Finding bases in linear categories using rewriting.

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1

Algebra Seminar, Ottawa

- I. Rewriting theory
- II. String rewriting
- III. Rewriting in linear 2-categories
- IV. Extension to rewriting modulo

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Rewriting is a combinatorial theory of equivalence classes.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Consists in orienting the equations.

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.
- Church-Rosser '36: lambda-calculus and beta-reductions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.
- Church-Rosser '36: lambda-calculus and beta-reductions.

Newman '42: abstract rewriting.

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.
- Church-Rosser '36: lambda-calculus and beta-reductions.
- Newman '42: abstract rewriting.
- Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in terms of overlappings.

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.
- Church-Rosser '36: lambda-calculus and beta-reductions.
- Newman '42: abstract rewriting.
- Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in terms of overlappings.

 Algebraic rewriting: deduce properties of an algebraic structure presented by generators and relations.

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.
- Church-Rosser '36: lambda-calculus and beta-reductions.
- Newman '42: abstract rewriting.
- Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in terms of overlappings.

- Algebraic rewriting: deduce properties of an algebraic structure presented by generators and relations.
 - Computation of syzygies, i.e. relations among relations.

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.
- Church-Rosser '36: lambda-calculus and beta-reductions.
- Newman '42: abstract rewriting.
- Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in terms of overlappings.

- Algebraic rewriting: deduce properties of an algebraic structure presented by generators and relations.
 - Computation of syzygies, i.e. relations among relations.
 - Computation of linear bases.

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.
- Church-Rosser '36: lambda-calculus and beta-reductions.
- Newman '42: abstract rewriting.
- Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in terms of overlappings.

- Algebraic rewriting: deduce properties of an algebraic structure presented by generators and relations.
 - Computation of syzygies, i.e. relations among relations.
 - Computation of linear bases.
 - Proofs of Koszulity.

Rewriting is a combinatorial theory of equivalence classes.

- Consists in orienting the equations.
- Thue '14: rewriting in semi-groups.
- Church-Rosser '36: lambda-calculus and beta-reductions.
- Newman '42: abstract rewriting.
- Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in terms of overlappings.

- Algebraic rewriting: deduce properties of an algebraic structure presented by generators and relations.
 - Computation of syzygies, i.e. relations among relations.
 - Computation of linear bases.
 - Proofs of Koszulity.
 - Computation of free resolutions and cofibrant replacements, Anick '84.

Rewriting has been developed for various algebraic structures:

String rewriting systems, Thue.

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Commutative algebras, Buchberger '65.

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Commutative algebras, Buchberger '65.
- Associative algebras, Bokut '76, Bergman '78, Mora '86.

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Commutative algebras, Buchberger '65.
- Associative algebras, Bokut '76, Bergman '78, Mora '86.
- Operads, Dotsenko-Khoroshkin '10.

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.
- Commutative algebras, Buchberger '65.
- Associative algebras, Bokut '76, Bergman '78, Mora '86.
- Operads, Dotsenko-Khoroshkin '10.
- Higher-dimensional globular strict categories, Guiraud-Malbos '09.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.
- Commutative algebras, Buchberger '65.
- Associative algebras, Bokut '76, Bergman '78, Mora '86.
- Operads, Dotsenko-Khoroshkin '10.
- Higher-dimensional globular strict categories, Guiraud-Malbos '09.
- Objective: Develop rewriting methods to study diagrammatic algebras that arise in representation theory.

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.
- Commutative algebras, Buchberger '65.
- Associative algebras, Bokut '76, Bergman '78, Mora '86.
- Operads, Dotsenko-Khoroshkin '10.
- Higher-dimensional globular strict categories, Guiraud-Malbos '09.
- Objective: Develop rewriting methods to study diagrammatic algebras that arise in representation theory.

- Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.
- Heisenberg categorifications.
- Partition, Brauer and Birman-Wenzl algebras.

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.
- Commutative algebras, Buchberger '65.
- Associative algebras, Bokut '76, Bergman '78, Mora '86.
- Operads, Dotsenko-Khoroshkin '10.
- Higher-dimensional globular strict categories, Guiraud-Malbos '09.

 Objective: Develop rewriting methods to study diagrammatic algebras that arise in representation theory.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.
- Heisenberg categorifications.
- Partition, Brauer and Birman-Wenzl algebras.

Questions:

- Solve the word problem: decide the equality of two diagrams.
- Computation of linear bases.
- Computation of coherent presentations.
- Explicit proofs of categorification results.

Rewriting has been developed for various algebraic structures:

- String rewriting systems, Thue.
- Universal algebra (term rewriting systems), Knuth-Bendix '70.
- Commutative algebras, Buchberger '65.
- Associative algebras, Bokut '76, Bergman '78, Mora '86.
- Operads, Dotsenko-Khoroshkin '10.
- Higher-dimensional globular strict categories, Guiraud-Malbos '09.
- Objective: Develop rewriting methods to study diagrammatic algebras that arise in representation theory.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Khovanov-Lauda-Rouquier (KLR) algebras which categorify quantum groups.
- Heisenberg categorifications.
- Partition, Brauer and Birman-Wenzl algebras.

Questions:

- Solve the word problem: decide the equality of two diagrams.
- Computation of linear bases.
- Computation of coherent presentations.
- Explicit proofs of categorification results.

II. String rewriting

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$

(ロ)、(型)、(E)、(E)、 E) のQ(()

Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$

abc

Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

 $ab \rightarrow bc$, $ada \rightarrow dc$, $bc \rightarrow dab$, $db \rightarrow c$, $dcb \rightarrow acc$.

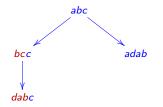
Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$

Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

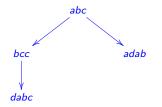
 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

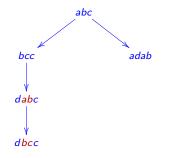
 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$



Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

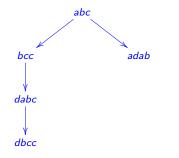
```
ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

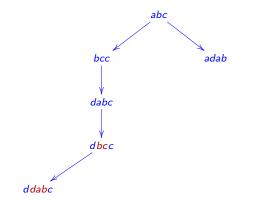
```
ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.
```



Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$

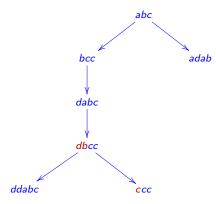
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

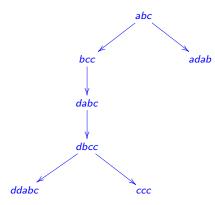
 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

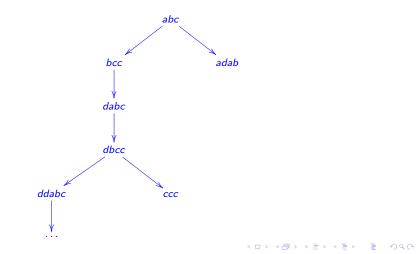
 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

 $ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$

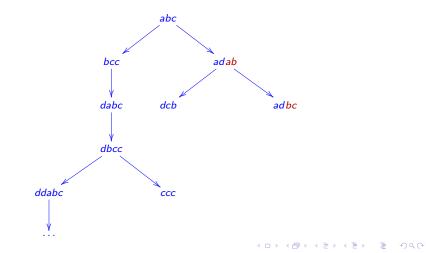


Example: $X := \{a, b, c, d\}$ an alphabet and we consider the 5 rewriting rules:

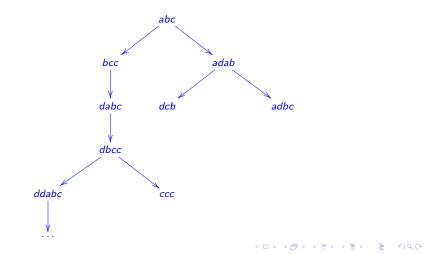
 $ab \rightarrow bc$, $ada \rightarrow dc$, $bc \rightarrow dab$, $db \rightarrow c$, $dcb \rightarrow acc$.



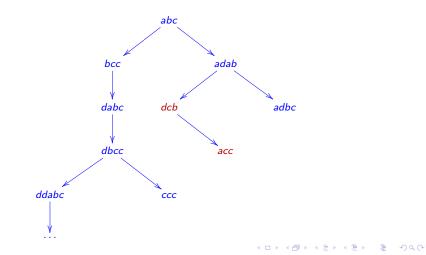
$$ab \rightarrow bc$$
, $ada \rightarrow dc$, $bc \rightarrow dab$, $db \rightarrow c$, $dcb \rightarrow acc$.



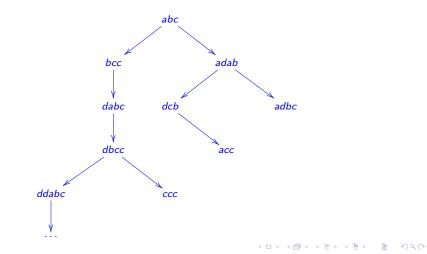
$$ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$$



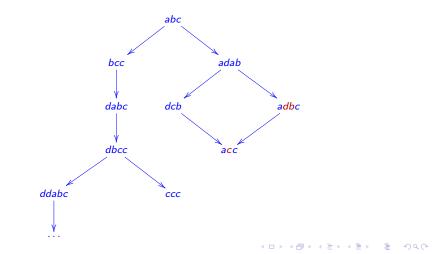
$$ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$$



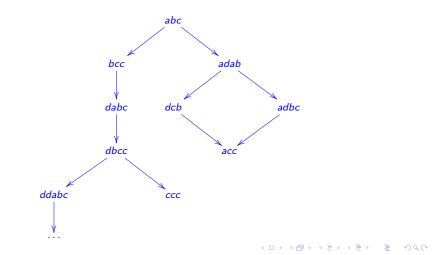
$$ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$$



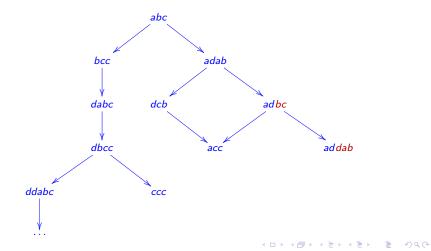
$$ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$$



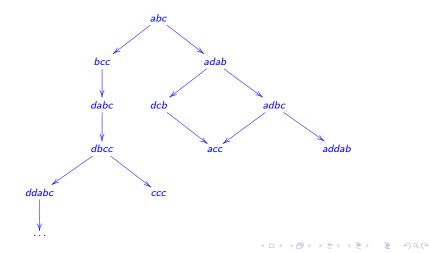
$$ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$$



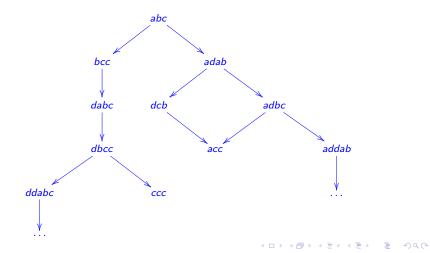
$$ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$$



$$ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$$



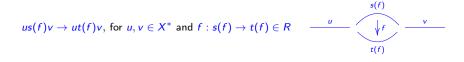
$$ab \rightarrow bc, ada \rightarrow dc, bc \rightarrow dab, db \rightarrow c, dcb \rightarrow acc.$$



Let (X, R) be a string rewriting system and X* the free monoid on X. A rewriting step of (X, R) is a reduction

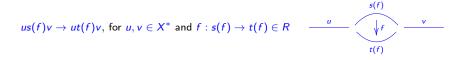
 $us(f)v \rightarrow ut(f)v$, for $u, v \in X^*$ and $f: s(f) \rightarrow t(f) \in R$

Let (X, R) be a string rewriting system and X* the free monoid on X. A rewriting step of (X, R) is a reduction



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

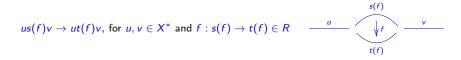
Let (X, R) be a string rewriting system and X* the free monoid on X. A rewriting step of (X, R) is a reduction



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An element x of X^* is a normal form if there does not exist y in X^* such that $x \to y$.

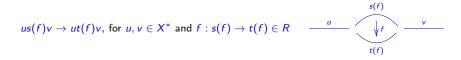
Let (X, R) be a string rewriting system and X* the free monoid on X. A rewriting step of (X, R) is a reduction



- An element x of X^* is a normal form if there does not exist y in X^* such that $x \to y$.
- (X, R) is terminating if there does not exist any infinite rewriting sequence in (X, R).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Let (X, R) be a string rewriting system and X* the free monoid on X. A rewriting step of (X, R) is a reduction

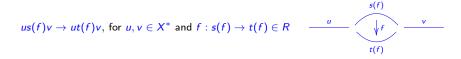


- An element x of X^* is a normal form if there does not exist y in X^* such that $x \to y$.
- (X, R) is terminating if there does not exist any infinite rewriting sequence in (X, R).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

▶ If (X, R) terminates, each element $x \in X^*$ admits at least one normal form.

Let (X, R) be a string rewriting system and X* the free monoid on X. A rewriting step of (X, R) is a reduction



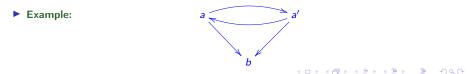
- An element x of X^{*} is a normal form if there does not exist y in X^{*} such that $x \rightarrow y$.
- (X, R) is terminating if there does not exist any infinite rewriting sequence in (X, R).
- If (X, R) terminates, each element $x \in X^*$ admits at least one normal form.
- If (X, R) is convergent, i.e. both terminating and confluent, each element x ∈ X* admits a unique normal form, denoted by x̂.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Let (X, R) be a string rewriting system and X* the free monoid on X. A rewriting step of (X, R) is a reduction

$$us(f)v \rightarrow ut(f)v$$
, for $u, v \in X^*$ and $f: s(f) \rightarrow t(f) \in R$
 $\underbrace{u}_{t(f)} \underbrace{v}_{t(f)}$

- An element x of X^{*} is a normal form if there does not exist y in X^{*} such that $x \rightarrow y$.
- (X, R) is terminating if there does not exist any infinite rewriting sequence in (X, R).
- If (X, R) terminates, each element $x \in X^*$ admits at least one normal form.
- If (X, R) is convergent, i.e. both terminating and confluent, each element x ∈ X* admits a unique normal form, denoted by x̂.



• A branching (resp. local branching) of (X, R) is:

where f are g rewriting paths (resp. rewriting steps) and u, v, w are in X^* .

• A branching (resp. local branching) of (X, R) is:

where f are g rewriting paths (resp. rewriting steps) and u, v, w are in X^* .

A (local) branching is confluent if there exists rewriting paths that close the diagram.

A branching (resp. local branching) of (X, R) is:

where f are g rewriting paths (resp. rewriting steps) and u, v, w are in X^* .

- A (local) branching is confluent if there exists rewriting paths that close the diagram.
- Theorem (Newman Lemma): If (X, R) is terminating, local confluence is equivalent to confluence.

A branching (resp. local branching) of (X, R) is:

where f are g rewriting paths (resp. rewriting steps) and u, v, w are in X^* .

- A (local) branching is confluent if there exists rewriting paths that close the diagram.
- Theorem (Newman Lemma): If (X, R) is terminating, local confluence is equivalent to confluence.

Local branchings are divided into 3 families:

• A branching (resp. local branching) of (X, R) is:

where f are g rewriting paths (resp. rewriting steps) and u, v, w are in X^* .

- A (local) branching is confluent if there exists rewriting paths that close the diagram.
- Theorem (Newman Lemma): If (X, R) is terminating, local confluence is equivalent to confluence.

Local branchings are divided into 3 families:

Aspherical

• A branching (resp. local branching) of (X, R) is:

where f are g rewriting paths (resp. rewriting steps) and u, v, w are in X^* .

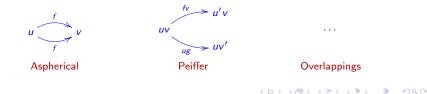
- A (local) branching is confluent if there exists rewriting paths that close the diagram.
- Theorem (Newman Lemma): If (X, R) is terminating, local confluence is equivalent to confluence.

Local branchings are divided into 3 families:

• A branching (resp. local branching) of (X, R) is:

where f are g rewriting paths (resp. rewriting steps) and u, v, w are in X^* .

- A (local) branching is confluent if there exists rewriting paths that close the diagram.
- Theorem (Newman Lemma): If (X, R) is terminating, local confluence is equivalent to confluence.
- Local branchings are divided into 3 families:



Local branchings are compared by the order ⊑ generated by (f, g) ⊑ (ufv, ugv) for u, v ∈ X*. A critical branching is a minimal branching for ⊑.

- Local branchings are compared by the order ⊑ generated by (f,g) ⊑ (ufv, ugv) for u,v ∈ X*. A critical branching is a minimal branching for ⊑.
- There are two forms of critical branchings:

and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- There are two forms of critical branchings:

Theorem (Critical pair lemma): (X, R) is locally confluent iff all its critical branchings are confluent.

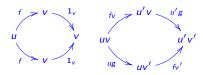
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Local branchings are compared by the order ⊑ generated by (f, g) ⊑ (ufv, ugv) for u, v ∈ X*. A critical branching is a minimal branching for ⊑.
- There are two forms of critical branchings:

Theorem (Critical pair lemma): (X, R) is locally confluent iff all its critical branchings are confluent.

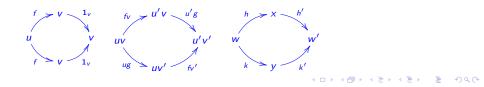
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

> Proof is case by case: aspherical and Peiffer branchings are always confluent.

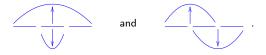


- There are two forms of critical branchings:

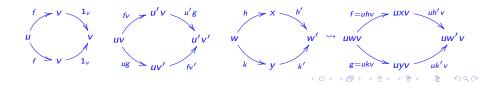
- Theorem (Critical pair lemma): (X, R) is locally confluent iff all its critical branchings are confluent.
- Proof is case by case: aspherical and Peiffer branchings are always confluent. For overlappings (f, g), there exists (h, k) such that f = uhv and g = ukv.



- There are two forms of critical branchings:



- Theorem (Critical pair lemma): (X, R) is locally confluent iff all its critical branchings are confluent.
- Proof is case by case: aspherical and Peiffer branchings are always confluent. For overlappings (f, g), there exists (h, k) such that f = uhv and g = ukv.



The word problem

• Consider M a monoid presented by generators X and relations R^{n-o} , i.e.

 $M\simeq X/\equiv_{R^{n-o}},$

(ロ)、(型)、(E)、(E)、 E) のQ(()

that is u = v in M iff $\overline{u} \stackrel{R}{\leftrightarrow} \overline{v}$ in X^* for representatives \overline{u} and \overline{v} of u and v in X^* .

The word problem

• Consider M a monoid presented by generators X and relations R^{n-o} , i.e.

 $M\simeq X/\equiv_{R^{n-o}},$

that is u = v in M iff $\overline{u} \stackrel{R}{\leftrightarrow} \overline{v}$ in X^* for representatives \overline{u} and \overline{v} of u and v in X^* .

• Word problem: given u and v in X^* , does u = v in M?

The word problem

• Consider M a monoid presented by generators X and relations R^{n-o} , i.e.

 $M\simeq X/\equiv_{R^{n-o}},$

that is u = v in M iff $\overline{u} \stackrel{R}{\leftrightarrow} \overline{v}$ in X^* for representatives \overline{u} and \overline{v} of u and v in X^* .

• Word problem: given u and v in X^* , does u = v in M?

Partial answer: Fix an orientation R of rules in R^{n-o}. If (X, R) is convergent, this problem is decidable using the normal form algorithm.

• Consider M a monoid presented by generators X and relations R^{n-o} , i.e.

 $M\simeq X/\equiv_{R^{n-o}},$

that is u = v in M iff $\overline{u} \stackrel{R}{\leftrightarrow} \overline{v}$ in X^* for representatives \overline{u} and \overline{v} of u and v in X^* .

• Word problem: given u and v in X^* , does u = v in M?

Partial answer: Fix an orientation R of rules in R^{n-o}. If (X, R) is convergent, this problem is decidable using the normal form algorithm.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

