

Coherence modulo relations and double groupoids

Benjamin Dupont

joint work with Philippe Malbos

Journées LHC

Marseille, 18 Octobre 2018

Plan

I. Introduction and motivations

II. Double groupoids

III. Polygraphs modulo

IV. Coherence modulo

I. Introduction and motivations

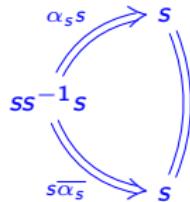
Motivations: algebraic context

- ▶ This work is part of **algebraic rewriting**, consisting in applying rewriting methods to study intrinsic properties of algebraic structures presented by generators and relations.
- ▶ For instance, computation of **syzygies** (relations among relations): for the group $\mathbb{Z}^3 = \langle x, y, z \mid [x, y] = 1, [y, z] = 1, [z, x] = 1 \rangle$, the Jacobi identity

$$[x^y, [y, z]][y^z, [z, x]][z^x, [x, y]] = 1$$

is such a syzygy, with $[x, y] = xyx^{-1}y^{-1}$ and $x^y = y^{-1}xy$.

- ▶ For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, **Guiraud-Malbos '09**, **Gaussent-Guiraud-Malbos '14**, **Hage-Malbos '16**.
- ▶ If a group $G = \langle X \mid R \rangle$ is presented as a monoid $M = \langle X \coprod \overline{X} \mid R \cup \{xx^{-1} \xrightarrow{\alpha_x} 1, x^{-1}x \xrightarrow{\overline{\alpha_x}} 1\}$, the confluence diagram



is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Motivation: objectives

- ▶ **Objective:** Study diagrammatic algebras arising in **representation theory** using **algebraic rewriting**.
 - ▶ Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
 - ▶ Temperley-Lieb algebras in statistical mechanics;
 - ▶ Brauer algebras and Birman-Wenzl algebras in knot theory.
- ▶ **Main questions:**
 - ▶ **Coherence** theorems; ✓
 - ▶ **Categorification** constructive results;
 - ▶ Computation of **linear bases** for these algebras by rewriting.
- ▶ Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

$$\cap = | = \cup$$

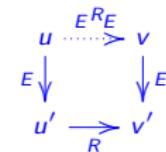
$$\cap \bullet = \bullet | = \cup \bullet$$

- ▶ We use **rewriting modulo**.
 - ▶ Algebraic axioms are not rewriting rules, but taken into account when rewriting.

Three paradigms of rewriting modulo

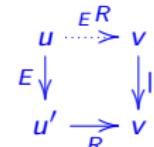
- ▶ Rewriting system R :
 - ▶ Usual rewriting theory;
 - ▶ Squier's theorem expressed in n -categories.
- ▶ In **rewriting modulo**, we consider a rewriting system R and a set of equations E .
- ▶ 3 paradigms of rewriting modulo:
 - ▶ Rewriting with R modulo E , Huet '80

- ▶ $E R_E$: Rewriting with R on E -equivalence classes



- ▶ Rewriting with any system S such that $R \subseteq S \subseteq E R_E$, Jouannaud - Kirchner '84.

- ▶ Many results in rewriting modulo are expressed for $E R$.



II. Double groupoids

Double groupoids

- We introduce a cubical notion of coherence, related to n -categories enriched in **double groupoids**.
- A **double category** is an internal category $(\mathbf{C}_1, \mathbf{C}_0, \partial_-^{\mathbf{C}}, \partial_+^{\mathbf{C}}, \circ_{\mathbf{C}}, i_{\mathbf{C}})$ in \mathbf{Cat} .

$$\begin{array}{ccc} (\mathbf{C}_0)_0 & \xrightarrow{(\mathbf{C}_1)_0} & (\mathbf{C}_0)_0 \\ (\mathbf{C}_0)_1 \downarrow & \parallel \downarrow & \downarrow (\mathbf{C}_0)_1 \\ (\mathbf{C}_0)_0 & \xrightarrow{(\mathbf{C}_1)_0} & (\mathbf{C}_0)_0 \end{array}$$

