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Motivations: algebraic context

I This work is part of algebraic rewriting, consisting in applying rewriting methods to

study intrinseque properties of algebraic structures presented by generators and

relations.

I For instance, computation of syzygies (relations among relations): for the group

Z3 = 〈x , y , z | [x , y ] = 1, [y , z] = 1, [z, x] = 1〉, the Jacobi identity

[xy , [y , z]][y z , [z, x]][zx , [x , y ]] = 1

is such a syzygy, with [x , y ] = xyx−y− and xy = y−xy .

I For monoids or categories, Squier's theorem gives a generating family for syzygies from

a �nite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14,

Hage-Malbos '16.

I Seeing a group G = 〈X | R〉 as a monoid M = 〈X
∐

X | R ∪ {xx−
αx⇒ 1, x−x

αx⇒ 1}x∈X ,

the con�uence diagram

s

ss−1s

αs s -5

sαs )1 s
is an artefact induced by the algebraic structure and should not be considered as a

syzygy.
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Motivation: main objectives

I Develop a rewriting theory in any algebraic structure.

I Take the algebraic axioms not as rewrite rules, but as equations that we take into account

when applying rewriting.

I A Pei�er branching for monoids can be seen as a branching modulo the set of associativity

axioms as follows:

(u′)v

(u)v

-5

u(v)

)1 u(v ′)

I Obtain coherence results and computations of linear bases in rewriting modulo with two
main objectives:

I Rewriting in groups, and in particular Artin groups: B3 = 〈s, t | stst−s−t− = 1〉.

s = , t = =

I Rewriting in higher dimensional diagrammatic algebras, modulo the axioms of vector spaces

and isotopies diagrams given by relations of the form

= ; = ; • = = •
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Di�erent approaches in rewriting modulo

I We split the whole set of equations into a set R of rewriting rules and a set E of

equations, and we will rewrite wrt R modulo E .

I The most naive approach is to consider a rewrite relation R/E on E -equivalence classes:

s ⇒R/E t i� ∃ s′, t′ such that s ≈E s′, t ≈E t′ and s′ ⇒R t′

I This is une�cient for computations.

I Huet's approach is to use rewriting wrt R and weaken the con�uence by allowing
sources and targets of con�uence to be equivalent modulo E .

I Newman's lemma and critical pair lemma.

I Jouannaud-Kirchner extended this approach by studying any rewriting system S such
that R ⊆ S ⊆ R/E .

I For S := E R = {u ⇒ v | ∃u′ such that u ≈E u′ and u′ ⇒ v is in R }, they give a critical

pair lemma involing E -uni�cation and a completion procedure.

I Bachmair-Dershowitz generalized this completion procedure for in�nite set of equations E .

I In this work, we use Huet's approach and generalize Squier's theorem for SRS to a

coherence result modulo.
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Plan of this talk

I. Con�uence modulo

II. Coherence from con�uence modulo



I. Con�uence modulo



Categorical formulations for string rewriting systems

I We consider a string rewriting system (X ,R) where X is a set of generators and R is a

set of rules.

I Consider the free X∗ on X , seen as a 1-category with only one 0-cell and 1-cells are
strings on elements of X .

I Any two 1-cells of X∗ are composable and the composition corresponds to concatenation

of strings.

I We construct R∗ the free 2-category of rewritings generated by (X ,R) as follows:

I It has only one 0-cell, its 1-cells are strings on X and its 2-cells are rewriting paths of R.

I The ?0-composition in R∗ corresponds to concatenation of strings, and the ?1-composition

is the sequential composition of rewritings of R.

I Each 2-cell f of R∗ can be decomposed into a sequence f = f1 ?1 f2 ?1 . . . ?1 fk , where

each fi is a 2-cell corresponding to a rewriting step of the form:

x
u // y

s1(f )

##

t1(f )

;;f�� z
v // t
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Categorical formulations for string rewriting systems

I The free (2, 1)-category of equivalences R> generated by (X ,R) is the free 2-category
R∗ in which all the 2-cells are invertible with respect to the ?1-composition.

