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I. Rewriting theory



Rewriting theory

I Rewriting is a combinatorial theory of equivalence classes.

I Consists in orienting the equations.

I Thue ’14: rewriting in semi-groups.

I Church-Rosser ’36: lambda-calculus and beta-reductions.

I Newman ’42: abstract rewriting.

I Knuth-Bendix ’70, Nivat ’72: completion procedures, characterization of local confluence in
terms of overlappings.

I Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

I Computation of syzygies, i.e. relations among relations.

I Computation of linear bases.

I Proofs of Koszulity.

I Computation of free resolutions and cofibrant replacements, Anick ’84
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Algebraic contexts of rewriting

I Rewriting has been developed for various algebraic structures:

I String rewriting systems, Thue.

I Universal algebra (term rewriting systems), Knuth-Bendix ’70.

I Commutative algebras, Buchberger ’65.

I Associative algebras, Bokut ’76, Bergman ’78, Mora ’86.

I Operads, Dotsenko-Khoroshkin ’10.

I Higher-dimensional globular strict categories, Guiraud-Malbos ’09.

I Objective: Develop rewriting methods to study diagrammatic algebras that arise in
representation theory.

I Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.

I Heisenberg categorifications.

I Partition, Brauer and Birman-Wenzl algebras.

I Questions:
I Solve the word problem: decide the equality of two diagrams.

I Computation of linear bases.

I Computation of coherent presentations.

I Explicit proofs of categorification results.
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String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

||
bcc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

|| ##
bcc adab



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

zz
ddabc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

zz ##
ddabc ccc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

zz ##
ddabc ccc



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

dabc

��
dbcc

zz ##
ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{
dabc

��

dcb

dbcc

zz ##
ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb adbc

dbcc

zz ##
ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb adbc

dbcc

zz ##
ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

dbcc

zz ##

acc

ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

dbcc

zz ##

acc

ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{
dbcc

zz ##

acc

ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{
dbcc

zz ##

acc

ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{ $$
dbcc

zz ##

acc addab

ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{ $$
dbcc

zz ##

acc addab

ddabc

��

ccc

. . .



String rewriting

I Example: X := {a, b, c, d} an alphabet and we consider the 5 rewriting rules:

ab → bc, ada→ dc, bc → dab, db → c, dcb → acc.

abc

{{ ##
bcc

��

adab

{{ ##
dabc

��

dcb

##

adbc

{{ $$
dbcc

zz ##

acc addab

��
ddabc

��

ccc . . .

. . .



Normal forms and termination

I Let (X ,R) be a string rewriting system and X∗ the free monoid on X . A rewriting step of
(X ,R) is a reduction

us(f )v → ut(f )v , for u, v ∈ X∗ and f : s(f )→ t(f ) ∈ R

u

s(f )

t(f )

f��
v

I An element x of X∗ is a normal form if there does not exist y in X∗ such that x → y .

I (X ,R) is terminating if there does not exist any infinite rewriting sequence in (X ,R).

I If (X ,R) terminates, each element x ∈ X∗ admits at least one normal form.

I If (X ,R) is convergent, i.e. both terminating and confluent, each element x ∈ X∗ admits a
unique normal form, denoted by x̂ .

I Example: a
**
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Confluence and branchings

I A branching (resp. local branching) of (X ,R) is:

v

u

f 11

g --

u′

w

where f are g rewriting paths (resp. rewriting steps) and u, v ,w are in X∗.

I A (local) branching is confluent if there exists rewriting paths that close the diagram.

I Theorem (Newman Lemma): If (X ,R) is terminating, local confluence is equivalent to
confluence.

I Local branchings are divided into 3 families:
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f
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uv
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Critical branchings

I Local branchings are compared by the order v generated by (f , g) v (ufv , ugv) for
u,v ∈ X∗. A critical branching is a minimal branching for v.

I There are two forms of critical branchings:

OO

��

and

OO

��

.

I Theorem (Critical pair lemma): (X ,R) is locally confluent iff all its critical branchings are
confluent.

I Proof is case by case: aspherical and Peiffer branchings are always confluent.
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I Theorem (Critical pair lemma): (X ,R) is locally confluent iff all its critical branchings are
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I Proof is case by case: aspherical and Peiffer branchings are always confluent. For
overlappings (f , g), there exists (h, k) such that f = uhv and g = ukv .
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The word problem

I Consider M a monoid presented by generators X and relations Rn-o, i.e.

