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Abstract

Convergent rewriting systems on algebraic structures give methods to prove coherence
results and compute homological invariants of these structures. These methods are based
on higher-dimensional extensions of the critical pair lemma that characterizes local conflu-
ence from confluence of critical pairs. The analysis of local confluence of rewriting systems
on algebraic structures, such as groups or linear algebras, is complicated because of the
underlying algebraic axioms, and local confluence properties require additional termina-
tion conditions. In this work, we define the structure of algebraic polygraph modulo that
formalizes the interaction between the rules of the rewriting system and the inherent al-
gebraic axioms, and we show a critical pair lemma algebraic polygraphs. We deduce from
this result a critical pair lemma for rewriting systems on algebraic structures specified by
rewriting systems convergent modulo AC. As an illustration, we explicit our constructions
on linear rewriting systems.

1 Introduction

The critical-pair completion (CPC) is an approach developed in the mid sixties that combines
completion procedure and the notion of critical pair [2]. It originates from theorem proving [12],
polynomial ideal theory [1], and the word problem [9, 11]. In the mid eighties, CPC has found
original and deep applications in algebra to solve coherence problems [14], or to compute homo-
logical invariants [13]. More recently, higher-dimensional extensions of the CPC approach were
used for the computation of cofibrant replacements of algebraic and categorical structures [5, 6].
These constructions based on CPC are known for monoids, small categories, and algebras over
a field. However, the extension of these methods to a wide range of algebraic structures is made
difficult because of the interaction between the rewriting rules and the inherent axioms of the
algebraic structure. For this reason, the higher-dimensional extensions of the CPC approach
for a wide range of algebraic structures, including groups, Lie algebras, is still an open problem.

One of the main tools to reach confluence in CPC procedure for algebraic rewriting systems is
the critical pair lemma, or critical branching lemma (CBL). Its proof is based on classification of
the local branchings into orthogonal branchings, that is involving two rules that do not overlap,
overlapping branchings involving two rules that overlap. A critical branching is a minimal
overlapping application of two rules on the same redex. When the orthogonal branchings
are confluent, if all critical branchings are confluent, then local confluence holds. Thus, the
main argument to achieve CBL is to prove that orthogonal and overlapping branchings are
confluent. For string and term rewriting systems, orthogonal branchings are always confluent,
and confluence of critical branchings implies confluence of overlapping branchings. The situation
is more complicated for rewriting systems on a linear structure.

The well known approaches of rewriting in the linear context consist in orienting the rules
with respect to an ambient monomial order, and CBL is well known in this context. However,
some algebras do not admit any higher-dimensional finite convergent presentation on a fixed set
of generators with respect to a monomial order, [5]. However, when the orientation of rules does
not depend on a monomial order, as in [5], the CBL requires additional assumptions, namely
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termination and positivity of reductions. A positive reduction for a linear rewriting system,
as defined in [5], is the application of a reduction rule on a monomial that does not appear in
the polynomial context. For instance, consider the linear rewriting system on an associative
algebra over a field K given in [5] defined by rules « : xy — xz and  : zt — 2yt. It has no
critical branching, but it has a non-confluent additive branching:

2xf3 4ot 4xp
4xyt 4xzt
ot + xzt Ixzt Xzt +XB
/—> Xz =
xyt 4+ xzt = xzt + 2xyt
y 2xy

xyt +x
Y g T 3xzt 6xyt

3at 3xp 6oct

The dotted arrows correspond to non positive reductions. We note that the lack of termination
is an obstruction to confluence of orthogonal branchings.

In this work we introduce an algebraic setting for the formulation of the CBL. We define
the structure of algebraic polygraph modulo which formalizes the interaction between the rules
of the rewriting system and the inherent axioms of the algebraic structure. We show a CBL
for algebraic polygraphs modulo. We deduce from this result a CBL for rewriting systems on
algebraic structures whose axioms are specified by term rewriting systems that are convergent
modulo associativity and commutativity. Finally, we explicit our results in linear rewriting, and
explain why termination is a necessary condition to characterize local confluence in that case.

In Section 2, we recall the categorical structure of cartesian polygraph introduced in [10]. In
Section 3, we introduce the notion of algebraic polygraph modulo, and we refer the reader to [4]
for a categorical interpretation of the given constructions. In Section 4, we present confluence
property of algebraic polygraphs modulo from [4] and algebraic polygraphs modulo with respect
a positive strategy o. Finally, we state the algebraic critical branching lemma. This abstract
is a short version of the preprint [3], where more detailed constructions and examples can be
found.

