Coherence modulo relations

Dupont Benjamin - Malbos Philippe

International Workshop on Confluence

Oxford, 7 July 2018

Motivations: algebraic context

- This work is part of algebraic rewriting, consisting in applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.

Motivations: algebraic context

- This work is part of algebraic rewriting, consisting in applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- For instance, computation of syzygies (relations among relations): for the group $\mathbb{Z}^{3}=\langle x, y, z \mid[x, y]=1,[y, z]=1,[z, x]=1\rangle$, the Jacobi identity

$$
\left[x^{y},[y, z]\right]\left[y^{z},[z, x]\right]\left[z^{x},[x, y]\right]=1
$$

is such a syzygy, with $[x, y]=x y x^{-} y^{-}$and $x^{y}=y^{-} x y$.

Motivations: algebraic context

- This work is part of algebraic rewriting, consisting in applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- For instance, computation of syzygies (relations among relations): for the group $\mathbb{Z}^{3}=\langle x, y, z \mid[x, y]=1,[y, z]=1,[z, x]=1\rangle$, the Jacobi identity

$$
\left[x^{y},[y, z]\right]\left[y^{z},[z, x]\right]\left[z^{x},[x, y]\right]=1
$$

is such a syzygy, with $[x, y]=x y x^{-} y^{-}$and $x^{y}=y^{-} x y$.

- For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14, Hage-Malbos '16.

Motivations: algebraic context

- This work is part of algebraic rewriting, consisting in applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- For instance, computation of syzygies (relations among relations): for the group $\mathbb{Z}^{3}=\langle x, y, z \mid[x, y]=1,[y, z]=1,[z, x]=1\rangle$, the Jacobi identity

$$
\left[x^{y},[y, z]\right]\left[y^{z},[z, x]\right]\left[z^{x},[x, y]\right]=1
$$

is such a syzygy, with $[x, y]=x y x^{-} y^{-}$and $x^{y}=y^{-} x y$.

- For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14, Hage-Malbos '16.
- Seeing a group $G=\langle X \mid R\rangle$ as a monoid $M=\langle X \amalg \bar{X}| R \cup\left\{x x^{-} \stackrel{\alpha_{\succ}}{\Rightarrow} 1, x^{-} x \stackrel{\alpha_{y}}{\Rightarrow} 1\right\}_{x \in X}$, the confluence diagram

is an artefact induced by the algebraic structure and should not be considered as a syzygy.
- Develop a rewriting theory in any algebraic structure.
- Develop a rewriting theory in any algebraic structure.
- Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.

Motivation: main objectives

- Develop a rewriting theory in any algebraic structure.
- Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.
- A Peiffer branching for monoids can be seen as a branching modulo the set of associativity axioms as follows:

Motivation: main objectives

- Develop a rewriting theory in any algebraic structure.
- Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.
- A Peiffer branching for monoids can be seen as a branching modulo the set of associativity axioms as follows:

- Obtain coherence results and computations of linear bases in rewriting modulo with two main objectives:

Motivation: main objectives

- Develop a rewriting theory in any algebraic structure.
- Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.
- A Peiffer branching for monoids can be seen as a branching modulo the set of associativity axioms as follows:

- Obtain coherence results and computations of linear bases in rewriting modulo with two main objectives:
- Rewriting in groups, and in particular Artin groups: $B_{3}=\left\langle s, t \mid s t s t^{-} s^{-} t^{-}=1\right\rangle$.

$$
s=Y \mid, \quad t=1 Y
$$

Motivation: main objectives

- Develop a rewriting theory in any algebraic structure.
- Take the algebraic axioms not as rewrite rules, but as equations that we take into account when applying rewriting.
- A Peiffer branching for monoids can be seen as a branching modulo the set of associativity axioms as follows:

- Obtain coherence results and computations of linear bases in rewriting modulo with two main objectives:
- Rewriting in groups, and in particular Artin groups: $B_{3}=\left\langle s, t \mid s t s t^{-} s^{-} t^{-}=1\right\rangle$.

$$
s=X|, \quad t=| X
$$

- Rewriting in higher dimensional diagrammatic algebras, modulo the axioms of vector spaces and isotopies diagrams given by relations of the form

$$
\bigcap=1 ; \quad \bigcap=1 ; \quad \bigcap_{\square} \cdot|=| \bigcup_{\square}
$$

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.
- The most naive approach is to consider a rewrite relation R / E on E-equivalence classes:

$$
s \Rightarrow_{R / E} t \text { iff } \exists s^{\prime}, t^{\prime} \text { such that } s \approx_{E} s^{\prime}, t \approx_{E} t^{\prime} \text { and } s^{\prime} \Rightarrow_{R} t^{\prime}
$$

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.
- The most naive approach is to consider a rewrite relation R / E on E-equivalence classes:

$$
s \Rightarrow_{R / E} t \text { iff } \exists s^{\prime}, t^{\prime} \text { such that } s \approx_{E} s^{\prime}, t \approx_{E} t^{\prime} \text { and } s^{\prime} \Rightarrow_{R} t^{\prime}
$$

- This is unefficient for computations.

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.
- The most naive approach is to consider a rewrite relation R / E on E-equivalence classes:

$$
s \Rightarrow_{R / E} t \text { iff } \exists s^{\prime}, t^{\prime} \text { such that } s \approx_{E} s^{\prime}, t \approx_{E} t^{\prime} \text { and } s^{\prime} \Rightarrow_{R} t^{\prime}
$$

- This is unefficient for computations.
- Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E.

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.
- The most naive approach is to consider a rewrite relation R / E on E-equivalence classes:

$$
s \Rightarrow_{R / E} t \text { iff } \exists s^{\prime}, t^{\prime} \text { such that } s \approx_{E} s^{\prime}, t \approx_{E} t^{\prime} \text { and } s^{\prime} \Rightarrow_{R} t^{\prime}
$$

- This is unefficient for computations.
- Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E.
- Newman's lemma and critical pair lemma.

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.
- The most naive approach is to consider a rewrite relation R / E on E-equivalence classes:

$$
s \Rightarrow_{R / E} t \text { iff } \exists s^{\prime}, t^{\prime} \text { such that } s \approx_{E} s^{\prime}, t \approx_{E} t^{\prime} \text { and } s^{\prime} \Rightarrow_{R} t^{\prime}
$$

- This is unefficient for computations.
- Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E.
- Newman's lemma and critical pair lemma.
- Jouannaud-Kirchner extended this approach by studying any rewriting system S such that $R \subseteq S \subseteq R / E$.