- It gives four related categories

$$\begin{array}{ll} \mathbf{C}^{vo} := (\mathbf{C}^v, \mathbf{C}^o, \partial_{-,0}^v, \partial_{+,0}^v, \circ^v, i_0^v), & \mathbf{C}^{ho} := (\mathbf{C}^h, \mathbf{C}^o, \partial_{-,0}^h, \partial_{+,0}^h, \circ^h, i_0^h), \\ \mathbf{C}^{sv} := (\mathbf{C}^s, \mathbf{C}^v, \partial_{-,1}^v, \partial_{+,1}^v, \diamond^v, i_1^v), & \mathbf{C}^{sh} := (\mathbf{C}^s, \mathbf{C}^h, \partial_{-,1}^h, \partial_{+,1}^h, \diamond^h, i_1^h), \end{array}$$

where \mathbf{C}^{sh} is the category \mathbf{C}_1 and \mathbf{C}^{vo} is the category \mathbf{C}_0 .

- Elements of \mathbf{C}^o are called **point cells**, the elements of \mathbf{C}^h and \mathbf{C}^v are called **horizontal cells** and **vertical cells** respectively and pictured by

$$\begin{array}{ccc} & & x_1 \\ & \xrightarrow{f} & \\ x_1 & & x_2 \\ & \downarrow e & \\ & & x_2 \end{array}$$

Double groupoids

- Source and target maps make elements of \mathbf{C}_s be square cells

$$\begin{array}{ccc} \cdot & \xrightarrow{\partial_{-,\mathbf{1}}^h(A)} & \cdot \\ \partial_{-,\mathbf{1}}^v(A) \downarrow & \Downarrow A & \downarrow \partial_{+,\mathbf{1}}^v(A) \\ \cdot & \xrightarrow{\partial_{+,\mathbf{1}}^h(A)} & \cdot \end{array}$$

, with identities

$$\begin{array}{ccc} x_1 & \xrightarrow{f} & x_2 \\ i_0^v(x_1) \downarrow & \Downarrow i_1^h(f) & \downarrow i_0^v(x_2) \\ x_1 & \xrightarrow{f} & x_2 \end{array}$$

$$\begin{array}{ccc} x & \xrightarrow{i_0^h(x)} & x \\ e \downarrow & \Downarrow i_1^v(e) & \downarrow e \\ y & \xrightarrow{i_0^h(y)} & y \end{array}$$

- Compositions

$$\begin{array}{ccc} x_1 & \xrightarrow{f_1} & x_2 & \xrightarrow{f_2} & x_3 \\ e_1 \downarrow & \Downarrow A & \downarrow e_2 & \Downarrow B & \downarrow e_3 \\ y_1 & \xrightarrow{g_1} & y_2 & \xrightarrow{g_2} & y_3 \end{array} \rightsquigarrow \begin{array}{ccc} x_1 & \xrightarrow{f_1 \circ^h f_2} & x_3 \\ e_1 \downarrow & \Downarrow A \circ^h B & \downarrow e_3 \\ y_1 & \xrightarrow{g_1 \circ^h g_2} & y_3 \end{array}$$

$$\begin{array}{ccc} x_1 & \xrightarrow{f_1} & x_2 \\ e_1 \downarrow & \Downarrow A & \downarrow e_2 \\ y_1 & \xrightarrow{f_2} & y_2 \\ e'_1 \downarrow & \Downarrow A' & \downarrow e'_2 \\ z_1 & \xrightarrow{f_3} & z_2 \end{array} \rightsquigarrow \begin{array}{ccc} x_1 & \xrightarrow{f_1} & x_2 \\ e_1 \circ^v e'_1 \downarrow & \Downarrow A \circ^v A' & \downarrow e_2 \circ^v e'_2 \\ z_1 & \xrightarrow{f_3} & z_2 \end{array}$$

for all x_i, y_i, z_i in \mathbf{C}^o , f_i in \mathbf{C}^h , e_i, e'_i in \mathbf{C}^v and A, A', B in \mathbf{C}_s .

