Réécriture modulo dans les catégories diagrammatiques.

Benjamin Dupont
Institut Camille Jordan, Université Lyon 1

Soutenance de thèse de Doctorat

Sous la direction de Philippe Malbos, Stéphane Gaussent et Alistair Savage

20 Novembre 2020

Institut
Camille Jordan
WI
u Ottawa
I. Introduction
II. Convergent presentation of the Khovanov-Lauda-Rouquier algebras
III. Confluence modulo isotopies in the Khovanov-Lauda-Rouquier 2-category
IV. Conclusion and perspectives

I．Introduction

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$,

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

$$
P=\langle *| X=\{x: * \rightarrow *, y: * \rightarrow *\}\left|R=\left\{x^{2} \Rightarrow x y\right\}\right\rangle
$$

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

$$
P=\langle *| X=\{x: * \rightarrow *, y: * \rightarrow *\}\left|R=\left\{x^{2} \Rightarrow x y\right\}\right\rangle
$$

$y x x x y$

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

$$
P=\langle *| X=\{x: * \rightarrow *, y: * \rightarrow *\}\left|R=\left\{x^{2} \Rightarrow x y\right\}\right\rangle
$$

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

$$
P=\langle *| X=\{x: * \rightarrow *, y: * \rightarrow *\}\left|R=\left\{x^{2} \Rightarrow x y\right\}\right\rangle
$$

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

$$
P=\langle *| X=\{x: * \rightarrow *, y: * \rightarrow *\}\left|R=\left\{x^{2} \Rightarrow x y\right\}\right\rangle
$$

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

$$
P=\langle *| X=\{x: * \rightarrow *, y: * \rightarrow *\}\left|R=\left\{x^{2} \Rightarrow x y\right\}\right\rangle
$$

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

$$
P=\langle *| X=\{x: * \rightarrow *, y: * \rightarrow *\}\left|R=\left\{x^{2} \Rightarrow x y\right\}\right\rangle
$$

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

- P is terminating, that is it does not admit any infinite rewriting sequence (deglex order on $x>y$).

Linear bases using rewriting

- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

- P is terminating, that is it does not admit any infinite rewriting sequence (deglex order on $x>y$).
- The monomials in normal form span the algebra.
- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

- P is terminating, that is it does not admit any infinite rewriting sequence (deglex order on $x>y$).
- The monomials in normal form span the algebra.
- They are not linearly independant.
- The element $x y x-x y y$ is a normal form and in the ideal generated by the relations.
- Algebraic rewriting: model of computations for algebraic structures presented by generators and oriented relations.
- Paradigm: Rewriting in linear structures.
- Several approaches of linear rewriting: Janet, Gröbner, Shirshov, Bokut, Bergman, Buchberger, Dotsenko-Koroshkin, Guiraud-Hoffbeck-Malbos, ...
- Procedures to compute in ideals, in particular computation of linear bases.
- Consider an associative algebra $\mathbb{K}\left[X^{*}\right] / I(R)$, associate a linear 2-polygraph $\langle *| X|R\rangle$ where R is equipped with source and target maps $s, t: R \rightarrow \mathbb{K}\left[X^{*}\right]$.
- Example:

- P is terminating, that is it does not admit any infinite rewriting sequence (deglex order on $x>y$).
- The monomials in normal form span the algebra.
- They are not linearly independant.
- The element $x y x-x y y$ is a normal form and in the ideal generated by the relations.

Rewriting in categorification theory

- Theorem [Guiraud-Hoffbeck-Malbos '19]: Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:
i) P is confluent.
ii) The vector space $P_{1}^{\ell}:=\mathbb{K}\left[P_{1}^{*}\right]$ admits the direct decomposition

$$
P_{1}^{\ell}=P_{1}^{\mathrm{nf}} \oplus I(P)
$$

where P_{1}^{nf} is the set of monomials in normal form with respect to P_{1}, and $I(P)$ is the two sided ideal generated by $\left\{s_{1}(\alpha)-t_{1}(\alpha) \mid \alpha \in P_{2}\right\}$.

Rewriting in categorification theory

- Theorem [Guiraud-Hoffbeck-Malbos '19]: Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:
i) P is confluent.
ii) The vector space $P_{1}^{\ell}:=\mathbb{K}\left[P_{1}^{*}\right]$ admits the direct decomposition

$$
P_{1}^{\ell}=P_{1}^{\mathrm{nf}} \oplus I(P)
$$

where P_{1}^{nf} is the set of monomials in normal form with respect to P_{1}, and $I(P)$ is the two sided ideal generated by $\left\{s_{1}(\alpha)-t_{1}(\alpha) \mid \alpha \in P_{2}\right\}$.

- Objective: Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.

Rewriting in categorification theory

- Theorem [Guiraud-Hoffbeck-Malbos '19]: Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:
i) P is confluent.
ii) The vector space $P_{1}^{\ell}:=\mathbb{K}\left[P_{1}^{*}\right]$ admits the direct decomposition

$$
P_{1}^{\ell}=P_{1}^{\mathrm{nf}} \oplus I(P)
$$

where P_{1}^{nf} is the set of monomials in normal form with respect to P_{1}, and $I(P)$ is the two sided ideal generated by $\left\{s_{1}(\alpha)-t_{1}(\alpha) \mid \alpha \in P_{2}\right\}$.