M ' X/ ≡Rn-o ,

that is u = v in M iff u
R↔ v in X∗ for representatives u and v of u and v in X∗.

I Word problem: given u and v in X∗, does u = v in M ?

I Partial answer: Fix an orientation R of rules in Rn-o. If (X ,R) is convergent, this problem
is decidable using the normal form algorithm.

Input : u, v ∈ X∗

Result: Boolean u = v in M ?
Reduce u in û ;
Reduce v in v̂ ;
if û = v̂ then

True
else

False
end
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if û = v̂ then

True
else

False
end



The word problem

I Consider M a monoid presented by generators X and relations Rn-o, i.e.

M ' X/ ≡Rn-o ,

that is u = v in M iff u
R↔ v in X∗ for representatives u and v of u and v in X∗.

I Word problem: given u and v in X∗, does u = v in M ?

I Partial answer: Fix an orientation R of rules in Rn-o. If (X ,R) is convergent, this problem
is decidable using the normal form algorithm.

Input : u, v ∈ X∗

Result: Boolean u = v in M ?
Reduce u in û ;
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Examples

Example. X = {a} and R = {aa α→ 1}.

I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts



Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts



Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts



Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts



Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts



Examples

Example. X = {a} and R = {aa α→ 1}.
I Termination: the number of a is strictly decreasing.

I One confluent critical branching.

a

aaa

aα 22

αa -- a

Exemple. X = {s, t} and R = {sts α→ tst}. s = t = =

I Termination: lexicographic order on s > t.

I One non-confluent critical branching.

sttst

ststs

stα 33

αts ++ tstts



Knuth-Bendix completion

Input : (X ,R) terminating + termination order >
KB(R) := R ;
Cb := { critical branchings } ;
while Cb 6= ∅ do

Pick (f : u → v , g : u → w) in Cb ;
Cb := Cb\{(f , g)} ;
Reduce v in v̂ wrt R ;
Reduce w in ŵ wrt R ;
if v̂ 6= ŵ then

if v̂ > ŵ then
KB(R) := KB(R) ∪ {α : v̂ → ŵ}

else
KB(R) := KB(R) ∪ {α : ŵ → v̂}

end
else

end
Cb := Cb∪ {critical branchings generated by α }

end



Knuth-Bendix completion

I This algorithm may not terminate.

I If it does, it returns (X ,KB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts α→ tst} with lexicographic order on s > t,

sttst

ststs
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αts ,, tstts

stttst stttstts

sttsttst tsttssts
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I Kapur & Narendran , ’85: The monoid B+
3 does not admit a finite convergent presentation

with 2 generators.



Knuth-Bendix completion

I X = {s, t, a} and R = {ta α→ as , st
β→ a} presents the same monoid. It terminates for the

lexicographic order on s > t > a.
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I The string rewriting system < s, t, a | ta α→ as , st
β→ a , sas

γ→ aa , saa
δ→ aat > is a

convergent presentation of B+
3 .



III. Rewriting in linear 2-categories



Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. . . . . . , ∂i =

1 i i+1 n

. . . . . .

I relations:

I We realize these algebras as endomorphism spaces of a linear 2-category.



Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. . . . . . , ∂i =

1 i i+1 n

. . . . . .

I relations:

I We realize these algebras as endomorphism spaces of a linear 2-category.



Diagrammatic algebras

I Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

I Example: For n ∈ N, the nil Hecke algebra NHn is presented by

I generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

ξi =

1 i n

•. . . . . . , ∂i =

1 i i+1 n

. . . . . .

I relations:
ξiξj = ξjξi

∂iξj = ξj∂i si |i − j| > 1
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Linear monoidal categories and linear 2-categories

I A K-linear strict monoidal category is a category A equipped with

I a tensor product ⊗ : A×A → A which is associative.

I a unit object 1 such that 1⊗ A = A = A⊗ 1 for all object of A.

I for any object A,B of A, A(A,B) is a K-vector space.

I composition and tensor products of morphisms are K-bilinear.

I A K-linear 2-category is the data of a 2-category C = (C0, C1, C2) such that:

I for all p, q in C1, C2(p, q) is a K-vector space.

I ?0 and ?1-composition of 1-cells are K-bilinear.

