text{---} \\ \text{---} \\ \Psi_{f^-} \end{array} & \text{Bottom: } \begin{array}{c} \downarrow \mathbf{1}_u \\ \text{---} \\ \text{---} \\ \text{---} \\ \downarrow \mathbf{1}_u \end{array} & \text{Bottom: } \begin{array}{c} \Psi_{f^-} \\ \text{---} \\ \text{---} \\ \text{---} \\ \Psi_f \end{array} \end{array}$$

Categorical formulations for string rewriting systems

- ▶ The free $(2,1)$ -category of equivalences R^\top generated by (X, R) is the free 2 -category R^* in which all the 2 -cells are invertible with respect to the \star_1 -composition.
- ▶ For any 2 -cell $f : u \Rightarrow v$ in R^* , there exist a 2 -cell $f^- : v \Rightarrow u$ in R^\top such that

$$\begin{array}{ccc} \text{Diagram 1: } & & \text{Diagram 2: } \\ \begin{array}{c} \text{Left: } \begin{array}{c} u \\ \text{---} \\ \text{Down: } \Psi_f \\ \text{Up: } \Psi_{f^-} \\ \text{Right: } v \\ \text{Bottom: } w \end{array} \end{array} & = & \begin{array}{c} \text{Left: } \begin{array}{c} u \\ \text{---} \\ \text{Down: } \downarrow \mathbf{1}_u \\ \text{Up: } \uparrow \mathbf{1}_u \\ \text{Right: } u \end{array} \end{array} \\ & & \\ \begin{array}{c} \text{Left: } \begin{array}{c} v \\ \text{---} \\ \text{Down: } \Psi_{f^-} \\ \text{Up: } \Psi_f \\ \text{Right: } u \\ \text{Bottom: } v \end{array} \end{array} & = & \begin{array}{c} \text{Left: } \begin{array}{c} v \\ \text{---} \\ \text{Down: } \downarrow \mathbf{1}_v \\ \text{Up: } \uparrow \mathbf{1}_v \\ \text{Right: } v \end{array} \end{array} \end{array}$$

- ▶ The 2 -cells of R^\top corresponds to elements of the equivalence relation generated by R , denoted by \approx_R .

Categorical formulations for string rewriting systems

- ▶ The free $(2,1)$ -category of equivalences R^\top generated by (X, R) is the free 2 -category R^* in which all the 2 -cells are invertible with respect to the \star_1 -composition.
- ▶ For any 2 -cell $f : u \Rightarrow v$ in R^* , there exist a 2 -cell $f^- : v \Rightarrow u$ in R^\top such that

$$\begin{array}{ccc} \text{Diagram showing } \Psi_f \text{ and } \Psi_{f^-} \text{ as 2-cells in } R^* & = & \text{Diagram showing } \Psi_{f^-} \text{ and } \Psi_f \text{ as 2-cells in } R^\top \end{array}$$

The diagrams show 2-cells Ψ_f and Ψ_{f^-} as curved arrows between objects u and v . The left diagram is in R^* and the right diagram is in R^\top . The labels Ψ_f and Ψ_{f^-} are in blue.

- ▶ The 2 -cells of R^\top corresponds to elements of the equivalence relation generated by R , denoted by \approx_R .
- ▶ A 2 -cell $u \Rightarrow v$ in R^\top is given by a zigzag rewriting sequence of 2 -cells of R^* :

$$f_1 \star g_1^{-1} \star_1 \cdots \star_1 f_n \star_1 g_n^{-1}$$

- ▶ Let R and E be two SRS on X .

Huet's confluence modulo E

- ▶ Let R and E be two SRS on X .
- ▶ A **branching modulo E** of the SRS R is a pair (f, g) of 2-cells of R^* such that $s_1(f) \approx_E s_1(g)$:

Huet's confluence modulo E

- ▶ Let R and E be two SRS on X .
- ▶ A **branching modulo E** of the SRS R is a pair (f, g) of 2-cells of R^* such that $s_1(f) \approx_E s_1(g)$:

- ▶ It is **local** if $\ell(f), \ell(g), \ell(e) \leq 1$ and $\ell(f) + \ell(g) + \ell(e) = 2$.

Huet's confluence modulo E

- Let R and E be two SRS on X .
- A **branching modulo E** of the SRS R is a pair (f, g) of 2-cells of R^* such that $s_1(f) \approx_E s_1(g)$:

- It is **local** if $\ell(f), \ell(g), \ell(e) \leq 1$ and $\ell(f) + \ell(g) + \ell(e) = 2$.
- A branching (f, g) is **confluent modulo E** if there exists 2-cells f' and g' in R^* such that

- R is **confluent modulo E** if all of its branchings are confluent modulo E .

