

Réécriture modulo dans les catégories diagrammatiques.

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1

Soutenance de thèse de Doctorat

Sous la direction de Philippe Malbos, Stéphane Gaussen et Alistair Savage

20 Novembre 2020

Université Claude Bernard

I. Introduction

II. Convergent presentation of the Khovanov-Lauda-Rouquier algebras

III. Confluence modulo isotopies in the Khovanov-Lauda-Rouquier 2-category

IV. Conclusion and perspectives

I. Introduction

- **Algebraic rewriting**: model of computations for algebraic structures presented by generators and oriented relations.

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$,

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet**, **Gröbner**, **Shirshov**, **Bokut**, **Bergman**, **Buchberger**, **Dotsenko-Koroshkin**, **Guiraud-Hoffbeck-Malbos**, ...
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

xxxxy

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet**, **Gröbner**, **Shirshov**, **Bokut**, **Bergman**, **Buchberger**, **Dotsenko-Koroshkin**, **Guiraud-Hoffbeck-Malbos**, ...
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet**, **Gröbner**, **Shirshov**, **Bokut**, **Bergman**, **Buchberger**, **Dotsenko-Koroshkin**, **Guiraud-Hoffbeck-Malbos**, ...
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet**, **Gröbner**, **Shirshov**, **Bokut**, **Bergman**, **Buchberger**, **Dotsenko-Koroshkin**, **Guiraud-Hoffbeck-Malbos**, ...
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

- ▶ P is **terminating**, that is it does not admit any infinite rewriting sequence (deglex order on $x > y$).

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

- ▶ P is **terminating**, that is it does not admit any infinite rewriting sequence (deglex order on $x > y$).
- ▶ The monomials in normal form **span** the algebra.

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

- ▶ P is **terminating**, that is it does not admit any infinite rewriting sequence (deglex order on $x > y$).
- ▶ The monomials in normal form **span** the algebra.
- ▶ They are not **linearly independant**.
 - ▶ The element $xyx - xyy$ is a normal form and in the ideal generated by the relations.

Linear bases using rewriting

- ▶ **Algebraic rewriting:** model of computations for algebraic structures presented by generators and oriented relations.
- ▶ **Paradigm:** Rewriting in linear structures.
 - ▶ Several approaches of linear rewriting: **Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...**
 - ▶ Procedures to compute in ideals, in particular computation of **linear bases**.
- ▶ Consider an associative algebra $\mathbb{K}[X^*]/I(R)$, associate a **linear 2-polygraph** $\langle * \mid X \mid R \rangle$ where R is equipped with source and target maps $s, t : R \rightarrow \mathbb{K}[X^*]$.
- ▶ **Example:**

$$P = \langle * \mid X = \{x : * \rightarrow *, y : * \rightarrow *\} \mid R = \{x^2 \Rightarrow xy\} \rangle$$

- ▶ P is **terminating**, that is it does not admit any infinite rewriting sequence (deglex order on $x > y$).
- ▶ The monomials in normal form **span** the algebra.
- ▶ They are not **linearly independant**.
 - ▶ The element $xyx - xyy$ is a normal form and in the ideal generated by the relations.

► **Theorem [Guiraud-Hoffbeck-Malbos '19]:** Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:

- i) P is confluent.
- ii) The vector space $P_1^\ell := \mathbb{K}[P_1^*]$ admits the direct decomposition

$$P_1^\ell = P_1^{\text{nf}} \oplus I(P)$$

where P_1^{nf} is the set of monomials in normal form with respect to P_1 , and $I(P)$ is the two sided ideal generated by $\{s_1(\alpha) - t_1(\alpha) \mid \alpha \in P_2\}$.

► **Theorem [Guiraud-Hoffbeck-Malbos '19]:** Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:

- i) P is confluent.
- ii) The vector space $P_1^\ell := \mathbb{K}[P_1^*]$ admits the direct decomposition

$$P_1^\ell = P_1^{\text{nf}} \oplus I(P)$$

where P_1^{nf} is the set of monomials in normal form with respect to P_1 , and $I(P)$ is the two sided ideal generated by $\{s_1(\alpha) - t_1(\alpha) \mid \alpha \in P_2\}$.

► **Objective:** Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.

► **Theorem [Guiraud-Hoffbeck-Malbos '19]:** Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:

- i) P is confluent.
- ii) The vector space $P_1^\ell := \mathbb{K}[P_1^*]$ admits the direct decomposition

$$P_1^\ell = P_1^{\text{nf}} \oplus I(P)$$

where P_1^{nf} is the set of monomials in normal form with respect to P_1 , and $I(P)$ is the two sided ideal generated by $\{s_1(\alpha) - t_1(\alpha) \mid \alpha \in P_2\}$.

► **Objective:** Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.

- Application in representation theory: proof of categorification results.
- These are obtained by proving that the Hom-sets of the categories defined admit explicit bases.

► **Theorem [Guiraud-Hoffbeck-Malbos '19]:** Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:

- i) P is confluent.
- ii) The vector space $P_1^\ell := \mathbb{K}[P_1^*]$ admits the direct decomposition

$$P_1^\ell = P_1^{\text{nf}} \oplus I(P)$$

where P_1^{nf} is the set of monomials in normal form with respect to P_1 , and $I(P)$ is the two sided ideal generated by $\{s_1(\alpha) - t_1(\alpha) \mid \alpha \in P_2\}$.

► **Objective:** Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.

- Application in representation theory: proof of categorification results.
- These are obtained by proving that the Hom-sets of the categories defined admit explicit bases.

► Numerous diagrammatic presentations for which computing linear bases is difficult.

- Khovanov-Lauda-Rouquier's categorification of a quantum group,
- Heisenberg categorifications,
- Category of Soergel bimodules.

► **Theorem [Guiraud-Hoffbeck-Malbos '19]:** Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:

- i) P is confluent.
- ii) The vector space $P_1^\ell := \mathbb{K}[P_1^*]$ admits the direct decomposition

$$P_1^\ell = P_1^{\text{nf}} \oplus I(P)$$

where P_1^{nf} is the set of monomials in normal form with respect to P_1 , and $I(P)$ is the two sided ideal generated by $\{s_1(\alpha) - t_1(\alpha) \mid \alpha \in P_2\}$.

► **Objective:** Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.

- Application in representation theory: proof of categorification results.
- These are obtained by proving that the Hom-sets of the categories defined admit explicit bases.

► Numerous diagrammatic presentations for which computing linear bases is difficult.

- Khovanov-Lauda-Rouquier's categorification of a quantum group,
- Heisenberg categorifications,
- Category of Soergel bimodules.

► **In this thesis:**

- Develop linear rewriting modulo theory to compute linear bases from confluence modulo.
- Compute such bases in the Khovanov-Lauda-Rouquier 2-category.

► **Theorem [Guiraud-Hoffbeck-Malbos '19]:** Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:

- i) P is confluent.
- ii) The vector space $P_1^\ell := \mathbb{K}[P_1^*]$ admits the direct decomposition

$$P_1^\ell = P_1^{\text{nf}} \oplus I(P)$$

where P_1^{nf} is the set of monomials in normal form with respect to P_1 , and $I(P)$ is the two sided ideal generated by $\{s_1(\alpha) - t_1(\alpha) \mid \alpha \in P_2\}$.

► **Objective:** Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.

- Application in representation theory: proof of categorification results.
- These are obtained by proving that the Hom-sets of the categories defined admit explicit bases.

► Numerous diagrammatic presentations for which computing linear bases is difficult.

- Khovanov-Lauda-Rouquier's categorification of a quantum group,
- Heisenberg categorifications,
- Category of Soergel bimodules.

► **In this thesis:**

- Develop linear rewriting modulo theory to compute linear bases from confluence modulo.
- Compute such bases in the Khovanov-Lauda-Rouquier 2-category.

► Several new questions, e.g. extension to rewriting in 2-supercategories (with **M. Ebert** and **A. Lauda**) and explicit proofs of categorification (with **G. Naisse**).

II. Convergent presentation of the KLR algebras

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by
 - ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by
 - ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \dots \bullet \dots \right|_i, \quad \tau_i = \left| \dots \begin{array}{c} \diagup \\ \diagdown \end{array} \dots \right|_i$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{c} \dots \\ | \\ \dots \\ | \\ i \\ \dots \\ | \\ \dots \\ | \\ n \end{array} \right|, \quad \tau_i = \left| \begin{array}{c} \dots \\ | \\ \dots \\ | \\ i \\ \diagup \diagdown \\ i+1 \\ \dots \\ | \\ \dots \\ | \\ n \end{array} \right|$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

$$\left| \begin{array}{c} \dots \\ | \\ \dots \\ | \\ i \\ \bullet \\ | \\ \dots \\ | \\ j \\ \bullet \\ | \\ \dots \\ | \\ n \end{array} \right| = \left| \begin{array}{c} \dots \\ | \\ \dots \\ | \\ i \\ \bullet \\ | \\ \dots \\ | \\ j \\ \bullet \\ | \\ \dots \\ | \\ n \end{array} \right|$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{c} \dots \\ | \\ \bullet \\ | \\ \dots \\ | \\ 1 \quad i \quad \dots \quad n \end{array} \right|, \quad \tau_i = \left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \\ | \\ 1 \quad i \quad i+1 \quad \dots \quad n \end{array} \right|$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

$$\left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \\ | \\ 1 \quad i \quad i+1 \quad \dots \quad j \quad \dots \quad n \end{array} \right| = \left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \\ | \\ 1 \quad i \quad i+1 \quad j \quad \dots \quad n \end{array} \right|$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{c} \dots \\ | \\ \bullet \\ | \\ \dots \\ | \\ 1 \quad \quad i \quad \quad n \end{array} \right|, \quad \tau_i = \left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \\ | \\ 1 \quad \quad i \quad \quad i+1 \quad \quad n \end{array} \right|$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

$$\left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \\ | \\ 1 \quad \quad i \quad \quad i+1 \quad \quad j \quad \quad j+1 \quad \quad n \end{array} \right| = \left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \\ | \\ 1 \quad \quad i \quad \quad i+1 \quad \quad j \quad \quad j+1 \quad \quad n \end{array} \right|$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{c} \dots \\ | \\ \bullet \\ | \\ \dots \end{array} \right|_i \quad , \quad \tau_i = \left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \end{array} \right|_i$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

$$\left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \end{array} \right|_i = 0$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{c} \dots \\ | \\ \bullet \\ | \\ \dots \end{array} \right|_i \quad , \quad \tau_i = \left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \end{array} \right|_i$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

$$\left| \begin{array}{c} \diagup \quad \diagdown \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \end{array} \right|_i = 0$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{cccc} \dots & & \bullet & \dots \\ 1 & & i & & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{cccc} \dots & & \cancel{\bullet} & \dots \\ 1 & & i & & i+1 & & n \end{array} \right|$$

► relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{c} \dots \\ | \\ \dots \\ | \\ 1 \quad \quad i \quad \quad n \end{array} \right|, \quad \tau_i = \left| \begin{array}{c} \dots \\ | \\ \dots \\ | \\ 1 \quad \quad i \quad \quad i+1 \quad \quad n \end{array} \right|$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

$$\begin{array}{c} \diagup \quad \diagdown \\ \text{---} \quad \text{---} \end{array} = \begin{array}{c} \diagup \quad \diagdown \\ \text{---} \quad \text{---} \end{array} - \left| \begin{array}{c} | \\ | \\ | \\ | \\ i \quad i+1 \end{array} \right|$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{c} \dots \\ | \\ \dots \\ | \\ \dots \\ | \\ 1 \quad \quad i \quad \quad n \end{array} \right|, \quad \tau_i = \left| \begin{array}{c} \dots \\ | \\ \dots \\ | \\ \dots \\ | \\ 1 \quad \quad i \quad \quad i+1 \quad \quad n \end{array} \right|$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

$$\begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \text{---} \quad \text{---} \\ i \quad i+1 \end{array} = \begin{array}{c} \diagup \quad \diagdown \\ \bullet \\ \text{---} \quad \text{---} \\ i \quad i+1 \end{array} + \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ i \quad i+1 \end{array}$$

- ▶ **Objective:** study algebras and categories admitting diagrammatic presentation by generators and relations.
- ▶ **Example:** For $n \in \mathbb{N}$, the nil Hecke algebra \mathcal{NH}_n of degree n is presented by

- ▶ generators x_i for $1 \leq i \leq n$ and τ_i for $1 \leq i < n$;

$$x_i = \left| \begin{array}{c} \dots \\ | \\ \bullet \\ | \\ \dots \end{array} \right|_i \quad , \quad \tau_i = \left| \begin{array}{c} \dots \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \end{array} \right|_i$$

- ▶ relations:

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{if } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

$$\begin{array}{c} \bullet \\ | \\ \diagup \quad \diagdown \\ | \\ \dots \end{array} \quad = \quad \begin{array}{c} \diagup \quad \diagdown \\ | \\ \bullet \\ | \\ \dots \end{array} + \quad \left| \begin{array}{c} | \\ | \\ | \\ | \\ | \end{array} \right|_i$$

- ▶ We study these algebras by realizing them as 2-Hom-spaces of linear 2-categories.