2 Cartesian polygraphs

A signature is defined by a set Py of sorts and a set Py of operations on the free monoid over
Po. We denote by so(x) and to(x) the arity and coarity of o« € P;. When sq,..., sy are sorts,
we denote s = sy...S, their product in the free monoid over Py. We denote by P1X the free
theory generated by a signature (Po, P1). Its 1-cells, also called terms on the signature (Po, P7)
are defined inductively. The canonical projections x% : s — s; are variables, and for any terms
f:s—rand f' :s — v/ in Py, we denote by (f,f’) : s — rr’, the pairing of terms f,f’. A
(cartesian) 2-polygraph is a data made of a signature (Po, P1), and a set P, equipped with two
maps ty,s1 : P, — P, satisfying the globular conditions sos1 = sot; and tos; = tot;. An
element o of P, is called a rule, and relates terms of same arity and coarity.

2.1. Two-dimensional theories. Recall that a 2-theory is a 2-category with an additional
cartesian structure on its 1-cells and 2-cells [10]. We denote by P; the free 2-theory generated
by a cartesian 2-polygraph (Po,P1,P2). Its underlying 1-category is the free theory Py, and
its 2-cells are defined inductively as follows. For « : f = f’ in P, and h € P{, there is a 2-cell
oah:fxh = f xhin PJ, and for B : g = ¢’ in P, there is a 2-cell («, p) : (f,g) = (f',g’).
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Finally, there are 2-cells in P5 of the form Ala] : A[f] = A[f'] where A[O] denotes an algebraic
context of the form: k(idy,,...,0i,...,idy;) : s — 1, where kq,...,kj :s =2 riand k:1r — 7
belong to Py, and O is the i-th element of the pairing. These 2-cells are required to satisfy
ezchange relations, see [10]. The source and target maps s1,t; extend to P5 and we denote a_
and ay for sy(a) and ty(a). A ground term in P{* is a term with source 0. A 2-cell a in P} is
ground when a_ is a ground term. An algebraic context A[O] = f(fy,...,Oi,...fy) is called
ground when the f; are ground terms.

The free (2,1)-theory generated by a cartesian 2-polygraph (Po, P1,P2), denoted by P, , is
the free 2-theory P5 whose any 2-cell is invertible with respect the x-composition. The 2-cells
of the (2,1)-theory P, corresponds to elements of the equivalence relation generated by Ps.

2.2. Rewriting properties of cartesian polygraphs. The algebraic contexts of a 2-
polygraph P can be composed as follows AA’[O] := A[A’[O]]. One defines a bi-context as
B[Oi, O5] := f(id¢,,...,0iy...,0j,...,ids,) where the fi : s = 1 and f : v — T are terms in
Py, and O; (resp. 0j) has to be filled by a term gi : s — 1i (vesp. gj : 8 — 1j). A 2-cell
of the form A[axw] where A is an algebraic context, w is a term in P; and o € P, is called
a P-rewriting step. A P-rewriting path is a non-identity 2-cell of P5. Such a 2-cell can be
decomposed as a *-composition of rewriting steps & = Aqlocywi] x ... Ay [ogewsl.

3 Algebraic polygraphs modulo

Let (Po,P7) be a signature, and Q be a set of generating ground terms whose target is a sort
in Pyp. We denote by P1(Q) the set of ground terms of the free theory (P; U Q). An algebraic
polygraph is a data made of a 2-polygraph P, a family of set of constant 1-cells Q, and a cellular
extension R of the set of ground terms P;(Q), that is a set equipped with two source and
target maps R — P1(Q). A R-rewriting step is a ground 2-cell in the free 2-theory R* of the
form Alx] : A[f] — Alg], where A[O] is a ground context. A R-rewriting path is a finite or
infinite sequence aj *...* ay * ... of R-rewriting steps a;. The size of a R-rewriting path a,
denoted by |a|, is the number of rewriting steps needed to write a as a composition as above.
The cellular extension P, defined on P;* extends to a cellular extension on the free 1-theory

(P UQ)™ denoted by P,. We denote by P2(Q) the set of ground 2-cells in the free 2-theory

(ﬁz)x. The algebraic polygraph (P, Q,P2(Q)) is called the algebraic polygraph of axioms. We
denote by P(Q) the quotient of P;1(Q) by the congruence generated by relations in P2(Q).

