
Finding bases in linear categories using rewriting.

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1

Algebra Seminar, Ottawa

Outline

I. Rewriting theory

II. String rewriting

III. Rewriting in linear 2-categories

IV. Extension to rewriting modulo

I. Rewriting theory

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84

.

Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.

II. String rewriting

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

||
bcc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

|| ##
bcc adab

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

zz
ddabc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

zz ##
ddabc ccc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

zz ##
ddabc ccc

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

zz ##
ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{
dabc

��

dcb

dbcc

zz ##
ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb adbc

dbcc

zz ##
ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb adbc

dbcc

zz ##
ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

dbcc

zz ##

acc

ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

dbcc

zz ##

acc

ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{
dbcc

zz ##

acc

ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{
dbcc

zz ##

acc

ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{ $$
dbcc

zz ##

acc addab

ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{ $$
dbcc

zz ##

acc addab

ddabc

��

ccc

. . .

String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{ $$
dbcc

zz ##

acc addab

��
ddabc

��

ccc . . .

. . .

Normal forms and termination

I Let (X ,R) be a string rewriting system and X∗ the free monoid on X . A rewriting step of
(X ,R) is a reduction

us(f)v → ut(f)v , for u, v ∈ X∗ and f : s(f)→ t(f) ∈ R

u

s(f)

t(f)

f��
v

I An element x of X∗ is a normal form if there does not exist y in X∗ such that x → y .

I (X ,R) is terminating if there does not exist any infinite rewriting sequence in (X ,R).

I If (X ,R) terminates, each element x ∈ X∗ admits at least one normal form.

I If (X ,R) is convergent, i.e. both terminating and confluent, each element x ∈ X∗ admits a
unique normal form, denoted by x̂ .

I Example: a
**

��

a′ii

��
b

Normal forms and termination

I Let (X ,R) be a string rewriting system and X∗ the free monoid on X . A rewriting step of
(X ,R) is a reduction

us(f)v → ut(f)v , for u, v ∈ X∗ and f : s(f)→ t(f) ∈ R
u

s(f)

t(f)

f��
v

I An element x of X∗ is a normal form if there does not exist y in X∗ such that x → y .

I (X ,R) is terminating if there does not exist any infinite rewriting sequence in (X ,R).

I If (X ,R) terminates, each element x ∈ X∗ admits at least one normal form.

I If (X ,R) is convergent, i.e. both terminating and confluent, each element x ∈ X∗ admits a
unique normal form, denoted by x̂ .

I Example: a
**

��

a′ii

��
b

Normal forms and termination

I Let (X ,R) be a string rewriting system and X∗ the free monoid on X . A rewriting step of
(X ,R) is a reduction

us(f)v → ut(f)v , for u, v ∈ X∗ and f : s(f)→ t(f) ∈ R
u

s(f)

t(f)

f��
v

I An element x of X∗ is a normal form if there does not exist y in X∗ such that x → y .

I (X ,R) is terminating if there does not exist any infinite rewriting sequence in (X ,R).

I If (X ,R) terminates, each element x ∈ X∗ admits at least one normal form.

I If (X ,R) is convergent, i.e. both terminating and confluent, each element x ∈ X∗ admits a
unique normal form, denoted by x̂ .

I Example: a
**

��

a′ii

��
b

Normal forms and termination

I Let (X ,R) be a string rewriting system and X∗ the free monoid on X . A rewriting step of
(X ,R) is a reduction

us(f)v → ut(f)v , for u, v ∈ X∗ and f : s(f)→ t(f) ∈ R
u

s(f)

t(f)

f��
v

I An element x of X∗ is a normal form if there does not exist y in X∗ such that x → y .

I (X ,R) is terminating if there does not exist any infinite rewriting sequence in (X ,R).

I If (X ,R) terminates, each element x ∈ X∗ admits at least one normal form.

I If (X ,R) is convergent, i.e. both terminating and confluent, each element x ∈ X∗ admits a
unique normal form, denoted by x̂ .

I Example: a
**

��

a′ii

��
b

Normal forms and termination

I Let (X ,R) be a string rewriting system and X∗ the free monoid on X . A rewriting step of
(X ,R) is a reduction

us(f)v → ut(f)v , for u, v ∈ X∗ and f : s(f)→ t(f) ∈ R
u

s(f)

t(f)

f��
v

I An element x of X∗ is a normal form if there does not exist y in X∗ such that x → y .

I (X ,R) is terminating if there does not exist any infinite rewriting sequence in (X ,R).

I If (X ,R) terminates, each element x ∈ X∗ admits at least one normal form.

I If (X ,R) is convergent, i.e. both terminating and confluent, each element x ∈ X∗ admits a
unique normal form, denoted by x̂ .

I Example: a
**

��

a′ii

��
b

Normal forms and termination

I Let (X ,R) be a string rewriting system and X∗ the free monoid on X . A rewriting step of
(X ,R) is a reduction

us(f)v → ut(f)v , for u, v ∈ X∗ and f : s(f)→ t(f) ∈ R
u

s(f)

t(f)

f��
v

I An element x of X∗ is a normal form if there does not exist y in X∗ such that x → y .

I (X ,R) is terminating if there does not exist any infinite rewriting sequence in (X ,R).

I If (X ,R) terminates, each element x ∈ X∗ admits at least one normal form.

I If (X ,R) is convergent, i.e. both terminating and confluent, each element x ∈ X∗ admits a
unique normal form, denoted by x̂ .

I Example: a
**

��

a′ii

��
b

Normal forms and termination

I Let (X ,R) be a string rewriting system and X∗ the free monoid on X . A rewriting step of
(X ,R) is a reduction

us(f)v → ut(f)v , for u, v ∈ X∗ and f : s(f)→ t(f) ∈ R
u

s(f)

t(f)

f��
v

I An element x of X∗ is a normal form if there does not exist y in X∗ such that x → y .

I (X ,R) is terminating if there does not exist any infinite rewriting sequence in (X ,R).

I If (X ,R) terminates, each element x ∈ X∗ admits at least one normal form.

I If (X ,R) is convergent, i.e. both terminating and confluent, each element x ∈ X∗ admits a
unique normal form, denoted by x̂ .

I Example: a
**

��

a′ii

��
b

Confluence and branchings

I A branching (resp. local branching) of (X ,R) is:

v

u

f 11

g --

u′

w

where f are g rewriting paths (resp. rewriting steps) and u, v ,w are in X∗.

I A (local) branching is confluent if there exists rewriting paths that close the diagram.

I Theorem (Newman Lemma): If (X ,R) is terminating, local confluence is equivalent to
confluence.