```
Input : u, v \in X^*

Result: Boolean u = v in M ?

Reduce u in \hat{u};

Reduce v in \hat{v};

if \hat{u} = \hat{v} then

| True

else

| False

end
```

Examples

Example. $X = \{a\}$ and $R = \{aa \xrightarrow{\alpha} 1\}$.

Examples

Example. $X = \{a\}$ and $R = \{aa \stackrel{\alpha}{\rightarrow} 1\}$.

▶ Termination: the number of *a* is strictly decreasing.

Example. $X = \{a\}$ and $R = \{aa \stackrel{\alpha}{\rightarrow} 1\}$.

- ▶ Termination: the number of *a* is strictly decreasing.
- One confluent critical branching.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example. $X = \{a\}$ and $R = \{aa \stackrel{\alpha}{\rightarrow} 1\}$.

- ▶ Termination: the number of *a* is strictly decreasing.
- One confluent critical branching.

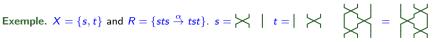
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exemple.
$$X = \{s, t\}$$
 and $R = \{sts \stackrel{\alpha}{\rightarrow} tst\}$. $s = \not\prec | t = | \not\prec | = \mid \not\prec \mid$

Example. $X = \{a\}$ and $R = \{aa \stackrel{\alpha}{\rightarrow} 1\}$.

- Termination: the number of a is strictly decreasing.
- One confluent critical branching.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○



Termination: lexicographic order on s > t.

Example. $X = \{a\}$ and $R = \{aa \stackrel{\alpha}{\rightarrow} 1\}$.

- Termination: the number of a is strictly decreasing.
- One confluent critical branching.

Exemple.
$$X = \{s, t\}$$
 and $R = \{sts \stackrel{\alpha}{\to} tst\}$. $s = [X]$ $| t = [X]$

- Termination: lexicographic order on s > t.
- One non-confluent critical branching.