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.
- The most naive approach is to consider a rewrite relation R / E on E-equivalence classes:

$$
s \Rightarrow_{R / E} t \text { iff } \exists s^{\prime}, t^{\prime} \text { such that } s \approx_{E} s^{\prime}, t \approx_{E} t^{\prime} \text { and } s^{\prime} \Rightarrow_{R} t^{\prime}
$$

- This is unefficient for computations.
- Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E.
- Newman's lemma and critical pair lemma.
- Jouannaud-Kirchner extended this approach by studying any rewriting system S such that $R \subseteq S \subseteq R / E$.
- For $S:={ }_{E} R=\left\{u \Rightarrow v \mid \exists u^{\prime}\right.$ such that $u \approx_{E} u^{\prime}$ and $u^{\prime} \Rightarrow v$ is in $\left.R\right\}$, they give a critical pair lemma involing E-unification and a completion procedure.

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.
- The most naive approach is to consider a rewrite relation R / E on E-equivalence classes:

$$
s \Rightarrow_{R / E} t \text { iff } \exists s^{\prime}, t^{\prime} \text { such that } s \approx_{E} s^{\prime}, t \approx_{E} t^{\prime} \text { and } s^{\prime} \Rightarrow_{R} t^{\prime}
$$

- This is unefficient for computations.
- Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E.
- Newman's lemma and critical pair lemma.
- Jouannaud-Kirchner extended this approach by studying any rewriting system S such that $R \subseteq S \subseteq R / E$.
- For $S:={ }_{E} R=\left\{u \Rightarrow v \mid \exists u^{\prime}\right.$ such that $u \approx_{E} u^{\prime}$ and $u^{\prime} \Rightarrow v$ is in $\left.R\right\}$, they give a critical pair lemma involing E-unification and a completion procedure.
- Bachmair-Dershowitz generalized this completion procedure for infinite set of equations E.

Different approaches in rewriting modulo

- We split the whole set of equations into a set R of rewriting rules and a set E of equations, and we will rewrite wrt R modulo E.
- The most naive approach is to consider a rewrite relation R / E on E-equivalence classes:

$$
s \Rightarrow_{R / E} t \text { iff } \exists s^{\prime}, t^{\prime} \text { such that } s \approx_{E} s^{\prime}, t \approx_{E} t^{\prime} \text { and } s^{\prime} \Rightarrow_{R} t^{\prime}
$$

- This is unefficient for computations.
- Huet's approach is to use rewriting wrt R and weaken the confluence by allowing sources and targets of confluence to be equivalent modulo E.
- Newman's lemma and critical pair lemma.
- Jouannaud-Kirchner extended this approach by studying any rewriting system S such that $R \subseteq S \subseteq R / E$.
- For $S:={ }_{E} R=\left\{u \Rightarrow v \mid \exists u^{\prime}\right.$ such that $u \approx_{E} u^{\prime}$ and $u^{\prime} \Rightarrow v$ is in $\left.R\right\}$, they give a critical pair lemma involing E-unification and a completion procedure.
- Bachmair-Dershowitz generalized this completion procedure for infinite set of equations E.
- In this work, we use Huet's approach and generalize Squier's theorem for SRS to a coherence result modulo.

Plan of this talk

I. Confluence modulo
II. Coherence from confluence modulo

I. Confluence modulo

Categorical formulations for string rewriting systems

- We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.

Categorical formulations for string rewriting systems

- We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- Consider the free X^{*} on X, seen as a 1-category with only one 0 -cell and 1-cells are strings on elements of X.

Categorical formulations for string rewriting systems

- We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- Consider the free X^{*} on X, seen as a 1-category with only one 0 -cell and 1-cells are strings on elements of X.
- Any two 1-cells of X^{*} are composable and the composition corresponds to concatenation of strings.

Categorical formulations for string rewriting systems

- We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- Consider the free X^{*} on X, seen as a 1-category with only one 0 -cell and 1-cells are strings on elements of X.
- Any two 1-cells of X^{*} are composable and the composition corresponds to concatenation of strings.
- We construct R^{*} the free 2-category of rewritings generated by (X, R) as follows:

Categorical formulations for string rewriting systems

- We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- Consider the free X^{*} on X, seen as a 1-category with only one 0 -cell and 1-cells are strings on elements of X.
- Any two 1-cells of X^{*} are composable and the composition corresponds to concatenation of strings.
- We construct R^{*} the free 2-category of rewritings generated by (X, R) as follows:
- It has only one 0 -cell, its 1 -cells are strings on X and its 2-cells are rewriting paths of R.

Categorical formulations for string rewriting systems

- We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- Consider the free X^{*} on X, seen as a 1-category with only one 0 -cell and 1-cells are strings on elements of X.
- Any two 1-cells of X^{*} are composable and the composition corresponds to concatenation of strings.
- We construct R^{*} the free 2-category of rewritings generated by (X, R) as follows:
- It has only one 0-cell, its 1-cells are strings on X and its 2-cells are rewriting paths of R.
- The \star_{0}-composition in R^{*} corresponds to concatenation of strings, and the \star_{1}-composition is the sequential composition of rewritings of R.

Categorical formulations for string rewriting systems

- We consider a string rewriting system (X, R) where X is a set of generators and R is a set of rules.
- Consider the free X^{*} on X, seen as a 1-category with only one 0 -cell and 1-cells are strings on elements of X.
- Any two 1-cells of X^{*} are composable and the composition corresponds to concatenation of strings.
- We construct R^{*} the free 2-category of rewritings generated by (X, R) as follows:
- It has only one 0-cell, its 1-cells are strings on X and its 2-cells are rewriting paths of R.
- The \star_{0}-composition in R^{*} corresponds to concatenation of strings, and the \star_{1}-composition is the sequential composition of rewritings of R.
- Each 2-cell f of R^{*} can be decomposed into a sequence $f=f_{1} \star_{\mathbf{1}} f_{\mathbf{2}} \star_{\mathbf{1}} \ldots \star_{\mathbf{1}} f_{k}$, where each f_{i} is a 2-cell corresponding to a rewriting step of the form:

Categorical formulations for string rewriting systems

- The free $(2,1)$-category of equivalences R^{\top} generated by (X, R) is the free 2-category R^{*} in which all the 2-cells are invertible with respect to the \star_{1}-composition.

