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|. Introduction and motivations



Motivations: algebraic context

» This work is part of algebraic rewriting, consisting in applying rewriting methods to study
intrinseque properties of algebraic structures presented by generators and relations.

> For instance, computation of syzygies (relations among relations): for the group
73 = (x,y,z| [x,y] =1, [y,z] = 1, [z,x] = 1), the Jacobi identity

X7, Iy, 2llly* [z, x]][z", [x, y]] = 1
is such a syzygy, with [x,y] = xyx“y~ and x¥ =y~ xy.

> For monoids or categories, Squier’s theorem gives a generating family for syzygies from a
finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14,
Hage-Malbos '16.

> If a group G = (X | R) is presented as a monoid M = (X[[X | RU {xx~ & 1,x‘x§ 1},
the confluence diagram

507&5

is an artefact induced by the algebraic structure and should not be considered as a syzygy.



Motivation: objectives

> Objective: Study diagrammatic algebras arising in representation theory using algebraic
rewriting.

» Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
» Temperley-Lieb algebras in statistichal mechanics;
»> Brauer algebras and Birman-Wenzl algebras in knot theory.

» Main questions:

> Coherence theorems; v’
> Categorification constructive results;

» Computation of linear bases for these algebras by rewriting.

» Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations
» We use rewriting modulo.

> Algebraic axioms are not rewriting rules, but taken into account when rewriting.



Three paradigms of rewriting modulo

> Rewriting system R:
> Usual rewriting theory;

> Squier's theorem expressed in n-categories. Globular

> In rewriting modulo, we consider a rewriting system R and a set of equations E.

» 3 paradigms of rewriting modulo:

> Rewriting with R modulo E, Huet '80
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> £Re: Rewriting with R on E-equivalence classes
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> Rewriting with any system S such that R C S C gRg, Jouannaud - Kirchner '84.
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> Many results in rewriting modulo are expressed for gR. E\L \L”
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II. Double groupoids



Double groupoids

» We introduce a cubical notion of coherence, related to n-categories enriched in double
groupoids.

» A double category is an internal category (C1,Co,89,85, oc,ic) in Cat.

(C1)
(Co)o —= (Co)o

I
(Co)1\L (C1)1 l/(CO)l
v

C C
( o)om( 0)o

> |t gives four related categories
C¥ := (CY,C° 0" 4,0% 9,0, i), cho = (Ch,c°,0m 4,01 4, 0", ),
cv = (C°,CY, 0L 15 +1a i), ch = (c, ch ot 176?-,17<>h7"{1):
where C" is the category C; and CY° is the category Co.

> Elements of C° are called point cells, the elements of C" and CV are called horizontal cells
and vertical cells respectively and pictured by

X1

f e
X1 ——> X2
X2



Double groupoids

> Source and target maps make elements of Cs be square cells

" 1(4) f
— X1 —> X2

0”,1(A)i M/A lai,l(A) , with identities i(‘,/(x1)J/ \U/i{'(f) \Lig(xz) e

—.

h X1 ——> X2
o1 1(A) f
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f1 fa fioff
X] ——> X3 ——> X3 X} ————————> X3
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for all x;,y;,z; in C°, fin C", e;,e/ in CV and A, A’,B in C5.

K<—X



Double groupoids

» These compositions satisfy the middle four interchange law:

f1 f2 f1 2
X1 —> X2 X —> X3 X1 —> X2 X2 —> X3
61\L \U/A J/ez ez\L \U/B J/es 81\L \U/A i/ez oV ezl/ \U/B \Les
Y1 —81> )2 Y2 —82> 3 y1—81>y2 Y2 —8&2>y3
<>h oV Qh = <>h
81 82 81 82
Yi——=)2 Yo —>V3 yin——=>y2 Y2 —>)3
I R 0 T A 2 R A
z1 —h1—=> 2o Zp —ha—> z3 zZ1 —h1—=> zp Zp —hz2—> z3

» Double groupoid = double category (Cj, CO,SE,&E,OC, ic) in which Cy and Gy are
groupoids.