String diagrams

- ▶ The 2-cells of a (linear) 2-category can be depicted by a string diagram:

$$\begin{array}{ccc} \begin{array}{c} \text{q} \\ | \cdots | \\ \boxed{f} \\ | \cdots | \\ \text{p} \end{array} & \rightsquigarrow & \begin{array}{c} \text{p} \\ \text{x} \curvearrowright \text{y} \\ \Downarrow f \\ \text{q} \end{array} \end{array}$$

String diagrams

- The 2-cells of a (linear) 2-category can be depicted by a string diagram:

$$\begin{array}{ccc} \begin{array}{c} \text{q} \\ | \cdots | \\ \boxed{f} \\ | \cdots | \\ \text{p} \end{array} & \rightsquigarrow & \begin{array}{c} \text{p} \\ \text{y} \\ \Downarrow f \\ \text{x} \\ \text{q} \end{array} \end{array}$$

- Compositions:

$$\begin{array}{c} \text{p} \\ \text{x} \\ \Downarrow f \\ \text{y} \\ \text{q} \end{array} \rightsquigarrow \begin{array}{c} \text{p}' \\ \text{y} \\ \Downarrow g \\ \text{z} \\ \text{q}' \end{array} \rightsquigarrow \begin{array}{c} \text{q} \star_0 \text{q}' \\ \text{x} \\ \Downarrow f \star_0 g \\ \text{z} \\ \text{p}' \star_0 \text{p}' \end{array}$$

$$\begin{array}{c} \text{p} \\ \text{x} \\ \Downarrow f \\ \text{y} \\ \Downarrow g \\ \text{r} \end{array} \rightsquigarrow \begin{array}{c} \text{p} \\ \text{y} \\ \Downarrow f \star_1 g \\ \text{r} \\ \text{y} \end{array}$$

String diagrams

- ▶ The 2-cells of a (linear) 2-category can be depicted by a string diagram:

The diagram shows a box labeled f with inputs q and p and outputs x and y . To its right is a commutative diagram with nodes X , Y , and f . There are two curved arrows: one from X to Y and another from Y to X . A vertical double-headed arrow labeled f connects X and Y . The labels q and p are positioned such that they align with the inputs and outputs of the box f respectively.

► Compositions:

$$\begin{array}{c}
 \text{Diagram showing the equivalence of two commutative diagrams:} \\
 \text{Left: } X \xleftarrow{q} \text{parallel} \xrightarrow{p} y \xrightarrow{f} q \\
 \text{Middle: } y \xleftarrow{q'} \text{parallel} \xrightarrow{p'} z \xrightarrow{g} q' \\
 \text{Right: } X \xleftarrow{p' \star q'} \text{parallel} \xrightarrow{q \star g} z \xrightarrow{f \star g} q' \\
 \text{Equivalence: } X \xleftarrow{q \star g} z \xrightarrow{f \star g} q' \xrightarrow{p' \star q'} X
 \end{array}$$

$$X \xrightarrow{\quad q \quad} \begin{array}{c} P \\ \Downarrow f \\ y \end{array} \rightsquigarrow X \rightsquigarrow \begin{array}{c} P \\ \Downarrow f \star g \\ y \end{array} \xrightarrow{\quad r \quad} Y$$

$$y \xrightarrow[p]{f} x \star_1 y \quad r \xrightarrow[q]{g} x \quad := \quad y \xrightarrow[p]{f} r \xrightarrow[q]{g} x$$

String diagrams

- The 2-cells of a (linear) 2-category can be depicted by a string diagram:

- Compositions:

- These compositions satisfy exchange relations:

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:
- ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 .

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:
 - ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 . ▶ $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}.$

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:
 - ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 . ▶ $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.
 - ▶ P_1^* : free 1-category generated by (P_0, P_1) .

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:
 - ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 . $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}.$
 - ▶ P_1^* : free 1-category generated by (P_0, P_1) . $P_1^* \simeq \mathbb{N}$ (Number of strands).

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 . ▶ $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.
- ▶ P_1^* : free 1-category generated by (P_0, P_1) . ▶ $P_1^* \simeq \mathbb{N}$ (Number of strands).

- ▶ **Cellular extension**

$$P_2 \xrightarrow[s_1]{t_1} P_1^*$$

satisfying **globular relations**: $s_0 s_1 = s_0 t_1, t_0 s_1 = t_0 t_1$.

- Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 .
 - $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.
- P_1^* : free 1-category generated by (P_0, P_1) .
 - $P_1^* \simeq \mathbb{N}$ (Number of strands).
- Cellular extension

$$P_2 \xrightarrow[s_1]{t_1} P_1^*$$

- $P_2 = \{ \begin{array}{c} \diagup \diagdown \\ \text{---} \end{array} : 2 \rightarrow 2, \quad \bullet : 1 \rightarrow 1 \}$

satisfying **globular relations**: $s_0 s_1 = s_0 t_1, t_0 s_1 = t_0 t_1$.

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 .
- ▶ P_1^* : free 1-category generated by (P_0, P_1) .
- ▶ $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.
- ▶ $P_1^* \simeq \mathbb{N}$ (Number of strands).

- ▶ **Cellular extension**

$$P_2 \xrightarrow[s_1]{t_1} P_1^*$$

- ▶ $P_2 = \{ \begin{array}{c} \diagup \diagdown \\ \text{---} \end{array} : 2 \rightarrow 2, \quad \bullet : 1 \rightarrow 1 \}$

satisfying **globular relations**: $s_0 s_1 = s_0 t_1, t_0 s_1 = t_0 t_1$.

- ▶ P_2^* : free 2-category on (P_0, P_1, P_2) .

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 .
- ▶ P_1^* : free 1-category generated by (P_0, P_1) .

- ▶ **Cellular extension**

$$P_2 \xrightarrow{\begin{array}{c} s_1 \\ t_1 \end{array}} P_1^*$$

▶ $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.

▶ $P_1^* \simeq \mathbb{N}$ (Number of strands).

▶ $P_2 = \{ \begin{array}{c} \diagup \diagdown \\ \diagdown \diagup \end{array} : 2 \rightarrow 2, \quad \bullet : 1 \rightarrow 1 \}$

satisfying **globular relations**: $s_0 s_1 = s_0 t_1, t_0 s_1 = t_0 t_1$.

- ▶ P_2^* : free 2-category on (P_0, P_1, P_2) .

- ▶ $P_2^* = \{ \text{ diagrams made of } \star_0, \star_1 \text{ compositions of dots and crossings} \}$.

- Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 .
- P_1^* : free 1-category generated by (P_0, P_1) .
- $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.
- $P_1^* \simeq \mathbb{N}$ (Number of strands).

- **Cellular extension**

$$P_2 \xrightarrow{\begin{array}{c} s_1 \\ t_1 \end{array}} P_1^*$$

$$P_2 = \{ \begin{array}{c} \diagup \diagdown \\ \diagdown \diagup \end{array} : 2 \rightarrow 2, \quad \bullet : 1 \rightarrow 1 \}$$

satisfying **globular relations**: $s_0 s_1 = s_0 t_1, t_0 s_1 = t_0 t_1$.

- P_2^* : free 2-category on (P_0, P_1, P_2) .
- $P_2^* = \{ \text{ diagrams made of } \star_0, \star_1 \text{ compositions of dots and crossings} \}$.

- P_2^ℓ : free linear 2-category on (P_0, P_1, P_2) :

$$\forall x, y \in P_1^* : P_2^\ell(x, y) = \mathbb{K}[P_2^*(x, y)].$$

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 .
- ▶ P_1^* : free 1-category generated by (P_0, P_1) .
- ▶ $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.
- ▶ $P_1^* \simeq \mathbb{N}$ (Number of strands).

- ▶ **Cellular extension**

$$P_2 \xrightarrow{\begin{array}{c} s_1 \\ t_1 \end{array}} P_1^*$$

$$P_2 = \{ \begin{array}{c} \diagup \diagdown \\ \diagdown \diagup \end{array} : 2 \rightarrow 2, \quad \bullet : 1 \rightarrow 1 \}$$

satisfying **globular relations**: $s_0 s_1 = s_0 t_1, t_0 s_1 = t_0 t_1$.

- ▶ P_2^* : free 2-category on (P_0, P_1, P_2) .
- ▶ $P_2^* = \{ \text{diagrams made of } *_0, *_1 \text{ compositions of dots and crossings} \}$.
- ▶ P_2^ℓ : free linear 2-category on (P_0, P_1, P_2) :
- ▶ $\forall x, y \in P_1^* : P_2^\ell(x, y) = \mathbb{K}[P_2^*(x, y)]$.
- ▶ $P_2^\ell = \{ \mathbb{K} - \text{linear combinations of diagrams of } P_2^* \}$

- Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 .
- P_1^* : free 1-category generated by (P_0, P_1) .
- $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.
- $P_1^* \simeq \mathbb{N}$ (Number of strands).

- Cellular extension

$$P_2 \xrightarrow[\substack{t_1 \\ s_1}]{} P_1^*$$

$$P_2 = \{ \begin{array}{c} \diagup \diagdown \\ \diagdown \diagup \end{array} : 2 \rightarrow 2, \quad \bullet : 1 \rightarrow 1 \}$$

satisfying **globular relations**: $s_0 s_1 = s_0 t_1, t_0 s_1 = t_0 t_1$.

- P_2^* : free 2-category on (P_0, P_1, P_2) .
- $P_2^* = \{ \text{diagrams made of } *_0, *_1 \text{ compositions of dots and crossings} \}$.
- P_2^ℓ : free linear 2-category on (P_0, P_1, P_2) :
- $\forall x, y \in P_1^* : P_2^\ell(x, y) = \mathbb{K}[P_2^*(x, y)]$.
- $P_2^\ell = \{ \mathbb{K} - \text{linear combinations of diagrams of } P_2^* \}$

- Cellular extension

$$P_3 \xrightarrow[\substack{t_2 \\ s_2}]{} P_2^\ell$$

satisfying $s_1 s_2 = s_1 t_2, t_1 s_2 = t_1 t_2$.