```
Input : (X, R) terminating + termination order >
\mathcal{KB}(R) := R;
C_b := \{ \text{ critical branchings } \};
while C_b \neq \emptyset do
     Pick (f: u \to v, g: u \to w) in \mathcal{C}_h;
     \mathcal{C}_b := \mathcal{C}_b \setminus \{(f, g)\};
     Reduce v in \hat{v} wrt R;
       Reduce w in \hat{w} wrt R;
     if \hat{\mathbf{v}} \neq \hat{\mathbf{w}} then
           if \hat{v} > \hat{w} then
              \mathcal{KB}(R) := \mathcal{KB}(R) \cup \{\alpha : \hat{v} \to \hat{w}\}
           else
             | \mathcal{KB}(R) := \mathcal{KB}(R) \cup \{\alpha : \hat{w} \to \hat{v}\}
           end
     else
     end
     C_b := C_b \cup \{ \text{critical branchings generated by } \alpha \}
end
```

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○



- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

Example. $X = \{s, t\}$ and $R = \{sts \xrightarrow{\alpha} tst\}$ with lexicographic order on s > t,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- This algorithm may not terminate.
- ▶ If it does, it returns $(X, \mathcal{KB}(R))$ which is convergent and presents the same monoid.

Example. $X = \{s, t\}$ and $R = \{sts \xrightarrow{\alpha} tst\}$ with lexicographic order on s > t,

Kapur & Narendran, '85: The monoid B₃⁺ does not admit a finite convergent presentation with 2 generators.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

► $X = \{s, t, a\}$ and $R = \{ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a\}$ presents the same monoid. It terminates for the lexicographic order on s > t > a.

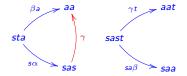
► $X = \{s, t, a\}$ and $R = \{ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a\}$ presents the same monoid. It terminates for the lexicographic order on s > t > a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

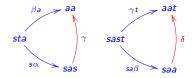
► $X = \{s, t, a\}$ and $R = \{ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a\}$ presents the same monoid. It terminates for the lexicographic order on s > t > a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► $X = \{s, t, a\}$ and $R = \{ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a\}$ presents the same monoid. It terminates for the lexicographic order on s > t > a.



► $X = \{s, t, a\}$ and $R = \{ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a\}$ presents the same monoid. It terminates for the lexicographic order on s > t > a.



► $X = \{s, t, a\}$ and $R = \{ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a\}$ presents the same monoid. It terminates for the lexicographic order on s > t > a.

► $X = \{s, t, a\}$ and $R = \{ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a\}$ presents the same monoid. It terminates for the lexicographic order on s > t > a.

▶ The string rewriting system $\langle s, t, a \mid ta \xrightarrow{\alpha} as$, $st \xrightarrow{\beta} a$, $sas \xrightarrow{\gamma} aa$, $saa \xrightarrow{\delta} aat > is a convergent presentation of <math>B_3^+$.

イロト 不得 トイヨト イヨト

э

III. Rewriting in linear 2-categories

 Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.

 Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by
 - generators ξ_i for $1 \le i \le n$ and ∂_i for $1 \le i < n$;

 Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.

Example: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \leq i \leq n$ and ∂_i for $1 \leq i < n$;

$$\begin{split} \xi_i \xi_j &= \xi_j \xi_i \\ \partial_i \xi_j &= \xi_j \partial_i \quad \text{si } |i-j| > 1 \\ \partial_i \partial_j &= \partial_j \partial_i \quad \text{si } |i-j| > 1 \\ \partial_i^2 &= 0 \\ \partial_i \partial_{i+1} \partial_i &= \partial_{i+1} \partial_i \partial_{i+1} \\ \xi_i \partial_i &- \partial_i \xi_{i+1} = 1 \\ \partial_i \xi_i - \xi_{i+1} \partial_i &= 1 \end{split}$$

- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \leq i \leq n$ and ∂_i for $1 \leq i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \quad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \ddots \\ \dots & \vdots & i+1 & n \end{array} \right|$$

$$\begin{aligned} \xi_i \xi_j &= \xi_j \xi_i \\ \partial_i \xi_j &= \xi_j \partial_i \quad \text{si } |i - j| > 1 \\ \partial_i \partial_j &= \partial_j \partial_i \quad \text{si } |i - j| > 1 \\ \partial_i^2 &= 0 \\ \partial_i \partial_{i+1} \partial_i &= \partial_{i+1} \partial_i \partial_{i+1} \\ \xi_i \partial_i - \partial_i \xi_{i+1} &= 1 \\ \partial_i \xi_i - \xi_{i+1} \partial_i &= 1 \end{aligned}$$

- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \le i \le n$ and ∂_i for $1 \le i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet \\ \mathbf{1} & i \end{array} \right|, \quad \partial_i = \left| \begin{array}{ccc} \dots & \ddots \\ \mathbf{1} & i \end{array} \right|, \quad \partial_i = \left| \begin{array}{ccc} \dots & \bullet \\ \mathbf{1} & i \end{array} \right|$$

$$\xi_{i}\xi_{j} = \xi_{j}\xi_{i}$$

$$\partial_{i}\xi_{j} = \xi_{j}\partial_{i} \quad \text{si} \mid i - j \mid > 1$$

$$\partial_{i}\partial_{j} = \partial_{j}\partial_{i} \quad \text{si} \mid i - j \mid > 1$$

$$\partial_{i}^{2} = 0$$

$$\partial_{i}\partial_{i+1}\partial_{i} = \partial_{i+1}\partial_{i}\partial_{i+1}$$

$$\int_{1} \int_{0}^{1} \int_{0}^{1$$

- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \leq i \leq n$ and ∂_i for $1 \leq i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \qquad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \ddots \\ \dots & \vdots & \vdots & i+1 & n \end{array} \right|$$

relations:

$$\begin{aligned} \xi_i \xi_j &= \xi_j \xi_i \\ \partial_i \xi_j &= \xi_j \partial_i \quad \text{si } |i-j| > 1 \\ \partial_i \partial_j &= \partial_j \partial_i \quad \text{si } |i-j| > 1 \\ \partial_i^2 &= 0 \\ \partial_i \partial_{i+1} \partial_i &= \partial_{i+1} \partial_i \partial_{i+1} \\ \xi_i \partial_i - \partial_i \xi_{i+1} &= 1 \\ \partial_i \xi_i &= \xi_i + 1 \partial_i = 1 \end{aligned}$$

- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \leq i \leq n$ and ∂_i for $1 \leq i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \qquad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \ddots \\ \dots & \vdots & \vdots & i+1 & n \end{array} \right|$$

relations:

- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \le i \le n$ and ∂_i for $1 \le i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \qquad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \dots \\ \mathbf{1} & i & i & \mathbf{1} \end{array} \right|$$

relations:

$$\xi_i \xi_j = \xi_j \xi_i$$

$$\partial_i \xi_j = \xi_j \partial_i \quad \text{si } |i - j| > 1$$

$$\partial_i \partial_j = \partial_j \partial_i \quad \text{si } |i - j| > 1$$

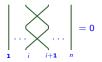
$$\partial_i^2 = 0$$

$$\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1}$$

$$\xi_i \partial_i - \partial_i \xi_{i+1} = 1$$

$$\partial_i \xi_i - \xi_{i+1} \partial_i = 1$$

. . . .



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \leq i \leq n$ and ∂_i for $1 \leq i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \qquad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \dots \\ \dots & \vdots & i+1 & n \end{array} \right|$$

relations:

$$\xi_i \xi_j = \xi_j \xi_i$$

$$\partial_i \xi_j = \xi_j \partial_i \quad \text{si } |i - j| > 1$$

$$\partial_i \partial_j = \partial_j \partial_i \quad \text{si } |i - j| > 1$$

$$\partial_i^2 = 0$$

$$\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1}$$

$$\xi_i \partial_i - \partial_i \xi_{i+1} = 1$$

$$\partial_i \xi_i - \xi_{i+1} \partial_i = 1$$

.

$$\sum_{i \quad i+1} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

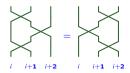
- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \le i \le n$ and ∂_i for $1 \le i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \qquad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \dots \\ \mathbf{1} & i & i & \mathbf{1} \end{array} \right|$$

relations:

$$\begin{split} \xi_i \xi_j &= \xi_j \xi_i \\ \partial_i \xi_j &= \xi_j \partial_i \quad \text{si } |i - j| > 1 \\ \partial_i \partial_j &= \partial_j \partial_i \quad \text{si } |i - j| > 1 \\ \partial_i^2 &= 0 \\ \partial_i \partial_{i+1} \partial_i &= \partial_{i+1} \partial_i \partial_{i+1} \\ \xi_i \partial_i - \partial_i \xi_{i+1} &= 1 \\ \partial_i \xi_i - \xi_{i+1} \partial_i &= 1 \end{split}$$