Classification of branchings modulo

- An **aspherical** (resp. **Peiffer**) branching modulo E of R is a pair (f, f) (resp. (fv, ug) or (fv, ue)) of 2-cells of R^* depicted by

Classification of branchings modulo

- An **aspherical** (resp. **Peiffer**) branching modulo E of R is a pair (f, f) (resp. (fv, ug) or (fv, ue)) of 2-cells of R^* depicted by

- For the local branchings, we have local aspherical and local Peiffer branchings

Classification of branchings modulo

- An **aspherical** (resp. **Peiffer**) branching modulo E of R is a pair (f, f) (resp. (fv, ug) or (fv, ue)) of 2-cells of R^* depicted by

- For the local branchings, we have local aspherical and local Peiffer branchings

- **overlaps** branchings are the remaining local branchings, in which we distinguish two families for 2-cells f, g in R^* of length 1 and a 2-cell e in E^T of length 1:

Classification of branchings modulo

- An **aspherical** (resp. **Peiffer**) branching modulo E of R is a pair (f, f) (resp. (fv, ug) or (fv, ue)) of 2-cells of R^* depicted by

- For the local branchings, we have local aspherical and local Peiffer branchings

- **overlaps** branchings are the remaining local branchings, in which we distinguish two families for 2-cells f, g in R^* of length 1 and a 2-cell e in E^T of length 1:

- A **critical branching modulo E** is an overlapping local branching that is minimal for the

► **Theorem.** [Huet '80]

If the SRS R_E containing rules of the form $u \Rightarrow v$ if there exists v' in X^* such that $v \approx_E v'$ and $u \Rightarrow v'$ is in R is terminating, then

$(R$ confluent modulo $E)$ iff $(\text{Overlappings of } R \text{ are confluent modulo } E)$

► **Theorem.** [Huet '80]

If the SRS R_E containing rules of the form $u \Rightarrow v$ if there exists v' in X^* such that $v \approx_E v'$ and $u \Rightarrow v'$ is in R is terminating, then

$(R$ confluent modulo $E)$ iff $(\text{Overlippings of } R \text{ are confluent modulo } E)$

► Proof based on Noetherian induction principle applied to an auxiliary SRS on $X \times X$ and the property:

$$\mathcal{P}(x, y) : x \approx_E y \Rightarrow \left(\forall x', y' \mid x \Rightarrow_R^* x' \& y \Rightarrow_R^* y' \text{ implies } x' \stackrel{E}{\vee} y' \right)$$

where $x \stackrel{E}{\vee} y$ if and only if there exist 2-cells $x \Rightarrow x'$ and $y \Rightarrow y'$ in R^* such that $x' \approx_E y'$.

► **Theorem.** [Huet '80]

If the SRS R_E containing rules of the form $u \Rightarrow v$ if there exists v' in X^* such that $v \approx_E v'$ and $u \Rightarrow v'$ is in R is terminating, then

$(R$ confluent modulo $E)$ iff $(\text{Overlippings of } R \text{ are confluent modulo } E)$

► Proof based on Noetherian induction principle applied to an auxiliary SRS on $X \times X$ and the property:

$$\mathcal{P}(x, y) : x \approx_E y \Rightarrow \left(\forall x', y' \mid x \Rightarrow_R^* x' \& y \Rightarrow_R^* y' \text{ implies } x' \stackrel{E}{\vee} y' \right)$$

where $x \stackrel{E}{\vee} y$ if and only if there exist 2-cells $x \Rightarrow x'$ and $y \Rightarrow y'$ in R^* such that $x' \approx_E y'$.

► **Theorem.** [Huet '80]

R is locally confluent modulo a SRS E if and only if any critical branching of R modulo E is confluent modulo E .

II. Coherence from confluence modulo

- ▶ A **2-sphere modulo E** in R^{\top} is a pair (f, g) of both non trivial 2-cells in R^{\top} which are **parallel modulo E** , that is $s_1(f) \approx_E s_1(g)$ and $t_1(f) \approx_E t_1(g)$. We denote by $\text{Sph}_E(R)$ the set of 2-spheres modulo E in R^{\top} .