I For any 2-cell f : u ⇒ v in R∗, there exist a 2-cell f− : v ⇒ u in R> such that

u

��
v //

w

DD
f��

f−��
=

u

��

u

>>1u��

v

��
u //

v

DD
f−��

f��
=

v

��

v

>>1v��

I The 2-cells of R> corresponds to elements of the equivalence relation generated by R,

denoted by ≈R .

I A 2-cell u ⇒ v in R> is given by a zigzag rewriting sequence of 2-cells of R∗:

f1 ? g−1
1

?1 · · · ?1 fn ?1 g−1n
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Huet's con�uence modulo E

I Let R and E be two SRS on X .

I A branching modulo E of the SRS R is a pair (f , g) of 2-cells of R∗ such that

s1(f ) ≈E s1(g):

u′

u

f +3

e

v

g +3 v ′

I It is local if `(f ), `(g), `(e) ≤ 1 and `(f ) + `(g) + `(e) = 2.

I A branching (f , g) is con�uent modulo E if there exists 2-cells f ′ and g ′ in R∗ such

that

u′ f ′

��
u

f ,4

w

v

g )1

w ′

v ′ g′

@H

I R is con�uent modulo E if all of its branchings are con�uent modulo E .



Huet's con�uence modulo E

I Let R and E be two SRS on X .

I A branching modulo E of the SRS R is a pair (f , g) of 2-cells of R∗ such that

s1(f ) ≈E s1(g):

u′

u

f +3

e

v

g +3 v ′

I It is local if `(f ), `(g), `(e) ≤ 1 and `(f ) + `(g) + `(e) = 2.

I A branching (f , g) is con�uent modulo E if there exists 2-cells f ′ and g ′ in R∗ such

that

u′ f ′

��
u

f ,4

w

v

g )1

w ′

v ′ g′

@H

I R is con�uent modulo E if all of its branchings are con�uent modulo E .



Huet's con�uence modulo E

I Let R and E be two SRS on X .

I A branching modulo E of the SRS R is a pair (f , g) of 2-cells of R∗ such that

s1(f ) ≈E s1(g):

u′

u

f +3

e

v

g +3 v ′

I It is local if `(f ), `(g), `(e) ≤ 1 and `(f ) + `(g) + `(e) = 2.

I A branching (f , g) is con�uent modulo E if there exists 2-cells f ′ and g ′ in R∗ such

that

u′ f ′

��
u

f ,4

w

v

g )1

w ′

v ′ g′

@H

I R is con�uent modulo E if all of its branchings are con�uent modulo E .



Huet's con�uence modulo E

I Let R and E be two SRS on X .

I A branching modulo E of the SRS R is a pair (f , g) of 2-cells of R∗ such that

s1(f ) ≈E s1(g):

u′

u

f +3

e

v

g +3 v ′

I It is local if `(f ), `(g), `(e) ≤ 1 and `(f ) + `(g) + `(e) = 2.

I A branching (f , g) is con�uent modulo E if there exists 2-cells f ′ and g ′ in R∗ such

that

u′ f ′

��
u

f ,4

w

v

g )1

w ′

v ′ g′

@H

I R is con�uent modulo E if all of its branchings are con�uent modulo E .



Classi�cation of branchings modulo

I An aspherical (resp. Pei�er) branching modulo E of R is a pair (f , f ) (resp. (fv , ug) or

(fv , ue)) of 2-cells of R∗ depicted by

u

f

�'
u′

u

f

7?
(resp.

u′v

uv

fv ,4

uv

ug *2 uv ′

or

u′v

uv

fv ,4

uv

ue uv ′

)

I For the local branchings, we have local aspherical and local Pei�er branchings

u

f
"*

f

4< v
u′v

uv

fv ,4

ug *2 uv ′

u′v

uv

fv ,4

��
ue �� uv ′

I overlappings branchings are the remaining local branchings, in which we distinguish two

families for 2-cells f , g in R∗ of length 1 and a 2-cell e in E> of length 1:

v

u

f *2

g +3 v ′

v

u

f *2

~~
e

�� v ′

I A critical branching modulo E is an overlapping local branching that is minimal for the

order generated by the relations (f , g) 4
(
ufv , ugv).
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Newman and critical pair lemmas modulo