Double groupoids

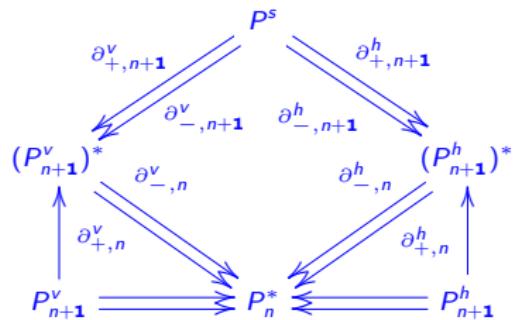
- ▶ These compositions satisfy the **middle four interchange law**:

$$\begin{array}{c} x_1 \xrightarrow{f_1} x_2 \\ e_1 \downarrow \Downarrow A \downarrow e_2 \\ y_1 \xrightarrow{g_1} y_2 \\ \diamond^h \end{array} \quad \begin{array}{c} x_2 \xrightarrow{f_2} x_3 \\ e_2 \downarrow \Downarrow B \downarrow e_3 \\ y_2 \xrightarrow{g_2} y_3 \\ \diamond^h \end{array} \quad = \quad \begin{array}{c} x_1 \xrightarrow{f_1} x_2 \\ e_1 \downarrow \Downarrow A \downarrow e_2 \\ y_1 \xrightarrow{g_1} y_2 \\ \diamond^v \end{array} \quad \begin{array}{c} x_2 \xrightarrow{f_2} x_3 \\ e_2 \downarrow \Downarrow B \downarrow e_3 \\ y_2 \xrightarrow{g_2} y_3 \\ \diamond^h \end{array}$$
$$\begin{array}{c} y_1 \xrightarrow{g_1} y_2 \\ e'_1 \downarrow \Downarrow A' \downarrow e'_2 \\ z_1 \xrightarrow{h_1} z_2 \end{array} \quad \begin{array}{c} y_2 \xrightarrow{g_2} y_3 \\ e'_2 \downarrow \Downarrow B' \downarrow e'_3 \\ z_2 \xrightarrow{h_2} z_3 \end{array} \quad \begin{array}{c} y_1 \xrightarrow{g_1} y_2 \\ e'_1 \downarrow \Downarrow A' \downarrow e'_2 \\ z_1 \xrightarrow{h_1} z_2 \end{array} \quad \begin{array}{c} y_2 \xrightarrow{g_2} y_3 \\ e'_2 \downarrow \Downarrow B' \downarrow e'_3 \\ z_2 \xrightarrow{h_2} z_3 \end{array}$$

- ▶ **Double groupoid** = double category $(\mathbf{C}_1, \mathbf{C}_0, \partial_-^{\mathbf{C}}, \partial_+^{\mathbf{C}}, \circ_{\mathbf{C}}, i_{\mathbf{C}})$ in which \mathbf{C}_1 and \mathbf{C}_0 are groupoids.
- ▶ **n -category enriched in double groupoids** = n -category \mathcal{C} such that any homset $\mathcal{C}_n(x, y)$ is a double groupoid.
 - ▶ The set $\mathcal{C}_n(x, y)^\diamond$ is the set of n -cells in $\mathcal{C}_n(x, y)$.
- ▶ Horizontal $(n+1)$ -category is the $(n+1)$ -category of **rewritings**; vertical $(n+1)$ -category is the $(n+1)$ -category of **modulo rules**.

