Coherence modulo relations and double groupoids

Benjamin Dupont

joint work with Philippe Malbos
Journées LHC
Marseille, 18 Octobre 2018
I. Introduction and motivations
II. Double groupoids
III. Polygraphs modulo
IV. Coherence modulo

I. Introduction and motivations

Motivations: algebraic context

- This work is part of algebraic rewriting, consisting in applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- For instance, computation of syzygies (relations among relations): for the group $\mathbb{Z}^{3}=\langle x, y, z \mid[x, y]=1,[y, z]=1,[z, x]=1\rangle$, the Jacobi identity

$$
\left[x^{y},[y, z]\right]\left[y^{z},[z, x]\right]\left[z^{x},[x, y]\right]=1
$$

is such a syzygy, with $[x, y]=x y x^{-} y^{-}$and $x^{y}=y^{-} x y$.

- For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14, Hage-Malbos '16.
- If a group $G=\langle X \mid R\rangle$ is presented as a monoid $M=\langle X \amalg \bar{X}| R \cup\left\{x x^{-} \stackrel{\alpha_{x}}{\Rightarrow} 1, x^{-} x \stackrel{\alpha_{\chi}}{\Rightarrow} 1\right\}$, the confluence diagram

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

$$
\bigcap=\emptyset=\emptyset \quad \bigcap \rho=\emptyset=\emptyset
$$

- We use rewriting modulo.
- Algebraic axioms are not rewriting rules, but taken into account when rewriting.

Three paradigms of rewriting modulo

- Rewriting system R :
- Usual rewriting theory;
- Squier's theorem expressed in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet ' 80

Cubical

- Rewriting with any system S such that $R \subseteq S \subseteq{ }_{E} R_{E}$, Jouannaud - Kirchner '84.
- Many results in rewriting modulo are expressed for ${ }_{E} R$.

II. Double groupoids

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- A double category is an internal category $\left(\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }_{\mathbf{o}}, i_{\mathbf{C}}\right)$ in Cat.

$$
\begin{aligned}
& \left(\mathrm{C}_{0}\right)_{0} \xrightarrow{\left(\mathrm{C}_{1}\right)_{0}}\left(\mathrm{C}_{0}\right)_{0} \\
& \left(C_{0}\right)_{1} \downarrow \underset{\downarrow}{\left(C_{1}\right)_{1}} \downarrow \downarrow^{\left(C_{0}\right)_{1}} \\
& \left(\mathrm{C}_{0}\right)_{0} \underset{\left(\mathrm{C}_{1}\right)_{0}}{ }\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

- It gives four related categories

$$
\begin{array}{ll}
\mathbf{C}^{\text {vo }}:=\left(\mathbf{C}^{\vee}, \mathbf{C}^{o}, \partial_{-, 0}^{v}, \partial_{+, 0}^{v}, \circ^{\vee}, i_{0}^{v}\right), & \mathbf{C}^{h o}:=\left(\mathbf{C}^{h}, \mathbf{C}^{o}, \partial_{-, 0}^{h}, \partial_{+, 0}^{h}, \circ^{h}, i_{0}^{h}\right), \\
\mathbf{C}^{s v}:=\left(\mathbf{C}^{s}, \mathbf{C}^{\vee}, \partial_{-, 1}^{v}, \partial_{+, 1}^{v}, \diamond^{\vee}, i_{1}^{\vee}\right), & \mathbf{C}^{s h}:=\left(\mathbf{C}^{s}, \mathbf{C}^{h}, \partial_{-, 1}^{h}, \partial_{+, 1}^{h}, \diamond^{h}, i_{1}^{h}\right),
\end{array}
$$

where $\mathbf{C}^{\text {sh }}$ is the category \mathbf{C}_{1} and $\mathbf{C}^{\text {vo }}$ is the category \mathbf{C}_{0}.

- Elements of \mathbf{C}° are called point cells, the elements of \mathbf{C}^{h} and \mathbf{C}^{v} are called horizontal cells and vertical cells respectively and pictured by

Double groupoids

- Source and target maps make elements of C_{s} be square cells
- Compositions
for all x_{i}, y_{i}, z_{i} in \mathbf{C}^{o}, f_{i} in $\mathbf{C}^{h}, e_{i}, e_{j}^{\prime}$ in \mathbf{C}^{\vee} and A, A^{\prime}, B in \mathbf{C}^{s}.