I Theorem. [Huet '80]

If the SRS RE containing rules of the form u ⇒ v if there exists v ′ in X∗ such that

v ≈E v ′ and u ⇒ v ′ is in R is terminating, then

(R con�uent modulo E) i� (Overlappings of R are con�uent modulo E)

I Proof based on Noetherian induction principle applied to an auxiliary SRS on X × X

and the property:

P(x , y) : x ≈E y ⇒
(
∀ x ′, y ′ | x

∗⇒R x ′ & y
∗⇒R y ′ implies x ′

E
∨ y ′

)

where x
E
∨ y if and only if there exist 2-cells x ⇒ x ′ and y ⇒ y ′ in R∗ such that

x ′ ≈E y ′.

I Theorem. [Huet '80]

R is locally con�uent modulo a SRS E if and only if any critical branching of R

modulo E is con�uent modulo E .
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II. Coherence from con�uence modulo



2-Spheres modulo E

I A 2-sphere modulo E in R> is a pair (f , g) of both non trivial 2-cells in R> which are

parallel modulo E , that is s1(f ) ≈E s1(g) and t1(f ) ≈E t1(g). We denote by SphE (R)

the set of 2-spheres modulo E in R>.

I Such a 2-sphere is depicted by one of the following diagrams:

u

f
$,
v

u′

g

2: v ′

u
f +3

e

��

v

e′

��
u′

g
+3 v ′

u

&&
u′

88

f��

g��

v
&&

v′

88

I A cellular extension of R> modulo E is a set Γ equipped with a

map γ : Γ −→ SphE (R), whose elements are called 3-cells modulo E .
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I A cellular extension of R> modulo E is a set Γ equipped with a

map γ : Γ −→ SphE (R), whose elements are called 3-cells modulo E .

I We say that Γ is coherent if the map γ is surjective, that is if each 2-sphere modulo E

can be �lled with a 3-cell of Γ.



Acyclic extensions

I Given a cellular extension Γ of R> modulo E , we de�ne 3 formal compositions of 3-cells
in Γ as follows:

I The ?0-composition of any 3-cells A and B is de�ned by

u

''
u′

77
v

''
v′

77

A

7G

f��

g��

f ′��

g′��
B

7G

w ''

w′

77
t ''

t′

77

 

uv

''
u′v′

77

ff ′��

gg′��
A?0B
7G

wt ''

w′t′

77

I The ?1-composition of any 3-cells A and B such that t1s2(A) = s1s2(B) and

t1t2(A) = s1t2(B) is de�ned by

u

HH

u′

VV

A

Wg

f

+3

g +3
v

HH

v′

VV

B

Wg

f ′
+3

g′ +3
w

HH

w′

VV

 u

HH

u′

VV

A?1B
Wg

f ?1 f ′
+3

g?1g′+3
w

HH

w′

VV
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Acyclic extensions

I Given a cellular extension Γ of R> modulo E , we de�ne 3 formal compositions of 3-cells
in Γ as follows:

I The ?2-composition of any 3-cells A and B such that t2(A) = s2(B) is de�ned by
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I We denote by C(Γ) the closure of Γ with respect to compositions ?0, ?1 and ?2 of
3-cells of Γ and their formal inverses A−1 for A ∈ Γ quotiented by:

I the exchange relations (A ?i B) ?j (A′ ?i B′) = (A ?j A′) ?i (B ?j B′) for any 0 ≤ i < j ≤ 2;

I the invertibility relations A ?i A− = 1si (A) for any A in Γ and i = 0, 1, 2.

I We say that Γ is an acyclic extension modulo E of R> if C(Γ) is a coherent extension

modulo E of R>.
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Double groupoids

I The underlying categorical structure is given by a double groupoid, that is a pair
C = (C0, C1) of categories in which all 1-cells are invertible, with:

I 1-cells of C0 are vertical arrows of C;

I 0-cells of C1 are horizontal arrows of C;

I 1-cells of C1 are 2-cells in C, pictured by
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�� with p, p′, q, q′ 0-cells of C0.