2-Spheres modulo E

- ▶ A **2-sphere modulo E** in R^\top is a pair (f, g) of both non trivial 2-cells in R^\top which are **parallel modulo E** , that is $s_1(f) \approx_E s_1(g)$ and $t_1(f) \approx_E t_1(g)$. We denote by $\text{Sph}_E(R)$ the set of 2-spheres modulo E in R^\top .
- ▶ Such a 2-sphere is depicted by one of the following diagrams:

2-Spheres modulo E

- ▶ A **2-sphere modulo E** in R^\top is a pair (f, g) of both non trivial 2-cells in R^\top which are **parallel modulo E** , that is $s_1(f) \approx_E s_1(g)$ and $t_1(f) \approx_E t_1(g)$. We denote by $\text{Sph}_E(R)$ the set of 2-spheres modulo E in R^\top .
- ▶ Such a 2-sphere is depicted by one of the following diagrams:

- ▶ A **cellular extension of R^\top modulo E** is a set Γ equipped with a map $\gamma : \Gamma \rightarrow \text{Sph}_E(R)$, whose elements are called **3-cells modulo E** .

2-Spheres modulo E

- ▶ A **2-sphere modulo E** in R^\top is a pair (f, g) of both non trivial 2-cells in R^\top which are **parallel modulo E** , that is $s_1(f) \approx_E s_1(g)$ and $t_1(f) \approx_E t_1(g)$. We denote by $\text{Sph}_E(R)$ the set of 2-spheres modulo E in R^\top .
- ▶ Such a 2-sphere is depicted by one of the following diagrams:

- ▶ A **cellular extension of R^\top modulo E** is a set Γ equipped with a map $\gamma : \Gamma \rightarrow \text{Sph}_E(R)$, whose elements are called **3-cells modulo E** .

2-Spheres modulo E

- ▶ A **2-sphere modulo E** in R^\top is a pair (f, g) of both non trivial 2-cells in R^\top which are **parallel modulo E** , that is $s_1(f) \approx_E s_1(g)$ and $t_1(f) \approx_E t_1(g)$. We denote by $\text{Sph}_E(R)$ the set of 2-spheres modulo E in R^\top .
- ▶ Such a 2-sphere is depicted by one of the following diagrams:

- ▶ A **cellular extension of R^\top modulo E** is a set Γ equipped with a map $\gamma : \Gamma \longrightarrow \text{Sph}_E(R)$, whose elements are called **3-cells modulo E** .
- ▶ We say that Γ is **coherent** if the map γ is surjective, that is if each 2-sphere modulo E can be filled with a 3-cell of Γ .

Acyclic extensions

- Given a cellular extension Γ of $R^{\mathbb{T}}$ modulo E , we define 3 formal compositions of 3-cells in Γ as follows:

Acyclic extensions

- Given a cellular extension Γ of R^\top modulo E , we define 3 formal compositions of 3-cells in Γ as follows:
 - The \star_0 -composition of any 3-cells A and B is defined by

Acyclic extensions

- Given a cellular extension Γ of R^T modulo E , we define 3 formal compositions of 3-cells in Γ as follows:
 - The \star_0 -composition of any 3-cells A and B is defined by

- The \star_1 -composition of any 3-cells A and B such that $t_1s_2(A) = s_1s_2(B)$ and $t_1t_2(A) = s_1t_2(B)$ is defined by

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E , we define 3 formal compositions of 3-cells in Γ as follows:

Acyclic extensions

- Given a cellular extension Γ of R^\top modulo E , we define 3 formal compositions of 3-cells in Γ as follows:
 - The \star_2 -composition of any 3-cells A and B such that $t_2(A) = s_2(B)$ is defined by

Acyclic extensions

- Given a cellular extension Γ of R^\top modulo E , we define 3 formal compositions of 3-cells in Γ as follows:
 - The \star_2 -composition of any 3-cells A and B such that $t_2(A) = s_2(B)$ is defined by

- We denote by $\mathcal{C}(\Gamma)$ the closure of Γ with respect to compositions \star_0 , \star_1 and \star_2 of 3-cells of Γ and their formal inverses A^{-1} for $A \in \Gamma$ quotiented by:

Acyclic extensions

- Given a cellular extension Γ of R^\top modulo E , we define 3 formal compositions of 3-cells in Γ as follows:
 - The \star_2 -composition of any 3-cells A and B such that $t_2(A) = s_2(B)$ is defined by

- We denote by $\mathcal{C}(\Gamma)$ the closure of Γ with respect to compositions \star_0 , \star_1 and \star_2 of 3-cells of Γ and their formal inverses A^{-1} for $A \in \Gamma$ quotiented by:
 - the exchange relations $(A \star_i B) \star_j (A' \star_i B') = (A \star_j A') \star_i (B \star_j B')$ for any $0 \leq i < j \leq 2$;