- ▶ Linear 2-categories are presented by generating systems called linear $(3, 2)$ -polygraphs, made of a data (P_0, P_1, P_2, P_3) where:

- ▶ (P_1, P_0) is a directed graph, with source and target maps s_0, t_0 .
- ▶ P_1^* : free 1-category generated by (P_0, P_1) .

- ▶ Cellular extension

$$P_2 \xrightarrow[\substack{s_1 \\ t_1}]{} P_1^*$$

▶ $P_0 = \{*\}, P_1 = \{1 : * \rightarrow *\}$.

▶ $P_1^* \simeq \mathbb{N}$ (Number of strands).

▶ $P_2 = \{ \begin{array}{c} \diagup \diagdown \\ \diagdown \diagup \end{array} : 2 \rightarrow 2, \quad \bullet : 1 \rightarrow 1 \}$

satisfying **globular relations**: $s_0 s_1 = s_0 t_1, t_0 s_1 = t_0 t_1$.

- ▶ P_2^* : free 2-category on (P_0, P_1, P_2) .

- ▶ P_2^ℓ : free linear 2-category on (P_0, P_1, P_2) :

$$\forall x, y \in P_1^* : P_2^\ell(x, y) = \mathbb{K}[P_2^*(x, y)].$$

▶ $P_2^* = \{ \text{diagrams made of } \star_0, \star_1 \text{ compositions of dots and crossings} \}$.

▶ $P_2^\ell = \{ \mathbb{K} - \text{linear combinations of diagrams of } P_2^* \}$

- ▶ Cellular extension

$$P_3 \xrightarrow[\substack{s_2 \\ t_2}]{} P_2^\ell$$

- ▶ P_3 fixes an orientation for the relations of the **linear 2-category presented**, that is

$$P_2^\ell / \equiv_{P_3} .$$

satisfying $s_1 s_2 = s_1 t_2, t_1 s_2 = t_1 t_2$.

- ▶ **Example:** For the nil Hecke algebras,

- ▶ **Example:** For the nil Hecke algebras,

$$\left| \begin{array}{c|c|c|c|c} \dots & \bullet & \dots & \dots & \\ \hline 1 & i & j & n & \end{array} \right| = \left| \begin{array}{c|c|c|c|c} \dots & \bullet & \dots & \dots & \\ \hline 1 & i & j & n & \end{array} \right|$$

$$\left| \begin{array}{c|c|c|c|c} \dots & \text{X} & \dots & \dots & \\ \hline 1 & i & i+1 & j & n \end{array} \right| = \left| \begin{array}{c|c|c|c|c} \dots & \text{X} & \dots & \dots & \\ \hline 1 & i & i+1 & j & n \end{array} \right|$$

$$\left| \begin{array}{c|c|c|c|c} \dots & \text{X} & \text{X} & \dots & \\ \hline 1 & i & i+1 & j & j+1 & n \end{array} \right| = \left| \begin{array}{c|c|c|c|c} \dots & \text{X} & \text{X} & \dots & \\ \hline 1 & i & i+1 & j & j+1 & n \end{array} \right|$$

- ▶ **Example:** For the nil Hecke algebras,

- ▶ These are exchange relations, and do not have to be taken into account in the 2-category.

Presentations of linear 2-categories

- ▶ **Example:** For the nil Hecke algebras,

- ▶ These are exchange relations, and do not have to be taken into account in the 2-category.
- ▶ Remaining relations:

$$\text{Diagram 1} = 0, \quad \text{Diagram 2} = \text{Diagram 3}, \quad \text{Diagram 4} = \text{Diagram 5} + \text{Diagram 6}, \quad \text{Diagram 7} = \text{Diagram 8} - \text{Diagram 9}.$$

Presentations of linear 2-categories

- ▶ **Example:** For the nil Hecke algebras,

- ▶ These are exchange relations, and do not have to be taken into account in the 2-category.
- ▶ Remaining relations:

$$\begin{array}{c} \text{Diagram 1} \Rightarrow 0, \\ \text{Diagram 2} \Rightarrow \text{Diagram 3}, \\ \text{Diagram 4} \Rightarrow \text{Diagram 5} + \text{Diagram 6}, \\ \text{Diagram 7} \Rightarrow \text{Diagram 8} - \text{Diagram 9}. \end{array}$$

- ▶ This cellular extension defines a linear $(3, 2)$ -polygraph presenting a linear 2-category \mathcal{C} such that

$$\text{End}_{\mathcal{C}}(n) \simeq \mathcal{NH}_n$$

Presentations of linear 2-categories

- ▶ **Example:** For the nil Hecke algebras,

- ▶ These are exchange relations, and do not have to be taken into account in the 2-category.

- ▶ Remaining relations:

$$\begin{array}{c} \text{Diagram 1} \Rightarrow 0, \\ \text{Diagram 2} \Rightarrow \text{Diagram 3}, \\ \text{Diagram 4} \Rightarrow \text{Diagram 5} + \text{Diagram 6}, \\ \text{Diagram 7} \Rightarrow \text{Diagram 8} - \text{Diagram 9}. \end{array}$$

- ▶ This cellular extension defines a linear $(3, 2)$ -polygraph presenting a linear 2-category \mathcal{C} such that

$$\text{End}_{\mathcal{C}}(n) \simeq \mathcal{NH}_n$$

- ▶ It is **left monomial**, that is each source of a 3-cell is a monomial.

- ▶ **Assumption:** All the linear $(3, 2)$ -polygraphs we consider are left-monomial.

Presentations of linear 2-categories

- ▶ **Example:** For the nil Hecke algebras,

- ▶ These are exchange relations, and do not have to be taken into account in the 2-category.
- ▶ Remaining relations:

$$\begin{array}{c} \text{Diagram 1} \Rightarrow 0, \\ \text{Diagram 2} \Rightarrow \text{Diagram 3}, \\ \text{Diagram 4} \Rightarrow \text{Diagram 5} + \text{Diagram 6}, \\ \text{Diagram 7} \Rightarrow \text{Diagram 8} - \text{Diagram 9}. \end{array}$$

- ▶ This cellular extension defines a linear $(3, 2)$ -polygraph presenting a linear 2-category \mathcal{C} such that

$$\text{End}_{\mathcal{C}}(n) \simeq \mathcal{NH}_n$$

- ▶ It is **left monomial**, that is each source of a 3-cell is a monomial.
 - ▶ **Assumption:** All the linear $(3, 2)$ -polygraphs we consider are left-monomial.
- ▶ Given a linear $(3, 2)$ -polygraph P , rewriting paths w.r.t P are interpreted as 3-cells in the free linear $(3, 2)$ -category P_3^{ℓ} generated by P .

Presentations of linear 2-categories

- ▶ Example: For the nil Hecke algebras,

- ▶ These are exchange relations, and do not have to be taken into account in the 2-category.

- ▶ Remaining relations:

$$\begin{array}{c} \text{Diagram 1} \Rightarrow 0, \\ \text{Diagram 2} \Rightarrow \text{Diagram 3}, \\ \text{Diagram 4} \Rightarrow \text{Diagram 5} + \text{Diagram 6}, \\ \text{Diagram 7} \Rightarrow \text{Diagram 8} - \text{Diagram 9}. \end{array}$$

- ▶ This cellular extension defines a linear $(3, 2)$ -polygraph presenting a linear 2-category \mathcal{C} such that

$$\text{End}_{\mathcal{C}}(n) \simeq \mathcal{NH}_n$$

- ▶ It is **left monomial**, that is each source of a 3-cell is a monomial.
 - ▶ **Assumption:** All the linear $(3, 2)$ -polygraphs we consider are left-monomial.
- ▶ Given a linear $(3, 2)$ -polygraph P , rewriting paths w.r.t P are interpreted as 3-cells in the free linear $(3, 2)$ -category P_3^ℓ generated by P .
- ▶ A **rewriting step** of a linear $(3, 2)$ -polygraph is 3-cell of the form

$$\lambda \begin{array}{c} \dots \\ \boxed{m_1} \\ \dots \\ \boxed{m_2} \boxed{s_2(\alpha)} \boxed{m_3} \\ \dots \\ \boxed{m_4} \\ \dots \end{array} + u \Rightarrow \lambda \begin{array}{c} \dots \\ \boxed{m_1} \\ \dots \\ \boxed{m_2} \boxed{t_2(\alpha)} \boxed{m_3} \\ \dots \\ \boxed{m_4} \\ \dots \end{array} + u$$

where $\alpha \in P_3$, and such that $m_1 *_1 (m_2 *_0 s_2(\alpha) *_0 m_3) *_1 m_4$ does not appear in the monomial decomposition of u .

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

▶ Regular:

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

- ▶ Regular:

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

- ▶ Regular:

- ▶ Inclusion:

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

- ▶ Regular:

- ▶ Inclusion:

- ▶ Right-indexed (also left-indexed, multi-indexed):

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

► Regular:

► Inclusion:

- ▶ Right-indexed (also left-indexed, multi-indexed):

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

- ▶ Regular:

- ▶ Inclusion:

- ▶ Right-indexed (also left-indexed, multi-indexed):

- ▶ **Critical branching lemma:** A **terminating** linear $(3, 2)$ -polygraph is locally confluent if and only if all its critical branchings are confluent.

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

- ▶ Regular:

- ▶ Inclusion:

- ▶ Right-indexed (also left-indexed, multi-indexed):

- ▶ **Critical branching lemma:** A **terminating** linear $(3, 2)$ -polygraph is locally confluent if and only if all its critical branchings are confluent.
- ▶ Let P be a left-monomial and convergent linear $(3, 2)$ -polygraph. Let \mathcal{C} be the linear 2-category presented by P .

- ▶ **Newman lemma:** If P is terminating, then P is confluent if and only if it is locally confluent.
- ▶ **Critical branchings** of linear $(3, 2)$ -polygraphs: local branchings on minimal string diagrams.

- ▶ Regular:

- ▶ Inclusion:

- ▶ Right-indexed (also left-indexed, multi-indexed):

- ▶ **Critical branching lemma:** A **terminating** linear $(3, 2)$ -polygraph is locally confluent if and only if all its critical branchings are confluent.
- ▶ Let P be a left-monomial and convergent linear $(3, 2)$ -polygraph. Let C be the linear 2-category presented by P .
- ▶ **Theorem [Alleaume '16]:** For any parallel 1-cells p, q of C , the set of monomials in normal form w.r.t P with 1-source p and 1-target q is a linear basis of $C_2(p, q)$.

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- ▶ These algebras appear in the process of categorifying a quantum group $U_q(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g} .

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- ▶ These algebras appear in the process of categorifying a quantum group $U_q(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g} .
- ▶ Let Γ be the Dynkin diagram of \mathfrak{g} , with set of vertices I , seen as colors.

$$\Gamma = \begin{array}{ccccccccc} \textcolor{red}{\bullet} & \xrightarrow{\hspace{1.5cm}} & \textcolor{blue}{\bullet} & \xrightarrow{\hspace{1.5cm}} & \textcolor{green}{\bullet} & \xrightarrow{\hspace{1.5cm}} & \textcolor{yellow}{\bullet} \\ i & & j & & k & & / \end{array}$$

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- ▶ These algebras appear in the process of categorifying a quantum group $U_q(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g} .
- ▶ Let Γ be the Dynkin diagram of \mathfrak{g} , with set of vertices I , seen as colors.

$$\Gamma = \begin{array}{ccccccc} \textcolor{red}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{blue}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{green}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{yellow}{\bullet} \\ i & & j & & k & & l \end{array} \quad (\Gamma \text{ simply laced})$$

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- ▶ These algebras appear in the process of categorifying a quantum group $U_q(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g} .
- ▶ Let Γ be the Dynkin diagram of \mathfrak{g} , with set of vertices I , seen as colors.

$$\Gamma = \begin{array}{ccccccc} \textcolor{red}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{blue}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{green}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{yellow}{\bullet} \\ i & & j & & k & & l \end{array} \quad (\Gamma \text{ simply laced})$$

- ▶ Let $\mathcal{V} = \sum_{i \in I} \nu_i \cdot i$ be an element of $\mathbb{N}[I]$, we consider the set $\text{Seq}(\mathcal{V})$ of sequels of elements of Γ where i appears ν_i times.