I When C0 = {∗}, these two objects are the same.

objects of A ↔ 1-cells of C

morphisms of A ↔ 2-cells of C

⊗ ↔ ?0, composition of morphisms↔ ?1
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String diagrams

I A 2-cell φ : p ⇒ q with p,q : x → y in a linear 2-category C can be depicted by a string
diagram:

. . .

. . .

φ

q

p

xy

I Compositions:

· · ·

· · ·
φ ?0

q

p

· · ·

· · ·

q′

p′

ψ :=

· · ·

· · ·
φ

q ?0 q′

p ?0 p′

· · ·

· · ·
ψ

· · ·

· · ·

q

p

φ ?1

· · ·

· · ·

r

q

ψ
:=

ψ

· · ·

· · ·

r

p

φ

I These compositions satisfy the exchange law:

· · ·

· · ·

φ · · ·

· · ·
ψ

=

· · ·

· · ·
φ

· · ·

· · ·
ψ =

· · ·

· · ·
φ

· · ·

· · ·

ψ
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Presentations by linear (3, 2)-polygraphs

I Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

I Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

I A 1-polygraph is a directed graph
(P1,P0, s0, t0), on which we construct the
free 1-category P∗1 .

I We consider a cellular extension P2 of P∗1 ,
that is a set equipped with s1,t1:
P2 → P∗1 .

I We construct the free 2-category P∗2 on
P2.

I We construct the free linear 2-category P`2
on P2:

P`2(x, y) = K[P∗2 (x, y)]

for any 1-cells x and y in P∗2 .

I We consider a cellular extension P3 of P`2 ,
corresponding to an orientation of the
relations.

I P0 = {∗},P1 = {1}, ?0 = +,P∗1 = N,

I P2 = { : 2→ 2, • : 1→ 1}

I P∗2 = { diagrams formed by horizontal and
vertical compositions of crossings and dots}

I P`2 = {K− linear combinations
of diagrams in P∗2 }
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Presentations by linear (3, 2)-polygraphs

I Example : for the nil Hecke algebras,

I These are exchange laws.
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•
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• −

I This choice of cellular extension defines a linear (3, 2)-polygraph presenting a
linear 2-category encoding the nil Hecke algebras.

EndC(n) ' NHn

I It is left-monomial, that is each source of a 3-cell is a monomial.
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Linear rewriting

I Restriction of the set of rewritings due to the linear context:

if u → v , then −u ⇒ −v , and
so v = (u + v)− uu + v − v = u

.

I A rewriting step of a linear (3, 2)-polygraph is a 3-cell of the form
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where α ∈ P3, and the monomial m1 ?1 (m2 ?0 s2(α) ?0 m3) ?1 m4 does not appear in the
monomial decomposition of u.

I Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is
locally confluent.

I Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only
if its critical branchings are confluent.
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Critical pair lemma fails without termination

I Consider a linear rewriting system on generators x ,y , z and rules α : xy → xz and
β : zt → 2yt.

I It has no critical branching.

I Consider the Peiffer branching
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Critical branchings of linear (3, 2)-polygraphs

I A critical branching is a branching on a minimal string diagram.

I There are 3 different forms of critical branchings:
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Linear bases from convergence

I P a convergent left-monomial linear (3, 2)-polygraph.

I C the linear 2-category it presents.

I Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in
normal form for P with 1-source p and 1-target q is a linear basis of C2(p, q).

I Termination: the monomials in normal form span C2(p, q).

I Confluence: if a 2-cell reduces into two different linear combinations of monomials in normal
form, they are equal by confluence and since P is left-monomial.
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Example: the Khovanov-Lauda-Rouquier (KLR) algebras

I These algebras have been defined in the process of categorifying a quantum group Uq(g)

associated with a symmetrizable Kac-Moody algebra g.

I Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

I an element V =
∑
i∈I
νi .i ∈ N[I ],  algebra R(V)

I a bilinear form · on Z[I ] with values in {0, 1},

I the set Seq(V) of sequences of length m of elements of Γ, where i appears Vi times.

I Example: Seq(2i + j) = {iij, iji, jii}

I Theorem [Khovanov-Lauda ’08]: If R =
⊕
V∈N[I ]

R(V),

K0(R − pmod) ' U−q (g)
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Presentation of the KLR algebras

I For i = i1 . . . im ∈ Seq(V), generators

xk,i =

i1 ik im

•. . . . . . and τk,i =

i1 ik ik+1 im

. . . . . .