Acyclic extensions

- Given a cellular extension Γ of R^\top modulo E , we define 3 formal compositions of 3-cells in Γ as follows:
 - The \star_2 -composition of any 3-cells A and B such that $t_2(A) = s_2(B)$ is defined by

- We denote by $\mathcal{C}(\Gamma)$ the closure of Γ with respect to compositions \star_0 , \star_1 and \star_2 of 3-cells of Γ and their formal inverses A^{-1} for $A \in \Gamma$ quotiented by:
 - the exchange relations $(A \star_i B) \star_j (A' \star_i B') = (A \star_j A') \star_i (B \star_j B')$ for any $0 \leq i < j \leq 2$;
 - the invertibility relations $A \star_i A^{-1} = 1_{s_i(A)}$ for any A in Γ and $i = 0, 1, 2$.

Acyclic extensions

- Given a cellular extension Γ of R^\top modulo E , we define 3 formal compositions of 3-cells in Γ as follows:
 - The \star_2 -composition of any 3-cells A and B such that $t_2(A) = s_2(B)$ is defined by

- We denote by $\mathcal{C}(\Gamma)$ the closure of Γ with respect to compositions \star_0 , \star_1 and \star_2 of 3-cells of Γ and their formal inverses A^{-1} for $A \in \Gamma$ quotiented by:
 - the exchange relations $(A \star_i B) \star_j (A' \star_i B') = (A \star_j A') \star_i (B \star_j B')$ for any $0 \leq i < j \leq 2$;
 - the invertibility relations $A \star_i A^{-1} = 1_{s_i(A)}$ for any A in Γ and $i = 0, 1, 2$.
- We say that Γ is an **acyclic extension modulo E** of R^\top if $\mathcal{C}(\Gamma)$ is a coherent extension modulo E of R^\top .

Double groupoids

- ▶ The underlying categorical structure is given by a **double groupoid**, that is a pair $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ of categories in which all **1-cells** are invertible, with:

Double groupoids

- ▶ The underlying categorical structure is given by a **double groupoid**, that is a pair $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ of categories in which all **1-cells** are invertible, with:
 - ▶ 1-cells of \mathcal{C}_0 are **vertical arrows** of \mathcal{C} ;

Double groupoids

- ▶ The underlying categorical structure is given by a **double groupoid**, that is a pair $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ of categories in which all 1-cells are invertible, with:
 - ▶ 1-cells of \mathcal{C}_0 are **vertical arrows** of \mathcal{C} ;
 - ▶ 0-cells of \mathcal{C}_1 are **horizontal arrows** of \mathcal{C} ;

Double groupoids

- ▶ The underlying categorical structure is given by a **double groupoid**, that is a pair $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ of categories in which all 1-cells are invertible, with:

- ▶ 1-cells of \mathcal{C}_0 are **vertical arrows** of \mathcal{C} ;
- ▶ 0-cells of \mathcal{C}_1 are **horizontal arrows** of \mathcal{C} ;

Double groupoids

- The underlying categorical structure is given by a **double groupoid**, that is a pair $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ of categories in which all **1-cells** are invertible, with:
 - 1-cells of \mathcal{C}_0 are **vertical arrows** of \mathcal{C} ;
 - 0-cells of \mathcal{C}_1 are **horizontal arrows** of \mathcal{C} ;

- 1-cells of \mathcal{C}_1 are **2-cells** in \mathcal{C} , pictured by

$$\begin{array}{ccc} p & \xrightarrow{f} & q \\ \downarrow e & \Downarrow \alpha & \downarrow e' \\ p' & \xrightarrow{f'} & q' \end{array}$$

- The compositions of 2-cells in a double groupoid are given by

$$\begin{array}{ccccc} u & \xrightarrow{f} & v & \xrightarrow{f'} & w \\ \downarrow e & \Downarrow A & \downarrow e' & \downarrow B & \downarrow e'' \\ u' & \xrightarrow{g} & v' & \xrightarrow{g'} & w' \end{array} \rightsquigarrow \begin{array}{ccccc} u & \xrightarrow{ff'} & w \\ \downarrow e & \Downarrow A \circ B & \downarrow e'' \\ u' & \xrightarrow{gg'} & w' \end{array} \quad \begin{array}{ccccc} u & \xrightarrow{f} & v & \xrightarrow{f'} & w \\ \downarrow e & \Downarrow A & \downarrow e' & \downarrow B & \downarrow e'' \\ u' & \xrightarrow{g} & v' & \xrightarrow{g'} & w' \\ \downarrow & & \downarrow & & \downarrow \\ u'' & \xrightarrow{h} & v'' & & \end{array} \rightsquigarrow \begin{array}{ccccc} u & \xrightarrow{f} & v & \xrightarrow{f'} & w \\ \downarrow e & \Downarrow A \circ_1 B & \downarrow e' & & \downarrow e'' \\ u'' & \xrightarrow{h} & v'' & & \end{array}$$

corresponding to \star_1 and \star_2 -compositions in $\mathcal{C}(\Gamma)$.