Double $(n+2, n)$ -polygraphs

- ▶ A **double n -polygraph** is a data (P^v, P^h, P^s) made of:
 - ▶ two $(n+1)$ -polygraphs P^v and P^h such that $P_k^v = P_k^h$ for $k \leq n$,
 - ▶ a **2-square extension** P^s of the pair of $(n+1)$ -categories $((P^v)^*, (P^h)^*)$, that is a set equipped with four maps $\partial_{\pm, n}^\mu$, with $\mu \in \{v, h\}$, making Γ a **2-cubical set**:



- ▶ A **double $(n+2, n)$ -polygraph** is a double n -polygraph whose square extension P_{n+2}^s is defined on $((P^v)^\top, (P^h)^\top)$.
- ▶ A double n -polygraph (resp. double $(n+2, n)$ -polygraph) (P^v, P^h, P^s) generates a free n -category enriched in double categories (resp. in double groupoids), denoted by $(P^v, P^h, P^s) \mathbb{T}$.

Acyclicity

- A 2-square extension P^s of $((P^\nu)^\top, (P^h)^\top)$ is **acyclic** if for any square

$$S = \begin{array}{c} \cdot \xrightarrow{(P^h)^\top} \cdot \\ (P^\nu)^\top \downarrow \quad \downarrow A \quad \downarrow (P^\nu)^\top \\ \cdot \xrightarrow{(P^h)^\top} \cdot \end{array}$$

there exists a square $(n+1)$ -cell A in $(P^\nu, P^h, P^s)^\top\top$ such that $\partial(A) = S$.

- A **2-fold coherent presentation** of an n -category \mathbf{C} is a double $(n+2, n)$ -polygraph (P^ν, P^h, P^s) such that:
 - the $(n+1)$ -polygraph $P^\nu \coprod P^h$ presents \mathbf{C} ;
 - P^s is acyclic
- **Example:** Let E be a convergent $(n+1)$ -polygraph and \mathbf{C} the n -category presented by E .
 $\text{Cd}(E) :=$ square extension of $(E^\top, 1)$ containing squares

$$\begin{array}{c} \cdot \xrightarrow{=} \cdot \\ e_1 \star_{n-1} e'_1 \downarrow \quad \downarrow e_2 \star_{n-1} e'_2 \\ \cdot \xrightarrow{=} \cdot \end{array}$$

for a choice of confluence diagram of any critical branching (e_1, e_2) of E .

- From Squier's theorem, $(E, \emptyset, \text{Cd}(E))$ is a 2-fold coherent presentation of \mathbf{C} .

III. Polygraphs modulo

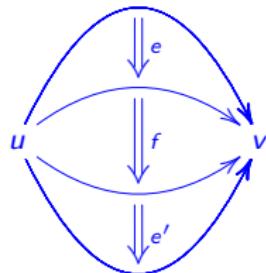
Polygraphs modulo

A *n*-polygraph modulo is a data (R, E, S) made of

- ▶ an *n*-polygraph R of **primary rules**,
- ▶ an *n*-polygraph E such that $E_k = R_k$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of **modulo rules**,
- ▶ S is a cellular extension of R_{n-1}^* such that $R \subseteq S \subseteq {}_E R_E$, where the cellular extension ${}_E R_E$ is defined by

$$\gamma^{{}_E R_E} : {}_E R_E \rightarrow \text{Sph}_{n-1}(R_{n-1}^*)$$

where ${}_E R_E$ is the set of triples (e, f, e') in $E^\top \times R^{*(1)} \times E^\top$ such that



and the map $\gamma^{{}_E R_E}$ is defined by $\gamma^{{}_E R_E}(e, f, e') = (\partial_{-,n-1}(e), \partial_{+,n-1}(e'))$.