I Relations:

i) For i ∈ I ,

i i

= 0

ii) For i, j ∈ I s.t i · j = 0,

i j

=

i j

iii) For i, j ∈ I s.t i · j = −1,

i j

=

i j

• +

i j

•

iv) For i, j ∈ I ,

i j

•
=

i j

•

i j

•
=

i j

•

v) For i ∈ I ,

i i

•
=

i i

• +

i i

,

i i

•
=

i i

• −

i i

vi) For i, j, k ∈ I , unless i = k and i · j = −1,

i j k

=

i j k

vii) For i, j ∈ I s.t i · j = −1,

i j i

=

i j i

+

i j i
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Convergent presentation

I Theorem [D. ’17]: This linear (3, 2)-polygraph is convergent.

I Termination: the number of crossings decreases and the dots move to the bottom.

I Confluence: exhaustive study of all critical branchings.

i j i i j i

+
i j i

i j i

i j i

•
+

i j i

•
i j i

•

+

i j i

•
+

i j i

I Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of
the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.
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IV. Extension to rewriting modulo



Rewriting modulo

I Some structural relations may make the analysis of confluence difficult.

I Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p
is a 1-cell p̂ such that there are 2-cells

ηp : 1⇒ p ?0 p̂, εp : p̂ ?0 p ⇒ 1,

p p̂

,
p̂ p

satisfying

p

=

p

=

p

.

I We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented
axioms.

I Three paradigms of rewriting modulo:

I Rewriting with rules in R, but confluence modulo E , Huet ’80

u
R //OO

E ��

u′
R // wOO

E��
v

R

// v ′
R

// w ′

I Rewriting with R on E -equivalence classes:

u
E RE //

E ��

v

E��
u′

R

// v ′

I Rewriting system modulo: (R, E , S) such that R ⊆ S ⊆ ERE , Jouannaud-Kirchner ’84.
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Results

I Confluence modulo:

u
S∗ //OO

E
��

u′
S∗ // w

E��
v

S∗
// v ′

S∗
// w ′

I Theorem [D. - Malbos ’18], Critical pair lemma modulo : For (R,E , S) such that ERE

is terminating, S is confluent modulo E if and only if its critical branchings modulo E of
the form

u
S∗(1)
//

=

��

v
S∗ // v ′

E>
��

u
R∗(1)

// w
S∗
// w ′

u
S∗(1)
//

E>(1)

��

v
S∗ // v ′

E>

��
u′

S∗
// w

are confluent modulo E .

I Theorem [D. ’19] Let (R,E ,S) be a linear (3, 2)-polygraph modulo and C the category
presented by R

∐
E , such that S is terminating and confluent modulo E .

Then, for all parallel 1-cells p and q, the set of monomials in the E -normal forms of
monomials in normal form for S gives a basis of C2(p, q).
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Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0



Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0



Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0



Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0



Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0



Example: The 2-category KLR(sl2)

I Let KLR be the linear 2-category defined by:

I KLR0 = X weight lattice of a Kac-Moody algebra,

I KLR1 = {ε = (ε1, . . . , ε`(ε)) with εi ∈ {−,+}}.

I KLR2 is the set of following generating 2-cells

•

+

λ

+ +

λ •
−

λ

− −

λ
+

λ −

λ
+

λ −

λ

I subject to the following relations:

I KLR algebras relations for both orientations.

I Bubble relations:

λ•n V

{
11λ if n = h − 1
0 if n < h − 1

; λ • n V

{
11λ if n = −h − 1
0 if n < −h − 1

λ•h−1+α V −
α∑
l=1

•h−1+α−l
λ •−h−1+l for all λ ∈ X and α > 0



Example: The 2-category KLR(sl2)

I Isotopy relations:

±

V

±

W

±

•

±

V •

±

W •

±

I Quantum relations:

λ

V − λ +

h−1∑
n=0

∑
r≥0

λ

•−n−r−2

• r

•n

,

λ

V − λ +

−h−1∑
n=0

∑
r≥0

• r
λ

•−n−r−2

• n

.

λ
V

h∑
n=0 •n

λ
• −n−1

;
λ
V −

−h∑
n=0 •−n−1

λ
• n

;

λ
V −

−h∑
n=0 •n

λ
•−n−1

;
λ
V

h∑
n=0 • −n−1

λ
• n

.

I Bubble slide relations.
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