Categorical formulations for string rewriting systems

- The free (2,1)-category of equivalences R^{\top} generated by (X, R) is the free 2-category R^{*} in which all the 2 -cells are invertible with respect to the \star_{1}-composition.
- For any 2-cell $f: u \Rightarrow v$ in R^{*}, there exist a 2-cell $f^{-}: v \Rightarrow u$ in R^{\top} such that

Categorical formulations for string rewriting systems

- The free (2,1)-category of equivalences R^{\top} generated by (X, R) is the free 2-category R^{*} in which all the 2-cells are invertible with respect to the \star_{1}-composition.
- For any 2-cell $f: u \Rightarrow v$ in R^{*}, there exist a 2-cell $f^{-}: v \Rightarrow u$ in R^{\top} such that

- The 2-cells of R^{\top} corresponds to elements of the equivalence relation generated by R, denoted by \approx_{R}.

Categorical formulations for string rewriting systems

- The free (2,1)-category of equivalences R^{\top} generated by (X, R) is the free 2-category R^{*} in which all the 2-cells are invertible with respect to the \star_{1}-composition.
- For any 2-cell $f: u \Rightarrow v$ in R^{*}, there exist a 2-cell $f^{-}: v \Rightarrow u$ in R^{\top} such that

- The 2-cells of R^{\top} corresponds to elements of the equivalence relation generated by R, denoted by \approx_{R}.
- A 2-cell $u \Rightarrow v$ in R^{\top} is given by a zigzag rewriting sequence of 2-cells of R^{*} :

$$
f_{1} \star g_{1}^{-1} \star_{1} \cdots \star_{1} f_{n} \star_{1} g_{n}^{-1}
$$

Huet's confluence modulo E

- Let R and E be two SRS on X.

Huet's confluence modulo E

- Let R and E be two SRS on X.
- A branching modulo E of the $\operatorname{SRS} R$ is a pair (f, g) of 2-cells of R^{*} such that $s_{1}(f) \approx_{E} s_{1}(g):$

Huet's confluence modulo E

- Let R and E be two SRS on X.
- A branching modulo E of the $\operatorname{SRS} R$ is a pair (f, g) of 2-cells of R^{*} such that $s_{1}(f) \approx_{E} s_{1}(g):$

- It is local if $\ell(f), \ell(g), \ell(e) \leq 1$ and $\ell(f)+\ell(g)+\ell(e)=2$.

Huet's confluence modulo E

- Let R and E be two SRS on X.
- A branching modulo E of the $\operatorname{SRS} R$ is a pair (f, g) of 2-cells of R^{*} such that $s_{1}(f) \approx_{E} s_{1}(g):$

- It is local if $\ell(f), \ell(g), \ell(e) \leq 1$ and $\ell(f)+\ell(g)+\ell(e)=2$.
- A branching (f, g) is confluent modulo E if there exists 2-cells f^{\prime} and g^{\prime} in R^{*} such that

- R is confluent modulo E if all of its branchings are confluent modulo E.

Classification of branchings modulo

- An aspherical (resp. Peiffer) branching modulo E of R is a pair (f, f) (resp. ($f v, u g$) or ($f v, u e$)) of 2-cells of R^{*} depicted by

Classification of branchings modulo

- An aspherical (resp. Peiffer) branching modulo E of R is a pair (f, f) (resp. ($f v, u g$) or ($f v, u e$)) of 2-cells of R^{*} depicted by

- For the local branchings, we have local aspherical and local Peiffer branchings

Classification of branchings modulo

- An aspherical (resp. Peiffer) branching modulo E of R is a pair (f, f) (resp. ($f v, u g$) or ($f v, u e$)) of 2-cells of R^{*} depicted by

- For the local branchings, we have local aspherical and local Peiffer branchings

- overlappings branchings are the remaining local branchings, in which we distinguish two families for 2-cells f, g in R^{*} of length 1 and a 2-cell e in E^{\top} of length 1:

Classification of branchings modulo

- An aspherical (resp. Peiffer) branching modulo E of R is a pair (f, f) (resp. ($f v, u g$) or ($f v, u e$)) of 2-cells of R^{*} depicted by

- For the local branchings, we have local aspherical and local Peiffer branchings

- overlappings branchings are the remaining local branchings, in which we distinguish two families for 2-cells f, g in R^{*} of length 1 and a 2-cell e in E^{\top} of length 1:

- A critical branching modulo E is an overlapping local branching that is minimal fō the

Newman and critical pair lemmas modulo

- Theorem. [Huet '80]

If the SRS R_{E} containing rules of the form $u \Rightarrow v$ if there exists v^{\prime} in X^{*} such that $v \approx_{E} v^{\prime}$ and $u \Rightarrow v^{\prime}$ is in R is terminating, then
(R confluent modulo E) iff (Overlappings of R are confluent modulo E)

Newman and critical pair lemmas modulo

- Theorem. [Huet '80]

If the SRS R_{E} containing rules of the form $u \Rightarrow v$ if there exists v^{\prime} in X^{*} such that $v \approx_{E} v^{\prime}$ and $u \Rightarrow v^{\prime}$ is in R is terminating, then
(R confluent modulo E) iff (Overlappings of R are confluent modulo E)

- Proof based on Noetherian induction principle applied to an auxiliary SRS on $X \times X$ and the property:

$$
\mathcal{P}(x, y): \quad x \approx_{E} y \Rightarrow\left(\forall x^{\prime}, y^{\prime} \mid x \Rightarrow_{R}^{*} x^{\prime} \& y \Rightarrow_{R}^{*} y^{\prime} \text { implies } x^{\prime} \stackrel{E}{\vee} y^{\prime}\right)
$$

where $x \vee \stackrel{E}{\vee} y$ if and only if there exist 2-cells $x \Rightarrow x^{\prime}$ and $y \Rightarrow y^{\prime}$ in R^{*} such that $x^{\prime} \approx_{E} y^{\prime}$.