Branchings and confluence modulo

- A **branching modulo E** of the n -polygraph modulo S is a triple (f, e, g) where f and g are n -cells of S^* with f non trivial and e is an n -cell of E^\top , such that:

$$\begin{array}{ccc} u & \xrightarrow{f} & u' \\ e \downarrow & & \\ v & \xrightarrow{g} & v' \end{array}$$

- It is **local** if f is an n -cell of $S^{*(1)}$, g is an n -cell of S^* and e an n -cell of E^\top such that $\ell(g) + \ell(e) = 1$.
- It is **confluent modulo E** if there exists n -cells f', g' in S^* and e' in E^\top :

$$\begin{array}{ccccc} u & \xrightarrow{f} & u' & \xrightarrow{f'} & w \\ e \downarrow & & \downarrow & & \downarrow e' \\ v & \xrightarrow{g} & v' & \xrightarrow{g'} & w' \end{array}$$

- S is said **confluent modulo E** (resp. **locally confluent modulo E**) if any branching (resp. local branching) of S modulo E is confluent modulo E .

IV. Coherence modulo

Coherent confluence modulo

- We consider Γ a 2-square extension of (E^\top, S^*) .
- A branching modulo E is Γ -confluent modulo E if there exist n -cells f', g' in S^* , e' in E^\top and an $(n+1)$ -cell A in $(E, S, E \rtimes \Gamma \cup \text{Peiff}(E, S))^{\overline{\Gamma}, v}$:

$$\begin{array}{ccccc} u & \xrightarrow{f} & u' & \xrightarrow{f'} & w \\ e \downarrow & & \downarrow A & & \downarrow e' \\ v & \xrightarrow{g} & v' & \xrightarrow{g'} & w' \end{array}$$

- $(E, S, -)^{\overline{\Gamma}, v}$ is the free n -category enriched in double categories generated by $(E, S, -)$, in which all vertical cells are invertible.
- $\text{Peiff}(E, S)$ is the 2-square extension containing the following squares for all $e, e' \in E^\top$ and $f \in S^*$.

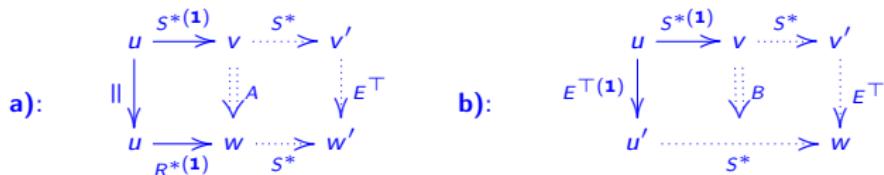
$$\begin{array}{ccc} u \star_i v \xrightarrow{f \star_i v} u' \star_i v & & w \star_i u \xrightarrow{w \star_i f} w \star_i u' \\ u \star_i e \downarrow & & e' \star_i u \downarrow \\ u \star_i v' \xrightarrow{f \star_i v'} u' \star_i v' & & w' \star_i u \xrightarrow{w' \star_i f} w' \star_i u' \end{array}$$

- $E \rtimes \Gamma$ is to avoid "redundant" elements in Γ for different squares corresponding to the same branching of S modulo E :

$$\begin{array}{ccc} u & \xrightarrow{f} & v & \xrightarrow{f'} & v' \\ e \downarrow & & & \downarrow e' & \\ u & \xrightarrow{g = e_1 g_1 e_2} & w & \xrightarrow{\quad} & w' \\ & & g' & & \end{array} \quad \text{and} \quad \begin{array}{ccc} u & \xrightarrow{f} & v & \xrightarrow{f'} & v' \\ e \star_{n-1} e_1 \downarrow & & & & \downarrow e' \\ u_1 & \xrightarrow{g_1 e_2} & w & \xrightarrow{\quad} & w' \\ & & g' & & \end{array}$$

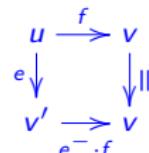
Coherent Newman and critical pair lemmas

- S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ -confluent modulo E .
- **Theorem:** The following assertions are equivalent:
 - S is Γ -confluent modulo E ;
 - S is locally Γ -confluent modulo E ;
 - S satisfies properties **a)** and **b)**:



for any local branching of S modulo E .

- S satisfies properties **a)** and **b)** for any critical branching of S modulo E .
- For $S = E R$, property **b)** is trivially satisfied.