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \le i \le n$ and ∂_i for $1 \le i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \qquad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \dots \\ \mathbf{1} & i & i & \mathbf{1} \end{array} \right|$$

$$\xi_i \xi_j = \xi_j \xi_i$$

$$\partial_i \xi_j = \xi_j \partial_i \quad \text{si} \ |i - j| > 1$$

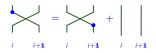
$$\partial_i \partial_j = \partial_j \partial_i \quad \text{si} \ |i - j| > 1$$

$$\partial_i^2 = 0$$

$$\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1}$$

$$\xi_i \partial_i - \partial_i \xi_{i+1} = 1$$

$$\partial_i \xi_i - \xi_{i+1} \partial_i = 1$$



- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \leq i \leq n$ and ∂_i for $1 \leq i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \qquad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \dots \\ \dots & \vdots & i+1 & n \end{array} \right|$$

relations:

$$\xi_i \xi_j = \xi_j \xi_i$$

$$\partial_i \xi_j = \xi_j \partial_i \quad \text{si} \ |i - j| > 1$$

$$\partial_i \partial_j = \partial_j \partial_i \quad \text{si} \ |i - j| > 1$$

$$\partial_i^2 = 0$$

$$\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1}$$

$$\xi_i \partial_i - \partial_i \xi_{i+1} = 1$$

$$\partial_i \xi_i - \xi_{i+1} \partial_i = 1$$

$$\begin{array}{c|c} & & \\ & & \\ i & i+1 & i & i+1 & i & i+1 \\ \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Diagrammatic algebra: algebra admitting a presentation by generators and relations depicted by diagrams.
- **Example**: For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n is presented by

• generators ξ_i for $1 \le i \le n$ and ∂_i for $1 \le i < n$;

$$\xi_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ \mathbf{1} & i & n \end{array} \right|, \qquad \partial_i = \left| \begin{array}{ccc} \dots & \ddots & \dots \\ \mathbf{1} & i & i + \mathbf{1} & n \end{array} \right|$$

relations:

$$\xi_i \xi_j = \xi_j \xi_i$$

$$\partial_i \xi_j = \xi_j \partial_i \quad \text{si} |i - j| > 1$$

$$\partial_i \partial_j = \partial_j \partial_i \quad \text{si} |i - j| > 1$$

$$\partial_i^2 = 0$$

$$i \quad i + 1 \quad i \quad i + 1$$

$$\xi_i \partial_i - \partial_i \xi_{i+1} = 1$$

$$\partial_i \xi_i - \xi_{i+1} \partial_i = 1$$

We realize these algebras as endomorphism spaces of a linear 2-category.

► A K-linear strict monoidal category is a category A equipped with

► A K-linear strict monoidal category is a category A equipped with

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• a tensor product $\otimes : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ which is associative.

- ► A K-linear strict monoidal category is a category A equipped with
 - a tensor product $\otimes : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ which is associative.
 - a unit object 1 such that $1 \otimes A = A = A \otimes 1$ for all object of A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- A K-linear strict monoidal category is a category A equipped with
 - a tensor product $\otimes : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ which is associative.
 - a unit object 1 such that $1 \otimes A = A = A \otimes 1$ for all object of A.

• for any object A, B of A, A(A, B) is a K-vector space.

- A K-linear strict monoidal category is a category A equipped with
 - a tensor product $\otimes : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ which is associative.
 - a unit object 1 such that $1 \otimes A = A = A \otimes 1$ for all object of A.
 - for any object A, B of A, A(A, B) is a K-vector space.
 - ▶ composition and tensor products of morphisms are K-bilinear.

- A K-linear strict monoidal category is a category \mathcal{A} equipped with
 - a tensor product $\otimes : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ which is associative.
 - a unit object 1 such that $1 \otimes A = A = A \otimes 1$ for all object of A.
 - for any object A, B of A, A(A, B) is a K-vector space.
 - ▶ composition and tensor products of morphisms are K-bilinear.

A K-linear 2-category is the data of a 2-category $C = (C_0, C_1, C_2)$ such that:

- for all p, q in C_1 , $C_2(p, q)$ is a \mathbb{K} -vector space.
- ▶ \star_0 and \star_1 -composition of 1-cells are K-bilinear.

- A K-linear strict monoidal category is a category \mathcal{A} equipped with
 - a tensor product $\otimes : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ which is associative.
 - a unit object 1 such that $1 \otimes A = A = A \otimes 1$ for all object of A.
 - for any object A, B of A, A(A, B) is a K-vector space.
 - ▶ composition and tensor products of morphisms are K-bilinear.

A K-linear 2-category is the data of a 2-category $C = (C_0, C_1, C_2)$ such that:

- for all p, q in C_1 , $C_2(p, q)$ is a \mathbb{K} -vector space.
- ▶ \star_0 and \star_1 -composition of 1-cells are K-bilinear.
- When $C_0 = \{*\}$, these two objects are the same.

- A K-linear strict monoidal category is a category \mathcal{A} equipped with
 - a tensor product $\otimes : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ which is associative.
 - a unit object 1 such that $1 \otimes A = A = A \otimes 1$ for all object of A.
 - for any object A, B of A, A(A, B) is a \mathbb{K} -vector space.
 - composition and tensor products of morphisms are K-bilinear.

A K-linear 2-category is the data of a 2-category $C = (C_0, C_1, C_2)$ such that:

- for all p, q in C_1 , $C_2(p, q)$ is a \mathbb{K} -vector space.
- *0 and *1-composition of 1-cells are K-bilinear.
- When $C_0 = \{*\}$, these two objects are the same.

objects of $\mathcal{A} \leftrightarrow 1$ -cells of \mathcal{C}

morphisms of $\mathcal{A} \leftrightarrow 2$ -cells of \mathcal{C}

 $\otimes \leftrightarrow \star_0$, composition of morphisms $\leftrightarrow \star_1$

String diagrams

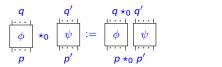
A 2-cell φ : p ⇒ q with p,q : x → y in a linear 2-category C can be depicted by a string diagram:

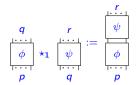
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

String diagrams

A 2-cell φ : p ⇒ q with p,q : x → y in a linear 2-category C can be depicted by a string diagram:

Compositions:



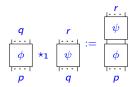


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

String diagrams

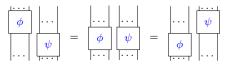
A 2-cell $\phi: p \Rightarrow q$ with $p,q: x \rightarrow y$ in a linear 2-category C can be depicted by a string diagram:

Compositions:



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

These compositions satisfy the exchange law:



- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P₁^{*}.

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.
- A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P₁^{*}.

 $\blacktriangleright P_{0} = \{*\}, P_{1} = \{1\}, \star_{0} = +, P_{1}^{*} = \mathbb{N},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.
- A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P^{*}₁.
- We consider a cellular extension P₂ of P^{*}₁, that is a set equipped with s₁,t₁: P₂ → P^{*}₁.

 $\blacktriangleright \ P_{0} = \{*\}, P_{1} = \{1\}, \star_{0} = +, P_{1}^{*} = \mathbb{N},$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.
- A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P^{*}₁.
- We consider a cellular extension P₂ of P^{*}₁, that is a set equipped with s₁,t₁: P₂ → P^{*}₁.

•
$$P_0 = \{*\}, P_1 = \{1\}, \star_0 = +, P_1^* = \mathbb{N},$$

$$\blacktriangleright P_2 = \{ \begin{array}{|c|} & & \\$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.
- A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P^{*}₁.
- We consider a cellular extension P₂ of P^{*}₁, that is a set equipped with s₁,t₁: P₂ → P^{*}₁.
- We construct the free 2-category P₂^{*} on P₂.

•
$$P_0 = \{*\}, P_1 = \{1\}, \star_0 = +, P_1^* = \mathbb{N},$$

$$\blacktriangleright P_2 = \{ \begin{array}{|c|} & & \\$$

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.
- A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P^{*}₁.
- We consider a cellular extension P₂ of P¹, that is a set equipped with s₁,t₁: P₂ → P¹.
- We construct the free 2-category P^{*}₂ on P₂.

$$\bullet P_{0} = \{*\}, P_{1} = \{1\}, \star_{0} = +, P_{1}^{*} = \mathbb{N},$$

$$\blacktriangleright P_2 = \{ \begin{array}{|c|} & & \\$$

P^{*}₂ = { diagrams formed by horizontal and vertical compositions of crossings and dots}