Newman and critical pair lemmas modulo

- Theorem. [Huet '80]

If the SRS R_{E} containing rules of the form $u \Rightarrow v$ if there exists v^{\prime} in X^{*} such that $v \approx_{E} v^{\prime}$ and $u \Rightarrow v^{\prime}$ is in R is terminating, then
(R confluent modulo E) iff (Overlappings of R are confluent modulo E)

- Proof based on Noetherian induction principle applied to an auxiliary SRS on $X \times X$ and the property:

$$
\mathcal{P}(x, y): \quad x \approx_{E} y \Rightarrow\left(\forall x^{\prime}, y^{\prime} \mid x \Rightarrow_{R}^{*} x^{\prime} \& y \Rightarrow_{R}^{*} y^{\prime} \text { implies } x^{\prime} \stackrel{E}{\vee} y^{\prime}\right)
$$

where $x \vee \stackrel{E}{\vee} y$ if and only if there exist 2-cells $x \Rightarrow x^{\prime}$ and $y \Rightarrow y^{\prime}$ in R^{*} such that $x^{\prime} \approx_{E} y^{\prime}$.

- Theorem. [Huet '80]
R is locally confluent modulo a SRS E if and only if any critical branching of R modulo E is confluent modulo E.

II. Coherence from confluence modulo

- A 2-sphere modulo E in R^{\top} is a pair (f, g) of both non trivial 2-cells in R^{\top} which are parallel modulo E, that is $s_{1}(f) \approx_{E} s_{1}(g)$ and $t_{1}(f) \approx_{E} t_{1}(g)$. We denote by $\operatorname{Sph}_{E}(R)$ the set of 2 -spheres modulo E in R^{\top}.
- A 2-sphere modulo E in R^{\top} is a pair (f, g) of both non trivial 2-cells in R^{\top} which are parallel modulo E, that is $s_{1}(f) \approx_{E} s_{1}(g)$ and $t_{1}(f) \approx_{E} t_{1}(g)$. We denote by $\operatorname{Sph}_{E}(R)$ the set of 2 -spheres modulo E in R^{\top}.
- Such a 2-sphere is depicted by one of the following diagrams:

- A 2-sphere modulo E in R^{\top} is a pair (f, g) of both non trivial 2-cells in R^{\top} which are parallel modulo E, that is $s_{1}(f) \approx_{E} s_{1}(g)$ and $t_{1}(f) \approx_{E} t_{1}(g)$. We denote by $\operatorname{Sph}_{E}(R)$ the set of 2-spheres modulo E in R^{\top}.
- Such a 2-sphere is depicted by one of the following diagrams:

- A cellular extension of R^{\top} modulo E is a set Γ equipped with a map $\gamma: \Gamma \longrightarrow \operatorname{Sph}_{E}(R)$, whose elements are called 3-cells modulo E.
- A 2-sphere modulo E in R^{\top} is a pair (f, g) of both non trivial 2-cells in R^{\top} which are parallel modulo E, that is $s_{1}(f) \approx_{E} s_{1}(g)$ and $t_{1}(f) \approx_{E} t_{1}(g)$. We denote by $\operatorname{Sph}_{E}(R)$ the set of 2-spheres modulo E in R^{\top}.
- Such a 2-sphere is depicted by one of the following diagrams:

- A cellular extension of R^{\top} modulo E is a set Γ equipped with a map $\gamma: \Gamma \longrightarrow \operatorname{Sph}_{E}(R)$, whose elements are called 3-cells modulo E.
- A 2-sphere modulo E in R^{\top} is a pair (f, g) of both non trivial 2-cells in R^{\top} which are parallel modulo E, that is $s_{1}(f) \approx_{E} s_{1}(g)$ and $t_{1}(f) \approx_{E} t_{1}(g)$. We denote by $\operatorname{Sph}_{E}(R)$ the set of 2-spheres modulo E in R^{\top}.
- Such a 2-sphere is depicted by one of the following diagrams:

- A cellular extension of R^{\top} modulo E is a set Γ equipped with a map $\gamma: \Gamma \longrightarrow \operatorname{Sph}_{E}(R)$, whose elements are called 3-cells modulo E.
- We say that Γ is coherent if the map γ is surjective, that is if each 2-sphere modulo E can be filled with a 3 -cell of Γ.

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in Γ as follows:

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in Γ as follows:
- The \star_{0}-composition of any 3 -cells A and B is defined by

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in Γ as follows:
- The \star_{0}-composition of any 3 -cells A and B is defined by

- The \star_{1}-composition of any 3-cells A and B such that $t_{1} s_{2}(A)=s_{1} s_{2}(B)$ and $t_{1} t_{2}(A)=s_{1} t_{2}(B)$ is defined by

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in 「 as follows:

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in Γ as follows:
- The \star_{2}-composition of any 3 -cells A and B such that $t_{2}(A)=s_{2}(B)$ is defined by

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in Γ as follows:
- The \star_{2}-composition of any 3-cells A and B such that $t_{\mathbf{2}}(A)=s_{\mathbf{2}}(B)$ is defined by

- We denote by $\mathcal{C}(\Gamma)$ the closure of Γ with respect to compositions \star_{0}, \star_{1} and \star_{2} of 3 -cells of Γ and their formal inverses A^{-1} for $A \in \Gamma$ quotiented by:

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in Γ as follows:
- The \star_{2}-composition of any 3-cells A and B such that $t_{2}(A)=s_{\mathbf{2}}(B)$ is defined by

- We denote by $\mathcal{C}(\Gamma)$ the closure of Γ with respect to compositions \star_{0}, \star_{1} and \star_{2} of 3 -cells of Γ and their formal inverses A^{-1} for $A \in \Gamma$ quotiented by:
- the exchange relations $\left(A \star_{i} B\right) \star_{j}\left(A^{\prime} \star_{i} B^{\prime}\right)=\left(A \star_{j} A^{\prime}\right) \star_{i}\left(B \star_{j} B^{\prime}\right)$ for any $0 \leq i<j \leq 2 ;$

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in 「 as follows:
- The \star_{2}-composition of any 3-cells A and B such that $t_{\mathbf{2}}(A)=s_{\mathbf{2}}(B)$ is defined by

- We denote by $\mathcal{C}(\Gamma)$ the closure of Γ with respect to compositions \star_{0}, \star_{1} and \star_{2} of 3 -cells of Γ and their formal inverses A^{-1} for $A \in \Gamma$ quotiented by:
- the exchange relations $\left(A \star_{i} B\right) \star_{j}\left(A^{\prime} \star_{i} B^{\prime}\right)=\left(A \star_{j} A^{\prime}\right) \star_{i}\left(B \star_{j} B^{\prime}\right)$ for any $0 \leq i<j \leq 2$;
- the invertibility relations $A \star_{i} A^{-}=1_{s_{i}(A)}$ for any A in Γ and $i=0,1,2$.