Coherence from confluence modulo

- Let us assume that R is confluent modulo E . An homotopical completion modulo E of R is a cellular extension modulo E of R^\top whose elements are the 3-cells

for any critical branching (f, g) and (f, e) of R modulo E , where f, g are rewriting steps of R and e is a one-step equivalence of E .

Coherence from confluence modulo

- Let us assume that R is confluent modulo E . An homotopical completion modulo E of R is a cellular extension modulo E of R^\top whose elements are the 3-cells

for any critical branching (f, g) and (f, e) of R modulo E , where f, g are rewriting steps of R and e is a one-step equivalence of E .

- Theorem.** [D.-Malbos '18]

Let R and E be two SRS on X such that R_E is terminating and R is confluent modulo E .

Then any Squier's completion of R modulo E is an acyclic extension of R^\top modulo E .

Coherence from confluence modulo

- Let us assume that R is confluent modulo E . An homotopical completion modulo E of R is a cellular extension modulo E of R^\top whose elements are the 3-cells

for any critical branching (f, g) and (f, e) of R modulo E , where f, g are rewriting steps of R and e is a one-step equivalence of E .

- Theorem.** [D.-Malbos '18]

Let R and E be two SRS on X such that R_E is terminating and R is confluent modulo E .

Then any Squier's completion of R modulo E is an acyclic extension of R^\top modulo E .

- The proof of this theorem is separated into 5 steps.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E , there exist 3-cells $A : f \star_1 f' \Rightarrow g \star_1 g'$ and $B : f \star_1 f' \Rightarrow e \star_1 g'$ modulo E in $\mathcal{C}(S(R, E))$ as in the following diagram:

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E , there exist 3-cells $A : f \star_1 f' \Rightarrow g \star_1 g'$ and $B : f \star_1 f' \Rightarrow e \star_1 g'$ modulo E in $\mathcal{C}(S(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E , there exist 3-cells $A : f \star_1 f' \Rightarrow g \star_1 g'$ and $B : f \star_1 f' \Rightarrow e \star_1 g'$ modulo E in $\mathcal{C}(S(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.
- If (f, g) is a Peiffer branching, we can choose f' and g' such that $f \star_1 f' = g \star_1 g'$ and we set A an identity.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E , there exist 3-cells $A : f \star_1 f' \Rightarrow g \star_1 g'$ and $B : f \star_1 f' \Rightarrow e \star_1 g'$ modulo E in $\mathcal{C}(S(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.
- If (f, g) is a Peiffer branching, we can choose f' and g' such that $f \star_1 f' = g \star_1 g'$ and we set A an identity.
- If (f, e) is a Peiffer branching with f in R^* and e in E^\top , we can choose f' as the empty 2-cell, $g'' = f$ and the right equivalence being e so that B is also an identity.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E , there exist 3-cells $A : f \star_1 f' \Rightarrow g \star_1 g'$ and $B : f \star_1 f' \Rightarrow e \star_1 g'$ modulo E in $\mathcal{C}(S(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.
- If (f, g) is a Peiffer branching, we can choose f' and g' such that $f \star_1 f' = g \star_1 g'$ and we set A an identity.
- If (f, e) is a Peiffer branching with f in R^* and e in E^\top , we can choose f' as the empty 2-cell, $g'' = f$ and the right equivalence being e so that B is also an identity.
- If (f, g) (resp. (f, e)) is an overlapping that is not critical, we have $(f, g) = (uhv, ukv)$ (resp. $(f, e) = (uhv, ue'v)$) for some u, v in X^* such that both (h, k) and (h, e') are critical.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E , there exist 3-cells $A : f \star_1 f' \Rightarrow g \star_1 g'$ and $B : f \star_1 f' \Rightarrow e \star_1 g'$ modulo E in $\mathcal{C}(S(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.
- If (f, g) is a Peiffer branching, we can choose f' and g' such that $f \star_1 f' = g \star_1 g'$ and we set A an identity.
- If (f, e) is a Peiffer branching with f in R^* and e in E^\top , we can choose f' as the empty 2-cell, $g'' = f$ and the right equivalence being e so that B is also an identity.
- If (f, g) (resp. (f, e)) is an overlapping that is not critical, we have $(f, g) = (uhv, ukv)$ (resp. $(f, e) = (uhv, ue'v)$) for some u, v in X^* such that both (h, k) and (h, e') are critical.
- We consider the 3-cells $A' : f \star_1 f' \Rightarrow_E g \star_1 g'$ and $B' : f \star_1 f' \Rightarrow_E e \star_1 g''$ corresponding respectively to the critical branchings (h, k) and (h, e') . We conclude by setting