I The compositions of 2-cells in a double groupoid are given by
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corresponding to ?1 and ?2-compositions in C(Γ).
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Coherence from con�uence modulo

I Let us assume that R is con�uent modulo E . An homotopical completion modulo E of

R is a cellular extension modulo E of R> whose elements are the 3-cells
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8@

for any critical branching (f , g) and (f , e) of R modulo E , where f , g are rewriting steps

of R and e is a one-step equivalence of E .

I Theorem. [D.-Malbos '18]

Let R and E be two SRS on X such that RE is terminating and R is con�uent modulo

E .

Then any Squier's completion of R modulo E is an acyclic extension of R> modulo E .

I The proof of this theorem is separated into 5 steps.
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Proof: Step 1

I For any local branching (f , g) and (f , e) of R modulo E with f , g in R and e in E ,

there exist 3-cells A : f ?1 f ′ V g ?1 g ′ and B : f ?1 f ′ V e ?1 g ′ modulo E

in C(S(R,E)) as in the following diagram:
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g (0
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v
g′

9A

u′
f ′
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rr
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v
g′′
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I If (f , g) is a local aspherical branching, A is an identity.

I If (f , g) is a Pei�er branching, , we can choose f ′ and g ′ such that f ?1 f ′ = g ?1 g ′ and

we set A an identity.

I If (f , e) is a Pei�er branching with f in R∗ and e in E>, we can choose f ′ as the empty

2-cell, g ′′ = f and the right equivalence being e so that B is also an identity.

I If (f , g) (resp. (f , e) ) is an overlapping that is not critical, we have (f , g) = (uhv , ukv)

(resp. (f , e) = (uhv , ue′v)) for some u, v in X∗ such that both (h, k) and (h, e′) are

critical.
I We consider the 3-cells A′ : f ?1 f ′ VE g ?1 g ′ and B′ : f ?1 f ′ VE e ?1 g ′′ corresponding

respectively to the critical branchings (h, k) and (h, e′). We conclude by setting

f ′ = uh′v g ′ = uk′v g ′′ = ue′v A′ = u ?0 A′ ?0 v B = u ?0 B′ ?0 v .



Proof: Step 1

I For any local branching (f , g) and (f , e) of R modulo E with f , g in R and e in E ,

there exist 3-cells A : f ?1 f ′ V g ?1 g ′ and B : f ?1 f ′ V e ?1 g ′ modulo E

in C(S(R,E)) as in the following diagram:

u′
f ′

�%

A
�

w

u

f .6

g (0
w ′

v
g′

9A

u′
f ′

�%

B
�

w

u

f .6

rr

e ��
w ′

v
g′′

9A

I If (f , g) is a local aspherical branching, A is an identity.

I If (f , g) is a Pei�er branching, , we can choose f ′ and g ′ such that f ?1 f ′ = g ?1 g ′ and

we set A an identity.

I If (f , e) is a Pei�er branching with f in R∗ and e in E>, we can choose f ′ as the empty

2-cell, g ′′ = f and the right equivalence being e so that B is also an identity.

I If (f , g) (resp. (f , e) ) is an overlapping that is not critical, we have (f , g) = (uhv , ukv)

(resp. (f , e) = (uhv , ue′v)) for some u, v in X∗ such that both (h, k) and (h, e′) are

critical.
I We consider the 3-cells A′ : f ?1 f ′ VE g ?1 g ′ and B′ : f ?1 f ′ VE e ?1 g ′′ corresponding

respectively to the critical branchings (h, k) and (h, e′). We conclude by setting

f ′ = uh′v g ′ = uk′v g ′′ = ue′v A′ = u ?0 A′ ?0 v B = u ?0 B′ ?0 v .



Proof: Step 1

I For any local branching (f , g) and (f , e) of R modulo E with f , g in R and e in E ,

there exist 3-cells A : f ?1 f ′ V g ?1 g ′ and B : f ?1 f ′ V e ?1 g ′ modulo E

in C(S(R,E)) as in the following diagram:

u′
f ′

�%

A
�

w

u

f .6

g (0
w ′

v
g′

9A

u′
f ′

�%

B
�

w

u

f .6

rr

e ��
w ′

v
g′′

9A

I If (f , g) is a local aspherical branching, A is an identity.

