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» This work is part of algebraic rewriting, consisting in applying rewriting methods to
study intrinseque properties of algebraic structures presented by generators and
relations.

» For instance, computation of syzygies (relations among relations): for the group
73 = (x,y,z | [x,¥y] =1, [y,z] =1, [z,x] = 1), the Jacobi identity
X7, Iy, 21y, [z, x][z", [x, ¥]] = 1
is such a syzygy, with [x,y] = xyx“y~ and x¥ =y~ xy.
» For monoids or categories, Squier’s theorem gives a generating family for syzygies from

a finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14,
Hage-Malbos '16.

» Seeing a group G = (X | R) as a monoid M = (X[ X | RU {xx~ = l,x*xg 1}xex,
the confluence diagram

is an artefact induced by the algebraic structure and should not be considered as a
syzygy.
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when applying rewriting.

> A Peiffer branching for monoids can be seen as a branching modulo the set of associativity
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> Obtain coherence results and computations of linear bases in rewriting modulo with two
main objectives:

> Rewriting in groups, and in particular Artin groups: B3 = (s, t | stst” s~ t~ =1).
s= b t=

> Rewriting in higher dimensional diagrammatic algebras, modulo the axioms of vector spaces
and isotopies diagrams given by relations of the form
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> The most naive approach is to consider a rewrite relation R/E on E-equivalence classes:

s=>ge tiff 35’ t' such that s~p s’, t =g t' and s’ = t'

» This is unefficient for computations.

> Huet's approach is to use rewriting wrt R and weaken the confluence by allowing
sources and targets of confluence to be equivalent modulo E.

> Newman’s lemma and critical pair lemma.

» Jouannaud-Kirchner extended this approach by studying any rewriting system S such
that RC S C R/E.

> For S:=gR = {u=v | 3u such that u ~¢ v’ and v’ = v isin R }, they give a critical
pair lemma involing E-unification and a completion procedure.

> Bachmair-Dershowitz generalized this completion procedure for infinite set of equations E.

> In this work, we use Huet's approach and generalize Squier’s theorem for SRS to a
coherence result modulo.
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» We consider a string rewriting system (X, R) where X is a set of generators and R is a
set of rules.

» Consider the free X* on X, seen as a 1-category with only one 0-cell and 1-cells are
strings on elements of X.

> Any two 1l-cells of X™ are composable and the composition corresponds to concatenation
of strings.

» We construct R* the free 2-category of rewritings generated by (X, R) as follows:

> It has only one O-cell, its 1-cells are strings on X and its 2-cells are rewriting paths of R.

> The *xg-composition in R* corresponds to concatenation of strings, and the xi-composition
is the sequential composition of rewritings of R.

> Each 2-cell f of R* can be decomposed into a sequence f = f; x3 fa x1 ... %1 fx, where
each f; is a 2-cell corresponding to a rewriting step of the form:

s1(f)
u i v
X —>y \U/f z——>1t
~_ 7

t1(f)
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Categorical formulations for string rewriting systems

> The free (2,1)-category of equivalences RT generated by (X, R) is the free 2-category
R* in which all the 2-cells are invertible with respect to the x;-composition.

> For any 2-cell f : u = vin R", there exist a 2-cell f~ : v = uin R such that
u v
u v
SN TN SN L TN
v = \U/lu s = ‘U/l‘/
w

' N A W NS

u v
v

> The 2-cells of RT corresponds to elements of the equivalence relation generated by R,
denoted by ~g.

» A 2-cell u= vin RT is given by a zigzag rewriting sequence of 2-cells of R*:

-1 -1
frxgy = x1-- %1 fax1 g,
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> Let R and E be two SRS on X.

> A branching modulo E of the SRS R is a pair (f,g) of 2-cells of R* such that
s1(f) ~e s1(g):

> It is local if £(F), £(g), £(e) < 1 and £(f) + £(g) + £(e) = 2.

> A branching (f, g) is confluent modulo E if there exists 2-cells f/ and g’ in R* such

that
"/U’\ﬂ
u w

Q& 2

v w’
\v’//
& g

> R is confluent modulo E if all of its branchings are confluent modulo E.
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> An aspherical (resp. Peiffer) branching modulo E of R is a pair (f,f) (resp. (fv,ug) or

(fv, ue)) of 2-cells of R* depicted by

{
/

|
i

f"/ u'v
uv

or 2 )

uv
Ruk» uv’

"V/ u'v
uv
X:i uv’

» overlappings branchings are the remaining local branchings, in which we distinguish two
families for 2-cells f, g in R* of length 1 and a 2-cell e in ET of length 1:

<

u

%
N

v

//fﬁv
u
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> An aspherical (resp. Peiffer) branching modulo E of R is a pair (f,f) (resp. (fv,ug) or
(fv, ue)) of 2-cells of R* depicted by

‘ fv u'v fv u'v
X\ / /
uv

u
2 o (resp. 2 or 2 )
u

uv
Ruk» uv’

{
/

"V/ u'v
uv
f
h uv’ /X:’ uv’
» overlappings branchings are the remaining local branchings, in which we distinguish two
families for 2-cells f, g in R* of length 1 and a 2-cell e in ET of length 1:

% u/fsw
¥>v &W’

» A critical branching modulo E is an overlapping local branching ‘that is minimal for the

|
i

<

u
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» Theorem. [Huet '80]
If the SRS R containing rules of the form u = v if there exists v/ in X* such that
v~ v/ and u= v/ isin R is terminating, then

(R confluent modulo E) iff (Overlappings of R are confluent modulo E)

» Proof based on Noetherian induction principle applied to an auxiliary SRS on X x X
and the property:

E
P(x,y): x=py = (VX’,y’|x:§RX/&y:§Ry/ implies X’\/y’)

E
where x V y if and only if there exist 2-cells x = x’ and y = y’ in R* such that
! !
X Rgy'.

» Theorem. [Huet '80]
R is locally confluent modulo a SRS E if and only if any critical branching of R
modulo E is confluent modulo E.
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2-Spheres modulo E

» A 2-sphere modulo E in RT is a pair (f, g) of both non trivial 2-cells in RT which are
parallel modulo E, that is s1(f) ~f si1(g) and t1(f) ~g ti(g). We denote by Sphe(R)
the set of 2-spheres modulo E in RT.

> Such a 2-sphere is depicted by one of the following diagrams:

f u :f> v /—2\
ﬂ u//
14 14 € A e
u MA v/ H m H f ///ﬁ b
Y u/ ? V/ V! )
-

> A cellular extension of RT modulo E is a set I' equipped with a
map v : I — Sphg(R), whose elements are called 3-cells modulo E.

> We say that I is coherent if the map ~ is surjective, that is if each 2-sphere modulo E
can be filled with a 3-cell of I'.



Acyclic extensions

> Given a cellular extension I of RT modulo E, we define 3 formal compositions of 3-cells
in I as follows:



Acyclic extensions
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u v uv

~ T~ ~_ 7
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/ﬂ U/ /ﬁ \U/g ~ '@\U/gg
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Acyclic extensions

> Given a cellular extension I of RT modulo E, we define 3 formal compositions of 3-cells
in I as follows:

> The *2-composition of any 3-cells A and B such that t2(A) = s2(B) is defined by

/\ /\ , /\
\ 1/ \u”/ \u”/
Nz Nz 2
ﬂ ~ *
g ? e v o 43
BN . .

> We denote by C(I') the closure of I with respect to compositions g, 1 and %2 of
3-cells of T and their formal inverses A~! for A € I' quotiented by:

> the exchange relations (A x; B) *; (A" x; B') = (Ax; A") %; (B x; B") forany 0 < i < j < 2;
> the invertibility relations A x; A~ = 1a) for any Ainand i = 0,1, 2.

» We say that I is an acyclic extension modulo E of RT if C(I') is a coherent extension
modulo E of RT.
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Double groupoids

» The underlying categorical structure is given by a double groupoid, that is a pair
C = (Co,C1) of categories in which all 1-cells are invertible, with:

> 1-cells of Cq are vertical arrows of C;

» O-cells of C; are horizontal arrows of C;

f

p——>gq

o El .
> 1-cells of Cy are 2-cells in C, pictured by el \u \L with p, p’, g, ¢’ O-cells of Co.

/

p——>gq
f/

» The compositions of 2-cells in a double groupoid are given by

I I !
s

UH
| b
uﬁ -

g/ gg/

corresponding to 3 and x>-compositions in C(I').

v w

\L i/B \Le// PONS E\H/ \M/AOOB\H/SN
’

V w

I
I
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> Let us assume that R is confluent modulo E. An homotopical completion modulo E of
R is a cellular extension modulo E of RT whose elements are the 3-cells

/N /x

Qe e
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for any critical branching (f, g) and (f, e) of R modulo E, where f, g are rewriting steps
of R and e is a one-step equivalence of E.

» Theorem. [D.-Malbos '18]
Let R and E be two SRS on X such that Rg is terminating and R is confluent modulo
E.
Then any Squier's completion of R modulo E is an acyclic extension of RT modulo E.

» The proof of this theorem is separated into 5 steps.
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> If (f, g) is a Peiffer branching, , we can choose f’ and g’ such that f x; f' = g x1 g’ and
we set A an identity.

> If (f,e) is a Peiffer branching with f in R* and e in E", we can choose f’ as the empty
2-cell, g’ = f and the right equivalence being e so that B is also an identity.

> If (f, g) (resp. (f,e) ) is an overlapping that is not critical, we have (f, g) = (uhv, ukv)
(resp. (f,e) = (uhv, ue’v)) for some u, v in X* such that both (h, k) and (h, e’) are
critical.

> We consider the 3-cells A’ : f x1 f' =g g*1 8" and B’ : f %1 f' = e x1 g’/ corresponding
respectively to the critical branchings (h, k) and (h, e’). We conclude by setting

! ’ / ’ " ’ ’ ’ ’
f'"=uh'v g =ukv g =uev A =u*xgA Vv B =uxgB xqvV.