I Local branchings are divided into 3 families:

u

f
&&

f

88 v

u′v

uv

fv ..

ug
00 uv ′

. . .

Aspherical Peiffer Overlappings

Confluence and branchings

I A branching (resp. local branching) of (X ,R) is:

v f ′

u

f 11

g --

u′

w g′

??

where f are g rewriting paths (resp. rewriting steps) and u, v ,w are in X∗.

I A (local) branching is confluent if there exists rewriting paths that close the diagram.

I Theorem (Newman Lemma): If (X ,R) is terminating, local confluence is equivalent to
confluence.

I Local branchings are divided into 3 families:

u

f
&&

f

88 v

u′v

uv

fv ..

ug
00 uv ′

. . .

Aspherical Peiffer Overlappings

Confluence and branchings

I A branching (resp. local branching) of (X ,R) is:

v f ′

u

f 11

g --

u′

w g′

??

where f are g rewriting paths (resp. rewriting steps) and u, v ,w are in X∗.

I A (local) branching is confluent if there exists rewriting paths that close the diagram.

I Theorem (Newman Lemma): If (X ,R) is terminating, local confluence is equivalent to
confluence.

I Local branchings are divided into 3 families:

u

f
&&

f

88 v

u′v

uv

fv ..

ug
00 uv ′

. . .

Aspherical Peiffer Overlappings

Confluence and branchings

I A branching (resp. local branching) of (X ,R) is:

v f ′

u

f 11

g --

u′

w g′

??

where f are g rewriting paths (resp. rewriting steps) and u, v ,w are in X∗.

I A (local) branching is confluent if there exists rewriting paths that close the diagram.

I Theorem (Newman Lemma): If (X ,R) is terminating, local confluence is equivalent to
confluence.

I Local branchings are divided into 3 families:

u

f
&&

f

88 v

u′v

uv

fv ..

ug
00 uv ′

. . .

Aspherical Peiffer Overlappings

Confluence and branchings

I A branching (resp. local branching) of (X ,R) is:

v f ′

u

f 11

g --

u′

w g′

??

where f are g rewriting paths (resp. rewriting steps) and u, v ,w are in X∗.

I A (local) branching is confluent if there exists rewriting paths that close the diagram.

I Theorem (Newman Lemma): If (X ,R) is terminating, local confluence is equivalent to
confluence.

I Local branchings are divided into 3 families:

u

f
&&

f

88 v

u′v

uv

fv ..

ug
00 uv ′

. . .

Aspherical

Peiffer Overlappings

Confluence and branchings

I A branching (resp. local branching) of (X ,R) is:

v f ′

u

f 11

g --

u′

w g′

??

where f are g rewriting paths (resp. rewriting steps) and u, v ,w are in X∗.

I A (local) branching is confluent if there exists rewriting paths that close the diagram.

I Theorem (Newman Lemma): If (X ,R) is terminating, local confluence is equivalent to
confluence.

I Local branchings are divided into 3 families:

u

f
&&

f

88 v

u′v

uv

fv ..

ug
00 uv ′

. . .

Aspherical Peiffer

Overlappings

Confluence and branchings

I A branching (resp. local branching) of (X ,R) is:

v f ′

u

f 11

g --

u′

w g′

??

where f are g rewriting paths (resp. rewriting steps) and u, v ,w are in X∗.

I A (local) branching is confluent if there exists rewriting paths that close the diagram.

I Theorem (Newman Lemma): If (X ,R) is terminating, local confluence is equivalent to
confluence.

I Local branchings are divided into 3 families:

u

f
&&

f

88 v

u′v

uv

fv ..

ug
00 uv ′

. . .

Aspherical Peiffer Overlappings

Critical branchings

I Local branchings are compared by the order v generated by (f , g) v (ufv , ugv) for
u,v ∈ X∗. A critical branching is a minimal branching for v.

I There are two forms of critical branchings:

OO

��

and

OO

��

.

I Theorem (Critical pair lemma): (X ,R) is locally confluent iff all its critical branchings are
confluent.

I Proof is case by case: aspherical and Peiffer branchings are always confluent.

v 1v

��
u

f 22

f ,,

v

v 1v

GG

u′v u′g

��
uv

fv 44

ug **

u′v ′

uv ′ fv′

DD

x h′

��
w

h 22

k ,,

w ′

y k′

DD

uxv uh′v

uwv

f =uhv 22

g=ukv ++

uw ′v

uyv uk′v

@@

Critical branchings

I Local branchings are compared by the order v generated by (f , g) v (ufv , ugv) for
u,v ∈ X∗. A critical branching is a minimal branching for v.

I There are two forms of critical branchings:

OO

��

and

OO

��

.

I Theorem (Critical pair lemma): (X ,R) is locally confluent iff all its critical branchings are
confluent.

I Proof is case by case: aspherical and Peiffer branchings are always confluent.

v 1v

��
u

f 22

f ,,

v

v 1v

GG

u′v u′g

��
uv

fv 44

ug **

u′v ′

uv ′ fv′

DD

x h′

��
w

h 22

k ,,

w ′

y k′

DD

uxv uh′v

uwv

f =uhv 22

g=ukv ++

uw ′v

uyv uk′v

@@

Critical branchings

I Local branchings are compared by the order v generated by (f , g) v (ufv , ugv) for
u,v ∈ X∗. A critical branching is a minimal branching for v.

I There are two forms of critical branchings:

OO

��

and

OO

��

.

I Theorem (Critical pair lemma): (X ,R) is locally confluent iff all its critical branchings are
confluent.

I Proof is case by case: aspherical and Peiffer branchings are always confluent.

v 1v

��
u

f 22

f ,,

v

v 1v

GG

u′v u′g

��
uv

fv 44

ug **

u′v ′

uv ′ fv′

DD

x h′

��
w

h 22

k ,,

w ′

y k′

DD

uxv uh′v

uwv

f =uhv 22

g=ukv ++

uw ′v

uyv uk′v

@@

Critical branchings

I Local branchings are compared by the order v generated by (f , g) v (ufv , ugv) for
u,v ∈ X∗. A critical branching is a minimal branching for v.

I There are two forms of critical branchings:

OO

��

and

OO

��

.

I Theorem (Critical pair lemma): (X ,R) is locally confluent iff all its critical branchings are
confluent.

I Proof is case by case: aspherical and Peiffer branchings are always confluent.

v 1v

��
u

f 22

f ,,

v

v 1v

GG

u′v u′g

��
uv

fv 44

ug **

u′v ′

uv ′ fv′

DD

x h′

��
w

h 22

k ,,

w ′

y k′

DD

uxv uh′v

uwv

f =uhv 22

g=ukv ++

uw ′v

uyv uk′v

@@

Critical branchings

I Local branchings are compared by the order v generated by (f , g) v (ufv , ugv) for
u,v ∈ X∗. A critical branching is a minimal branching for v.