Acyclic extensions

- Given a cellular extension Γ of R^{\top} modulo E, we define 3 formal compositions of 3-cells in 「 as follows:
- The \star_{2}-composition of any 3-cells A and B such that $t_{\mathbf{2}}(A)=s_{\mathbf{2}}(B)$ is defined by

- We denote by $\mathcal{C}(\Gamma)$ the closure of Γ with respect to compositions \star_{0}, \star_{1} and \star_{2} of 3 -cells of Γ and their formal inverses A^{-1} for $A \in \Gamma$ quotiented by:
- the exchange relations $\left(A \star_{i} B\right) \star_{j}\left(A^{\prime} \star_{i} B^{\prime}\right)=\left(A \star_{j} A^{\prime}\right) \star_{i}\left(B \star_{j} B^{\prime}\right)$ for any $0 \leq i<j \leq 2$;
- the invertibility relations $A \star_{i} A^{-}=1_{s_{i}(A)}$ for any A in Γ and $i=0,1,2$.
- We say that Γ is an acyclic extension modulo E of R^{\top} if $\mathcal{C}(\Gamma)$ is a coherent extension modulo E of R^{\top}.

Double groupoids

- The underlying categorical structure is given by a double groupoid, that is a pair $\mathcal{C}=\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$ of categories in which all 1-cells are invertible, with:

Double groupoids

- The underlying categorical structure is given by a double groupoid, that is a pair $\mathcal{C}=\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$ of categories in which all 1-cells are invertible, with:
- 1-cells of \mathcal{C}_{0} are vertical arrows of \mathcal{C};

Double groupoids

- The underlying categorical structure is given by a double groupoid, that is a pair $\mathcal{C}=\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$ of categories in which all 1-cells are invertible, with:
- 1-cells of \mathcal{C}_{0} are vertical arrows of \mathcal{C};
- 0 -cells of $\mathcal{C}_{\mathbf{1}}$ are horizontal arrows of \mathcal{C};

Double groupoids

- The underlying categorical structure is given by a double groupoid, that is a pair $\mathcal{C}=\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$ of categories in which all 1-cells are invertible, with:
- 1-cells of \mathcal{C}_{0} are vertical arrows of \mathcal{C};
- 0 -cells of \mathcal{C}_{1} are horizontal arrows of \mathcal{C};
- 1-cells of \mathcal{C}_{1} are 2-cells in \mathcal{C}, pictured by
 with $p, p^{\prime}, q, q^{\prime} 0$-cells of \mathcal{C}_{0}.

Double groupoids

- The underlying categorical structure is given by a double groupoid, that is a pair $\mathcal{C}=\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$ of categories in which all 1 -cells are invertible, with:
- 1-cells of \mathcal{C}_{0} are vertical arrows of \mathcal{C};
- 0 -cells of \mathcal{C}_{1} are horizontal arrows of \mathcal{C};
- 1-cells of $\mathcal{C}_{\mathbf{1}}$ are 2 -cells in \mathcal{C}, pictured by

$$
p^{\prime} \xrightarrow[f^{\prime}]{ } q^{\prime}
$$ with $p, p^{\prime}, q, q^{\prime} 0$-cells of \mathcal{C}_{0}.

- The compositions of 2-cells in a double groupoid are given by

corresponding to $\star_{\mathbf{1}}$ and $\star_{\mathbf{2}}$-compositions in $\mathcal{C}(\Gamma)$.

Coherence from confluence modulo

- Let us assume that R is confluent modulo E. An homotopical completion modulo E of R is a cellular extension modulo E of R^{\top} whose elements are the 3-cells

for any critical branching (f, g) and (f, e) of R modulo E, where f, g are rewriting steps of R and e is a one-step equivalence of E.

Coherence from confluence modulo

- Let us assume that R is confluent modulo E. An homotopical completion modulo E of R is a cellular extension modulo E of R^{\top} whose elements are the 3-cells

for any critical branching (f, g) and (f, e) of R modulo E, where f, g are rewriting steps of R and e is a one-step equivalence of E.
- Theorem. [D.-Malbos '18]

Let R and E be two SRS on X such that R_{E} is terminating and R is confluent modulo E.
Then any Squier's completion of R modulo E is an acyclic extension of R^{\top} modulo E.

Coherence from confluence modulo

- Let us assume that R is confluent modulo E. An homotopical completion modulo E of R is a cellular extension modulo E of R^{\top} whose elements are the 3-cells

for any critical branching (f, g) and (f, e) of R modulo E, where f, g are rewriting steps of R and e is a one-step equivalence of E.
- Theorem. [D.-Malbos '18]

Let R and E be two SRS on X such that R_{E} is terminating and R is confluent modulo E.
Then any Squier's completion of R modulo E is an acyclic extension of R^{\top} modulo E.

- The proof of this theorem is separated into 5 steps.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E, there exist 3-cells $A: f \star_{1} f^{\prime} \Rightarrow g \star_{1} g^{\prime}$ and $B: f \star_{1} f^{\prime} \Rightarrow e \star_{1} g^{\prime}$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$ as in the following diagram:

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E, there exist 3-cells $A: f \star_{1} f^{\prime} \Rightarrow g \star_{1} g^{\prime}$ and $B: f \star_{1} f^{\prime} \Rightarrow e \star_{1} g^{\prime}$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E, there exist 3 -cells $A: f \star_{1} f^{\prime} \Rightarrow g \star_{1} g^{\prime}$ and $B: f \star_{1} f^{\prime} \Rightarrow e \star_{1} g^{\prime}$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.
- If (f, g) is a Peiffer branching, , we can choose f^{\prime} and g^{\prime} such that $f \star_{\mathbf{1}} f^{\prime}=g \star_{\mathbf{1}} g^{\prime}$ and we set A an identity.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E, there exist 3-cells $A: f \star_{1} f^{\prime} \Rightarrow g \star_{1} g^{\prime}$ and $B: f \star_{1} f^{\prime} \Rightarrow e \star_{1} g^{\prime}$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.
- If (f, g) is a Peiffer branching, , we can choose f^{\prime} and g^{\prime} such that $f \star_{\mathbf{1}} f^{\prime}=g \star_{\mathbf{1}} g^{\prime}$ and we set A an identity.
- If (f, e) is a Peiffer branching with f in R^{*} and e in E^{\top}, we can choose f^{\prime} as the empty 2-cell, $g^{\prime \prime}=f$ and the right equivalence being e so that B is also an identity.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E, there exist 3-cells $A: f \star_{1} f^{\prime} \Rightarrow g \star_{1} g^{\prime}$ and $B: f \star_{1} f^{\prime} \Rightarrow e \star_{1} g^{\prime}$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.
- If (f, g) is a Peiffer branching, , we can choose f^{\prime} and g^{\prime} such that $f \star_{\mathbf{1}} f^{\prime}=g \star_{\mathbf{1}} g^{\prime}$ and we set A an identity.
- If (f, e) is a Peiffer branching with f in R^{*} and e in E^{\top}, we can choose f^{\prime} as the empty 2-cell, $g^{\prime \prime}=f$ and the right equivalence being e so that B is also an identity.
- If (f, g) (resp. $(f, e))$ is an overlapping that is not critical, we have $(f, g)=(u h v, u k v)$ (resp. $\left.(f, e)=\left(u h v, u e^{\prime} v\right)\right)$ for some u, v in X^{*} such that both (h, k) and ($\left.h, e^{\prime}\right)$ are critical.

Proof: Step 1

- For any local branching (f, g) and (f, e) of R modulo E with f, g in R and e in E, there exist 3-cells $A: f \star_{1} f^{\prime} \Rightarrow g \star_{1} g^{\prime}$ and $B: f \star_{1} f^{\prime} \Rightarrow e \star_{1} g^{\prime}$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$ as in the following diagram:

- If (f, g) is a local aspherical branching, A is an identity.
- If (f, g) is a Peiffer branching, , we can choose f^{\prime} and g^{\prime} such that $f \star_{\mathbf{1}} f^{\prime}=g \star_{\mathbf{1}} g^{\prime}$ and we set A an identity.
- If (f, e) is a Peiffer branching with f in R^{*} and e in E^{\top}, we can choose f^{\prime} as the empty 2-cell, $g^{\prime \prime}=f$ and the right equivalence being e so that B is also an identity.
- If (f, g) (resp. $(f, e))$ is an overlapping that is not critical, we have $(f, g)=(u h v, u k v)$ (resp. $(f, e)=\left(u h v, u e^{\prime} v\right)$) for some u, v in X^{*} such that both (h, k) and ($\left.h, e^{\prime}\right)$ are critical.
- We consider the 3-cells $A^{\prime}: f \star_{\mathbf{1}} f^{\prime} \Rightarrow_{E} g \star_{\mathbf{1}} g^{\prime}$ and $B^{\prime}: f{\star_{\mathbf{1}}} f^{\prime} \Rightarrow_{E} e \star_{\mathbf{1}} g^{\prime \prime}$ corresponding respectively to the critical branchings (h, k) and (h, e^{\prime}). We conclude by setting

$$
f^{\prime}=u h^{\prime} v \quad g^{\prime}=u k^{\prime} v \quad g^{\prime \prime}=u e^{\prime} v \quad A^{\prime}=u \star_{0} A^{\prime} \star_{0} v \quad B=u \star_{0} B^{\prime} \star_{0} v
$$

Proof: Step 2

- For any 2-cells $f: x \Rightarrow y$ and $g: x \Rightarrow z$ of R^{*} with $y \approx_{E} z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(\mathcal{S}(R, E))$:

Proof: Step 2

- For any 2-cells $f: x \Rightarrow y$ and $g: x \Rightarrow z$ of R^{*} with $y \approx_{E} z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(\mathcal{S}(R, E))$:

Proof: Step 2

- For any 2-cells $f: x \Rightarrow y$ and $g: x \Rightarrow z$ of R^{*} with $y \approx_{E} z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(\mathcal{S}(R, E))$:

Proof: Step 2

- For any 2-cells $f: x \Rightarrow y$ and $g: x \Rightarrow z$ of R^{*} with $y \approx_{E} z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(\mathcal{S}(R, E))$:

Proof: Step 2

- For any 2-cells $f: x \Rightarrow y$ and $g: x \Rightarrow z$ of R^{*} with $y \approx_{E} z$, there exists a 3-cell modulo E from f to g in $\mathcal{C}(\mathcal{S}(R, E))$:

Proof: Step 3

- For each rewriting steps $f: x \Rightarrow x^{\prime}$ and $g: y \Rightarrow y^{\prime}$ in R such that $x \stackrel{e}{\approx}_{E} y$, there exist 2-cells $f^{\prime}: x^{\prime} \Rightarrow x^{\prime \prime}, g^{\prime}: y^{\prime} \Rightarrow y^{\prime \prime}$ in R^{*} and a 3-cell modulo E from $f \star_{1} f^{\prime}$ to $g \star_{1} g^{\prime}$.

Proof: Step 3

- For each rewriting steps $f: x \Rightarrow x^{\prime}$ and $g: y \Rightarrow y^{\prime}$ in R such that $x \stackrel{e}{\approx}_{E} y$, there exist 2-cells $f^{\prime}: x^{\prime} \Rightarrow x^{\prime \prime}, g^{\prime}: y^{\prime} \Rightarrow y^{\prime \prime}$ in R^{*} and a 3-cell modulo E from $f \star_{1} f^{\prime}$ to $g \star_{1} g^{\prime}$.
- Proof by induction on $\ell(e)$.

Proof: Step 3

- For each rewriting steps $f: x \Rightarrow x^{\prime}$ and $g: y \Rightarrow y^{\prime}$ in R such that $x \stackrel{e}{\approx}_{E} y$, there exist 2-cells $f^{\prime}: x^{\prime} \Rightarrow x^{\prime \prime}, g^{\prime}: y^{\prime} \Rightarrow y^{\prime \prime}$ in R^{*} and a 3-cell modulo E from $f \star_{1} f^{\prime}$ to $g \star_{1} g^{\prime}$.
- Proof by induction on $\ell(e)$.
- If $\ell(e)=0$, this is Step 1 .