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.
- A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P^{*}₁.
- We consider a cellular extension P₂ of P^{*}₁, that is a set equipped with s₁,t₁: P₂ → P^{*}₁.
- We construct the free 2-category P^{*}₂ on P₂.
- We construct the free linear 2-category P^ℓ₂ on P₂:

 $P_{\mathbf{2}}^{\ell}(x,y) = \mathbb{K}[P_{\mathbf{2}}^{*}(x,y)]$

for any 1-cells x and y in P_2^* .

$$\bullet P_{0} = \{*\}, P_{1} = \{1\}, \star_{0} = +, P_{1}^{*} = \mathbb{N},$$

$$\blacktriangleright P_2 = \{ \begin{array}{|c|} & P_2 = \{ \begin{array}{|c|} & P_2 = \{ \end{array} : 2 \to 2, \end{array} \quad \bullet : 1 \to 1 \}$$

P^{*}₂ = { diagrams formed by horizontal and vertical compositions of crossings and dots}

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.
- A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P^{*}₁.
- We consider a cellular extension P₂ of P^{*}₁, that is a set equipped with s₁,t₁: P₂ → P^{*}₁.
- We construct the free 2-category P^{*}₂ on P₂.
- We construct the free linear 2-category P^l₂ on P₂:

 $P_{\mathbf{2}}^{\ell}(x,y) = \mathbb{K}[P_{\mathbf{2}}^{*}(x,y)]$

for any 1-cells x and y in P_2^* .

$$\blacktriangleright P_0 = \{*\}, P_1 = \{1\}, \star_0 = +, P_1^* = \mathbb{N},$$

$$\blacktriangleright P_2 = \{ \begin{array}{|c|} & P_2 = \{ \begin{array}{|c|} & P_2 = \{ \end{array} : 2 \to 2, \end{array} \quad \bullet : 1 \to 1 \}$$

P^{*}₂ = { diagrams formed by horizontal and vertical compositions of crossings and dots}

P^ℓ₂ = {K − linear combinations of diagrams in P^{*}₂}

- Polygraphs (Burroni Street) are presentations by generators and relations of higher-dimensional globular strict categories.
 - Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.
- A 1-polygraph is a directed graph (P₁, P₀, s₀, t₀), on which we construct the free 1-category P^{*}₁.
- We consider a cellular extension P₂ of P^{*}₁, that is a set equipped with s₁,t₁: P₂ → P^{*}₁.
- We construct the free 2-category P^{*}₂ on P₂.
- We construct the free linear 2-category P^l₂ on P₂:

 $P_{\mathbf{2}}^{\ell}(x,y) = \mathbb{K}[P_{\mathbf{2}}^{*}(x,y)]$

for any 1-cells x and y in P_2^* .

We consider a cellular extension P₃ of P^ℓ₂, corresponding to an orientation of the relations.

$$\blacktriangleright P_0 = \{*\}, P_1 = \{1\}, \star_0 = +, P_1^* = \mathbb{N}$$

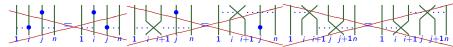
$$\blacktriangleright P_2 = \{ \begin{array}{|c|} & P_2 = \{ \begin{array}{|c|} & P_2 = \{ \end{array} : 2 \to 2, \end{array} \quad | \quad 1 \to 1 \}$$

P^{*}₂ = { diagrams formed by horizontal and vertical compositions of crossings and dots}

P^ℓ₂ = {K − linear combinations of diagrams in P^{*}₂} Example : for the nil Hecke algebras,

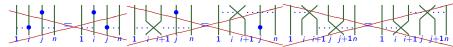
Example : for the nil Hecke algebras,

Example : for the nil Hecke algebras,

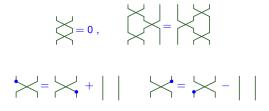


These are exchange laws.

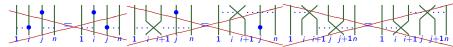
Example : for the nil Hecke algebras,



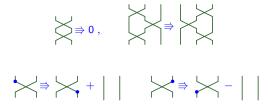
These are exchange laws.



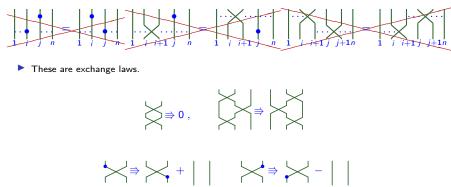
Example : for the nil Hecke algebras,



These are exchange laws.



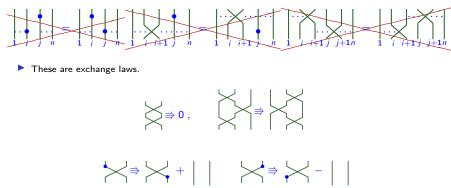
Example : for the nil Hecke algebras,



This choice of cellular extension defines a linear (3, 2)-polygraph presenting a linear 2-category encoding the nil Hecke algebras.

 $\operatorname{End}_{\mathcal{C}}(n) \simeq \mathcal{NH}_n$

Example : for the nil Hecke algebras,



This choice of cellular extension defines a linear (3, 2)-polygraph presenting a linear 2-category encoding the nil Hecke algebras.

 $\operatorname{End}_{\mathcal{C}}(n) \simeq \mathcal{NH}_n$

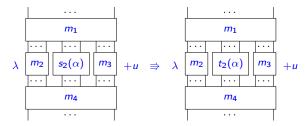
▶ It is left-monomial, that is each source of a 3-cell is a monomial. \square

Restriction of the set of rewritings due to the linear context:

▶ Restriction of the set of rewritings due to the linear context: if $u \rightarrow v$, then $-u \Rightarrow -v$, and so $v = (u + v) - u \Rightarrow u + v - v = u$.

▶ Restriction of the set of rewritings due to the linear context: if $u \to v$, then $-u \Rightarrow -v$, and so $v = (u + v) - v \not\bowtie u + v - v = u$.

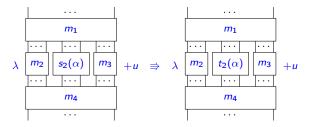
- ▶ Restriction of the set of rewritings due to the linear context: if $u \to v$, then $-u \Rightarrow -v$, and so $v = (u + v) v \not\bowtie u + v v = u$.
- A rewriting step of a linear (3,2)-polygraph is a 3-cell of the form



where $\alpha \in P_3$, and the monomial $m_1 \star_1 (m_2 \star_0 s_2(\alpha) \star_0 m_3) \star_1 m_4$ does not appear in the monomial decomposition of u.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

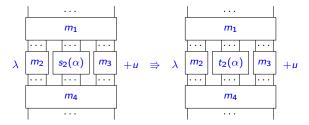
- ▶ Restriction of the set of rewritings due to the linear context: if $u \to v$, then $-u \Rightarrow -v$, and so $v = (u + v) v \not\bowtie u + v v = u$.
- A rewriting step of a linear (3,2)-polygraph is a 3-cell of the form



where $\alpha \in P_3$, and the monomial $m_1 \star_1 (m_2 \star_0 s_2(\alpha) \star_0 m_3) \star_1 m_4$ does not appear in the monomial decomposition of u.

Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is locally confluent.

- ▶ Restriction of the set of rewritings due to the linear context: if $u \to v$, then $-u \Rightarrow -v$, and so $v = (u + v) v \not\bowtie u + v v = u$.
- A rewriting step of a linear (3,2)-polygraph is a 3-cell of the form



where $\alpha \in P_3$, and the monomial $m_1 \star_1 (m_2 \star_0 s_2(\alpha) \star_0 m_3) \star_1 m_4$ does not appear in the monomial decomposition of u.

- Newman lemma: A terminating linear (3, 2)-polygraph is confluent if and only if it is locally confluent.
- Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only if its critical branchings are confluent.

Critical pair lemma fails without termination

• Consider a linear rewriting system on generators x,y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.

Critical pair lemma fails without termination

• Consider a linear rewriting system on generators x,y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.

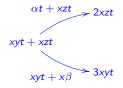
(ロ)、(型)、(E)、(E)、 E) のQ(()

It has no critical branching.

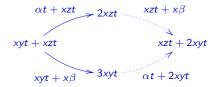
• Consider a linear rewriting system on generators x,y, z and rules $\alpha : xy \to xz$ and $\beta : zt \to 2yt$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- It has no critical branching.
- Consider the Peiffer branching



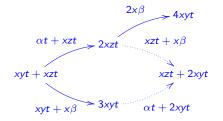
- Consider a linear rewriting system on generators x,y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.
- It has no critical branching.
- Consider the Peiffer branching



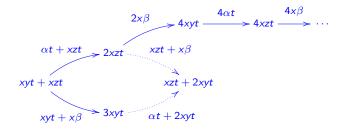
• Consider a linear rewriting system on generators x,y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- It has no critical branching.
- Consider the Peiffer branching

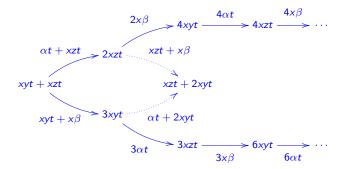


- Consider a linear rewriting system on generators x,y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.
- It has no critical branching.
- Consider the Peiffer branching



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Consider a linear rewriting system on generators x,y, z and rules $\alpha : xy \rightarrow xz$ and $\beta : zt \rightarrow 2yt$.
- It has no critical branching.
- Consider the Peiffer branching



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

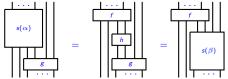
A critical branching is a branching on a minimal string diagram.

A critical branching is a branching on a minimal string diagram.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

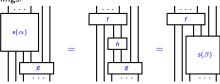
There are 3 different forms of critical branchings:

- A critical branching is a branching on a minimal string diagram.
- There are 3 different forms of critical branchings:
 - Regular critical branchings:

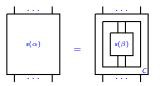


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- A critical branching is a branching on a minimal string diagram.
- There are 3 different forms of critical branchings:
 - Regular critical branchings:

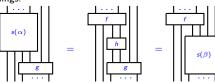


Inclusion critical branchings:

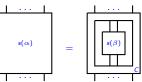


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

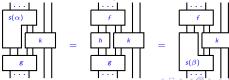