Double groupoids

- These compositions satisfy the middle four interchange law:
 \diamond^{h}

$$
y_{2} \xrightarrow{g_{2}} y_{3} \quad y_{1} \xrightarrow{g_{1}} y_{2}
$$

$$
\begin{gathered}
e_{1}^{\prime} \downarrow \\
\Downarrow A^{\prime}{ }_{c} \Downarrow^{e_{2}^{\prime}} \\
z_{1}-h_{1}>z_{2}
\end{gathered}
$$

$$
\begin{array}{cc}
y_{2} \xrightarrow{g_{2}} y_{3} \\
\diamond^{v} e_{2}^{\prime} \|_{\downarrow} & \Downarrow_{B^{\prime}} \downarrow^{{ }^{\prime}} e_{3}^{\prime} \\
z_{2} & h_{2}>z_{3}
\end{array}
$$

- Double groupoid $=$ double category $\left(\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }_{\mathbf{C}}, i_{\mathbf{C}}\right)$ in which \mathbf{C}_{1} and C_{0} are groupoids.
- n-category enriched in double groupoids $=n$-category \mathcal{C} such that any homset $\mathcal{C}_{n}(x, y)$ is a double groupoid.
- The set $\mathcal{C}_{n}(x, y)^{0}$ is the set of n-cells in $\mathcal{C}_{n}(x, y)$.
- Horizontal $(n+1)$-category is the ($n+1$)-category of rewritings; vertical $(n+1)$-category is the $(n+1)$-category of modulo rules.

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{\vee}, P^{h}, P^{s}) made of:
- two $(n+1)$-polygraphs P^{\vee} and P^{h} such that $P_{k}^{v}=P_{k}^{h}$ for $k \leq n$,
- a 2-square extension P^{s} of the pair of $(n+1)$-categories $\left(\left(P^{v}\right)^{*},\left(P^{h}\right)^{*}\right)$, that is a set equipped with four maps $\partial_{ \pm, n}^{\mu}$, with $\mu \in\{v, h\}$, making Γ a 2-cubical set:

- A double $(n+2, n)$-polygraph is a double n-polygraph whose square extension P_{n+2}^{s} is defined on $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$.
- A double n-polygraph (resp. double $(n+2, n)$-polygraph) $\left(P^{v}, P^{h}, P^{s}\right)$ generates a free n-category enriched in double categories (resp. in double groupoids), denoted by $\left(P^{v}, P^{h}, P^{s}\right) \Pi$.

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square

$$
S=\left(P^{\vee}\right)^{\top} \stackrel{\stackrel{\left(P^{h}\right)^{\top}}{\downarrow} \stackrel{\downarrow^{\top}}{\downarrow_{A}} \downarrow^{\stackrel{\left(P^{h}\right)^{\top}}{\longrightarrow}}\left(P^{\vee}\right)^{\top}}{ }
$$

there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.

- A 2 -fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic
- Example: Let E be a convergent $(n+1)$-polygraph and \mathbf{C} the n-category presented by E. $\operatorname{Cd}(E):=$ square extension of $\left(E^{\top}, 1\right)$ containing squares

for a choice of confluence diagram of any critical branching $\left(e_{1}, e_{2}\right)$ of E.
- From Squier's theorem, $(E, \emptyset, \operatorname{Cd}(E))$ is a 2-fold coherent presentation of \mathbf{C}.

III. Polygraphs modulo

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,
- S is a cellular extension of R_{n-1}^{*} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by

$$
\gamma^{E} R_{E}:{ }_{E} R_{E} \rightarrow \operatorname{Sph}_{n-1}\left(R_{n-1}^{*}\right)
$$

where ${ }_{E} R_{E}$ is the set of triples $\left(e, f, e^{\prime}\right)$ in $E^{\top} \times R^{*(1)} \times E^{\top}$ such that

and the map $\gamma E^{R_{E}}$ is defined by $\gamma{ }^{R_{E}}\left(e, f, e^{\prime}\right)=\left(\partial_{-, n-1}(e), \partial_{+, n-1}\left(e^{\prime}\right)\right)$.

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple $(f, e, g$) where f and g are n-cells of S^{*} with f non trivial and e is an n-cell of E^{\top}, such that:

- It is local if f is an n-cell of $S^{*(1)}, g$ is an n-cell of S^{*} and e an n-cell of E^{\top} such that $\ell(g)+\ell(e)=1$.
- It is confluent modulo E if there exists n-cells f^{\prime}, g^{\prime} in S^{*} and e^{\prime} in E^{\top} :

- S is said confluent modulo E (resp. locally confluent modulo E) if any branching (resp. local branching) of S modulo E is confluent modulo E.
IV. Coherence modulo

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist n-cells f^{\prime}, g^{\prime} in S^{*}, e^{\prime} in E^{\top} and an $(n+1)$-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)) \Pi, v$:

- $(E, S,-)^{\Pi, v}$ is the free n-category enriched in double categories generated by $(E, S,-)$, in which all vertical cells are invertible.
- $\operatorname{Peiff}(E, S)$ is the 2-square extension containing the following squares for all $e, e^{\prime} \in E^{\top}$ and $f \in S^{*}$.

$$
\begin{array}{cc}
u \star_{i} v \xrightarrow{f \star_{i} v} u^{\prime} \star_{i} v & w \star_{i} u \xrightarrow{w \star_{i} f} w \star_{i} u^{\prime} \\
u \star_{i} e \downarrow_{i} & v^{\prime} \star_{i} e \\
u \star_{i} v^{\prime} \xrightarrow[f \star_{i} v^{\prime}]{>} u^{\prime} \star_{i} v^{\prime} & e^{\prime} \star_{i} u \downarrow \star_{i} u \xrightarrow[w^{\prime} \star_{i} f]{>} w^{\prime} \star_{i} u^{\prime}
\end{array}
$$

- $\mathrm{E} \rtimes \Gamma$ is to avoid "redundant" elements in Γ for different squares corresponding to the same branching of S modulo E :

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem: The following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties \mathbf{a}) and \mathbf{b}):
for any local branching of S modulo E.
- S satisfies properties \mathbf{a}) and $\mathbf{b})$ for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherence modulo

- A set X of $(n-1)$-cells in R_{n-1}^{*} is E-normalizing with respect to S if for any u in $X^{\text {, * }}$

$$
\operatorname{NF}(S, u) \cap \operatorname{Irr}(E) \neq \emptyset .
$$

- Theorem: Let (R, E, S) be n-polygraph modulo, and Γ be a square extension of the pair of $(n+1, n)$-categories $\left(E^{\top}, S^{\top}\right)$ such that
- E is convergent,
- S is Γ-confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S,
- ${ }_{E} R_{E}$ is terminating,
then $\Gamma \cup \operatorname{Cd}(E)$ is acyclic.
- A normalization strategy for an n-polygraph P is a map σ that sends every $(n-1)$-cell u to an n-cell $\sigma_{u}: u \rightarrow \hat{u}$.
- σ and ρ normalization strategies for S and E weakly commute if:

Coherent extensions

- A coherent completion modulo E of S is a square extension denoted by $\mathcal{C}(S)$ of the pair of $(n+1, n)$-categories $\left(E^{\top}, S^{\top}\right)$ containing square cells $A_{f, g}$ and $B_{f, e}$:

for any critical branchings (f, g) and (f, e) of S modulo E.
- Corollary: Let (R, E, S) be an n-polygraph modulo such that
- E is convergent,
- S is confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S,
- ${ }_{E} R_{E}$ is terminating,

For any coherent completion 「 of S modulo $E, \Gamma \cup \operatorname{Cd}(E)$ is acyclic.

- Corollary: Let R be an n-polygraph.

Conclusion

Example: The 2-category $\mathcal{K} \mathcal{L} \mathcal{R}$

- Let $\mathcal{K} \mathcal{L R}$ be the 2 -linear category defined by:
- $\mathcal{K} \mathcal{L} \mathcal{R}_{0}$ is a set X corresponding to the weight lattice of a Kac-Moody algebra;
$-\mathcal{K} \mathcal{L R}_{\mathbf{1}}=\left\{\underline{\varepsilon}=\left(\varepsilon_{\mathbf{1}}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{K} \mathcal{L} \mathcal{R}_{2}$ admits for generating 2-cells:

- Subject to the following relations:
- "Nil-Hecke relations" for both orientations of strands:

- Bubble relations:

$$
n \oint \lambda \Rightarrow\left\{\begin{array}{ll}
1_{\mathbf{1}_{\lambda}} & \text { if } n=h-1 \\
0 & \text { if } n<h-1
\end{array} \quad ; \quad \lambda \Rightarrow \begin{cases}1_{\mathbf{1}_{\lambda}} & \text { if } n=-h-1 \\
0 & \text { if } n<-h-1\end{cases}\right.
$$

$$
h-1+\alpha \bigcup_{i} \lambda \Rightarrow-\sum_{l=1}^{\alpha} h-1+\alpha-1 \bigcup_{i} \lambda \bigcup_{i}^{-h-1+l} \text { for any } \lambda \in X \text { and } \alpha>0
$$

- Isotopy relations: $\bigcap_{\alpha}=\prod_{\alpha}=\bigcap_{\alpha}$

$$
\bigcap_{\alpha} \oint=\oint_{\alpha}=\downarrow \oint_{\alpha}
$$

- "Quantum" relations

$$
\overbrace{}^{\lambda} \Rightarrow \sum_{n=0}^{h} \bigodot_{n}^{-n-1} ;
$$