Proof: Step 3

- For each rewriting steps $f: x \Rightarrow x^{\prime}$ and $g: y \Rightarrow y^{\prime}$ in R such that $x \stackrel{e}{\approx}_{E} y$, there exist 2-cells $f^{\prime}: x^{\prime} \Rightarrow x^{\prime \prime}, g^{\prime}: y^{\prime} \Rightarrow y^{\prime \prime}$ in R^{*} and a 3-cell modulo E from $f \star_{1} f^{\prime}$ to $g \star_{1} g^{\prime}$.
- Proof by induction on $\ell(e)$.
- If $\ell(e)=0$, this is Step 1 .
- If $\ell(e)=1$, the result is proved by the following diagram

Proof: Step 3

- For each rewriting steps $f: x \Rightarrow x^{\prime}$ and $g: y \Rightarrow y^{\prime}$ in R such that $x \stackrel{e}{\approx}_{E} y$, there exist 2-cells $f^{\prime}: x^{\prime} \Rightarrow x^{\prime \prime}, g^{\prime}: y^{\prime} \Rightarrow y^{\prime \prime}$ in R^{*} and a 3-cell modulo E from $f \star_{1} f^{\prime}$ to $g \star_{1} g^{\prime}$.
- Proof by induction on $\ell(e)$.
- If $\ell(e)=0$, this is Step 1 .
- If $\ell(e)=1$, the result is proved by the following diagram

Proof: Step 3

- For each rewriting steps $f: x \Rightarrow x^{\prime}$ and $g: y \Rightarrow y^{\prime}$ in R such that $x \stackrel{e}{\approx}_{E} y$, there exist 2-cells $f^{\prime}: x^{\prime} \Rightarrow x^{\prime \prime}, g^{\prime}: y^{\prime} \Rightarrow y^{\prime \prime}$ in R^{*} and a 3-cell modulo E from $f \star_{1} f^{\prime}$ to $g \star_{1} g^{\prime}$.
- Proof by induction on $\ell(e)$.
- If $\ell(e)=0$, this is Step 1 .
- If $\ell(e)=1$, the result is proved by the following diagram

Proof: Step 3

- For each rewriting steps $f: x \Rightarrow x^{\prime}$ and $g: y \Rightarrow y^{\prime}$ in R such that $x \stackrel{e}{\approx}_{E} y$, there exist 2-cells $f^{\prime}: x^{\prime} \Rightarrow x^{\prime \prime}, g^{\prime}: y^{\prime} \Rightarrow y^{\prime \prime}$ in R^{*} and a 3-cell modulo E from $f \star_{1} f^{\prime}$ to $g \star_{1} g^{\prime}$.
- Proof by induction on $\ell(e)$.
- If $\ell(e)=0$, this is Step 1 .
- If $\ell(e)=1$, the result is proved by the following diagram

- Suppose the result proved for $\ell(e)=k>1$ and let us prove the result for $\ell(e)=k+1$.

Proof: Step 4

- For any 2-cells $f: x \Rightarrow \hat{x}$ and $g: y \Rightarrow \hat{y}$ with $x{\underset{\sim}{\sim}}_{E}^{e} y$, there exists a 3-cell $A: f \Rightarrow_{E} g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 4

- For any 2-cells $f: x \Rightarrow \hat{x}$ and $g: y \Rightarrow \hat{y}$ with $x \tilde{\sim}_{E}^{e} y$, there exists a 3-cell $A: f \Rightarrow_{E} g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 4

- For any 2-cells $f: x \Rightarrow \hat{x}$ and $g: y \Rightarrow \hat{y}$ with $x \tilde{\sim}_{E}^{e} y$, there exists a 3-cell $A: f \Rightarrow_{E} g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 4

- For any 2-cells $f: x \Rightarrow \hat{x}$ and $g: y \Rightarrow \hat{y}$ with $x \tilde{\sim}_{E}^{e} y$, there exists a 3-cell $A: f \Rightarrow_{E} g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 4

- For any 2-cells $f: x \Rightarrow \hat{x}$ and $g: y \Rightarrow \hat{y}$ with $x \tilde{\sim}_{E}^{e} y$, there exists a 3-cell $A: f \Rightarrow_{E} g$ modulo E in $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 5

- Every 2-sphere modulo E of R^{\top} is the boundary of a 3-cell modulo E of $\mathcal{C}(\mathcal{S}(R, E))$.

Proof: Step 5

- Every 2-sphere modulo E of R^{\top} is the boundary of a 3-cell modulo E of $\mathcal{C}(\mathcal{S}(R, E))$.
- Let us consider a 2-cell $f: u \Rightarrow v$ in R^{*}. Using confluence modulo E of R,

Proof: Step 5

- Every 2-sphere modulo E of R^{\top} is the boundary of a 3-cell modulo E of $\mathcal{C}(\mathcal{S}(R, E))$.
- Let us consider a 2-cell $f: u \Rightarrow v$ in R^{*}. Using confluence modulo E of R,

- Let us consider a 2-cell $f: u \Rightarrow v$ of R^{\top}; it can be decomposed in a non unique way into a zigzag sequence $f_{1} \star g_{1}^{-1} \star_{1} \cdots \star_{1} f_{n} \star_{1} g_{n}^{-1}$ where each f_{i} and g_{i} is a 2-cell of R^{*}.