» n-category enriched in double groupoids = n-category C such that any homset Cn(x, y) is a
double groupoid.

> The set Cy(x, y)° is the set of n-cells in Cp(x, y).

> Horizontal (n + 1)-category is the (n + 1)-category of rewritings; vertical (n + 1)-category
is the (n + 1)-category of modulo rules.



Double (n+ 2, n)-polygraphs

> A double n-polygraph is a data (P¥, P", P®) made of:
> two (n + 1)-polygraphs P¥ and P" such that P} = P} for k < n,

> a 2-square extension P° of the pair of (n + 1)-categories ((P")*, (P")*), that is a set equipped
with four maps 9% |, with p € {v, h}, making I a 2-cubical set:

h
9% ,n T

h
Pn+1

v
Pn+1

> A double (n+ 2, n)-polygraph is a double n-polygraph whose square extension P;_, is
defined on ((P*)T,(PMT).

> A double n-polygraph (resp. double (n -+ 2, n)-polygraph) (PY, P", P%) generates a free
n-category enriched in double categories (resp. in double groupoids), denoted by
(Pv,Ph ps)T.



Acyclicity

> A 2-square extension P of ((P¥)T,(P")T) is acyclic if for any square
P
R,
S — (PV)Tl/ U’A \L(PV)T
R,
(PhT
there exists a square (n+ 1)-cell A in (P¥, P" PS)T such that 9(A) = S.

> A 2-fold coherent presentation of an n-category C is a double (n+ 2, n)-polygraph
(Pv, Ph, P) such that:

> the (n+ 1)-polygraph P“[] P" presents C;

> P®is acyclic

» Example: Let E be a convergent (n+ 1)-polygraph and C the n-category presented by E.
Cd(E) := square extension of (E T, 1) containing squares

.

/7 /7
el*ﬂ—lel\L \Lez*n_lez

T

for a choice of confluence diagram of any critical branching (e1, e2) of E.

> From Squier’s theorem, (E, 0, Cd(E)) is a 2-fold coherent presentation of C.



I1l. Polygraphs modulo



Polygraphs modulo

A n-polygraph modulo is a data (R, E,S) made of
> an n-polygraph R of primary rules,
> an n-polygraph E such that Ex = Ry for k < n—2and E,_1 C R,_1, of modulo rules,

> S is a cellular extension of R¥_; such that R C S C gRg, where the cellular extension
£ Rg is defined by
vERE © ERE — Sph,_1(Ry_1)

where £Rg is the set of triples (e, f,e’) in ET x R*(1) x ET such that

and the map v ERE is defined by yERE (e, f,e’) = (0— n_1(e), O+ n—1(€"))-



Branchings and confluence modulo

> A branching modulo E of the n-polygraph modulo S is a triple (f, e, g) where f and g are
n-cells of S* with f non trivial and e is an n-cell of ET, such that:

> It is local if £ is an n-cell of $*(1), g is an n-cell of S* and e an n-cell of ET such that
Ug)+t(e) =1.

> It is confluent modulo E if there exists n-cells f/, g’ in S* and e’ in ET:

f !
u——->u > w
’
e e
| y
v — v/ > w'
g ’

» S is said confluent modulo E (resp. locally confluent modulo E) if any branching (resp.
local branching) of S modulo E is confluent modulo E.



IVV. Coherence modulo



Coherent confluence modulo

» We consider I' a 2-square extension of (E T, S*).

> A branching modulo E is I'-confluent modulo E if there exist n-cells f/, g’ in S*, ¢’ in ET
and an (n+1)-cell Ain (E,S, E x T U Peiff(E,S)) Tv:

f ,
u—-s>u > w
’
el/ \U/A ve
v — v/ > w'
g g

> (E, S, 7)T’V is the free n-category enriched in double categories generated by (E, S, —), in
which all vertical cells are invertible.