I There are two forms of critical branchings:

OO

��

and

OO

��

.

I Theorem (Critical pair lemma): (X ,R) is locally confluent iff all its critical branchings are
confluent.

I Proof is case by case: aspherical and Peiffer branchings are always confluent. For
overlappings (f , g), there exists (h, k) such that f = uhv and g = ukv .

v 1v

��
u

f 22

f ,,

v

v 1v

GG

u′v u′g

��
uv

fv 44

ug **

u′v ′

uv ′ fv′

DD

x h′

��
w

h 22

k ,,

w ′

y k′

DD

uxv uh′v

uwv

f =uhv 22

g=ukv ++

uw ′v

uyv uk′v

@@

Critical branchings

I Local branchings are compared by the order v generated by (f , g) v (ufv , ugv) for
u,v ∈ X∗. A critical branching is a minimal branching for v.

I There are two forms of critical branchings:

OO

��

and

OO

��

.

I Theorem (Critical pair lemma): (X ,R) is locally confluent iff all its critical branchings are
confluent.

I Proof is case by case: aspherical and Peiffer branchings are always confluent. For
overlappings (f , g), there exists (h, k) such that f = uhv and g = ukv .

v 1v

��
u

f 22

f ,,

v

v 1v

GG

u′v u′g

��
uv

fv 44

ug **

u′v ′

uv ′ fv′

DD

x h′

��
w

h 22

k ,,

w ′

y k′

DD

uxv uh′v

uwv

f =uhv 22

g=ukv ++

uw ′v

uyv uk′v

@@

The word problem

I Consider M a monoid presented by generators X and relations Rn-o, i.e.

M ' X/ ≡Rn-o ,

that is u = v in M iff u
R↔ v in X∗ for representatives u and v of u and v in X∗.

I Word problem: given u and v in X∗, does u = v in M ?

I Partial answer: Fix an orientation R of rules in Rn-o. If (X ,R) is convergent, this problem
is decidable using the normal form algorithm.

Input : u, v ∈ X∗

Result: Boolean u = v in M ?
Reduce u in û ;
Reduce v in v̂ ;
if û = v̂ then

True
else

False
end

The word problem

I Consider M a monoid presented by generators X and relations Rn-o, i.e.

M ' X/ ≡Rn-o ,

that is u = v in M iff u
R↔ v in X∗ for representatives u and v of u and v in X∗.

I Word problem: given u and v in X∗, does u = v in M ?

I Partial answer: Fix an orientation R of rules in Rn-o. If (X ,R) is convergent, this problem
is decidable using the normal form algorithm.

Input : u, v ∈ X∗

Result: Boolean u = v in M ?
Reduce u in û ;
Reduce v in v̂ ;
if û = v̂ then

True
else

False
end

The word problem

I Consider M a monoid presented by generators X and relations Rn-o, i.e.

M ' X/ ≡Rn-o ,

that is u = v in M iff u
R↔ v in X∗ for representatives u and v of u and v in X∗.

I Word problem: given u and v in X∗, does u = v in M ?

I Partial answer: Fix an orientation R of rules in Rn-o. If (X ,R) is convergent, this problem
is decidable using the normal form algorithm.

Input : u, v ∈ X∗

Result: Boolean u = v in M ?
Reduce u in û ;
Reduce v in v̂ ;
if û = v̂ then

True
else

False
end

The word problem

I Consider M a monoid presented by generators X and relations Rn-o, i.e.

M ' X/ ≡Rn-o ,

that is u = v in M iff u
R↔ v in X∗ for representatives u and v of u and v in X∗.

I Word problem: given u and v in X∗, does u = v in M ?

I Partial answer: Fix an orientation R of rules in Rn-o. If (X ,R) is convergent, this problem
is decidable using the normal form algorithm.

Input : u, v ∈ X∗

Result: Boolean u = v in M ?
Reduce u in û ;
Reduce v in v̂ ;
if û = v̂ then

True
else

False
end

Examples

Example. X = {a} and R = {aa α→ 1}.

I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts

Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts

Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts

Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts

Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts

Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts

Knuth-Bendix completion

Input : (X ,R) terminating + termination order >
KB(R) := R ;
Cb := { critical branchings } ;
while Cb 6= ∅ do

Pick (f : u → v , g : u → w) in Cb ;
Cb := Cb\{(f , g)} ;
Reduce v in v̂ wrt R ;
Reduce w in ŵ wrt R ;
if v̂ 6= ŵ then

if v̂ > ŵ then
KB(R) := KB(R) ∪ {α : v̂ → ŵ}

else
KB(R) := KB(R) ∪ {α : ŵ → v̂}

end
else

end
Cb := Cb∪ {critical branchings generated by α }

end

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

ststs

stα 22

αts ,, tstts

stttst stttstts

sttsttst tsttssts

tsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

ststs

stα 22

αts ,, tstts

stttst stttstts

sttsttst tsttssts

tsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

β

		
ststs

stα 22

αts ,, tstts

stttst stttstts

sttsttst tsttssts

tsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

β

		
ststs

stα 22

αts ,, tstts

stttst

sttsts

stttstts

sttsttst tsttssts

tsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

β

		
ststs

stα 22

αts ,, tstts

stttst

sttsts

sttα 22

βs ,, tsttss

stttstts

sttsttst tsttssts

tsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

β

		
ststs

stα 22

αts ,, tstts

stttst

γ

		
sttsts

sttα 22

βs ,, tsttss

stttstts

sttsttst tsttssts

tsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

β

		
ststs

stα 22

αts ,, tstts

stttst

γ

		
sttsts

sttα 22

βs ,, tsttss

stttstts

sttsttst

tsttssts

tsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

β

		
ststs

stα 22

αts ,, tstts

stttst

γ

		
sttsts

sttα 22

βs ,, tsttss

stttstts

sttsttst

βtst 22

sttβ ,,

tsttssts

tsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

β

		
ststs

stα 22

αts ,, tstts

stttst

γ

		
sttsts

sttα 22

βs ,, tsttss

stttstts βts

##
sttsttst

βtst 22

sttβ ,,

tsttssts

tsttsαrrtsttstst

Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

β

		
ststs

stα 22

αts ,, tstts

stttst

γ

		
sttsts

sttα 22

βs ,, tsttss

stttstts βts

##
sttsttst

βtst 22

sttβ ,,

tsttssts

tsttsαrrtsttstst

. . .

I Kapur & Narendran , ’85: The monoid B+
3 does not admit a finite convergent presentation

with 2 generators.