$$f' = uh'v \quad g' = uk'v \quad g'' = ue'v \quad A' = u \star_0 A' \star_0 v \quad B = u \star_0 B' \star_0 v.$$

Proof: Step 2

- ▶ For any 2-cells $f : x \Rightarrow y$ and $g : x \Rightarrow z$ of R^* with $y \approx_E z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(S(R, E))$:

Proof: Step 2

- For any 2-cells $f : x \Rightarrow y$ and $g : x \Rightarrow z$ of R^* with $y \approx_E z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(S(R, E))$:

Proof: Step 2

- For any 2-cells $f : x \Rightarrow y$ and $g : x \Rightarrow z$ of R^* with $y \approx_E z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(S(R, E))$:

Proof: Step 2

- For any 2-cells $f : x \Rightarrow y$ and $g : x \Rightarrow z$ of R^* with $y \approx_E z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(S(R, E))$:

Proof: Step 2

- For any 2-cells $f : x \Rightarrow y$ and $g : x \Rightarrow z$ of R^* with $y \approx_E z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(S(R, E))$:

Proof: Step 3

- ▶ For each rewriting steps $f : x \Rightarrow x'$ and $g : y \Rightarrow y'$ in R such that $x \approx_E^e y$, there exist 2-cells $f' : x' \Rightarrow x''$, $g' : y' \Rightarrow y''$ in R^* and a 3-cell modulo E from $f \star_1 f'$ to $g \star_1 g'$.

Proof: Step 3

- ▶ For each rewriting steps $f : x \Rightarrow x'$ and $g : y \Rightarrow y'$ in R such that $x \approx_E^e y$, there exist 2-cells $f' : x' \Rightarrow x''$, $g' : y' \Rightarrow y''$ in R^* and a 3-cell modulo E from $f \star_1 f'$ to $g \star_1 g'$.
- ▶ Proof by induction on $\ell(e)$.

Proof: Step 3

- ▶ For each rewriting steps $f : x \Rightarrow x'$ and $g : y \Rightarrow y'$ in R such that $x \approx_E^e y$, there exist 2-cells $f' : x' \Rightarrow x''$, $g' : y' \Rightarrow y''$ in R^* and a 3-cell modulo E from $f \star_1 f'$ to $g \star_1 g'$.
- ▶ Proof by induction on $\ell(e)$.
 - ▶ If $\ell(e) = 0$, this is Step 1.

Proof: Step 3

- ▶ For each rewriting steps $f : x \Rightarrow x'$ and $g : y \Rightarrow y'$ in R such that $x \approx_E^e y$, there exist 2-cells $f' : x' \Rightarrow x''$, $g' : y' \Rightarrow y''$ in R^* and a 3-cell modulo E from $f *_1 f'$ to $g *_1 g'$.
- ▶ Proof by induction on $\ell(e)$.
 - ▶ If $\ell(e) = 0$, this is Step 1.
 - ▶ If $\ell(e) = 1$, the result is proved by the following diagram

Proof: Step 3

- For each rewriting steps $f : x \Rightarrow x'$ and $g : y \Rightarrow y'$ in R such that $x \approx_E^e y$, there exist 2-cells $f' : x' \Rightarrow x''$, $g' : y' \Rightarrow y''$ in R^* and a 3-cell modulo E from $f *_1 f'$ to $g *_1 g'$.
- Proof by induction on $\ell(e)$.
 - If $\ell(e) = 0$, this is Step 1.
 - If $\ell(e) = 1$, the result is proved by the following diagram

Proof: Step 3

- For each rewriting steps $f : x \Rightarrow x'$ and $g : y \Rightarrow y'$ in R such that $x \approx_E^e y$, there exist 2-cells $f' : x' \Rightarrow x''$, $g' : y' \Rightarrow y''$ in R^* and a 3-cell modulo E from $f *_1 f'$ to $g *_1 g'$.
- Proof by induction on $\ell(e)$.
 - If $\ell(e) = 0$, this is Step 1.
 - If $\ell(e) = 1$, the result is proved by the following diagram