- ▶ A set X of $(n-1)$ -cells in R_{n-1}^* is E -normalizing with respect to S if for any u in X ,

$$\text{NF}(S, u) \cap \text{Irr}(E) \neq \emptyset.$$

- ▶ **Theorem:** Let (R, E, S) be n -polygraph modulo, and Γ be a square extension of the pair of $(n+1, n)$ -categories (E^\top, S^\top) such that

- ▶ E is convergent,
- ▶ S is Γ -confluent modulo E ,
- ▶ $\text{Irr}(E)$ is E -normalizing with respect to S ,
- ▶ ${}_E R_E$ is terminating,

then $\Gamma \cup \text{Cd}(E)$ is acyclic.

- ▶ A normalization strategy for an n -polygraph P is a map σ that sends every $(n-1)$ -cell u to an n -cell $\sigma_u : u \rightarrow \hat{u}$.
- ▶ σ and ρ normalization strategies for S and E weakly commute if:

$$\begin{array}{ccc} u & \xrightarrow{\sigma_u} & \hat{u} \\ \rho_u \downarrow & & \downarrow \rho_{\hat{u}} \\ \tilde{u} & \xrightarrow{\quad \eta_u \quad} & \tilde{\hat{u}} \end{array}$$

Coherent extensions

- ▶ A **coherent completion modulo E** of S is a square extension denoted by $\mathcal{C}(S)$ of the pair of $(n+1, n)$ -categories (E^\top, S^\top) containing square cells $A_{f,g}$ and $B_{f,e}$:

$$\begin{array}{ccc} u \xrightarrow{f} u' \xrightarrow{f'} w & & u \xrightarrow{f} u' \xrightarrow{f'} w \\ \Downarrow \downarrow A_{f,g} \quad \downarrow e' & & \downarrow \downarrow B_{f,e} \quad \downarrow e' \\ u \xrightarrow{g} v \xrightarrow{g'} w' & & v \xrightarrow{g'} w' \end{array}$$

for any critical branchings (f, g) and (f, e) of S modulo E .

- ▶ **Corollary:** Let (R, E, S) be an n -polygraph modulo such that

- ▶ E is convergent,
- ▶ S is confluent modulo E ,
- ▶ $\text{Irr}(E)$ is E -normalizing with respect to S ,
- ▶ ${}_E R_E$ is terminating,

For any coherent completion Γ of S modulo E , $\Gamma \cup \text{Cd}(E)$ is acyclic.

- ▶ **Corollary:** Let R be an n -polygraph.

Conclusion

Example: The 2-category \mathcal{KLR}

- Let \mathcal{KLR} be the 2-linear category defined by:

- \mathcal{KLR}_0 is a set X corresponding to the weight lattice of a Kac-Moody algebra;
- $\mathcal{KLR}_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)}) \text{ with } \varepsilon_i \in \{-, +\}\}$.
- \mathcal{KLR}_2 admits for generating 2-cells:

- Subject to the following relations:

- "Nil-Hecke relations" for both orientations of strands:

$$\begin{array}{c} \text{Diagram: two strands crossing, both labeled } \alpha, \text{ with a dot at the top-left, labeled } \lambda. \end{array} - \begin{array}{c} \text{Diagram: two strands crossing, both labeled } \alpha, \text{ with a dot at the top-right, labeled } \lambda. \end{array} = \begin{array}{c} \text{Diagram: two strands crossing, left labeled } \alpha, \text{ right labeled } \alpha, \text{ top-left dot, labeled } \lambda. \end{array} - \begin{array}{c} \text{Diagram: two strands crossing, left labeled } \alpha, \text{ right labeled } \alpha, \text{ bottom-right dot, labeled } \lambda. \end{array} = \begin{array}{c} \text{Diagram: two vertical strands, left labeled } \alpha, \text{ right labeled } \alpha, \text{ top-right dot, labeled } \lambda. \end{array}$$