Knuth-Bendix completion

I X = {s, t, a} and R = {ta α→ as , st
β→ a} presents the same monoid. It terminates for the

lexicographic order on s > t > a.

aa

sta

sas

aat

sast

saa

aaas

sasas

γas 55

saγ **

aata

aaαii

saaa δa

GG

aaaa aaast
aaaβoo

sasaa

γaa 55

saδ
''
saaat

δat
// aatat

aaαt

VV

Knuth-Bendix completion

I X = {s, t, a} and R = {ta α→ as , st
β→ a} presents the same monoid. It terminates for the

lexicographic order on s > t > a.

aa

sta

βa 33

sα ++ sas

aat

sast

saa

aaas

sasas

γas 55

saγ **

aata

aaαii

saaa δa

GG

aaaa aaast
aaaβoo

sasaa

γaa 55

saδ
''
saaat

δat
// aatat

aaαt

VV

Knuth-Bendix completion

I X = {s, t, a} and R = {ta α→ as , st
β→ a} presents the same monoid. It terminates for the

lexicographic order on s > t > a.

aa

sta

βa 33

sα ++ sas

γ

UU

aat

sast

saa

aaas

sasas

γas 55

saγ **

aata

aaαii

saaa δa

GG

aaaa aaast
aaaβoo

sasaa

γaa 55

saδ
''
saaat

δat
// aatat

aaαt

VV

Knuth-Bendix completion

I X = {s, t, a} and R = {ta α→ as , st
β→ a} presents the same monoid. It terminates for the

lexicographic order on s > t > a.

aa

sta

βa 33

sα ++ sas

γ

UU aat

sast

γt 33

saβ ,, saa

aaas

sasas

γas 55

saγ **

aata

aaαii

saaa δa

GG

aaaa aaast
aaaβoo

sasaa

γaa 55

saδ
''
saaat

δat
// aatat

aaαt

VV

Knuth-Bendix completion

I X = {s, t, a} and R = {ta α→ as , st
β→ a} presents the same monoid. It terminates for the

lexicographic order on s > t > a.

aa

sta

βa 33

sα ++ sas

γ

UU aat

sast

γt 33

saβ ,, saa

δ

UU

aaas

sasas

γas 55

saγ **

aata

aaαii

saaa δa

GG

aaaa aaast
aaaβoo

sasaa

γaa 55

saδ
''
saaat

δat
// aatat

aaαt

VV

Knuth-Bendix completion

I X = {s, t, a} and R = {ta α→ as , st
β→ a} presents the same monoid. It terminates for the

lexicographic order on s > t > a.

aa

sta

βa 33

sα ++ sas

γ

UU aat

sast

γt 33

saβ ,, saa

δ

UU aaas

sasas

γas 55

saγ **

aata

aaαii

saaa δa

GG

aaaa aaast
aaaβoo

sasaa

γaa 55

saδ
''
saaat

δat
// aatat

aaαt

VV

Knuth-Bendix completion

I X = {s, t, a} and R = {ta α→ as , st
β→ a} presents the same monoid. It terminates for the

lexicographic order on s > t > a.

aa

sta

βa 33

sα ++ sas

γ

UU aat

sast

γt 33

saβ ,, saa

δ

UU aaas

sasas

γas 55

saγ **

aata

aaαii

saaa δa

GG

aaaa aaast
aaaβoo

sasaa

γaa 55

saδ
''
saaat

δat
// aatat

aaαt

VV

I The string rewriting system < s, t, a | ta α→ as , st
β→ a , sas

γ→ aa , saa
δ→ aat > is a

convergent presentation of B+
3 .

III. Rewriting in linear 2-categories

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

1 i j n

•

•

. =

1 i j n

•

•

.

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

1 i i+1 nj

•

. =

1 i i+1 n

•

j

.

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

1 i i+1 nj j+1

. . .

. =

1 i i+1 nj j+1

. . .

.

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

1 i i+1 n

.
= 0

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

i i+1

= 0

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

i i+1 i+2

=

i i+1 i+2

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

i i+1

•
=

i i+1

•
+

i i+1

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

i i+1

•
=

i i+1

•
−

i i+1

I We realize these algebras as endomorphism spaces of a linear 2-category.

Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. , ∂i =

1 i i+1 n

.

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1

∂i∂j = ∂j∂i si |i − j| > 1

∂2
i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

ξi∂i − ∂iξi+1 = 1

∂iξi − ξi+1∂i = 1

i i+1

•
=

i i+1

•
−

i i+1

I We realize these algebras as endomorphism spaces of a linear 2-category.

Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1

Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1

Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1

Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1

Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1

Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1

Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1

Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1

String diagrams

I A 2-cell φ : p ⇒ q with p,q : x → y in a linear 2-category C can be depicted by a string
diagram:

. . .

. . .

φ

q

p

xy

I Compositions:

· · ·

· · ·
φ ?0

q

p

· · ·

· · ·

q′

p′

ψ :=

· · ·

· · ·
φ

q ?0 q′

p ?0 p′

· · ·

· · ·
ψ

· · ·

· · ·

q

p

φ ?1

· · ·

· · ·

r

q

ψ
:=

ψ

· · ·

· · ·

r

p

φ

I These compositions satisfy the exchange law:

· · ·

· · ·

φ · · ·

· · ·
ψ

=

· · ·

· · ·
φ

· · ·

· · ·
ψ =

· · ·

· · ·
φ

· · ·

· · ·

ψ

String diagrams

I A 2-cell φ : p ⇒ q with p,q : x → y in a linear 2-category C can be depicted by a string
diagram:

. . .

. . .

φ

q

p

xy

I Compositions:

· · ·

· · ·
φ ?0

q

p

· · ·

· · ·

q′

p′

ψ :=

· · ·

· · ·
φ

q ?0 q′

p ?0 p′

· · ·

· · ·
ψ

· · ·

· · ·

q

p

φ ?1

· · ·

· · ·

r

q

ψ
:=

ψ

· · ·

· · ·

r

p

φ

I These compositions satisfy the exchange law:

· · ·

· · ·

φ · · ·

· · ·
ψ

=

· · ·

· · ·
φ

· · ·

· · ·
ψ =

· · ·

· · ·
φ

· · ·

· · ·

ψ

String diagrams

I A 2-cell φ : p ⇒ q with p,q : x → y in a linear 2-category C can be depicted by a string
diagram:

. . .

. . .