I If (f , g) is a Pei�er branching, , we can choose f ′ and g ′ such that f ?1 f ′ = g ?1 g ′ and

we set A an identity.

I If (f , e) is a Pei�er branching with f in R∗ and e in E>, we can choose f ′ as the empty

2-cell, g ′′ = f and the right equivalence being e so that B is also an identity.

I If (f , g) (resp. (f , e) ) is an overlapping that is not critical, we have (f , g) = (uhv , ukv)

(resp. (f , e) = (uhv , ue′v)) for some u, v in X∗ such that both (h, k) and (h, e′) are

critical.
I We consider the 3-cells A′ : f ?1 f ′ VE g ?1 g ′ and B′ : f ?1 f ′ VE e ?1 g ′′ corresponding

respectively to the critical branchings (h, k) and (h, e′). We conclude by setting

f ′ = uh′v g ′ = uk′v g ′′ = ue′v A′ = u ?0 A′ ?0 v B = u ?0 B′ ?0 v .



Proof: Step 1

I For any local branching (f , g) and (f , e) of R modulo E with f , g in R and e in E ,

there exist 3-cells A : f ?1 f ′ V g ?1 g ′ and B : f ?1 f ′ V e ?1 g ′ modulo E

in C(S(R,E)) as in the following diagram:

u′
f ′

�%

A
�

w

u

f .6

g (0
w ′

v
g′

9A

u′
f ′

�%

B
�

w

u

f .6

rr

e ��
w ′

v
g′′

9A

I If (f , g) is a local aspherical branching, A is an identity.

I If (f , g) is a Pei�er branching, , we can choose f ′ and g ′ such that f ?1 f ′ = g ?1 g ′ and

we set A an identity.

I If (f , e) is a Pei�er branching with f in R∗ and e in E>, we can choose f ′ as the empty

2-cell, g ′′ = f and the right equivalence being e so that B is also an identity.

I If (f , g) (resp. (f , e) ) is an overlapping that is not critical, we have (f , g) = (uhv , ukv)

(resp. (f , e) = (uhv , ue′v)) for some u, v in X∗ such that both (h, k) and (h, e′) are

critical.
I We consider the 3-cells A′ : f ?1 f ′ VE g ?1 g ′ and B′ : f ?1 f ′ VE e ?1 g ′′ corresponding

respectively to the critical branchings (h, k) and (h, e′). We conclude by setting

f ′ = uh′v g ′ = uk′v g ′′ = ue′v A′ = u ?0 A′ ?0 v B = u ?0 B′ ?0 v .



Proof: Step 1

I For any local branching (f , g) and (f , e) of R modulo E with f , g in R and e in E ,

there exist 3-cells A : f ?1 f ′ V g ?1 g ′ and B : f ?1 f ′ V e ?1 g ′ modulo E

in C(S(R,E)) as in the following diagram:

u′
f ′

�%

A
�

w

u

f .6

g (0
w ′

v
g′

9A

u′
f ′

�%

B
�

w

u

f .6

rr

e ��
w ′

v
g′′

9A

I If (f , g) is a local aspherical branching, A is an identity.

I If (f , g) is a Pei�er branching, , we can choose f ′ and g ′ such that f ?1 f ′ = g ?1 g ′ and

we set A an identity.

I If (f , e) is a Pei�er branching with f in R∗ and e in E>, we can choose f ′ as the empty

2-cell, g ′′ = f and the right equivalence being e so that B is also an identity.

I If (f , g) (resp. (f , e) ) is an overlapping that is not critical, we have (f , g) = (uhv , ukv)

(resp. (f , e) = (uhv , ue′v)) for some u, v in X∗ such that both (h, k) and (h, e′) are

critical.

I We consider the 3-cells A′ : f ?1 f ′ VE g ?1 g ′ and B′ : f ?1 f ′ VE e ?1 g ′′ corresponding

respectively to the critical branchings (h, k) and (h, e′). We conclude by setting

f ′ = uh′v g ′ = uk′v g ′′ = ue′v A′ = u ?0 A′ ?0 v B = u ?0 B′ ?0 v .