$$\begin{array}{c} \text{Diagram: two strands crossing, both labeled } \alpha, \text{ with a dot at the top-left, labeled } \lambda. \end{array} = 0 \quad \begin{array}{c} \text{Diagram: three strands crossing, left labeled } \alpha, \text{ middle labeled } \alpha, \text{ right labeled } \alpha, \text{ top-left dot, labeled } \lambda. \end{array} = \begin{array}{c} \text{Diagram: three strands crossing, left labeled } \alpha, \text{ middle labeled } \alpha, \text{ right labeled } \alpha, \text{ top-right dot, labeled } \lambda. \end{array}$$

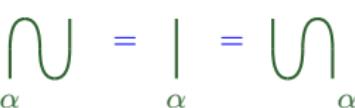
- Bubble relations:

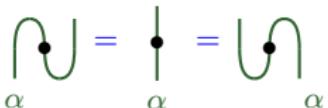
$$n \cdot \begin{array}{c} \text{Diagram: a circle with a dot at the top, labeled } \lambda. \end{array} \Rightarrow \begin{cases} 1_{\mathbf{1}_\lambda} & \text{if } n = h - 1 \\ 0 & \text{if } n < h - 1 \end{cases} \quad ; \quad \begin{array}{c} \text{Diagram: a circle with a dot at the bottom, labeled } \lambda. \end{array} \cdot n \Rightarrow \begin{cases} 1_{\mathbf{1}_\lambda} & \text{if } n = -h - 1 \\ 0 & \text{if } n < -h - 1 \end{cases}$$

Example: The 2-category \mathcal{KLR}

$$h-1+\alpha \cdot \text{Diagram} \Rightarrow - \sum_{l=1}^{\alpha} h-1+\alpha-l \cdot \text{Diagram} \cdot \text{Diagram}^{-h-1+l} \text{ for any } \lambda \in X \text{ and } \alpha > 0$$

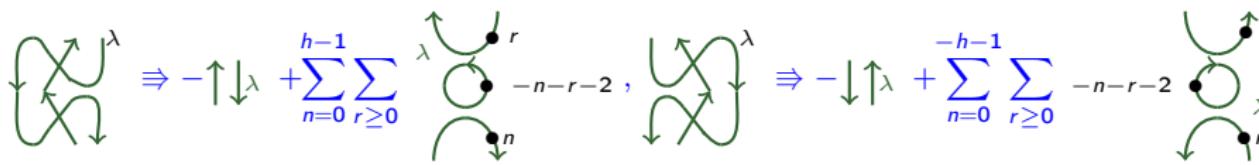
► Isotopy relations:



$$\text{Diagram}_\alpha = \text{Diagram}_\alpha = \text{Diagram}_\alpha$$


$$\text{Diagram}_\alpha = \text{Diagram}_\alpha = \text{Diagram}_\alpha$$

► "Quantum" relations



$$\text{Diagram}^\lambda \Rightarrow -\uparrow\downarrow_\lambda + \sum_{n=0}^{h-1} \sum_{r \geq 0}^{\lambda} \text{Diagram}^{\lambda-r-n-2}, \quad \text{Diagram}^\lambda \Rightarrow -\downarrow\uparrow_\lambda + \sum_{n=0}^{-h-1} \sum_{r \geq 0}^{-\lambda} \text{Diagram}^{-\lambda-r-n-2}$$

$$\text{Diagram}^\lambda \Rightarrow \sum_{n=0}^h \text{Diagram}^{-n-1}; \quad \text{Diagram}^\lambda \Rightarrow - \sum_{n=0}^{-h} \text{Diagram}^{-n-1};$$

$$\text{Diagram}^\lambda \Rightarrow - \sum_{n=0}^{-h} \text{Diagram}^{-n-1}; \quad \text{Diagram}^\lambda \Rightarrow \sum_{n=0}^h \text{Diagram}^n;$$