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- ▶ These algebras appear in the process of categorifying a quantum group $U_q(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g} .
- ▶ Let Γ be the Dynkin diagram of \mathfrak{g} , with set of vertices I , seen as colors.

$$\Gamma = \begin{array}{ccccccc} \bullet & \longrightarrow & \bullet & \longrightarrow & \bullet & \longrightarrow & \bullet \\ i & & j & & k & & l \end{array} \quad (\Gamma \text{ simply laced})$$

- ▶ Let $\mathcal{V} = \sum_{i \in I} \nu_i \cdot i$ be an element of $\mathbb{N}[I]$, we consider the set $\text{Seq}(\mathcal{V})$ of sequels of elements of Γ where i appears ν_i times.
- ▶ Exemple: $\text{Seq}(2i + k) = \{ii\bar{k}, i\bar{k}i, \bar{k}ii\}$

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- ▶ These algebras appear in the process of categorifying a quantum group $\mathbf{U}_q(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g} .
- ▶ Let Γ be the Dynkin diagram of \mathfrak{g} , with set of vertices I , seen as colors.

$$\Gamma = \begin{array}{ccccccc} \textcolor{red}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{blue}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{green}{\bullet} & \xrightarrow{\hspace{1cm}} & \textcolor{yellow}{\bullet} \\ i & & j & & k & & l \end{array} \quad (\Gamma \text{ simply laced})$$

- ▶ Let $\mathcal{V} = \sum_{i \in I} \nu_i \cdot i$ be an element of $\mathbb{N}[I]$, we consider the set $\text{Seq}(\mathcal{V})$ of sequels of elements of Γ where i appears ν_i times.
 - ▶ **Exemple:** $\text{Seq}(2i + k) = \{ii\bar{k}, \bar{i}ki, k\bar{i}\bar{i}\}$
- ▶ For such an element \mathcal{V} , we define an algebra $R(\mathcal{V})$.

- ▶ **Theorem [Khovanov-Lauda '08]:** If $R = \bigoplus_{\mathcal{V} \in \mathbb{N}[I]} R(\mathcal{V})$,

$$K_0(R - \text{pmod}) \simeq \mathbf{U}_q^-(\mathfrak{g})$$

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- ▶ These algebras appear in the process of categorifying a quantum group $\mathbf{U}_q(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g} .
- ▶ Let Γ be the Dynkin diagram of \mathfrak{g} , with set of vertices I , seen as colors.

$$\Gamma = \begin{array}{ccccccc} \bullet & \longrightarrow & \bullet & \longrightarrow & \bullet & \longrightarrow & \bullet \\ i & & j & & k & & l \end{array} \quad (\Gamma \text{ simply laced})$$

- ▶ Let $\mathcal{V} = \sum_{i \in I} \nu_i \cdot i$ be an element of $\mathbb{N}[I]$, we consider the set $\text{Seq}(\mathcal{V})$ of sequels of elements of Γ where i appears ν_i times.

- ▶ **Exemple:** $\text{Seq}(2i + k) = \{ii\bar{k}, i\bar{k}i, \bar{k}ii\}$

- ▶ For such an element \mathcal{V} , we define an algebra $R(\mathcal{V})$.

- ▶ **Theorem [Khovanov-Lauda '08]:** If $R = \bigoplus_{\mathcal{V} \in \mathbb{N}[I]} R(\mathcal{V})$,

$$K_0(R - \text{pmod}) \simeq \mathbf{U}_q^-(\mathfrak{g})$$

- ▶ $R(\mathcal{V})$ is generated by

$$x_{k,i} = \left| \begin{array}{c|c|c} \dots & \bullet & \dots \\ \hline i_1 & i_k & i_m \end{array} \right| \quad \text{and} \quad \tau_{k,i} = \left| \begin{array}{c|c|c} \dots & \times & \dots \\ \hline i_1 & i_\ell & i_{\ell+1} & i_m \end{array} \right|$$

for any $i = i_1 \dots i_m \in \text{Seq}(\mathcal{V})$, $1 \leq k \leq m$ and $1 \leq \ell < m$.

Convergent presentation of the KLR algebras

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} = 0$$

$$\text{X} = \text{X} + \text{I} \quad , \quad \text{X} = \text{X} - \text{I}$$

ii) Distant colors:

$$\text{X} = \text{I} \quad \text{I}$$

iii) Close colors:

$$\text{X} = \text{I} + \text{I} \quad \text{I}$$

iv) Different colors:

$$\text{X} = \text{I} \quad \text{I}$$

vi) Braid relations:

$$\text{X} = \text{X} + \text{I} \quad \text{and otherwise} \quad \text{X} = \text{X}$$

Convergent presentation of the KLR algebras

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \mid \mid, \quad \text{X} \Rightarrow \text{X} - \mid \mid$$

ii) Distant colors:

$$\text{X} \Rightarrow \mid \mid$$

iii) Close colors:

$$\text{X} \Rightarrow \bullet + \mid \mid + \bullet$$

iv) Different colors:

$$\text{X} \Rightarrow \text{X} \quad \text{X} \Rightarrow \text{X}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \mid \mid \quad \text{and otherwise}$$

$$\text{X} \Rightarrow \text{X}$$

Convergent presentation of the KLR algebras

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \mid \mid, \quad \text{X} \Rightarrow \text{X} - \mid \mid$$

ii) Distant colors:

$$\text{X} \Rightarrow \mid \mid$$

iii) Close colors:

$$\text{X} \Rightarrow \bullet + \mid \mid + \bullet$$

iv) Different colors:

$$\text{X} \Rightarrow \text{X} \quad \text{X} \Rightarrow \text{X}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \mid \mid \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

► Theorem [D. '19]: This linear $(3, 2)$ -polygraph is convergent.

Convergent presentation of the KLR algebras

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \mid \mid, \quad \text{X} \Rightarrow \text{X} - \mid \mid$$

ii) Distant colors:

$$\text{X} \Rightarrow \mid \mid$$

iii) Close colors:

$$\text{X} \Rightarrow \bullet + \mid \mid + \bullet$$

iv) Different colors:

$$\text{X} \Rightarrow \text{X} \quad \text{X} \Rightarrow \text{X}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \mid \mid \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

► Theorem [D. '19]: This linear $(3, 2)$ -polygraph is convergent.

► Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.

Convergent presentation of the KLR algebras

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \mid \mid , \quad \text{X} \Rightarrow \text{X} - \mid \mid$$

ii) Distant colors:

$$\text{X} \Rightarrow \mid \mid$$

iii) Close colors:

$$\text{X} \Rightarrow \bullet + \mid \mid + \bullet$$

iv) Different colors:

$$\text{X} \Rightarrow \text{X} \quad \text{X} \Rightarrow \text{X}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \mid \mid \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

► **Theorem [D. '19]:** This linear $(3, 2)$ -polygraph is convergent.

- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

- Relations to realize the algebras $\mathcal{R}(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet)$

i) Same color:

XX

$$\text{Diagram 1} \Rightarrow \text{Diagram 2} + \text{Diagram 3}, \quad \text{Diagram 4} \Rightarrow \text{Diagram 5} - \text{Diagram 6}$$

ii) Distant colors:

iii) Close colors:

iv) Different colors:

$$\begin{array}{c} \text{Diagram 1} \\ \Rightarrow \\ \text{Diagram 2} \end{array} \quad \begin{array}{c} \text{Diagram 3} \\ \Rightarrow \\ \text{Diagram 4} \end{array}$$

vi) Braid relations:

$$\text{Diagram 1} \Rightarrow \text{Diagram 2} + \text{Diagram 3} \quad \text{and otherwise} \quad \text{Diagram 4} \Rightarrow \text{Diagram 5}$$

- **Theorem [D. '19]:** This linear $(3, 2)$ -polygraph is convergent.

- ▶ Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- ▶ Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

- Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \text{I}, \quad \text{X} \Rightarrow \text{X} - \text{I}$$

ii) Distant colors:

$$\text{X} \Rightarrow \text{I}$$

iii) Close colors:

$$\text{X} \Rightarrow \text{I} + \text{I}$$

iv) Different colors:

$$\text{X} \Rightarrow \text{I}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{I} + \text{I} \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{I}$$

- **Theorem [D. '19]:** This linear $(3, 2)$ -polygraph is convergent.

- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

- Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \text{I}, \quad \text{X} \Rightarrow \text{X} - \text{I}$$

ii) Distant colors:

$$\text{X} \Rightarrow \text{I}$$

iii) Close colors:

$$\text{X} \Rightarrow \text{I} + \text{I}$$

iv) Different colors:

$$\text{X} \Rightarrow \text{I}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \text{I} \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

- Theorem [D. '19]: This linear $(3, 2)$ -polygraph is convergent.

► Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.

► Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

- Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \text{I}, \quad \text{X} \Rightarrow \text{X} - \text{I}$$

ii) Distant colors:

$$\text{X} \Rightarrow \text{I}$$

iii) Close colors:

$$\text{X} \Rightarrow \text{I} + \text{I}$$

iv) Different colors:

$$\text{X} \Rightarrow \text{I}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \text{I} \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

- Theorem [D. '19]: This linear $(3, 2)$ -polygraph is convergent.

► Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.

► Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

- Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \text{I}, \quad \text{X} \Rightarrow \text{X} - \text{I}$$

ii) Distant colors:

$$\text{X} \Rightarrow \text{I}$$

iii) Close colors:

$$\text{X} \Rightarrow \text{I} + \text{I}$$

iv) Different colors:

$$\text{X} \Rightarrow \text{I}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \text{I} \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

- Theorem [D. '19]: This linear $(3, 2)$ -polygraph is convergent.

► Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.

► Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

- Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \text{I}, \quad \text{X} \Rightarrow \text{X} - \text{I}$$

ii) Distant colors:

$$\text{X} \Rightarrow \text{I}$$

iii) Close colors:

$$\text{X} \Rightarrow \text{I} + \text{I}$$

iv) Different colors:

$$\text{X} \Rightarrow \text{I}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \text{I} \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

- Theorem [D. '19]: This linear $(3, 2)$ -polygraph is convergent.

► Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.

► Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

- Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category:

$$(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \mid \mid, \quad \text{X} \Rightarrow \text{X} - \mid \mid$$

ii) Distant colors:

$$\text{X} \Rightarrow \mid \mid$$

iii) Close colors:

$$\text{X} \Rightarrow \bullet + \mid \mid + \bullet$$

iv) Different colors:

$$\text{X} \Rightarrow \text{X} \quad \text{X} \Rightarrow \text{X}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \mid \mid \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

- **Theorem [D. '19]:** This linear $(3, 2)$ -polygraph is convergent.

► Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.

► Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

- Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category:

$$(\Gamma = \bullet \xrightarrow{i} \bullet \xrightarrow{j} \bullet \xrightarrow{k} \bullet)$$

i) Same color:

$$\text{X} \Rightarrow 0$$

$$\text{X} \Rightarrow \text{X} + \text{I}, \quad \text{X} \Rightarrow \text{X} - \text{I}$$

ii) Distant colors:

$$\text{X} \Rightarrow \text{I}$$

iii) Close colors:

$$\text{X} \Rightarrow \text{I} + \text{I}$$

iv) Different colors:

$$\text{X} \Rightarrow \text{I}$$

vi) Braid relations:

$$\text{X} \Rightarrow \text{X} + \text{I} \quad \text{and otherwise} \quad \text{X} \Rightarrow \text{X}$$

- **Theorem [D. '19]:** This linear $(3, 2)$ -polygraph is convergent.

► Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.

► Confluence: exhaustive study of all critical branchings.

III. Confluence modulo in the KLR 2-category

- ▶ Proving confluence for presentations admitting a great number of relations may be complicated.

- ▶ Proving confluence for presentations admitting a great number of relations may be complicated.
 - ▶ Some structural relations may make the analysis of critical branchings complicated.

- ▶ Proving confluence for presentations admitting a great number of relations may be complicated.
 - ▶ Some structural relations may make the analysis of critical branchings complicated.
 - ▶ **Example:** Adjunction and isotopy relations in pivotal linear 2-categories:

$$\text{N} = \text{I} = \text{U}, \quad \text{N} \cdot = \cdot \text{I} = \text{U} \cdot, \quad \cdot \text{N} = \text{N} \cdot, \quad \cdot \text{U} = \text{U} \cdot.$$

- ▶ Proving confluence for presentations admitting a great number of relations may be complicated.
 - ▶ Some structural relations may make the analysis of critical branchings complicated.
 - ▶ **Example:** Adjunction and isotopy relations in pivotal linear 2-categories:

$$\text{N} = | = \text{U} , \quad \text{N} \cdot = \cdot = \text{U} \cdot , \quad \cdot \text{N} = \text{N} \cdot , \quad \cdot \text{U} = \text{U} \cdot .$$

- ▶ **Rewriting modulo** these relations: R set of oriented relations and E set of non-oriented axioms.

- ▶ Proving confluence for presentations admitting a great number of relations may be complicated.
 - ▶ Some structural relations may make the analysis of critical branchings complicated.
 - ▶ **Example:** Adjunction and isotopy relations in pivotal linear 2-categories:

$$\text{N} = | = \text{U} , \quad \text{N} \bullet = \bullet = \text{U} \bullet , \quad \bullet \text{N} = \text{N} \bullet , \quad \bullet \text{U} = \text{U} \bullet .$$

- ▶ **Rewriting modulo** these relations: R set of oriented relations and E set of non-oriented axioms.
- ▶ Three main paradigms of rewriting modulo:

- ▶ Rewriting with relations of R , and confluence modulo E , **Huet '80**.

- ▶ Proving confluence for presentations admitting a great number of relations may be complicated.
 - ▶ Some structural relations may make the analysis of critical branchings complicated.
 - ▶ **Example:** Adjunction and isotopy relations in pivotal linear 2-categories:

$$\text{N} = | = \text{U} , \quad \text{N} \bullet = \bullet = \text{U} \bullet , \quad \bullet \text{N} = \text{N} \bullet , \quad \bullet \text{U} = \text{U} \bullet .$$

- ▶ **Rewriting modulo** these relations: R set of oriented relations and E set of non-oriented axioms.
- ▶ Three main paradigms of rewriting modulo:

- ▶ Rewriting with relations of R , and confluence modulo E , **Huet '80**.

$$\begin{array}{ccccc} u & \xrightarrow{R} & u' & \xrightarrow{R} & w \\ E \downarrow & & \downarrow E & & \downarrow E \\ v & \xrightarrow{R} & v' & \xrightarrow{R} & w' \end{array}$$

- ▶ Rewriting with R on E -equivalence classes:

$$\begin{array}{ccc} u & \xrightarrow{E R_E} & v \\ E \downarrow & & \downarrow E \\ u' & \xrightarrow{R} & v' \end{array}$$

- ▶ Proving confluence for presentations admitting a great number of relations may be complicated.
 - ▶ Some structural relations may make the analysis of critical branchings complicated.
 - ▶ **Example:** Adjunction and isotopy relations in pivotal linear 2-categories:

$$\text{N} = | = \text{U} , \quad \text{N} \bullet = \bullet = \text{U} \bullet , \quad \bullet \text{N} = \text{N} \bullet , \quad \bullet \text{U} = \text{U} \bullet .$$

- ▶ **Rewriting modulo** these relations: R set of oriented relations and E set of non-oriented axioms.
- ▶ Three main paradigms of rewriting modulo:

- ▶ Rewriting with relations of R , and confluence modulo E , **Huet '80**.

$$\begin{array}{ccccc} u & \xrightarrow{R} & u' & \xrightarrow{R} & w \\ E \uparrow & & \downarrow E & & \downarrow E \\ v & \xrightarrow{R} & v' & \xrightarrow{R} & w' \end{array}$$

- ▶ Rewriting with R on E -equivalence classes:

$$\begin{array}{ccc} u & \xrightarrow{E R_E} & v \\ E \downarrow & & \downarrow E \\ u' & \xrightarrow{R} & v' \end{array}$$

- ▶ **Rewriting system modulo:** (R, E, S) such that $R \subseteq S \subseteq {}_E R_E$, **Jouannaud-Kirchner '84**.

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.

- ▶ We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- ▶ A linear $(3, 2)$ -polygraph **modulo** is a triple (R, E, S) made of

- ▶ We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- ▶ A linear $(3, 2)$ -polygraph **modulo** is a triple (R, E, S) made of
 - ▶ a linear $(3, 2)$ -polygraph R ,

- ▶ We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- ▶ A linear $(3, 2)$ -polygraph **modulo** is a triple (R, E, S) made of
 - ▶ a linear $(3, 2)$ -polygraph R ,
 - ▶ a linear $(3, 2)$ -polygraph E such that $E_0 = R_0$, $E_1 = R_1$ and $E_2 \subseteq R_2$,

- ▶ We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- ▶ A linear $(3, 2)$ -polygraph **modulo** is a triple (R, E, S) made of
 - ▶ a linear $(3, 2)$ -polygraph R ,
 - ▶ a linear $(3, 2)$ -polygraph E such that $E_0 = R_0$, $E_1 = R_1$ and $E_2 \subseteq R_2$,
 - ▶ S is a cellular extension of R_2^ℓ such that $R \subseteq S \subseteq {}_E R_E$, where the cellular extension ${}_E R_E$ is defined by triples $(e, f, e') \in E^\ell \times R^{\ell(1)} \times E^\ell$ as follows:

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear $(3, 2)$ -polygraph modulo is a triple (R, E, S) made of
 - a linear $(3, 2)$ -polygraph R ,
 - a linear $(3, 2)$ -polygraph E such that $E_0 = R_0$, $E_1 = R_1$ and $E_2 \subseteq R_2$,
 - S is a cellular extension of R_2^ℓ such that $R \subseteq S \subseteq {}_E R_E$, where the cellular extension ${}_E R_E$ is defined by triples $(e, f, e') \in E^\ell \times R^{\ell(1)} \times E^\ell$ as follows:

- ▶ We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- ▶ A linear $(3, 2)$ -polygraph modulo is a triple (R, E, S) made of
 - ▶ a linear $(3, 2)$ -polygraph R ,
 - ▶ a linear $(3, 2)$ -polygraph E such that $E_0 = R_0$, $E_1 = R_1$ and $E_2 \subseteq R_2$,
 - ▶ S is a cellular extension of R_2^ℓ such that $R \subseteq S \subseteq {}_E R_E$, where the cellular extension ${}_E R_E$ is defined by triples $(e, f, e') \in E^\ell \times R^{\ell(1)} \times E^\ell$ as follows:

- ▶ f is a rewriting step of R ,

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear $(3, 2)$ -polygraph modulo is a triple (R, E, S) made of
 - a linear $(3, 2)$ -polygraph R ,
 - a linear $(3, 2)$ -polygraph E such that $E_0 = R_0$, $E_1 = R_1$ and $E_2 \subseteq R_2$,
 - S is a cellular extension of R_2^ℓ such that $R \subseteq S \subseteq {}_E R_E$, where the cellular extension ${}_E R_E$ is defined by triples $(e, f, e') \in E^\ell \times R^{\ell(1)} \times E^\ell$ as follows:

- f is a rewriting step of R ,
- e and e' are 3-cells of E_3^ℓ , namely E -congruences.

- ▶ We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- ▶ A linear $(3, 2)$ -polygraph modulo is a triple (R, E, S) made of
 - ▶ a linear $(3, 2)$ -polygraph R ,
 - ▶ a linear $(3, 2)$ -polygraph E such that $E_0 = R_0$, $E_1 = R_1$ and $E_2 \subseteq R_2$,
 - ▶ S is a cellular extension of R_2^ℓ such that $R \subseteq S \subseteq {}_E R_E$, where the cellular extension ${}_E R_E$ is defined by triples $(e, f, e') \in E^\ell \times R^{\ell(1)} \times E^\ell$ as follows:

- ▶ f is a rewriting step of R ,
- ▶ e and e' are 3-cells of E_3^ℓ , namely E -congruences.
- ▶ A branching modulo E of S modulo S is a triple (f, e, g) where f and g are S -rewriting sequences (with f non trivial) and e is an E -congruence, such that:

$$\begin{array}{ccc} u & \xrightarrow{f} & u' \\ e \downarrow & & \\ v & \xrightarrow{g} & v' \end{array}$$

- ▶ We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- ▶ A linear $(3, 2)$ -polygraph modulo is a triple (R, E, S) made of
 - ▶ a linear $(3, 2)$ -polygraph R ,
 - ▶ a linear $(3, 2)$ -polygraph E such that $E_0 = R_0$, $E_1 = R_1$ and $E_2 \subseteq R_2$,
 - ▶ S is a cellular extension of R_2^ℓ such that $R \subseteq S \subseteq {}_E R_E$, where the cellular extension ${}_E R_E$ is defined by triples $(e, f, e') \in E^\ell \times R^{\ell(1)} \times E^\ell$ as follows:

- ▶ f is a rewriting step of R ,
- ▶ e and e' are 3-cells of E_3^ℓ , namely E -congruences.
- ▶ A branching modulo E of S modulo S is a triple (f, e, g) where f and g are S -rewriting sequences (with f non trivial) and e is an E -congruence, such that:

$$\begin{array}{ccc} u & \xrightarrow{f} & u' \\ e \downarrow & & \\ v & \xrightarrow{g} & v' \end{array}$$

- ▶ It is local if f is a S -rewriting step, and g and e satisfy $\ell(g) + \ell(e) = 1$.

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear $(3, 2)$ -polygraph modulo is a triple (R, E, S) made of
 - a linear $(3, 2)$ -polygraph R ,
 - a linear $(3, 2)$ -polygraph E such that $E_0 = R_0$, $E_1 = R_1$ and $E_2 \subseteq R_2$,
 - S is a cellular extension of R_2^ℓ such that $R \subseteq S \subseteq {}_E R_E$, where the cellular extension ${}_E R_E$ is defined by triples $(e, f, e') \in E^\ell \times R_2^\ell(1) \times E^\ell$ as follows:

- f is a rewriting step of R ,
- e and e' are 3-cells of E_3^ℓ , namely E -congruences.
- A branching modulo E of S modulo S is a triple (f, e, g) where f and g are S -rewriting sequences (with f non trivial) and e is an E -congruence, such that:

$$\begin{array}{ccc} u & \xrightarrow{f} & u' \xrightarrow{f'} w \\ e \downarrow & & \downarrow e' \\ v & \xrightarrow{g} & v' \xrightarrow{g'} w' \end{array}$$

- It is local if f is a S -rewriting step, and g and e satisfy $\ell(g) + \ell(e) = 1$.
- It is confluent modulo E if there exists S -rewriting sequences f' , g' , and a 3-cell e' in E_3^ℓ as above.