Proof: Step 3

- For each rewriting steps $f : x \Rightarrow x'$ and $g : y \Rightarrow y'$ in R such that $x \approx_E^e y$, there exist 2-cells $f' : x' \Rightarrow x''$, $g' : y' \Rightarrow y''$ in R^* and a 3-cell modulo E from $f \star_1 f'$ to $g \star_1 g'$.
- Proof by induction on $\ell(e)$.
 - If $\ell(e) = 0$, this is Step 1.
 - If $\ell(e) = 1$, the result is proved by the following diagram

- Suppose the result proved for $\ell(e) = k > 1$ and let us prove the result for $\ell(e) = k + 1$.

Proof: Step 4

- ▶ For any 2-cells $f : x \Rightarrow \hat{x}$ and $g : y \Rightarrow \hat{y}$ with $x \approx_E^e y$, there exists a 3-cell $A : f \Rightarrow_E g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 4

- For any 2-cells $f : x \Rightarrow \hat{x}$ and $g : y \Rightarrow \hat{y}$ with $x \approx_E^e y$, there exists a 3-cell $A : f \Rightarrow_E g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 4

- For any 2-cells $f : x \Rightarrow \hat{x}$ and $g : y \Rightarrow \hat{y}$ with $x \approx_E^e y$, there exists a 3-cell $A : f \Rightarrow_E g$ modulo E in $\mathcal{C}(S(R, E))$.

Proof: Step 4

- For any 2-cells $f : x \Rightarrow \hat{x}$ and $g : y \Rightarrow \hat{y}$ with $x \approx_E^e y$, there exists a 3-cell $A : f \Rightarrow_E g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 4

- For any 2-cells $f : x \Rightarrow \hat{x}$ and $g : y \Rightarrow \hat{y}$ with $x \approx_E^e y$, there exists a 3-cell $A : f \Rightarrow_E g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 5

- ▶ Every 2-sphere modulo E of R^\top is the boundary of a 3-cell modulo E of $\mathcal{C}(S(R, E))$.

Proof: Step 5

- ▶ Every 2-sphere modulo E of R^\top is the boundary of a 3-cell modulo E of $\mathcal{C}(S(R, E))$.
- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ in R^* . Using confluence modulo E of R ,

Proof: Step 5

- ▶ Every 2-sphere modulo E of R^\top is the boundary of a 3-cell modulo E of $\mathcal{C}(S(R, E))$.
- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ in R^* . Using confluence modulo E of R ,

- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ of R^\top ; it can be decomposed in a non unique way into a zigzag sequence $f_1 * g_1^{-1} *_1 \dots *_1 f_n *_1 g_n^{-1}$ where each f_i and g_i is a 2-cell of R^* .

Proof: Step 5

- ▶ Every 2-sphere modulo E of R^\top is the boundary of a 3-cell modulo E of $\mathcal{C}(S(R, E))$.
- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ in R^* . Using confluence modulo E of R ,

- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ of R^\top ; it can be decomposed in a non unique way into a zigzag sequence $f_1 * g_1^{-1} *_1 \dots *_1 f_n *_1 g_n^{-1}$ where each f_i and g_i is a 2-cell of R^* .
- ▶ We define a 3-cell modulo $\sigma_f : f *_1 \sigma_v \Rightarrow_E \sigma_u$ in $\mathcal{C}(S(R, E))$ as the following composition:

$$u \xrightarrow{f_1} v_1 \xleftarrow{g_1} u_2 \Rightarrow (\dots) \Leftarrow u_n \xrightarrow{f_n} v_n \xleftarrow{g_n} v$$

Proof: Step 5

- ▶ Every 2-sphere modulo E of R^\top is the boundary of a 3-cell modulo E of $\mathcal{C}(S(R, E))$.
- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ in R^* . Using confluence modulo E of R ,

- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ of R^\top ; it can be decomposed in a non unique way into a zigzag sequence $f_1 \star g_1^{-1} \star_1 \cdots \star_1 f_n \star_1 g_n^{-1}$ where each f_i and g_i is a 2-cell of R^* .
- ▶ We define a 3-cell modulo $\sigma_f : f \star_1 \sigma_v \Rightarrow_E \sigma_u$ in $\mathcal{C}(S(R, E))$ as the following composition:

Proof: Step 5

- ▶ Every 2-sphere modulo E of R^\top is the boundary of a 3-cell modulo E of $\mathcal{C}(S(R, E))$.
- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ in R^* . Using confluence modulo E of R ,

- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ of R^\top ; it can be decomposed in a non unique way into a zigzag sequence $f_1 * g_1^{-1} *_1 \dots *_1 f_n *_1 g_n^{-1}$ where each f_i and g_i is a 2-cell of R^* .
- ▶ We define a 3-cell modulo $\sigma_f : f *_1 \sigma_v \Rightarrow_E \sigma_u$ in $\mathcal{C}(S(R, E))$ as the following composition:

Proof: Step 5

- ▶ Every 2-sphere modulo E of R^\top is the boundary of a 3-cell modulo E of $\mathcal{C}(S(R, E))$.
- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ in R^* . Using confluence modulo E of R ,

- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ of R^\top ; it can be decomposed in a non unique way into a zigzag sequence $f_1 * g_1^{-1} * 1 \cdots * 1 f_n * 1 g_n^{-1}$ where each f_i and g_i is a 2-cell of R^* .
- ▶ We define a 3-cell modulo $\sigma_f : f * 1 \sigma_v \Rightarrow_E \sigma_u$ in $\mathcal{C}(S(R, E))$ as the following composition:

Proof: Step 5

- ▶ Every 2-sphere modulo E of R^\top is the boundary of a 3-cell modulo E of $\mathcal{C}(S(R, E))$.
- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ in R^* . Using confluence modulo E of R ,

- ▶ Let us consider a 2-cell $f : u \Rightarrow v$ of R^\top ; it can be decomposed in a non unique way into a zigzag sequence $f_1 * g_1^{-1} *_1 \dots *_1 f_n *_1 g_n^{-1}$ where each f_i and g_i is a 2-cell of R^* .
- ▶ We define a 3-cell modulo $\sigma_f : f *_1 \sigma_v \Rightarrow_E \sigma_u$ in $\mathcal{C}(S(R, E))$ as the following composition:

- ▶ For any 2-sphere (f, g) modulo E in R^\top , there exists a 3-cell modulo $f \Rightarrow_E g$ in $\mathcal{C}(\mathcal{S}(R, E))$ given by the following composition:

- For any 2-sphere (f, g) modulo E in R^\top , there exists a 3-cell modulo $f \Rightarrow_E g$ in $\mathcal{C}(S(R, E))$ given by the following composition:

Conclusion

- ▶ We obtained a coherence result for Huet's approach of rewriting modulo.

Conclusion

- ▶ We obtained a coherence result for Huet's approach of rewriting modulo.
 - ▶ The confluence of R modulo E is hard to obtain for the interesting cases.

Conclusion

- ▶ We obtained a coherence result for Huet's approach of rewriting modulo.
 - ▶ The confluence of R modulo E is hard to obtain for the interesting cases.
- ▶ **Objective** = generalize this coherence result to Jouannaud-Kirchner's approach for any SRS S such that

$$R \subseteq S \subseteq R/E$$

Conclusion

- ▶ We obtained a coherence result for Huet's approach of rewriting modulo.
 - ▶ The confluence of R modulo E is hard to obtain for the interesting cases.
- ▶ **Objective** = generalize this coherence result to Jouannaud-Kirchner's approach for any SRS S such that

$$R \subseteq S \subseteq R/E$$

- ▶ Study the particular case $S =_E R$, where Bachmair - Dershowitz's completion holds.

Conclusion

- ▶ We obtained a coherence result for Huet's approach of rewriting modulo.
 - ▶ The confluence of R modulo E is hard to obtain for the interesting cases.
- ▶ **Objective** = generalize this coherence result to Jouannaud-Kirchner's approach for any SRS S such that

$$R \subseteq S \subseteq R/E$$

- ▶ Study the particular case $S =_E R$, where Bachmair - Dershowitz's completion holds.
- ▶ Describe this completion in terms of critical pairs.

Conclusion

- ▶ We obtained a coherence result for Huet's approach of rewriting modulo.
 - ▶ The confluence of R modulo E is hard to obtain for the interesting cases.
- ▶ **Objective** = generalize this coherence result to Jouannaud-Kirchner's approach for any SRS S such that

$$R \subseteq S \subseteq R/E$$

- ▶ Study the particular case $S =_E R$, where Bachmair - Dershowitz's completion holds.
 - ▶ Describe this completion in terms of critical pairs.
- ▶ The main application is to obtain homotopical completions modulo, and in particular constructions of coherent presentations for
 - ▶ groups;
 - ▶ diagrammatic algebras.