- A critical branching is a branching on a minimal string diagram.
- There are 3 different forms of critical branchings:
 - Regular critical branchings:



Inclusion critical branchings:



Right-indexed (also left-indexed, multi-indexed) critical branchings:



▶ *P* a convergent left-monomial linear (3, 2)-polygraph.

▶ *P* a convergent left-monomial linear (3, 2)-polygraph.

(ロ)、(型)、(E)、(E)、 E) のQ(()

C the linear 2-category it presents.

- ▶ *P* a convergent left-monomial linear (3, 2)-polygraph.
- C the linear 2-category it presents.
- ► Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in normal form for P with 1-source p and 1-target q is a linear basis of C₂(p, q).

- ▶ *P* a convergent left-monomial linear (3, 2)-polygraph.
- C the linear 2-category it presents.
- ▶ Theorem (Alleaume): For any parallel 1-cells *p* and *q* of *C*, the set of monomials in normal form for *P* with 1-source *p* and 1-target *q* is a linear basis of C₂(*p*, *q*).

Termination: the monomials in normal form span $C_2(p, q)$.

- ▶ *P* a convergent left-monomial linear (3, 2)-polygraph.
- C the linear 2-category it presents.
- ► Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in normal form for P with 1-source p and 1-target q is a linear basis of C₂(p, q).
 - Termination: the monomials in normal form span $C_2(p,q)$.
 - Confluence: if a 2-cell reduces into two different linear combinations of monomials in normal form, they are equal by confluence and since P is left-monomial.

These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Let Γ be the Dynkin graph of \mathfrak{g} , and I its set of vertices. Fix:

These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let Γ be the Dynkin graph of \mathfrak{g} , and I its set of vertices. Fix:

▶ an element $\mathcal{V} = \sum_{i \in I} \nu_i \cdot i \in \mathbb{N}[I]$,

These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let Γ be the Dynkin graph of \mathfrak{g} , and I its set of vertices. Fix:

► an element $\mathcal{V} = \sum_{i \in I} \nu_i . i \in \mathbb{N}[I]$, \rightsquigarrow algebra $R(\mathcal{V})$

- These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

• an element $\mathcal{V} = \sum_{i \in I} \nu_i . i \in \mathbb{N}[I]$, \rightsquigarrow algebra $R(\mathcal{V})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ a bilinear form · on Z[I] with values in {0,1},

- These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

• an element $\mathcal{V} = \sum_{i \in I} \nu_i . i \in \mathbb{N}[I]$, \rightsquigarrow algebra $R(\mathcal{V})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ a bilinear form · on Z[I] with values in {0,1},

- These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin graph of g, and *I* its set of vertices. Fix:

► an element $\mathcal{V} = \sum_{i \in I} \nu_i . i \in \mathbb{N}[I]$, \rightsquigarrow algebra $R(\mathcal{V})$

- ▶ a bilinear form · on Z[I] with values in {0,1},
- **b** the set Seq(\mathcal{V}) of sequences of length *m* of elements of Γ, where *i* appears \mathcal{V}_i times.

・ロト ・ 日 ・ モ ヨ ト ・ 日 ・ う へ つ ・

- These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin graph of g, and I its set of vertices. Fix:

• an element $\mathcal{V} = \sum_{i \in I} \nu_i . i \in \mathbb{N}[I]$, \rightsquigarrow algebra $R(\mathcal{V})$

- ▶ a bilinear form · on Z[I] with values in {0,1},
- **b** the set Seq(\mathcal{V}) of sequences of length *m* of elements of Γ, where *i* appears \mathcal{V}_i times.

• Example: Seq $(2i + j) = \{iij, iji, jii\}$

- These algebras have been defined in the process of categorifying a quantum group U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin graph of g, and *I* its set of vertices. Fix:

• an element $\mathcal{V} = \sum_{i \in I} \nu_i . i \in \mathbb{N}[I]$, \rightsquigarrow algebra $R(\mathcal{V})$

- ▶ a bilinear form · on Z[I] with values in {0,1},
- the set Seq(\mathcal{V}) of sequences of length *m* of elements of Γ , where *i* appears \mathcal{V}_i times.
- Example: Seq $(2i + j) = \{iij, iji, jii\}$

► Theorem [Khovanov-Lauda '08]: If $R = \bigoplus_{\mathcal{V} \in \mathbb{N}[I]} R(\mathcal{V})$,

 $K_0(R-pmod) \simeq \mathbf{U}_q^-(\mathfrak{g})$

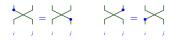
Presentation of the KLR algebras

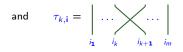
For $\mathbf{i} = i_1 \dots i_m \in \text{Seq}(\mathcal{V})$, generators

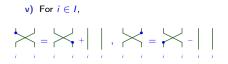
$$x_{k,i} = \left| \begin{array}{ccc} \dots & \\ & i_1 \end{array} \right|_{i_k} \left| \begin{array}{ccc} \dots & \\ & \dots & \\ & & i_m \end{array} \right|_{i_m}$$

i) For $i \in I$, ii) For $i, j \in I$ s.t $i \cdot j = 0$, iii) For $i, j \in I$ s.t $i \cdot j = 1$, iii) For $i, j \in I$ s.t $i \cdot j = -1$, iii) For $i, j \in I$ s.t $i \cdot j = -1$, iii) For $i, j \in I$ s.t $i \cdot j = -1$,

iv) For $i, j \in I$,







vi) For $i, j, k \in I$, unless i = k and $i \cdot j = -1$,

vii) For $i, j \in I$ s.t $i \cdot j = -1$,

▲日戸→「御戸」→ 告戸 → 告戸 / 言一のへで

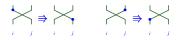
Presentation of the KLR algebras

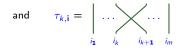
For $\mathbf{i} = i_1 \dots i_m \in \text{Seq}(\mathcal{V})$, generators

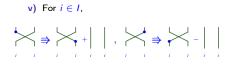
$$x_{k,i} = \left| \begin{array}{ccc} \ldots & & \\ & i_1 \end{array} \right|_{i_k} \left| \begin{array}{ccc} \ldots & & \\ & i_m \end{array} \right|_{i_m}$$

i) For $i \in I$, ii) For $i, j \in I$ s.t $i \cdot j = 0$, iii) For $i, j \in I$ s.t $i \cdot j = -1$, iii) For $i, j \in I$ s.t $i \cdot j = -1$, iii) For $i, j \in I$ s.t j = -1, iii) For $i, j \in I$ s.t j = -1,

iv) For $i, j \in I$,

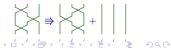






vi) For $i, j, k \in I$, unless i = k and $i \cdot j = -1$,

vii) For $i, j \in I$ s.t $i \cdot j = -1$,



▶ Theorem [D. '17]: This linear (3, 2)-polygraph is convergent.

Theorem [D. '17]: This linear (3, 2)-polygraph is convergent.

Termination: the number of crossings decreases and the dots move to the bottom.

- **Theorem** [D. '17]: This linear (3, 2)-polygraph is convergent.
 - Termination: the number of crossings decreases and the dots move to the bottom.

(ロ)、

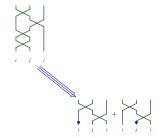
Confluence: exhaustive study of all critical branchings.

- **Theorem** [D. '17]: This linear (3, 2)-polygraph is convergent.
 - Termination: the number of crossings decreases and the dots move to the bottom.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Confluence: exhaustive study of all critical branchings.

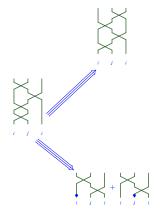
- **Theorem** [D. '17]: This linear (3, 2)-polygraph is convergent.
 - Termination: the number of crossings decreases and the dots move to the bottom.
 - Confluence: exhaustive study of all critical branchings.



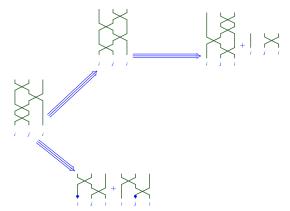
- **Theorem** [D. '17]: This linear (3, 2)-polygraph is convergent.
 - Termination: the number of crossings decreases and the dots move to the bottom.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Confluence: exhaustive study of all critical branchings.

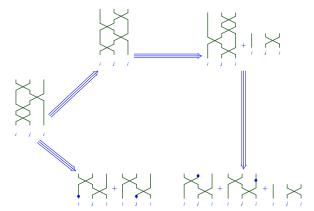


- **Theorem** [D. '17]: This linear (3, 2)-polygraph is convergent.
 - Termination: the number of crossings decreases and the dots move to the bottom.
 - Confluence: exhaustive study of all critical branchings.

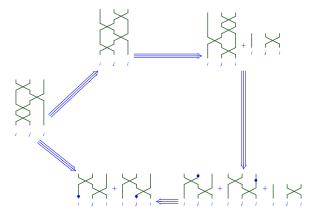


▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

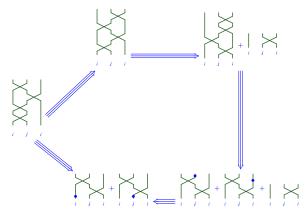
- **Theorem** [D. '17]: This linear (3, 2)-polygraph is convergent.
 - Termination: the number of crossings decreases and the dots move to the bottom.
 - Confluence: exhaustive study of all critical branchings.



- **Theorem** [D. '17]: This linear (3, 2)-polygraph is convergent.
 - Termination: the number of crossings decreases and the dots move to the bottom.
 - Confluence: exhaustive study of all critical branchings.



- **Theorem** [D. '17]: This linear (3, 2)-polygraph is convergent.
 - Termination: the number of crossings decreases and the dots move to the bottom.
 - Confluence: exhaustive study of all critical branchings.



Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of the symmetric groups and dots placed at the bottom of each strand give bases of these algebras.

IV. Extension to rewriting modulo

- Some structural relations may make the analysis of confluence difficult.
 - Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{\mathbf{0}} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{\mathbf{0}} p \Rightarrow 1, \quad \bigcup^{p} \hat{\rho}, \quad \bigcap_{\hat{p}} p \text{ satisfying } \bigcap_{p} p = \left| \begin{array}{c} \\ \\ \\ \end{array} \right| = \left| \bigcup_{p} p \right|$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

- Some structural relations may make the analysis of confluence difficult.
 - Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{0} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{0} p \Rightarrow 1, \quad \bigcup^{p} \stackrel{\hat{p}}{\longrightarrow} , \quad \bigcap_{\hat{p}} p \text{ satisfying } \bigcap_{p} p = 0 = 0$$

We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented axioms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Some structural relations may make the analysis of confluence difficult.
 - Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{0} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{0} p \Rightarrow 1, \quad \bigcup^{p} \stackrel{\hat{p}}{\longrightarrow} , \quad \bigcap_{\hat{p}} \stackrel{p}{\longrightarrow} \text{satisfying} \quad \bigcap_{p} \stackrel{p}{\longrightarrow} \stackrel{p}{\longrightarrow} \stackrel{p}{\longrightarrow} p$$

We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented axioms.

Three paradigms of rewriting modulo:

- Some structural relations may make the analysis of confluence difficult.
 - Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{\mathbf{0}} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{\mathbf{0}} p \Rightarrow 1, \quad \bigcup^{p} \stackrel{\hat{p}}{\longrightarrow} , \quad \bigcap_{\hat{p}} \stackrel{p}{\longrightarrow} \text{satisfying} \quad \bigcap_{p} \stackrel{p}{\longrightarrow} \stackrel{p}{\longrightarrow} \stackrel{p}{\longrightarrow} p$$

- We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented axioms.
- Three paradigms of rewriting modulo:
 - Rewriting with rules in R, but confluence modulo E, Huet '80

- Some structural relations may make the analysis of confluence difficult.
 - Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p is a 1-cell p̂ such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{\mathbf{0}} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{\mathbf{0}} p \Rightarrow 1, \quad \bigcup^{p} \stackrel{\hat{p}}{\longrightarrow} , \quad \bigcap_{\hat{p}} \stackrel{p}{\longrightarrow} \text{satisfying} \quad \bigcap_{p} \stackrel{p}{\longrightarrow} \stackrel{p}{\longrightarrow} \stackrel{p}{\longrightarrow} p$$

- We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented axioms.
- Three paradigms of rewriting modulo:
 - Rewriting with rules in R, but confluence modulo E, Huet '80

Rewriting with R on E-equivalence classes:

 $\begin{array}{c} u \xrightarrow{E^{\kappa_{E}}} v \\ E \downarrow & \downarrow E \end{array}$

 $u' \longrightarrow v$

- Some structural relations may make the analysis of confluence difficult.
 - Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{\mathbf{0}} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{\mathbf{0}} p \Rightarrow 1, \quad \bigcup^{p} \stackrel{\hat{p}}{\longrightarrow} , \quad \bigcap_{\hat{p}} \stackrel{p}{\longrightarrow} \text{satisfying} \quad \bigcap_{p} \stackrel{p}{\longrightarrow} \stackrel{p}{\longrightarrow} \stackrel{p}{\longrightarrow} p$$

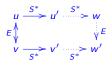
- \blacktriangleright We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented axioms.
- Three paradigms of rewriting modulo:
 - Rewriting with rules in R. but confluence modulo E. Huet '80

....> V ↓ E

Rewriting with R on E-equivalence

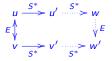
▶ Rewriting system modulo: (R, E, S) such that $R \subseteq S \subseteq {}_{ERE}$, Jouannaud-Kirchner '84.

Confluence modulo:

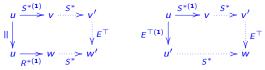


(ロ)、(型)、(E)、(E)、 E) のQ(C)

Confluence modulo:



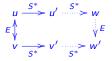
Theorem [D. - Malbos '18], Critical pair lemma modulo : For (R, E, S) such that ERE is terminating, S is confluent modulo E if and only if its critical branchings modulo E of the form



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

are confluent modulo E.

Confluence modulo:

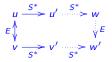


Theorem [D. - Malbos '18], Critical pair lemma modulo : For (R, E, S) such that ERE is terminating, S is confluent modulo E if and only if its critical branchings modulo E of the form

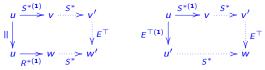
are confluent modulo E.

► Theorem [D. '19] Let (R, E, S) be a linear (3, 2)-polygraph modulo and C the category presented by R [] E, such that S is terminating and confluent modulo E.

Confluence modulo:



Theorem [D. - Malbos '18], Critical pair lemma modulo : For (R, E, S) such that ERE is terminating, S is confluent modulo E if and only if its critical branchings modulo E of the form



are confluent modulo E.

► Theorem [D. '19] Let (R, E, S) be a linear (3, 2)-polygraph modulo and C the category presented by R ∐ E, such that S is terminating and confluent modulo E.

Then, for all parallel 1-cells p and q, the set of monomials in the *E*-normal forms of monomials in normal form for *S* gives a basis of $C_2(p, q)$.

• Let \mathcal{KLR} be the linear 2-category defined by:

- Let \mathcal{KLR} be the linear 2-category defined by:
 - $\mathcal{KLR}_0 = X$ weight lattice of a Kac-Moody algebra,

・ロト・日本・ヨト・ヨト・日・ つへぐ

- Let \mathcal{KLR} be the linear 2-category defined by:
 - KLR₀ = X weight lattice of a Kac-Moody algebra,
 - $\mathcal{KLR}_1 = \{ \underline{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_{\ell(\varepsilon)}) \text{ with } \varepsilon_i \in \{-, +\} \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Let \mathcal{KLR} be the linear 2-category defined by:
 - KLR₀ = X weight lattice of a Kac-Moody algebra,
 - $\mathcal{KLR}_1 = \{ \underline{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_{\ell(\varepsilon)}) \text{ with } \varepsilon_i \in \{-, +\} \}.$
 - KLR₂ is the set of following generating 2-cells

$$\hat{\mathbf{A}} = \sum_{\lambda} \hat{\mathbf{A}} = \hat{\mathbf{A}} = \sum_{\lambda} \hat{\mathbf{A}} = \hat{$$

Example: The 2-category $\mathcal{KLR}(\mathfrak{sl}_2)$

- ► Let *KLR* be the linear 2-category defined by:
 - KLR₀ = X weight lattice of a Kac-Moody algebra,
 - $\mathcal{KLR}_1 = \{ \underline{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_{\ell(\varepsilon)}) \text{ with } \varepsilon_i \in \{-, +\} \}.$
 - KLR₂ is the set of following generating 2-cells

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

subject to the following relations:

- Let KLR be the linear 2-category defined by:
 - KLR₀ = X weight lattice of a Kac-Moody algebra,
 - $\mathcal{KLR}_1 = \{ \underline{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_{\ell(\varepsilon)}) \text{ with } \varepsilon_i \in \{-, +\} \}.$
 - KLR₂ is the set of following generating 2-cells

subject to the following relations:

- KLR algebras relations for both orientations.
- Bubble relations:

$$n \bigoplus \lambda \implies \begin{cases} \mathbf{1}_{\mathbf{1}_{\lambda}} & \text{if } n = h - 1 \\ 0 & \text{if } n < h - 1 \end{cases}; \quad \lambda \bigoplus n \implies \begin{cases} \mathbf{1}_{\mathbf{1}_{\lambda}} & \text{if } n = -h - 1 \\ 0 & \text{if } n < -h - 1 \end{cases}$$

$$h-\mathbf{1}+\alpha$$
 $\lambda \Rightarrow -\sum_{l=1}^{\alpha} h-\mathbf{1}+\alpha-l$ $\lambda = h-\mathbf{1}+l$ for all $\lambda \in X$ and $\alpha > 0$

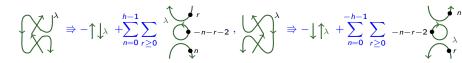
A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

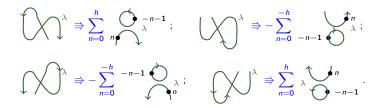
► Isotopy relations:
$$\bigcap_{\pm}$$
 \Rightarrow \downarrow_{\pm} \Leftarrow \bigcap_{\pm} \Leftrightarrow \downarrow_{\pm} \Leftrightarrow \downarrow_{\pm} \Leftrightarrow \downarrow_{\pm} \Leftrightarrow \downarrow_{\pm} \Leftrightarrow \downarrow_{\pm} \Leftrightarrow \downarrow_{\pm} \downarrow_{\pm}

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

► Isotopy relations: \bigcap_{\pm} \Rightarrow \downarrow_{\pm} \Leftarrow \bigcap_{\pm} \Rightarrow \downarrow_{\pm} \Leftarrow \bigcirc_{\pm} \downarrow_{\pm} \downarrow_{\pm} \downarrow_{\pm}

Quantum relations:





▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Bubble slide relations.