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

$$\begin{array}{ccc}
 \begin{array}{c}
 u \xrightarrow{S^{*(1)}} v \dots \xrightarrow{S^*} v' \\
 \Downarrow \\
 u \xrightarrow{R^{*(1)}} w \dots \xrightarrow{S^*} w' \\
 \Downarrow E^\top
 \end{array}
 &
 \begin{array}{c}
 u \xrightarrow{S^{*(1)}} v \dots \xrightarrow{S^*} v' \\
 \Downarrow E^\top \\
 u' \dots \xrightarrow{S^*} w
 \end{array}
 \end{array}$$

are confluent modulo E .

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- Let (R, E, S) be a linear $(3, 2)$ -polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- Let (R, E, S) be a linear $(3, 2)$ -polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
 - E is convergent,
 - S is **terminating**,
 - S is confluent modulo E .

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- Let (R, E, S) be a linear $(3, 2)$ -polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
 - E is convergent,
 - S is **terminating**,
 - S is confluent modulo E .
- Let us consider a 2-cell $u \in \mathcal{C}_2(p, q)$,

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- Let (R, E, S) be a linear $(3, 2)$ -polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
 - E is convergent,
 - S is **terminating**,
 - S is confluent modulo E .
- Let us consider a 2-cell $u \in \mathcal{C}_2(p, q)$,

$$u \stackrel{S^*}{\Rightarrow} \sum \hat{u}_i,$$

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- Let (R, E, S) be a linear $(3, 2)$ -polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that

- E is convergent,
- S is **terminating**,
- S is confluent modulo E .

- Let us consider a 2-cell $u \in \mathcal{C}_2(p, q)$,

$$u \stackrel{S^*}{\Rightarrow} \sum \hat{u}_i, \quad \hat{u}_i \stackrel{NF(E)}{\rightsquigarrow} \sum v_{i,k}.$$

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- Let (R, E, S) be a linear $(3, 2)$ -polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that

- E is convergent,
- S is **terminating**,
- S is confluent modulo E .

- Let us consider a 2-cell $u \in \mathcal{C}_2(p, q)$,

$$u \stackrel{S^*}{\Rightarrow} \sum \hat{u}_i, \quad \hat{u}_i \stackrel{NF(E)}{\rightsquigarrow} \sum v_{i,k}.$$

- **Theorem [D. '19]** The set $\{v_{i,k} \text{ thus defined} \mid u \in \mathcal{C}_2(p, q)\}$ is a linear basis of $\mathcal{C}_2(p, q)$.

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- Let (R, E, S) be a linear $(3, 2)$ -polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.

- Assume that

- E is convergent,
- S is **terminating**,
- S is confluent modulo E .

- Let us consider a 2-cell $u \in \mathcal{C}_2(p, q)$,

$$u \stackrel{S^*}{\Rightarrow} \sum \hat{u}_i, \quad \hat{u}_i \stackrel{NF(E)}{\rightsquigarrow} \sum v_{i,k}.$$

- **Theorem [D. '19]** The set $\{v_{i,k} \text{ thus defined} \mid u \in \mathcal{C}_2(p, q)\}$ is a linear basis of $\mathcal{C}_2(p, q)$.

- This result extends to the case where S is **quasi-terminating**, that is it admits infinite rewriting paths that come from rewriting loops.

- **Theorem [D' 19] (Linear critical branching lemma modulo):** If ${}_E R_E$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E .

- Let (R, E, S) be a linear $(3, 2)$ -polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.

- Assume that

- E is convergent,
- S is **terminating**,
- S is confluent modulo E .

- Let us consider a 2-cell $u \in \mathcal{C}_2(p, q)$,

$$u \stackrel{S^*}{\Rightarrow} \sum \hat{u}_i, \quad \hat{u}_i \stackrel{NF(E)}{\rightsquigarrow} \sum v_{i,k}.$$

- **Theorem [D. '19]** The set $\{v_{i,k} \text{ thus defined} \mid u \in \mathcal{C}_2(p, q)\}$ is a linear basis of $\mathcal{C}_2(p, q)$.

- This result extends to the case where S is **quasi-terminating**, that is it admits infinite rewriting paths that come from rewriting loops.
- Reduce u into $\sum \tilde{u}_i$, where \tilde{u}_i is a fixed monomial in **quasi normal-form**, that is for every 3-cell $v \Rightarrow \tilde{u}_i$, there exists a 3-cell $\tilde{u}_i \Rightarrow v$.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_0 = X(\mathfrak{sl}_2) = \mathbb{Z}$ the weight lattice of \mathfrak{sl}_2 ,

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_0 = X(\mathfrak{sl}_2) = \mathbb{Z}$ the weight lattice of \mathfrak{sl}_2 ,
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_1 = \{\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_{\ell(\underline{\varepsilon})}) \text{ with } \varepsilon_i \in \{-, +\}\}$.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_0 = X(\mathfrak{sl}_2) = \mathbb{Z}$ the weight lattice of \mathfrak{sl}_2 ,
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_1 = \{\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_{\ell(\underline{\varepsilon})}) \text{ with } \varepsilon_i \in \{-, +\}\}$.
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_2$ is made of the following generating 2-cells:

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_0 = X(\mathfrak{sl}_2) = \mathbb{Z}$ the weight lattice of \mathfrak{sl}_2 ,
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_1 = \{\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_{\ell(\underline{\varepsilon})}) \text{ with } \varepsilon_i \in \{-, +\}\}$.
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_2$ is made of the following generating 2-cells:

- ▶ subject to the following relations:

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_0 = X(\mathfrak{sl}_2) = \mathbb{Z}$ the weight lattice of \mathfrak{sl}_2 ,
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_1 = \{\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_{\ell(\underline{\varepsilon})}) \text{ with } \varepsilon_i \in \{-, +\}\}$.
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_2$ is made of the following generating 2-cells:

- ▶ subject to the following relations:

- ▶ The KLR relations for both orientation of strands.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_0 = X(\mathfrak{sl}_2) = \mathbb{Z}$ the weight lattice of \mathfrak{sl}_2 ,
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)}) \text{ with } \varepsilon_i \in \{-, +\}\}$.
 - ▶ $\mathcal{U}(\mathfrak{sl}_2)_2$ is made of the following generating 2-cells:

- ▶ subject to the following relations:

- ▶ The KLR relations for both orientation of strands.
- ▶ Pivotal isotopy axioms:

$$\left. \begin{array}{c} \text{Diagram 1: } \text{U}_{\pm} \Rightarrow \text{U}_{\pm} \Leftarrow \text{U}_{\pm}, \quad \text{Diagram 2: } \text{U}_{\pm} \bullet \text{U}_{\pm} \Rightarrow \bullet \text{U}_{\pm} \Leftarrow \text{U}_{\pm}, \quad \text{Diagram 3: } \bullet \text{U}_{\pm} \Rightarrow \text{U}_{\pm} \bullet \Leftarrow \text{U}_{\pm}, \quad \text{Diagram 4: } \text{U}_{\pm}^{\pm} \Rightarrow \text{U}_{\pm}^{\pm} \Leftarrow \text{U}_{\pm}^{\pm} \end{array} \right\} E$$

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by

- $\mathcal{U}(\mathfrak{sl}_2)_0 = X(\mathfrak{sl}_2) = \mathbb{Z}$ the weight lattice of \mathfrak{sl}_2 ,
- $\mathcal{U}(\mathfrak{sl}_2)_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)}) \text{ with } \varepsilon_i \in \{-, +\}\}$.
- $\mathcal{U}(\mathfrak{sl}_2)_2$ is made of the following generating 2-cells:

- subject to the following relations:

- The KLR relations for both orientation of strands.
- Pivotal isotopy axioms:

$$\left. \begin{array}{c} \text{Diagram 1} \Rightarrow \text{Diagram 2} \Leftarrow \text{Diagram 3}, \quad \text{Diagram 4} \Rightarrow \text{Diagram 5} \Leftarrow \text{Diagram 6}, \quad \text{Diagram 7} \Rightarrow \text{Diagram 8} \Leftarrow \text{Diagram 9}, \quad \text{Diagram 10} \Rightarrow \text{Diagram 11} \Leftarrow \text{Diagram 12} \\ \vdots \end{array} \right\} E$$

- Bubble relations:

$$n \bullet \text{Diagram 13} \lambda \Rightarrow \begin{cases} 1_{1\lambda} & \text{if } n = \lambda - 1 \\ 0 & \text{if } n < \lambda - 1 \end{cases} ; \quad \lambda \text{Diagram 14} \bullet n \Rightarrow \begin{cases} 1_{1\lambda} & \text{if } n = -\lambda - 1 \\ 0 & \text{if } n < -\lambda - 1 \end{cases}$$

$$\lambda - 1 + \alpha \bullet \text{Diagram 15} \lambda \Rightarrow - \sum_{l=1}^{\alpha} \lambda - 1 + \alpha - l \text{Diagram 16} \lambda \text{Diagram 17} \lambda^{-\lambda - 1 + l} \text{ for all } \lambda \in \mathbb{Z} \text{ and } \alpha > 0 \text{ such that } \lambda - 1 + \alpha \geq 0$$

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- Let $\mathcal{U}(\mathfrak{sl}_2)$ be the linear 2-category defined by

- $\mathcal{U}(\mathfrak{sl}_2)_0 = X(\mathfrak{sl}_2) = \mathbb{Z}$ the weight lattice of \mathfrak{sl}_2 ,
- $\mathcal{U}(\mathfrak{sl}_2)_1 = \{\varepsilon = (\varepsilon_1, \dots, \varepsilon_{\ell(\varepsilon)}) \text{ with } \varepsilon_i \in \{-, +\}\}$.
- $\mathcal{U}(\mathfrak{sl}_2)_2$ is made of the following generating 2-cells:

- subject to the following relations:

- The KLR relations for both orientation of strands.
- Pivotal isotopy axioms:

$$\left. \begin{array}{c} \text{Diagram 1: } \text{U}_{\pm} \Rightarrow \text{U}_{\pm} \Leftrightarrow \text{U}_{\pm}, \quad \text{Diagram 2: } \text{U}_{\pm} \Rightarrow \text{U}_{\pm} \Leftrightarrow \text{U}_{\pm}, \quad \text{Diagram 3: } \text{U}_{\pm} \Rightarrow \text{U}_{\pm}, \quad \text{Diagram 4: } \text{U}_{\pm} \Rightarrow \text{U}_{\pm} \end{array} \right\} E$$

- Bubble relations:

$$n \bullet \text{U}_{\lambda} \Rightarrow \begin{cases} 1_{\lambda} & \text{if } n = \lambda - 1 \\ 0 & \text{if } n < \lambda - 1 \end{cases} ; \quad \lambda \text{U}_{\lambda} \bullet n \Rightarrow \begin{cases} 1_{\lambda} & \text{if } n = -\lambda - 1 \\ 0 & \text{if } n < -\lambda - 1 \end{cases}$$

$$\lambda - 1 + \alpha \bullet \text{U}_{\lambda} \Rightarrow - \sum_{l=1}^{\alpha} \lambda - 1 + \alpha - l \text{U}_{\lambda} \text{U}_{\lambda}^{-\lambda - 1 + l} \text{ for all } \lambda \in \mathbb{Z} \text{ and } \alpha > 0 \text{ such that } \lambda - 1 + \alpha \geq 0$$