Proof: Step 5

- Every 2-sphere modulo E of R^{\top} is the boundary of a 3-cell modulo E of $\mathcal{C}(\mathcal{S}(R, E))$.
- Let us consider a 2-cell $f: u \Rightarrow v$ in R^{*}. Using confluence modulo E of R,

- Let us consider a 2-cell $f: u \Rightarrow v$ of R^{\top}; it can be decomposed in a non unique way into a zigzag sequence $f_{1} \star g_{1}^{-1} \star_{1} \cdots \star_{1} f_{n} \star_{1} g_{n}^{-1}$ where each f_{i} and g_{i} is a 2-cell of R^{*}.
- We define a 3-cell modulo $\sigma_{f}: f \star_{1} \sigma_{v} \Rightarrow E \sigma_{u}$ in $\mathcal{C}(\mathcal{S}(R, E))$ as the following composition:

$$
u \xlongequal{f_{1}} v_{1} \stackrel{g_{1}}{\Longleftarrow} u_{2} \Rightarrow(\cdots) \Leftarrow u_{n} \xlongequal{f_{n}} v_{n} \stackrel{g_{n}}{\Longleftarrow} v
$$

Proof: Step 5

- Every 2-sphere modulo E of R^{\top} is the boundary of a 3-cell modulo E of $\mathcal{C}(\mathcal{S}(R, E))$.
- Let us consider a 2-cell $f: u \Rightarrow v$ in R^{*}. Using confluence modulo E of R,

- Let us consider a 2-cell $f: u \Rightarrow v$ of R^{\top}; it can be decomposed in a non unique way into a zigzag sequence $f_{1} \star g_{1}^{-1} \star_{1} \cdots \star_{1} f_{n} \star_{1} g_{n}^{-1}$ where each f_{i} and g_{i} is a 2 -cell of R^{*}.
- We define a 3-cell modulo $\sigma_{f}: f \star_{1} \sigma_{v} \Rightarrow_{E} \sigma_{u}$ in $\mathcal{C}(\mathcal{S}(R, E))$ as the following composition:

Proof: Step 5

- Every 2-sphere modulo E of R^{\top} is the boundary of a 3-cell modulo E of $\mathcal{C}(\mathcal{S}(R, E))$.
- Let us consider a 2-cell $f: u \Rightarrow v$ in R^{*}. Using confluence modulo E of R,

- Let us consider a 2-cell $f: u \Rightarrow v$ of R^{\top}; it can be decomposed in a non unique way into a zigzag sequence $f_{1} \star g_{1}^{-1} \star_{1} \cdots \star_{1} f_{n} \star_{1} g_{n}^{-1}$ where each f_{i} and g_{i} is a 2 -cell of R^{*}.
- We define a 3-cell modulo $\sigma_{f}: f \star_{1} \sigma_{v} \Rightarrow_{E} \sigma_{u}$ in $\mathcal{C}(\mathcal{S}(R, E))$ as the following composition:

Proof: Step 5

- Every 2-sphere modulo E of R^{\top} is the boundary of a 3-cell modulo E of $\mathcal{C}(\mathcal{S}(R, E))$.
- Let us consider a 2-cell $f: u \Rightarrow v$ in R^{*}. Using confluence modulo E of R,

- Let us consider a 2-cell $f: u \Rightarrow v$ of R^{\top}; it can be decomposed in a non unique way into a zigzag sequence $f_{1} \star g_{1}^{-1} \star_{1} \cdots \star_{1} f_{n} \star_{1} g_{n}^{-1}$ where each f_{i} and g_{i} is a 2 -cell of R^{*}.
- We define a 3-cell modulo $\sigma_{f}: f \star_{1} \sigma_{v} \Rightarrow_{E} \sigma_{u}$ in $\mathcal{C}(\mathcal{S}(R, E))$ as the following composition:

Proof: Step 5

- Every 2-sphere modulo E of R^{\top} is the boundary of a 3-cell modulo E of $\mathcal{C}(\mathcal{S}(R, E))$.
- Let us consider a 2-cell $f: u \Rightarrow v$ in R^{*}. Using confluence modulo E of R,

- Let us consider a 2-cell $f: u \Rightarrow v$ of R^{\top}; it can be decomposed in a non unique way into a zigzag sequence $f_{1} \star g_{1}^{-1} \star_{1} \cdots \star_{1} f_{n} \star_{1} g_{n}^{-1}$ where each f_{i} and g_{i} is a 2-cell of R^{*}.
- We define a 3-cell modulo $\sigma_{f}: f \star_{1} \sigma_{v} \Rightarrow_{E} \sigma_{u}$ in $\mathcal{C}(\mathcal{S}(R, E))$ as the following composition:

- For any 2-sphere (f, g) modulo E in R^{\top}, there exists a 3-cell modulo $f \Rightarrow_{E} g$ in $\mathcal{C}(\mathcal{S}(R, E))$ given by the following composition:
- For any 2-sphere (f, g) modulo E in R^{\top}, there exists a 3-cell modulo $f \Rightarrow_{E} g$ in $\mathcal{C}(\mathcal{S}(R, E))$ given by the following composition:

Conclusion

- We obtained a coherence result for Huet's approach of rewriting modulo.

Conclusion

- We obtained a coherence result for Huet's approach of rewriting modulo.
- The confluence of R modulo E is hard to obtain for the interesting cases.

Conclusion

- We obtained a coherence result for Huet's approach of rewriting modulo.
- The confluence of R modulo E is hard to obtain for the interesting cases.
- Objective $=$ generalize this coherence result to Jouannaud-Kirchner's approach for any SRS S such that

$$
R \subseteq S \subseteq R / E
$$

Conclusion

- We obtained a coherence result for Huet's approach of rewriting modulo.
- The confluence of R modulo E is hard to obtain for the interesting cases.
- Objective $=$ generalize this coherence result to Jouannaud-Kirchner's approach for any SRS S such that

$$
R \subseteq S \subseteq R / E
$$

- Study the particular case $S={ }_{E} R$, where Bachmair - Dershowitz's completion holds.

Conclusion

- We obtained a coherence result for Huet's approach of rewriting modulo.
- The confluence of R modulo E is hard to obtain for the interesting cases.
- Objective $=$ generalize this coherence result to Jouannaud-Kirchner's approach for any SRS S such that

$$
R \subseteq S \subseteq R / E
$$

- Study the particular case $S={ }_{E} R$, where Bachmair - Dershowitz's completion holds.
- Describe this completion in terms of critical pairs.

Conclusion

- We obtained a coherence result for Huet's approach of rewriting modulo.
- The confluence of R modulo E is hard to obtain for the interesting cases.
- Objective $=$ generalize this coherence result to Jouannaud-Kirchner's approach for any SRS S such that

$$
R \subseteq S \subseteq R / E
$$

- Study the particular case $S={ }_{E} R$, where Bachmair - Dershowitz's completion holds.
- Describe this completion in terms of critical pairs.
- The main application is to obtain homotopical completions modulo, and in particular constructions of coherent presentations for
- groups;
- diagrammatic algebras.