Proof: Step 2

> For any 2-cells f : x = y and g : x = z of R* with y = z, there exists a 3-cell modulo
E from f to g in C(S(R, E)):



Proof: Step 2

> For any 2-cells f : x = y and g : x = z of R* with y = z, there exists a 3-cell modulo
E from f to g in C(S(R, E)):




Proof: Step 2

» For any 2-cells f : x = y and g : x = z of R* with y ~¢ z, there exists a 3-cell modulo
E from f to g in C(S(R, E)):




Proof: Step 2

> For any 2-cells f : x = y and g : x = z of R* with y ~g z, there exists a 3-cell modulo
E from f to g in C(S(R, E)):




Proof: Step 2

> For any 2-cells f : x = y and g : x = z of R* with y ~g z, there exists a 3-cell modulo
E from f to g in C(S(R, E)):




Proof: Step 3

» For each rewriting steps f : x = x’ and g : y = y’ in R such that x éE v, there exist
2-cells ' : x' = x", g’ .y’ = y” in R* and a 3-cell modulo E from f x1 f’ to g *1 g’.



Proof: Step 3

» For each rewriting steps f : x = x’ and g : y = y’ in R such that x éE v, there exist
2-cells ' : x' = x", g’ .y’ = y” in R* and a 3-cell modulo E from f x1 f’ to g *1 g’.

» Proof by induction on £(e).



Proof: Step 3

» For each rewriting steps f : x = x’ and g : y = y’ in R such that x éE v, there exist
2-cells ' : x' = x", g’ .y’ = y” in R* and a 3-cell modulo E from f x1 f’ to g *1 g’.

» Proof by induction on £(e).

> If £(e) = 0, this is Step 1.



Proof: Step 3

» For each rewriting steps f : x = x” and g : y = y’ in R such that x Ao y, there exist
2-cells f' : x' = x", g’ : y/ = y” in R* and a 3-cell modulo E from f x; f' to gx1 g’.

> Proof by induction on £(e).

> If (e) = 0, this is Step 1.

> If £(e) =1, the result is proved by the following diagram

X/X K%,
I ¢
y y



Proof: Step 3

» For each rewriting steps f : x = x” and g : y = y’ in R such that x éE y, there exist
2-cells f' : x' = x", g’ : y/ = y" in R* and a 3-cell modulo E from f x; f' to gx1 g’.
> Proof by induction on £(e).
> If {(e) =0, this is Step 1.
> If £(e) =1, the result is proved by the following diagram

’ !

f X
/ \&N
@ X' X"

i 2 2
y

a2 = y// y//



Proof: Step 3

» For each rewriting steps f : x = x” and g : y = y’ in R such that x Ao y, there exist
2-cells f' : x' = x", g’ : y/ = y" in R* and a 3-cell modulo E from f x; f' to gx1 g’.

> Proof by induction on £(e).

> If {(e) =0, this is Step 1.

> If £(e) =1, the result is proved by the following diagram

/ ‘ \& f >
X @ § X” @ X”
i 0 w0

" 1




Proof: Step 3

» For each rewriting steps f : x = x’ and g : y = y’ in R such that x e y, there exist
2-cells ' : x’ = x", g’ : y’ = y" in R* and a 3-cell modulo E from f %1 f' to g %1 g’.

» Proof by induction on {(e).
> If £(e) = 0, this is Step 1.

> If £(e) =1, the result is proved by the following diagram

f x i
/ kﬁﬁ @ E
x @ X' X!
1 Q ind.

4

1" 1"

y £1 y y

N, 0

y ¢

> Suppose the result proved for {(e) = k > 1 and let us prove the result for ¢(e) = k + 1.

frgf!
N ———— N
KT Induction on k 14
y——h——>y
T u
Z @ 2
e

ex1g’
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» Every 2-sphere modulo E of R is the boundary of a 3-cell modulo E of C(S(R, E)).

> Let us consider a 2-cell f : u = v in R*. Using confluence modulo E of R,

> Let us consider a 2-cell f : u = v of RT; it can be decomposed in a non unique way into
a zigzag sequence f *gfl *1 -+ k1 fnox1 g,Tl where each f; and g; is a 2-cell of R*.
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» For any 2-sphere (f,g) modulo E in RT, there exists a 3-cell modulo f = g in
C(S(R, E)) given by the following composition:



> For any 2-sphere (f,g) modulo E in RT, there exists a 3-cell modulo f =¢ g in
C(S(R, E)) given by the following composition:

X, =
Uﬁ ﬁ ‘7 g v
2 — @
@ L;’ - Wi
Z7 N,
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Conclusion

> \We obtained a coherence result for Huet's approach of rewriting modulo.
> The confluence of R modulo E is hard to obtain for the interesting cases.
» Objective = generalize this coherence result to Jouannaud-Kirchner's approach for any

SRS S such that
RCSCR/E

»> Study the particular case S = gR, where Bachmair - Dershowitz’s completion holds.

> Describe this completion in terms of critical pairs.

» The main application is to obtain homotopical completions modulo, and in particular
constructions of coherent presentations for

> groups;

> diagrammatic algebras.