- Bubble slide relations of the form

$$\lambda + 1 + \alpha \bullet \text{U}_{\lambda} \Rightarrow \sum_{f=0}^{\alpha} (\alpha + 1 - f) \text{U}_{\alpha - f} \bullet \text{U}_{\lambda}^{\lambda - 1 + f}$$

for any orientations of the bubbles and of the strand.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

► Quantum relations:

$$\Rightarrow -\uparrow\downarrow_\lambda + \sum_{n=0}^{\lambda-1} \sum_{r \geq 0} \text{Diagram } r - n - r - 2 ,$$

$$\text{Diagram with green loops and red dots} \Rightarrow -\downarrow\uparrow + \sum_{n=0}^{-\lambda-1} \sum_{r \geq 0} -n-r-2 \text{ (with red dots at } n-r-2, n-r, n \text{)},$$

$$\text{Diagram with a green loop and a blue arrow pointing right} \Rightarrow \sum_{n=0}^{\lambda} \text{Diagram with a green loop and a blue arrow pointing right} \text{,}$$

$$\text{Diagram: } \text{Left: } \text{A green loop with a black dot at the top and a green arrow pointing right. Above it is a green curly brace with a black dot at the top and a green arrow pointing right, labeled } \lambda. \text{ Right: } \text{A green loop with a black dot at the top and a green arrow pointing right, labeled } n. \text{ Between them is a blue double-headed arrow symbol. To the right is a blue summation symbol: } \sum_{n=0}^{-\lambda} \text{ with a green curly brace below it labeled } -n-1. \text{ The brace is positioned such that its right end is at the } -1 \text{ in the summation symbol.}$$

$$\text{Diagram: } \text{Left: } \text{A green loop with a self-intersection and a dot at the top. Right: } \sum_{n=0}^{\lambda} \text{ (green loop with dot at top)} \text{ (green loop with dot at bottom)} \text{ (green loop with dot at top)} \dots$$

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- Quantum relations:

$$\begin{array}{c}
 \text{Diagram 1: } \text{Diagram of two strands crossing} \xrightarrow{\lambda} -\uparrow\downarrow_\lambda + \sum_{n=0}^{\lambda-1} \sum_{r \geq 0} \text{Diagram with strands } \overset{\lambda}{\curvearrowleft} \text{ and } \overset{r}{\curvearrowright} \text{,} \\
 \text{Diagram 2: } \text{Diagram of two strands crossing} \xrightarrow{\lambda} -\downarrow\uparrow_\lambda + \sum_{n=0}^{-\lambda-1} \sum_{r \geq 0} \text{Diagram with strands } \overset{-n-r-2}{\curvearrowleft} \text{ and } \overset{n}{\curvearrowright} \text{,} \\
 \text{Diagram 3: } \text{Diagram of two strands crossing} \xrightarrow{\lambda} \sum_{n=0}^{\lambda} \text{Diagram with strands } \overset{n}{\curvearrowleft} \text{ and } \overset{-n-1}{\curvearrowright} \text{,} \\
 \text{Diagram 4: } \text{Diagram of two strands crossing} \xrightarrow{\lambda} -\sum_{n=0}^{-\lambda} \text{Diagram with strands } \overset{-n-1}{\curvearrowleft} \text{ and } \overset{n}{\curvearrowright} \text{,} \\
 \text{Diagram 5: } \text{Diagram of two strands crossing} \xrightarrow{\lambda} -\sum_{n=0}^{-\lambda} \text{Diagram with strands } \overset{n}{\curvearrowleft} \text{ and } \overset{-n-1}{\curvearrowright} \text{.}
 \end{array}$$

- Split this linear $(3, 2)$ -polygraph into E made of isotopy 3-cells and R containing the remaining relations.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

- Quantum relations:

$$\begin{array}{c}
 \text{Diagram 1: } \text{Diagram of two strands crossing} \Rightarrow -\uparrow\downarrow_{\lambda} + \sum_{n=0}^{\lambda-1} \sum_{r \geq 0} \text{Diagram with strands labeled } \lambda, r, -n-r-2, \dots \\
 \text{Diagram 2: } \text{Diagram of two strands crossing} \Rightarrow -\downarrow\uparrow_{\lambda} + \sum_{n=0}^{-\lambda-1} \sum_{r \geq 0} \text{Diagram with strands labeled } -n-r-2, \dots, n \\
 \text{Diagram 3: } \text{Diagram of two strands crossing} \Rightarrow \sum_{n=0}^{\lambda} \text{Diagram with strands labeled } n, -n-1, \dots, \lambda \\
 \text{Diagram 4: } \text{Diagram of two strands crossing} \Rightarrow -\sum_{n=0}^{-\lambda} \text{Diagram with strands labeled } -n-1, \dots, -n \\
 \text{Diagram 5: } \text{Diagram of two strands crossing} \Rightarrow \sum_{n=0}^{\lambda} \text{Diagram with strands labeled } \lambda, n, -n-1
 \end{array}$$

- Split this linear $(3, 2)$ -polygraph into E made of isotopy 3-cells and R containing the remaining relations.

- **Theorem [D' 19]:**

- R is terminating without bubble slide 3-cells.
- R and ${}_E R$ are quasi-terminating.
- ${}_E R$ is confluent modulo E .

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

► Quantum relations:

$$\begin{array}{c}
 \text{Diagram 1: } \text{Diagram with two strands crossing} \Rightarrow -\uparrow\downarrow_\lambda + \sum_{n=0}^{\lambda-1} \sum_{r \geq 0} \text{Diagram with strands crossing and a bubble} \\
 \text{Diagram 2: } \text{Diagram with two strands crossing} \Rightarrow -\downarrow\uparrow_\lambda + \sum_{n=0}^{-\lambda-1} \sum_{r \geq 0} \text{Diagram with strands crossing and a bubble} \\
 \text{Diagram 3: } \text{Diagram with two strands crossing} \Rightarrow \sum_{n=0}^{\lambda} \text{Diagram with strands crossing and a bubble} \\
 \text{Diagram 4: } \text{Diagram with two strands crossing} \Rightarrow -\sum_{n=0}^{-\lambda} \text{Diagram with strands crossing and a bubble} \\
 \text{Diagram 5: } \text{Diagram with two strands crossing} \Rightarrow \sum_{n=0}^{\lambda} \text{Diagram with strands crossing and a bubble}
 \end{array}$$

► Split this linear $(3, 2)$ -polygraph into E made of isotopy 3-cells and R containing the remaining relations.

► **Theorem [D' 19]:**

- R is terminating without bubble slide 3-cells.
- R and ${}_E R$ are quasi-terminating.
- ${}_E R$ is confluent modulo E .

► **Sketch of the proof:**

- Successive derivations to reduce the set of 3-cells that we need to prove terminating.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

► Quantum relations:

$$\begin{array}{c}
\text{Diagram 1:} \quad \text{Diagram 2:} \\
\text{Diagram 3:} \quad \text{Diagram 4:} \\
\text{Diagram 5:} \quad \text{Diagram 6:}
\end{array}$$

- ▶ Split this linear $(3, 2)$ -polygraph into E made of isotopy 3-cells and R containing the remaining relations.

► Theorem [D' 19]:

- ▶ R is terminating without bubble slide 3-cells.
- ▶ R and $\textcolor{blue}{E}R$ are quasi-terminating.
- ▶ $\textcolor{blue}{E}R$ is confluent modulo $\textcolor{blue}{E}$.

► Sketch of the proof:

- ▶ Successive derivations to reduce the set of 3-cells that we need to prove terminating.
- ▶ Procedure to reduce any 2-cell into a linear combination of 2-cells on which we can only derive bubble slide loops and indexed isotopy loops.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

► Quantum relations:

$$\begin{array}{c}
 \text{Diagram 1:} \quad \text{Diagram 2:} \\
 \text{Diagram 3:} \quad \text{Diagram 4:} \\
 \text{Diagram 5:} \quad \text{Diagram 6:}
 \end{array}$$

- ▶ Split this linear $(3, 2)$ -polygraph into E made of isotopy 3-cells and R containing the remaining relations.

► Theorem [D' 19]:

- ▶ R is terminating without bubble slide 3-cells.
- ▶ R and $\mathcal{E}R$ are quasi-terminating.
- ▶ $\mathcal{E}R$ is confluent modulo \mathcal{E} .

► Sketch of the proof:

- ▶ Successive derivations to reduce the set of 3-cells that we need to prove terminating.
- ▶ Procedure to reduce any 2-cell into a linear combination of 2-cells on which we can only derive bubble slide loops and indexed isotopy loops.

- ▶ Exhaustive study of all the critical branchings modulo.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

► Quantum relations:

$$\begin{array}{c}
 \text{Diagram 1:} \quad \text{Diagram 2:} \\
 \text{Diagram 3:} \quad \text{Diagram 4:} \\
 \text{Diagram 5:} \quad \text{Diagram 6:}
 \end{array}$$

- ▶ Split this linear $(3, 2)$ -polygraph into E made of isotopy 3-cells and R containing the remaining relations.

► Theorem [D' 19]:

- ▶ R is terminating without bubble slide 3-cells.
- ▶ R and $\mathcal{E}R$ are quasi-terminating.
- ▶ $\mathcal{E}R$ is confluent modulo \mathcal{E} .

► Sketch of the proof:

- ▶ Successive derivations to reduce the set of 3-cells that we need to prove terminating.
- ▶ Procedure to reduce any 2-cell into a linear combination of 2-cells on which we can only derive bubble slide loops and indexed isotopy loops.

- ▶ Exhaustive study of all the critical branchings modulo.

Example: the 2-category $\mathcal{U}(\mathfrak{sl}_2)$

► Quantum relations:

$$\begin{array}{c}
 \text{Diagram 1:} \quad \text{Diagram 2:} \\
 \text{Diagram 3:} \quad \text{Diagram 4:} \\
 \text{Diagram 5:} \quad \text{Diagram 6:}
 \end{array}$$

- ▶ Split this linear $(3, 2)$ -polygraph into E made of isotopy 3-cells and R containing the remaining relations.

► Theorem [D' 19]:

- ▶ R is terminating without bubble slide 3-cells.
- ▶ R and ${}_E R$ are quasi-terminating.
- ▶ ${}_E R$ is confluent modulo E .

► Sketch of the proof:

- ▶ Successive derivations to reduce the set of 3-cells that we need to prove terminating.
- ▶ Procedure to reduce any 2-cell into a linear combination of 2-cells on which we can only derive bubble slide loops and indexed isotopy loops.

- ▶ Exhaustive study of all the critical branchings modulo.

$$\text{Diagram 1} \equiv_{E^\perp} \text{Diagram 2}$$

► **Corollary:** A fixed set of quasi-normal forms containing diagrams with source p and target q in normal form with respect to E and having:

- no loops,
- a minimal number of crossings, and permutation diagrams of through strands are left-adjusted,
- dots placed at the bottom of through strands and to the rightmost interval of arcs,
- no negative degree bubble, and all the bubbles at the rightmost region of the diagram,

gives a linear basis of $\mathcal{U}(\mathfrak{sl}_2)(p, q)$.

► **Corollary:** A fixed set of quasi-normal forms containing diagrams with source p and target q in normal form with respect to E and having:

- no loops,
- a minimal number of crossings, and permutation diagrams of through strands are left-adjusted,
- dots placed at the bottom of through strands and to the rightmost interval of arcs,
- no negative degree bubble, and all the bubbles at the rightmost region of the diagram,

gives a linear basis of $\mathcal{U}(\mathfrak{sl}_2)(p, q)$.