> Peiff(E, S) is the 2-square extension containing the following squares for all e,e’ € ET and

fes”.
fxjv , wk;f ,
Uxjv—==u %V Wi U —=>= Wx%; U
”*r‘e\b J/u’*,-e e’*,—ul/ i/e/*,-u'
’ ’ ’ ’ ’ ’
uxjv —>u x;v W' kxju—> w % u
fxiv! w/ % f

> E X I is to avoid "redundant" elements in " for different squares corresponding to the same
branching of S modulo E:

f ! f I
u—-=v—-= u———-=>v > v/
ei/ \Le’ and e*n—lel\L l/e/

’
u— > w Uy —w —>w’
g=e181¢€2 g/ g1€2 g/



Coherent Newman and critical pair lemmas

» S is M-confluent modulo E (resp. locally I-confluent modulo E) if any of its branching
modulo E (resp. local branching modulo E) is '-confluent modulo E.

» Theorem: The following assertions are equivalent:

» S is -confluent modulo E;
> S is locally M-confluent modulo E;

> S satisfies properties a) and b):

S+(1) s, S+(1) st
u-—=v > v u—=>v > v
A ET ET(U\L B T
a) “l \% v b): \% vE
U—>w >w u’ > w
R*(1) s* s*

for any local branching of S modulo E.

> S satisfies properties a) and b) for any critical branching of S modulo E.

» For S = R, property b) is trivially satisfied.

)
<—Cc
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< <—<x<



Coherence modulo

> Aset X of (n—1)-cells in R¥_, is E-normalizing with respect to S if for any u in X,*

NF(S,u) NIrr(E) # 0.

» Theorem: Let (R, E,S) be n-polygraph modulo, and I be a square extension of the pair of
(n+ 1, n)-categories (ET,ST) such that

> E is convergent,
» S is I-confluent modulo E,
> Irr(E) is E-normalizing with respect to S,
> £Rg is terminating,
then ' U Cd(E) is acyclic.
> A normalization strategy for an n-polygraph P is a map o that sends every (n — 1)-cell u to

an n-cell o, : u — 0.

if:

» o and p normalization strategies for S and E weakly commute

u
pul

u >
Nu

Ou
—

o <—0o
3



Coherent extensions

> A coherent completion modulo E of S is a square extension denoted by C(S) of the pair of
(n+ 1, n)-categories (E",ST) containing square cells Af g and By e:

f , f f , f
u—mu —— Ww u—mu —— W

II\L \U/Af,g l/é/ S\L \U/Bf,s \Lel

UHV%/W’ ]

g g
for any critical branchings (f, g) and (f,e) of S modulo E.
> Corollary: Let (R, E,S) be an n-polygraph modulo such that
» E is convergent,
> S is confluent modulo E,

» Irr(E) is E-normalizing with respect to S,

> £Rg is terminating,

For any coherent completion I' of S modulo E, ' U Cd(E) is acyclic.

» Corollary: Let R be an n-polygraph.



Conclusion




Example: The 2-category KLR

> Let LR be the 2-linear category defined by:
> KLRo is a set X corresponding to the weight lattice of a Kac-Moody algebra;

> KLRy = {§: (t’;‘;|_7 .. -752(5)) with g; € {—+}}

» KLR> admits for generating 2-cells:
_ _ _ A _
A
X XYy
+ + o+
> Subject to the following relations:

> "Nil-Hecke relations" for both orientations of strands:

[e2Ne

A

(03

a o« a @
»> Bubble relations:

L, ifn=h—1 O L, ifn=—h—1
"O*é{o fn<h—1 = "=

0 ifn<—-h—1



Example: The 2-category KLR

«
h—1+a O/\ = —Z h=1ta—i O A O —h=1+ forany A € X and a > 0
i I=1 i i
> Isotopy relations: m = | = m m = + = m
@

[0}

» "Quantum" relations

A h—1 )\Ur A —h-1 u
B% SIS Ie! _n_,_z,% S PR T e
n=0 r> mn n=0 r>

f\\‘
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