3.1. Positive strategies. Denote by f the image of a ground term f by the canonical pro-

jection 7 : P1(Q) — P(Q). Let o : P(Q) — Set be a map such that for any f € P(Q), o(f) is
a chosen non-empty subset of 71! (f). Such a map is called a positive strategy with respect to
(P,Q). A R-rewriting step a is called o-positive if a_ belongs to o(a_), and a R-rewriting path
ay x...x ag is called o-positive if any of its rewriting steps is positive.

We will use positive strategies wrt a 2-polygraph P such that P, = P;JUPY, with P} confluent
modulo PY. For every 1-cell f in P(Q), we set o(f) = NF(f,P} mod PY), where f € 7w '(f),
the set of normal forms of f for P, modulo P4. This is well-defined following [7], since if
f,f’ € w1 (f), then NF(f,P} mod P";) =p-, NF(f’, P; mod P'2).

3.2. Algebraic polygraphs modulo. Given an algebraic polygraph P = (P,Q,R) and a
positive strategy o on P, one denotes by pRp the cellular extension of P1(Q) whose elements
are of the form e axe’, where e and e’ are 2-cells in P(Q) " and a is a R-rewriting step such

3
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that e, = a_ and a; = e’ see [4] for a detailed construction. A 2-cell exaxe’ in pRp is
called o-positive if a is a o-positive R-rewriting step. An algebraic polygraph modulo, APM for
short, is a data (P, Q,R,S) made of an algebraic polygraph (P, Q,R), and a cellular extension S
of P1(Q) such that RC S C pRp.

An algebraic polygraph (P, Q,R) is called quasi-terminating if for each sequence (f,,)en of
1-cells of P1(Q) such that for each n € N, there is a rewriting step f, — fn1, the sequence
(fn)en contains an infinite number of occurrences of same 1-cell. An APM (P, Q, R, S) is called
quasi-terminating if the algebraic polygraph (P, Q,S) is quasi-terminating. A 1-cell f of P7(Q)
is quasi-irreducible if for any S-rewriting step f — g, there exists a S-rewriting sequence from g
to f. A quasi-normal form of a 1-cell f in P1(Q) is a quasi-irreducible T-cell f of P;(Q) such that
there exists a S-rewriting sequence from f to f. For a quasi-terminating APM, any 1-cell f of
P1(Q) admits at least a quasi-normal. A quasi-normal form strategy is amap s : P1(Q) — P1(Q)
sending a 1-cell f on a chosen quasi-normal f.

An algebraic rewriting system on (P, Q,R, S, o) is a cellular extension S of P(Q) defined by
S ={a:a- = a;|a €S} Let us consider the subset 5% of S defined by 57 = {a:a =
a; | ais a o-positive S-rule}. A S-rewriting step (resp. a §G-rewriting step) is a 2-cell in S8
(resp. §0'><) of the form C[a] : C[a_] = Cla] , where C is a ground context of P;(Q) and C[a]
is a S-rewriting step (resp. o-positive S-rewriting step). A S-rewriting path is a sequence of
S-rewriting steps.

4 Confluence in algebraic polygraphs modulo

Let P = (P,Q,R,S) be an APM with a positivity strategy o. A o-branching of P is a triple
(a,e,b) where a,b are o-positive 2-cells of $* and e is a T-cell of P,(Q)" such that e =
a_and ey = b_. It is local if a is a S-rewriting step, b is a 2-cell of $* and e a 2-cell
of P2(Q)T such that |e| + |[b| = 1. Note that the 2-cell b (resp. e) can be an identity 2-
cell of S* (resp of P2(Q)"), and in that case the o-branching is of the form (a,e) (resp.
(a,b)). Such a o-branching is o-confluent modulo if there exist o-positive 2-cells a’ and b’

in $* and a 2-cell e’ of P2(Q) T as depicted on the right. We say that ¢_a_ ¢ o' 1

the APM P is confluent modulo (resp. locally confluent modulo) if any e¢ Ve

o-branching modulo (resp. local branching modulo) is confluent modulo. g — g’ =h'
b/