Proof: Step 1

I For any local branching (f , g) and (f , e) of R modulo E with f , g in R and e in E ,

there exist 3-cells A : f ?1 f ′ V g ?1 g ′ and B : f ?1 f ′ V e ?1 g ′ modulo E

in C(S(R,E)) as in the following diagram:

u′
f ′

�%

A
�

w

u

f .6

g (0
w ′

v
g′

9A

u′
f ′

�%

B
�

w

u

f .6

rr

e ��
w ′

v
g′′

9A

I If (f , g) is a local aspherical branching, A is an identity.

I If (f , g) is a Pei�er branching, , we can choose f ′ and g ′ such that f ?1 f ′ = g ?1 g ′ and

we set A an identity.

I If (f , e) is a Pei�er branching with f in R∗ and e in E>, we can choose f ′ as the empty

2-cell, g ′′ = f and the right equivalence being e so that B is also an identity.

I If (f , g) (resp. (f , e) ) is an overlapping that is not critical, we have (f , g) = (uhv , ukv)

(resp. (f , e) = (uhv , ue′v)) for some u, v in X∗ such that both (h, k) and (h, e′) are

critical.
I We consider the 3-cells A′ : f ?1 f ′ VE g ?1 g ′ and B′ : f ?1 f ′ VE e ?1 g ′′ corresponding

respectively to the critical branchings (h, k) and (h, e′). We conclude by setting

f ′ = uh′v g ′ = uk′v g ′′ = ue′v A′ = u ?0 A′ ?0 v B = u ?0 B′ ?0 v .



Proof: Step 2

I For any 2-cells f : x ⇒ y and g : x ⇒ z of R∗ with y ≈E z, there exists a 3-cell modulo

E from f to g in C(S(R,E)):
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Ind.



Proof: Step 3

I For each rewriting steps f : x ⇒ x ′ and g : y ⇒ y ′ in R such that x
e
≈E y , there exist

2-cells f ′ : x ′ ⇒ x ′′, g ′ : y ′ ⇒ y ′′ in R∗ and a 3-cell modulo E from f ?1 f ′ to g ?1 g ′.

I Proof by induction on `(e).

I If `(e) = 0, this is Step 1.

I If `(e) = 1, the result is proved by the following diagram
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Proof: Step 4

I For any 2-cells f : x ⇒ x̂ and g : y ⇒ ŷ with x
e
≈E y , there exists a 3-cell A : f VE g

modulo E in C(S(R,E)).
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y ′

g2

8@

=

=



Proof: Step 4

I For any 2-cells f : x ⇒ x̂ and g : y ⇒ ŷ with x
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Proof: Step 5

I Every 2-sphere modulo E of R> is the boundary of a 3-cell modulo E of C(S(R,E)).

I Let us consider a 2-cell f : u ⇒ v in R∗. Using con�uence modulo E of R,

u

f

&.

σu '/

v

σvowû v̂

σf
�

I Let us consider a 2-cell f : u ⇒ v of R>; it can be decomposed in a non unique way into

a zigzag sequence f1 ? g−1
1

?1 · · · ?1 fn ?1 g−1n where each fi and gi is a 2-cell of R∗.

I We de�ne a 3-cell modulo σf : f ?1 σv VE σu in C(S(R,E)) as the following

composition:
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û v̂1 û2 (· · · ) ûn v̂n v̂
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Conclusion

I We obtained a coherence result for Huet's approach of rewriting modulo.

I The con�uence of R modulo E is hard to obtain for the interesting cases.

I Objective = generalize this coherence result to Jouannaud-Kirchner's approach for any

SRS S such that

R ⊆ S ⊆ R/E

I Study the particular case S = E R, where Bachmair - Dershowitz's completion holds.

I Describe this completion in terms of critical pairs.

I The main application is to obtain homotopical completions modulo, and in particular
constructions of coherent presentations for

I groups;

I diagrammatic algebras.
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