► **Corollary:** This implies the non-degeneracy of Khovanov and Lauda's diagrammatic calculus for $\mathcal{U}(\mathfrak{sl}_2)$.

► **Corollary:** A fixed set of quasi-normal forms containing diagrams with source p and target q in normal form with respect to E and having:

- no loops,
- a minimal number of crossings, and permutation diagrams of through strands are left-adjusted,
- dots placed at the bottom of through strands and to the rightmost interval of arcs,
- no negative degree bubble, and all the bubbles at the rightmost region of the diagram,

gives a linear basis of $\mathcal{U}(\mathfrak{sl}_2)(p, q)$.

► **Corollary:** This implies the non-degeneracy of Khovanov and Lauda's diagrammatic calculus for $\mathcal{U}(\mathfrak{sl}_2)$.

► This holds for any simply-laced Kac-Moody algebra \mathfrak{g} .

IV. Conclusion and perspectives

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.

- ▶ We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- ▶ **Question:** Prove **coherence** results for rewriting modulo.
 - ▶ Find a basis of the set of **syzygies**, *i.e.* relations among relations.
 - ▶ In higher-dimensions: find homotopy generators to compute **cofibrant replacements**.

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- **Question:** Prove **coherence** results for rewriting modulo.
 - Find a basis of the set of **syzygies**, i.e. relations among relations.
 - In higher-dimensions: find homotopy generators to compute **cofibrant replacements**.
- **Coherence from convergence:** From a convergent presentation, a basis of syzygies is given by the cells $A_{f,g}$

for every critical branching (f, g) and a chosen confluence (f', g') .

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- **Question:** Prove **coherence** results for rewriting modulo.
 - Find a basis of the set of **syzygies**, i.e. relations among relations.
 - In higher-dimensions: find homotopy generators to compute **cofibrant replacements**.
- **Coherence from convergence:** From a convergent presentation, a basis of syzygies is given by the cells $A_{f,g}$

for every critical branching (f, g) and a chosen confluence (f', g') .

- Coherence modulo results are expressed in n -categories enriched in double groupoids:
 - Vertical cells are axioms of E_n^\top .
 - Horizontal cells are rewriting sequences of S_n^* .

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- **Question:** Prove coherence results for rewriting modulo.
 - Find a basis of the set of **syzygies**, i.e. relations among relations.
 - In higher-dimensions: find homotopy generators to compute **cofibrant replacements**.
- **Coherence from convergence:** From a convergent presentation, a basis of syzygies is given by the cells $A_{f,g}$

for every critical branching (f, g) and a chosen confluence (f', g') .

- Coherence modulo results are expressed in n -categories enriched in double groupoids:
 - Vertical cells are axioms of E_n^\top .
 - Horizontal cells are rewriting sequences of S_n^* .
- **Theorem.** [D.-Malbos '18] Let (R, E, S) be n -polygraph modulo, and Γ be a square extension of the pair of $(n+1, n)$ -categories (E^\top, S^\top) such that
 - E is convergent,
 - S is Γ -confluent modulo E ,
 - $\text{Irr}(E)$ is E -normalizing with respect to S , that is for any u in $\text{Irr}(E)$, $NF(u, S) \cap \text{Irr}(E) \neq \emptyset$.
 - $E R_E$ is terminating,

then $E \rtimes \Gamma \cup \text{Peiff}(E, S) \cup \text{Cd}(E)$ is acyclic.

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- **Question:** Prove coherence results for rewriting modulo.
 - Find a basis of the set of **syzygies**, i.e. relations among relations.
 - In higher-dimensions: find homotopy generators to compute **cofibrant replacements**.
- **Coherence from convergence:** From a convergent presentation, a basis of syzygies is given by the cells $A_{f,g}$

for every critical branching (f, g) and a chosen confluence (f', g') .

- Coherence modulo results are expressed in n -categories enriched in double groupoids:
 - Vertical cells are axioms of E_n^\top .
 - Horizontal cells are rewriting sequences of S_n^* .
- **Theorem.** [D.-Malbos '18] Let (R, E, S) be n -polygraph modulo, and Γ be a square extension of the pair of $(n+1, n)$ -categories (E^\top, S^\top) such that
 - E is convergent,
 - S is Γ -confluent modulo E ,
 - $\text{Irr}(E)$ is E -normalizing with respect to S , that is for any u in $\text{Irr}(E)$, $NF(u, S) \cap \text{Irr}(E) \neq \emptyset$.
 - $E R_E$ is terminating,
 then $E \times \Gamma \cup \text{Peiff}(E, S) \cup \text{Cd}(E)$ is acyclic.
- **Objective:** extend these constructions in higher dimensions.

- ▶ Work in progress:

- ▶ Work in progress:

- 1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with [M. Ebert](#) and [A. Lauda](#).

- ▶ Introduction of $(3, 2)$ -superpolygraphs and of super rewriting theory using implicit rewriting modulo **super-exchange laws**:

$$\begin{array}{c} \text{---} \\ | \\ \boxed{\phi} \end{array} \quad \dots \quad \begin{array}{c} \text{---} \\ | \\ \boxed{\psi} \end{array} = (-1)^{|\psi||\phi|} \quad \begin{array}{c} \text{---} \\ | \\ \dots \end{array} \quad \begin{array}{c} \text{---} \\ | \\ \boxed{\psi} \end{array} \quad \dots \quad \begin{array}{c} \text{---} \\ | \\ \boxed{\phi} \end{array} \quad \dots$$

- ▶ Proof of non-degeneracy for the odd-categorification of $\mathbf{U}_q(\mathfrak{sl}_2)$ using rewriting modulo super isotopies.

► Work in progress:

1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with [M. Ebert](#) and [A. Lauda](#).

► Introduction of $(3, 2)$ -superpolygraphs and of super rewriting theory using implicit rewriting modulo **super-exchange laws**:

$$\begin{array}{c} \text{---} \\ \text{---} \\ \phi \\ \text{---} \\ \text{---} \\ \psi \end{array} \quad \dots \quad = (-1)^{|\psi||\phi|} \quad \begin{array}{c} \text{---} \\ \text{---} \\ \dots \\ \text{---} \\ \text{---} \\ \psi \end{array} \quad \begin{array}{c} \text{---} \\ \text{---} \\ \phi \\ \text{---} \\ \text{---} \\ \dots \end{array}$$

► Proof of non-degeneracy for the odd-categorification of $\mathbf{U}_q(\mathfrak{sl}_2)$ using rewriting modulo super isotopies.

2.) Categorification of tensor products of Verma modules over $\mathbf{U}_q(\mathfrak{sl}_2)$, work in progress with [G. Naisse](#).

► Definition of candidate algebras, and proof of a basis theorem using rewriting in the dimension of the algebras, modulo distant planar isotopies.

► **Application:** Define braid group actions on some weight spaces, to categorify Burau and Lawrence-Krammer-Bigelow representations.

► **Further question:** Construction of *dg*-enhancements using rewriting.

► Work in progress:

1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with [M. Ebert](#) and [A. Lauda](#).

- Introduction of $(3, 2)$ -superpolygraphs and of super rewriting theory using implicit rewriting modulo **super-exchange laws**:

$$\begin{array}{c} \text{---} \\ \text{---} \\ \phi \\ \text{---} \\ \text{---} \\ \psi \end{array} \quad \dots \quad = (-1)^{|\psi||\phi|} \quad \begin{array}{c} \text{---} \\ \dots \\ \text{---} \\ \psi \\ \text{---} \\ \text{---} \\ \phi \end{array} \quad \dots$$

- Proof of non-degeneracy for the odd-categorification of $\mathbf{U}_q(\mathfrak{sl}_2)$ using rewriting modulo super isotopies.

2.) Categorification of tensor products of Verma modules over $\mathbf{U}_q(\mathfrak{sl}_2)$, work in progress with [G. Naisse](#).

- Definition of candidate algebras, and proof of a basis theorem using rewriting in the dimension of the algebras, modulo distant planar isotopies.
- **Application:** Define braid group actions on some weight spaces, to categorify Burau and Lawrence-Krammer-Bigelow representations.
- **Further question:** Construction of dg -enhancements using rewriting.

3.) Obtain explicit proofs of categorification results:

- Categorification of Mackey's induction/restriction theorem for Brauer algebras, work in progress.

► Work in progress:

1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with [M. Ebert](#) and [A. Lauda](#).

- Introduction of $(3, 2)$ -superpolygraphs and of super rewriting theory using implicit rewriting modulo **super-exchange laws**:

$$\begin{array}{c} \text{---} \\ \text{---} \\ \phi \\ \text{---} \\ \text{---} \\ \psi \end{array} \quad \dots \quad = (-1)^{|\psi||\phi|} \quad \begin{array}{c} \dots \\ \text{---} \\ \text{---} \\ \psi \\ \text{---} \\ \text{---} \\ \phi \end{array} \quad \dots$$

- Proof of non-degeneracy for the odd-categorification of $U_q(\mathfrak{sl}_2)$ using rewriting modulo super isotopies.

2.) Categorification of tensor products of Verma modules over $U_q(\mathfrak{sl}_2)$, work in progress with [G. Naisse](#).

- Definition of candidate algebras, and proof of a basis theorem using rewriting in the dimension of the algebras, modulo distant planar isotopies.
- **Application:** Define braid group actions on some weight spaces, to categorify Burau and Lawrence-Krammer-Bigelow representations.
- **Further question:** Construction of dg -enhancements using rewriting.

3.) Obtain explicit proofs of categorification results:

- Categorification of Mackey's induction/restriction theorem for Brauer algebras, work in progress.

4.) Develop heuristics of computations in various families of diagrammatic presentations.

- Categorification of $U_q(\mathfrak{g})$ in general, Heisenberg categorifications, category of \mathfrak{gl}_n -webs, of Soergel bimodules, ...

► Work in progress:

1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with [M. Ebert](#) and [A. Lauda](#).

- Introduction of (3, 2)-superpolygraphs and of super rewriting theory using implicit rewriting modulo **super-exchange laws**:

$$\begin{array}{c} \text{---} \\ \text{---} \\ \phi \\ \text{---} \\ \text{---} \\ \psi \end{array} \quad \dots \quad = (-1)^{|\psi||\phi|} \quad \begin{array}{c} \text{---} \\ \text{---} \\ \dots \\ \text{---} \\ \psi \\ \text{---} \\ \text{---} \\ \phi \end{array} \quad \dots$$

- Proof of non-degeneracy for the odd-categorification of $U_q(\mathfrak{sl}_2)$ using rewriting modulo super isotopies.

2.) Categorification of tensor products of Verma modules over $U_q(\mathfrak{sl}_2)$, work in progress with [G. Naisse](#).

- Definition of candidate algebras, and proof of a basis theorem using rewriting in the dimension of the algebras, modulo distant planar isotopies.
- **Application:** Define braid group actions on some weight spaces, to categorify Burau and Lawrence-Krammer-Bigelow representations.
- **Further question:** Construction of *dg*-enhancements using rewriting.

3.) Obtain explicit proofs of categorification results:

- Categorification of Mackey's induction/restriction theorem for Brauer algebras, work in progress.

4.) Develop heuristics of computations in various families of diagrammatic presentations.

- Categorification of $U_q(\mathfrak{g})$ in general, Heisenberg categorifications, category of \mathfrak{gl}_n -webs, of Soergel bimodules, ...

- **Long-term project:** Implement computational tools to analyse confluence of diagrammatic presentations.

Thank you for your attention.