4.1. Theorem (Newman lemma modulo for algebraic polygraphs modulo). Let P be
a quasi-terminating APM, and o be a positive strategy on P. If P is locally o-confluent modulo,

then it is o-confluent modulo.
The proof of this result, and of Thm. 4.4 are based on the principle of double induction

on the distance to the quasi-normal form, and are extensions to quasi-terminating setting of
Huet’s constructions based on double induction principle [7] in the terminating setting. Let
d: P;(Q) — N maping a 1-cell f to the length d(f) of the shortest pRp-rewriting path from f
to f, that we extend to a map on o-branchings (a, e, b) by setting d(a, e, b):= d(a_)+ d(b_).
We define a well-founded order < on the set of o-branchings of P by (a,e,b) < (a’,e’,b’) if
d(a,e,b) < d(a’,e’,b’).

4.2. Classification of local o-branchings modulo. The local o-branchings modulo of S
can be classified in the following families:

Ala,]<*— Ala ] —*> Ala.] Ala] <2—Ala 1= A[A'lb ]| —= A[A'Db,]]
Trivial Inclusion independant
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Bla,b_] Bla,e_]

Bla_,b_ ] ————Bla,,b_] Bla_,e ] —————= Bla,,e_]
I J/ B [a,,e]i/
Bla_,b_] “Bla_ bl Bla_,b.] Bla_, ty(e)]
Orthogonal Orthogonal modulo

together with symmetries on orthogonal o-branchings modulo, for some o-positive S-rewriting
steps a,b, 2-cell e in P2(Q)T, ground contexts A,A’, and ground bi-contexts B,B’. The
remaining local o-branchings modulo are called non-orthogonal o-branchings modulo.

We define an order relation on o-branchings modulo of P = (P, Q, R, S) by setting (a, e, b) C
(Alal, Alel, A[b]) for a ground context A. A critical o-branching modulo is a local o-branching
modulo P which is non trivial, non orthogonal and minimal wrt the order relation C.

4.3. Positive confluence. An APM (P, Q, R, S) with a positive strategy o is called o-positively
confluent if, for any S-rewriting step f, there exists a representing a’

a_ € o(a_) of a_ and two o-positive S-reductions a’ and b’ of ,
size at most 1 as in the following on the right. ij’ \Le

a e’ b’

4.4. Theorem (Terminating critical branching theorem modulo). Let (P,Q,R,S) be a
quasi-terminating and positively o-confluent APM with a positive strategy o. Then it is locally
o-confluent modulo if and only if the two following properties hold:

ag) any critical o-branching modulo (a,b) made of S-rewriting steps is o-confluent modulo.

bo) any critical o-branching modulo (a,e), with a S-rewriting step and e is a 2-cell in P2(Q) T

of length 1, is o-confluent modulo.

When all the reductions are positive, that is S(T) = 7' (i) for any T, the quasi-termination
assumption in Prop. 4.4 are not needed. In that case, the positive confluence is always satisfied.

4.5. Algebraic critical branching lemma. Let A be an algebraic rewriting system on an
APM P = (P,Q,R,S). The critical branchings of A are the projections of the critical o-
branchings modulo of P of the form ag), that is pairs (a,b) of gc—rewriting steps such that
there is a o-branching modulo in P with source (a_, l;i) From Prop. 4.4, we deduce our main
result.

4.6. Theorem. Let P = (P,Q,R,S) be an APM such that pRp is quasi-terminating and pos-
itiwvely confluent. Let A be an algebraic rewriting system on P. Then A is locally confluent if
and only if its critical branchings are confluent.

4.7. CBL for linear rewriting. Suppose that P contains the convergent 2-polygraph modulo
AC that presents the theory of modules over commutative rings given in [8], denoted by RMoD.
If P4 is the 2-polygraph of associativity and commutativity relations, and P} is RMoD, then
Thm. 4.6 corresponds to CBL for linear rewriting systems proved in [5]. Indeed, given an APM
(P, Q, R, S) with the o-strategy defined in 3.1, one proves that the positivity confluence of S with
respect to o implies the factorization property of [5]. This property means that any rewriting
step a of S can be decomposed as a = bxc~! where b and c are either rewriting steps of 5% or
identities. Finally, the quasi-termination assumption of pRp is equivalent to the termination
assumption in [5].
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