φ

q

p

xy

I Compositions:

· · ·

· · ·
φ ?0

q

p

· · ·

· · ·

q′

p′

ψ :=

· · ·

· · ·
φ

q ?0 q′

p ?0 p′

· · ·

· · ·
ψ

· · ·

· · ·

q

p

φ ?1

· · ·

· · ·

r

q

ψ
:=

ψ

· · ·

· · ·

r

p

φ

I These compositions satisfy the exchange law:

· · ·

· · ·

φ · · ·

· · ·
ψ

=

· · ·

· · ·
φ

· · ·

· · ·
ψ =

· · ·

· · ·
φ

· · ·

· · ·

ψ

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }

Presentations by linear (3, 2)-polygraphs

I Example : for the nil Hecke algebras,

I These are exchange laws.

0 ,

•
• + •

• −

I This choice of cellular extension defines a linear (3, 2)-polygraph presenting a
linear 2-category encoding the nil Hecke algebras.

EndC(n) ' NHn

I It is left-monomial, that is each source of a 3-cell is a monomial.

Presentations by linear (3, 2)-polygraphs

I Example : for the nil Hecke algebras,

1 i j n

•
•

. =

1 i j n

•
•

.

1 i i+1 nj

•
. =

1 i i+1 n

•
j

.

1 i i+1 nj j+1

. . .

. =

1 i i+1 nj j+1

. . .

.

I These are exchange laws.

0 ,

•
• + •

• −

I This choice of cellular extension defines a linear (3, 2)-polygraph presenting a
linear 2-category encoding the nil Hecke algebras.

EndC(n) ' NHn

I It is left-monomial, that is each source of a 3-cell is a monomial.

Presentations by linear (3, 2)-polygraphs

I Example : for the nil Hecke algebras,

��
���

���
�XXXXXXXXX1 i j n

•
•

. =

1 i j n

•
•

.

���
���

���
���XXXXXXXXXXXX1 i i+1 nj

•
. =

1 i i+1 n

•
j

.

��
���

���
���

��XXXXXXXXXXXXX1 i i+1 nj j+1

. . .

. =

1 i i+1 nj j+1

. . .

.

I These are exchange laws.

0 ,

•
• + •

• −

I This choice of cellular extension defines a linear (3, 2)-polygraph presenting a
linear 2-category encoding the nil Hecke algebras.

EndC(n) ' NHn

I It is left-monomial, that is each source of a 3-cell is a monomial.

Presentations by linear (3, 2)-polygraphs

I Example : for the nil Hecke algebras,

��
���

���
�XXXXXXXXX1 i j n

•
•

. =

1 i j n

•
•

.

���
���

���
���XXXXXXXXXXXX1 i i+1 nj

•
. =

1 i i+1 n

•
j

.

��
���

���
���

��XXXXXXXXXXXXX1 i i+1 nj j+1

. . .

. =

1 i i+1 nj j+1

. . .

.

I These are exchange laws.

= 0 , =

• = • + • = • −

I This choice of cellular extension defines a linear (3, 2)-polygraph presenting a
linear 2-category encoding the nil Hecke algebras.

EndC(n) ' NHn

I It is left-monomial, that is each source of a 3-cell is a monomial.

Presentations by linear (3, 2)-polygraphs

I Example : for the nil Hecke algebras,

��
���

���
�XXXXXXXXX1 i j n

•
•

. =

1 i j n

•
•

.

���
���

���
���XXXXXXXXXXXX1 i i+1 nj

•
. =

1 i i+1 n

•
j

.

��
���

���
���

��XXXXXXXXXXXXX1 i i+1 nj j+1

. . .

. =

1 i i+1 nj j+1

. . .

.

I These are exchange laws.

V 0 , V

• V • + •V • −

I This choice of cellular extension defines a linear (3, 2)-polygraph presenting a
linear 2-category encoding the nil Hecke algebras.

EndC(n) ' NHn

I It is left-monomial, that is each source of a 3-cell is a monomial.

Presentations by linear (3, 2)-polygraphs

I Example : for the nil Hecke algebras,

��
���

���
�XXXXXXXXX1 i j n

•
•

. =

1 i j n

•
•

.

���
���

���
���XXXXXXXXXXXX1 i i+1 nj

•
. =

1 i i+1 n

•
j

.

��
���

���
���

��XXXXXXXXXXXXX1 i i+1 nj j+1

. . .

. =

1 i i+1 nj j+1

. . .

.

I These are exchange laws.

V 0 , V

• V • + •V • −

I This choice of cellular extension defines a linear (3, 2)-polygraph presenting a
linear 2-category encoding the nil Hecke algebras.

EndC(n) ' NHn

I It is left-monomial, that is each source of a 3-cell is a monomial.

Presentations by linear (3, 2)-polygraphs

I Example : for the nil Hecke algebras,

��
���

���
�XXXXXXXXX1 i j n

•
•

. =

1 i j n

•
•

.

���
���

���
���XXXXXXXXXXXX1 i i+1 nj

•
. =

1 i i+1 n

•
j

.

��
���

���
���

��XXXXXXXXXXXXX1 i i+1 nj j+1

. . .

. =

1 i i+1 nj j+1

. . .

.

I These are exchange laws.

V 0 , V

• V • + •V • −

I This choice of cellular extension defines a linear (3, 2)-polygraph presenting a
linear 2-category encoding the nil Hecke algebras.

EndC(n) ' NHn

I It is left-monomial, that is each source of a 3-cell is a monomial.

Linear rewriting

I Restriction of the set of rewritings due to the linear context:

if u → v , then −u ⇒ −v , and
so v = (u + v)− uu + v − v = u

.

I A rewriting step of a linear (3, 2)-polygraph is a 3-cell of the form

λ s2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u V λ t2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u

where α ∈ P3, and the monomial m1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the
monomial decomposition of u.

I Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is
locally confluent.

I Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only
if its critical branchings are confluent.

Linear rewriting

I Restriction of the set of rewritings due to the linear context: if u → v , then −u ⇒ −v , and
so v = (u + v)− u ⇒ u + v − v = u.

I A rewriting step of a linear (3, 2)-polygraph is a 3-cell of the form

λ s2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u V λ t2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u

where α ∈ P3, and the monomial m1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the
monomial decomposition of u.

I Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is
locally confluent.

I Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only
if its critical branchings are confluent.

Linear rewriting

I Restriction of the set of rewritings due to the linear context: if u → v , then −u ⇒ −v , and
so v = (u + v)− u��ZZ⇒u + v − v = u.

I A rewriting step of a linear (3, 2)-polygraph is a 3-cell of the form

λ s2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u V λ t2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u

where α ∈ P3, and the monomial m1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the
monomial decomposition of u.

I Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is
locally confluent.

I Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only
if its critical branchings are confluent.

Linear rewriting

I Restriction of the set of rewritings due to the linear context: if u → v , then −u ⇒ −v , and
so v = (u + v)− u��ZZ⇒u + v − v = u.

I A rewriting step of a linear (3, 2)-polygraph is a 3-cell of the form

λ s2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u V λ t2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u

where α ∈ P3, and the monomial m1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the
monomial decomposition of u.

I Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is
locally confluent.

I Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only
if its critical branchings are confluent.

Linear rewriting

I Restriction of the set of rewritings due to the linear context: if u → v , then −u ⇒ −v , and
so v = (u + v)− u��ZZ⇒u + v − v = u.

I A rewriting step of a linear (3, 2)-polygraph is a 3-cell of the form

λ s2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u V λ t2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u

where α ∈ P3, and the monomial m1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the
monomial decomposition of u.

I Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is
locally confluent.

I Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only
if its critical branchings are confluent.

Linear rewriting

I Restriction of the set of rewritings due to the linear context: if u → v , then −u ⇒ −v , and
so v = (u + v)− u��ZZ⇒u + v − v = u.

I A rewriting step of a linear (3, 2)-polygraph is a 3-cell of the form

λ s2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u V λ t2(α)

· · ·

· · ·
m3

· · ·

· · ·
m2

· · ·

· · ·

m1

· · ·

m4

· · ·

+u

where α ∈ P3, and the monomial m1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the
monomial decomposition of u.

I Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is
locally confluent.

I Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only
if its critical branchings are confluent.

Critical pair lemma fails without termination

I Consider a linear rewriting system on generators x ,y , z and rules α : xy → xz and
β : zt → 2yt.

I It has no critical branching.

I Consider the Peiffer branching

4xyt 4xzt · · ·

2xzt

xyt + xzt xzt + 2xyt

3xyt

3xzt 6xyt · · ·

Critical pair lemma fails without termination

I Consider a linear rewriting system on generators x ,y , z and rules α : xy → xz and
β : zt → 2yt.

I It has no critical branching.

I Consider the Peiffer branching

4xyt 4xzt · · ·

2xzt

xyt + xzt xzt + 2xyt

3xyt

3xzt 6xyt · · ·

Critical pair lemma fails without termination

I Consider a linear rewriting system on generators x ,y , z and rules α : xy → xz and
β : zt → 2yt.

I It has no critical branching.

I Consider the Peiffer branching

4xyt 4xzt · · ·

2xzt

xyt + xzt

αt + xzt 11

xyt + xβ
--

xzt + 2xyt

3xyt

3xzt 6xyt · · ·

Critical pair lemma fails without termination

I Consider a linear rewriting system on generators x ,y , z and rules α : xy → xz and
β : zt → 2yt.

I It has no critical branching.

I Consider the Peiffer branching

4xyt 4xzt · · ·

2xzt xzt + xβ

##
xyt + xzt

αt + xzt 11

xyt + xβ
--

xzt + 2xyt

3xyt αt + 2xyt

;;

3xzt 6xyt · · ·

Critical pair lemma fails without termination

I Consider a linear rewriting system on generators x ,y , z and rules α : xy → xz and
β : zt → 2yt.

I It has no critical branching.

I Consider the Peiffer branching

4xyt

4xzt · · ·

2xzt

2xβ 11

xzt + xβ

##
xyt + xzt

αt + xzt 11

xyt + xβ
--

xzt + 2xyt

3xyt αt + 2xyt

;;

3xzt 6xyt · · ·

Critical pair lemma fails without termination

I Consider a linear rewriting system on generators x ,y , z and rules α : xy → xz and
β : zt → 2yt.

I It has no critical branching.

I Consider the Peiffer branching

4xyt
4αt

// 4xzt
4xβ
// · · ·

2xzt

2xβ 11

xzt + xβ

##
xyt + xzt

αt + xzt 11

xyt + xβ
--

xzt + 2xyt

3xyt αt + 2xyt

;;

3xzt 6xyt · · ·

Critical pair lemma fails without termination

I Consider a linear rewriting system on generators x ,y , z and rules α : xy → xz and
β : zt → 2yt.

I It has no critical branching.

I Consider the Peiffer branching

4xyt
4αt

// 4xzt
4xβ
// · · ·

2xzt

2xβ 11

xzt + xβ

##
xyt + xzt

αt + xzt 11

xyt + xβ
--

xzt + 2xyt

3xyt αt + 2xyt

;;

3αt
-- 3xzt

3xβ
// 6xyt

6αt
// · · ·

Critical branchings of linear (3, 2)-polygraphs

I A critical branching is a branching on a minimal string diagram.

I There are 3 different forms of critical branchings:

I Regular critical branchings:

s(α)

g

. . .

. . .

=

f

h

g

. . .

. . .

=

f

s(β)

. . .

. . .
I Inclusion critical branchings:

s(α)

. . .

. . .

=
s(β)

C

. . .

. . .
I Right-indexed (also left-indexed, multi-indexed) critical branchings:

s(α)

g

k

. . .

. . .

=

f

g

kh

. . .

. . .

=

f

k

s(β)

. . .

. . .

Critical branchings of linear (3, 2)-polygraphs

I A critical branching is a branching on a minimal string diagram.

I There are 3 different forms of critical branchings:

I Regular critical branchings:

s(α)

g

. . .

. . .

=

f

h

g

. . .

. . .

=

f

s(β)

. . .

. . .
I Inclusion critical branchings:

s(α)

. . .

. . .

=
s(β)

C

. . .

. . .
I Right-indexed (also left-indexed, multi-indexed) critical branchings:

s(α)

g

k

. . .

. . .

=

f

g

kh

. . .

. . .

=

f

k

s(β)

. . .

. . .

Critical branchings of linear (3, 2)-polygraphs

I A critical branching is a branching on a minimal string diagram.

I There are 3 different forms of critical branchings:

I Regular critical branchings:

s(α)

g

. . .

. . .

=

f

h

g

. . .

. . .

=

f

s(β)

. . .

. . .

I Inclusion critical branchings:

s(α)

. . .

. . .

=
s(β)

C

. . .

. . .
I Right-indexed (also left-indexed, multi-indexed) critical branchings:

s(α)

g

k

. . .

. . .

=

f

g

kh

. . .

. . .

=

f

k

s(β)

. . .

. . .

Critical branchings of linear (3, 2)-polygraphs

I A critical branching is a branching on a minimal string diagram.

I There are 3 different forms of critical branchings:

I Regular critical branchings:

s(α)

g

. . .

. . .

=

f

h

g

. . .

. . .

=

f

s(β)

. . .

. . .
I Inclusion critical branchings:

s(α)

. . .

. . .

=
s(β)

C

. . .

. . .

I Right-indexed (also left-indexed, multi-indexed) critical branchings:

s(α)

g

k

. . .

. . .

=

f

g

kh

. . .

. . .

=

f

k

s(β)

. . .

. . .

Critical branchings of linear (3, 2)-polygraphs

I A critical branching is a branching on a minimal string diagram.

I There are 3 different forms of critical branchings:

I Regular critical branchings:

s(α)

g

. . .

. . .

=

f

h

g

. . .

. . .

=

f

s(β)

. . .

. . .
I Inclusion critical branchings:

s(α)

. . .

. . .

=
s(β)

C

. . .

. . .
I Right-indexed (also left-indexed, multi-indexed) critical branchings:

s(α)

g

k

. . .

. . .

=

f

g

kh

. . .

. . .

=

f

k

s(β)

. . .

. . .

Linear bases from convergence

I P a convergent left-monomial linear (3, 2)-polygraph.

I C the linear 2-category it presents.

I Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in
normal form for P with 1-source p and 1-target q is a linear basis of C2(p, q).

I Termination: the monomials in normal form span C2(p, q).

I Confluence: if a 2-cell reduces into two different linear combinations of monomials in normal
form, they are equal by confluence and since P is left-monomial.

Linear bases from convergence

I P a convergent left-monomial linear (3, 2)-polygraph.

I C the linear 2-category it presents.

I Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in
normal form for P with 1-source p and 1-target q is a linear basis of C2(p, q).

I Termination: the monomials in normal form span C2(p, q).

I Confluence: if a 2-cell reduces into two different linear combinations of monomials in normal
form, they are equal by confluence and since P is left-monomial.

Linear bases from convergence

I P a convergent left-monomial linear (3, 2)-polygraph.

I C the linear 2-category it presents.

I Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in
normal form for P with 1-source p and 1-target q is a linear basis of C2(p, q).

I Termination: the monomials in normal form span C2(p, q).

I Confluence: if a 2-cell reduces into two different linear combinations of monomials in normal
form, they are equal by confluence and since P is left-monomial.

Linear bases from convergence

I P a convergent left-monomial linear (3, 2)-polygraph.

I C the linear 2-category it presents.

I Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in
normal form for P with 1-source p and 1-target q is a linear basis of C2(p, q).

I Termination: the monomials in normal form span C2(p, q).

I Confluence: if a 2-cell reduces into two different linear combinations of monomials in normal
form, they are equal by confluence and since P is left-monomial.

Linear bases from convergence

I P a convergent left-monomial linear (3, 2)-polygraph.

I C the linear 2-category it presents.

I Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in
normal form for P with 1-source p and 1-target q is a linear basis of C2(p, q).

I Termination: the monomials in normal form span C2(p, q).

I Confluence: if a 2-cell reduces into two different linear combinations of monomials in normal
form, they are equal by confluence and since P is left-monomial.

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I], algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I], algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I],

 algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I], algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I], algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I], algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I], algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I], algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I], algebra R(V)

I a bilinear form · on Z[I] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I]

R(V),

K0(R − pmod) ' U−q (g)

Presentation of the KLR algebras

I For i = i1 . . . im ∈ Seq(V), generators

xk,i =

i1 ik im

•. and τk,i =

i1 ik ik+1 im

.

I Relations:

i) For i ∈ I ,

i i

= 0

ii) For i, j ∈ I s.t i · j = 0,

i j

=

i j

iii) For i, j ∈ I s.t i · j = −1,

i j

=

i j

• +

i j

•

iv) For i, j ∈ I ,

i j

•
=

i j

•

i j

•
=

i j

•

v) For i ∈ I ,

i i

•
=

i i

• +

i i

,

i i

•
=

i i

• −

i i

vi) For i, j, k ∈ I , unless i = k and i · j = −1,

i j k

=

i j k

vii) For i, j ∈ I s.t i · j = −1,

i j i

=

i j i

+

i j i

Presentation of the KLR algebras

I For i = i1 . . . im ∈ Seq(V), generators

xk,i =

i1 ik im

•. and τk,i =

i1 ik ik+1 im

.

I Relations:

i) For i ∈ I ,

i i

V 0

ii) For i, j ∈ I s.t i · j = 0,

i j

V

i j

iii) For i, j ∈ I s.t i · j = −1,

i j

V

i j

• +

i j

•

iv) For i, j ∈ I ,

i j

•
V

i j

•

i j

•
V

i j

•

v) For i ∈ I ,

i i

•
V

i i

• +

i i

,

i i

•
V

i i

• −

i i

vi) For i, j, k ∈ I , unless i = k and i · j = −1,

i j k

V

i j k

vii) For i, j ∈ I s.t i · j = −1,

i j i

V

i j i

+

i j i

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i i j i

+
i j i

i j i

i j i

•
+

i j i

•
i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i i j i

+
i j i

i j i

i j i

•
+

i j i

•
i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i i j i

+
i j i

i j i

i j i

•
+

i j i

•
i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i i j i

+
i j i

i j i

i j i

•
+

i j i

•
i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i i j i

+
i j i

i j i

�)

i j i

•
+

i j i

•

i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i

i j i

+
i j i

i j i

7F

�)

i j i

•
+

i j i

•

i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i

*4
i j i

+
i j i

i j i

7F

�)

i j i

•
+

i j i

•

i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i

*4
i j i

+
i j i

�

i j i

7F

�)

i j i

•
+

i j i

•
i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i

*4
i j i

+
i j i

�

i j i

7F

�)

i j i

•
+

i j i

•
i j i

•

+

i j i

•
+

i j i
jt

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i

*4
i j i

+
i j i

�

i j i

7F

�)

i j i

•
+

i j i

•
i j i

•

+

i j i

•
+

i j i
jt

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.

IV. Extension to rewriting modulo

Rewriting modulo

I Some structural relations may make the analysis of confluence difficult.

I Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p
is a 1-cell p̂ such that there are 2-cells

ηp : 1⇒ p ?0 p̂, εp : p̂ ?0 p ⇒ 1,

p p̂

,
p̂ p

satisfying

p

=

p

=

p

.

I We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented
axioms.

I Three paradigms of rewriting modulo:

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes:

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo: (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

Rewriting modulo

I Some structural relations may make the analysis of confluence difficult.

I Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p
is a 1-cell p̂ such that there are 2-cells

ηp : 1⇒ p ?0 p̂, εp : p̂ ?0 p ⇒ 1,

p p̂

,
p̂ p

satisfying

p

=

p

=

p

.

I We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented
axioms.

I Three paradigms of rewriting modulo:

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes:

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo: (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

Rewriting modulo

I Some structural relations may make the analysis of confluence difficult.

I Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p
is a 1-cell p̂ such that there are 2-cells

ηp : 1⇒ p ?0 p̂, εp : p̂ ?0 p ⇒ 1,

p p̂

,
p̂ p

satisfying

p

=

p

=

p

.

I We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented
axioms.

I Three paradigms of rewriting modulo:

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes:

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo: (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

Rewriting modulo

I Some structural relations may make the analysis of confluence difficult.

I Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p
is a 1-cell p̂ such that there are 2-cells

ηp : 1⇒ p ?0 p̂, εp : p̂ ?0 p ⇒ 1,

p p̂

,
p̂ p

satisfying

p

=

p

=

p

.

I We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented
axioms.

I Three paradigms of rewriting modulo:

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes:

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo: (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

Rewriting modulo

I Some structural relations may make the analysis of confluence difficult.

I Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p
is a 1-cell p̂ such that there are 2-cells

ηp : 1⇒ p ?0 p̂, εp : p̂ ?0 p ⇒ 1,

p p̂

,
p̂ p

satisfying

p

=

p

=

p

.

I We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented
axioms.

I Three paradigms of rewriting modulo:

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes:

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo: (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

Rewriting modulo

I Some structural relations may make the analysis of confluence difficult.

I Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p
is a 1-cell p̂ such that there are 2-cells

ηp : 1⇒ p ?0 p̂, εp : p̂ ?0 p ⇒ 1,

p p̂

,
p̂ p

satisfying

p

=

p

=

p

.

I We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented
axioms.

I Three paradigms of rewriting modulo:

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes:

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo: (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.

Results

I Confluence modulo:

u
S∗ //OO

E
��

u′
S∗ // w

E��
v

S∗
// v ′

S∗
// w ′

I Theorem [D. - Malbos ’18], Critical pair lemma modulo : For (R,E , S) such that ERE

is terminating, S is confluent modulo E if and only if its critical branchings modulo E of
the form

u
S∗(1)
//

=

��

v
S∗ // v ′

E>
��

u
R∗(1)

// w
S∗
// w ′

u
S∗(1)
//

E>(1)

��

v
S∗ // v ′

E>

��
u′

S∗
// w

are confluent modulo E .

I Theorem [D. ’19] Let (R,E ,S) be a linear (3, 2)-polygraph modulo and C the category
presented by R

∐
E , such that S is terminating and confluent modulo E .

Then, for all parallel 1-cells p and q, the set of monomials in the E -normal forms of
monomials in normal form for S gives a basis of C2(p, q).

Results

I Confluence modulo:

u
S∗ //OO

E
��

u′
S∗ // w

E��
v

S∗
// v ′

S∗
// w ′

I Theorem [D. - Malbos ’18], Critical pair lemma modulo : For (R,E , S) such that ERE

is terminating, S is confluent modulo E if and only if its critical branchings modulo E of
the form

u
S∗(1)
//

=

��

v
S∗ // v ′

E>
��

u
R∗(1)

// w
S∗
// w ′

u
S∗(1)
//

E>(1)

��

v
S∗ // v ′

E>

��
u′

S∗
// w

are confluent modulo E .

I Theorem [D. ’19] Let (R,E ,S) be a linear (3, 2)-polygraph modulo and C the category
presented by R

∐
E , such that S is terminating and confluent modulo E .

Then, for all parallel 1-cells p and q, the set of monomials in the E -normal forms of
monomials in normal form for S gives a basis of C2(p, q).

Results

I Confluence modulo:

u
S∗ //OO

E
��

u′
S∗ // w

E��
v

S∗
// v ′

S∗
// w ′

I Theorem [D. - Malbos ’18], Critical pair lemma modulo : For (R,E , S) such that ERE

is terminating, S is confluent modulo E if and only if its critical branchings modulo E of
the form

u
S∗(1)
//

=

��

v
S∗ // v ′

E>
��

u
R∗(1)

// w
S∗
// w ′

u
S∗(1)
//

E>(1)

��

v
S∗ // v ′

E>

��
u′

S∗
// w

are confluent modulo E .

I Theorem [D. ’19] Let (R,E ,S) be a linear (3, 2)-polygraph modulo and C the category
presented by R

∐
E , such that S is terminating and confluent modulo E .

Then, for all parallel 1-cells p and q, the set of monomials in the E -normal forms of
monomials in normal form for S gives a basis of C2(p, q).

Results

I Confluence modulo:

u
S∗ //OO

E
��

u′
S∗ // w

E��
v

S∗
// v ′

S∗
// w ′

I Theorem [D. - Malbos ’18], Critical pair lemma modulo : For (R,E , S) such that ERE

is terminating, S is confluent modulo E if and only if its critical branchings modulo E of
the form

u
S∗(1)
//

=

��

v
S∗ // v ′

E>
��

u
R∗(1)

// w
S∗
// w ′

u
S∗(1)
//

E>(1)

��

v
S∗ // v ′

E>

��
u′

S∗
// w

are confluent modulo E .

I Theorem [D. ’19] Let (R,E ,S) be a linear (3, 2)-polygraph modulo and C the category
presented by R

∐
E , such that S is terminating and confluent modulo E .

Then, for all parallel 1-cells p and q, the set of monomials in the E -normal forms of
monomials in normal form for S gives a basis of C2(p, q).

Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0

Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0

Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0

Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0

Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0

Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0

Example: The 2-category KLR(sl2)

I Isotopy relations:

±

V

±

W

±

•

±

V •

±

W •

±

I Quantum relations:

λ

V − λ +

h−1∑
n=0

∑
r≥0

λ

•−n−r−2

• r

•n

,

λ

V − λ +

−h−1∑
n=0

∑
r≥0

• r
λ

•−n−r−2

• n

.

λ
V

h∑
n=0 •n

λ
• −n−1

;
λ
V −

−h∑
n=0 •−n−1

λ
• n

;

λ
V −

−h∑
n=0 •n

λ
•−n−1

;
λ
V

h∑
n=0 • −n−1

λ
• n

.

I Bubble slide relations.

Example: The 2-category KLR(sl2)

I Isotopy relations:

±

V

±

W

±

•

±

V •

±

W •

±

I Quantum relations:

λ

V − λ +

h−1∑
n=0

∑
r≥0

λ

•−n−r−2

• r

•n

,

λ

V − λ +

−h−1∑
n=0

∑
r≥0

• r
λ

•−n−r−2

• n

.

λ
V

h∑
n=0 •n

λ
• −n−1

;
λ
V −

−h∑
n=0 •−n−1

λ
• n

;

λ
V −

−h∑
n=0 •n

λ
•−n−1

;
λ
V

h∑
n=0 • −n−1

λ
• n

.

I Bubble slide relations.