- Objective: Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.
- Application in representation theory: proof of categorification results.
- These are obtained by proving that the Hom-sets of the categories defined admit explicit bases.

Rewriting in categorification theory

- Theorem [Guiraud-Hoffbeck-Malbos '19]: Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:
i) P is confluent.
ii) The vector space $P_{1}^{\ell}:=\mathbb{K}\left[P_{1}^{*}\right]$ admits the direct decomposition

$$
P_{1}^{\ell}=P_{1}^{\mathrm{nf}} \oplus I(P)
$$

where P_{1}^{nf} is the set of monomials in normal form with respect to P_{1}, and $I(P)$ is the two sided ideal generated by $\left\{s_{1}(\alpha)-t_{1}(\alpha) \mid \alpha \in P_{2}\right\}$.

- Objective: Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.
- Application in representation theory: proof of categorification results.
- These are obtained by proving that the Hom-sets of the categories defined admit explicit bases.
- Numerous diagrammatic presentations for which computing linear bases is difficult.
- Khovanov-Lauda-Rouquier's categorification of a quantum group,
- Heisenberg categorifications,
- Category of Soergel bimodules.

Rewriting in categorification theory

- Theorem [Guiraud-Hoffbeck-Malbos '19]: Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:
i) P is confluent.
ii) The vector space $P_{1}^{\ell}:=\mathbb{K}\left[P_{1}^{*}\right]$ admits the direct decomposition

$$
P_{1}^{\ell}=P_{1}^{\mathrm{nf}} \oplus I(P)
$$

where P_{1}^{nf} is the set of monomials in normal form with respect to P_{1}, and $I(P)$ is the two sided ideal generated by $\left\{s_{1}(\alpha)-t_{1}(\alpha) \mid \alpha \in P_{2}\right\}$.

- Objective: Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.
- Application in representation theory: proof of categorification results.
- These are obtained by proving that the Hom-sets of the categories defined admit explicit bases.
- Numerous diagrammatic presentations for which computing linear bases is difficult.
- Khovanov-Lauda-Rouquier's categorification of a quantum group,
- Heisenberg categorifications,
- Category of Soergel bimodules.
- In this thesis:
- Develop linear rewriting modulo theory to compute linear bases from confluence modulo.
- Compute such bases in the Khovanov-Lauda-Rouquier 2-category.

Rewriting in categorification theory

- Theorem [Guiraud-Hoffbeck-Malbos '19]: Let P be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent:
i) P is confluent.
ii) The vector space $P_{1}^{\ell}:=\mathbb{K}\left[P_{1}^{*}\right]$ admits the direct decomposition

$$
P_{1}^{\ell}=P_{1}^{\mathrm{nf}} \oplus I(P)
$$

where P_{1}^{nf} is the set of monomials in normal form with respect to P_{1}, and $I(P)$ is the two sided ideal generated by $\left\{s_{1}(\alpha)-t_{1}(\alpha) \mid \alpha \in P_{2}\right\}$.

- Objective: Develop rewriting methods to compute linear bases in diagrammatic algebras and categories.
- Application in representation theory: proof of categorification results.
- These are obtained by proving that the Hom-sets of the categories defined admit explicit bases.
- Numerous diagrammatic presentations for which computing linear bases is difficult.
- Khovanov-Lauda-Rouquier's categorification of a quantum group,
- Heisenberg categorifications,
- Category of Soergel bimodules.
- In this thesis:
- Develop linear rewriting modulo theory to compute linear bases from confluence modulo.
- Compute such bases in the Khovanov-Lauda-Rouquier 2-category.
- Several new questions, e.g. extension to rewriting in 2-supercategories (with M. Ebert and A. Lauda) and explicit proofs of categorification (with G. Naisse).
II. Convergent presentation of the KLR algebras

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;
- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|{ }_{1} \cdots \underbrace{}_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N} \mathcal{H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|{ }_{1} \cdots \underbrace{}_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N} \mathcal{H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|\underbrace{}_{1} \cdots \varliminf_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N} \mathcal{H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|\underbrace{}_{1} \cdots \underbrace{}_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|\underbrace{}_{1} \cdots \underbrace{}_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|\left.\right|_{1} \cdots \underbrace{}_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N} \mathcal{H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|\underbrace{}_{1} \cdots \underbrace{}_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|\underbrace{}_{1} \cdots \underbrace{}_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|\left.\right|_{1} \ldots \underbrace{}_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

Diagrammatic algebras and categories

- Objective: study algebras and categories admitting diagrammatic presentation by generators and relations.
- Example: For $n \in \mathbb{N}$, the nil Hecke algebra $\mathcal{N} \mathcal{H}_{n}$ of degree n is presented by
- generators x_{i} for $1 \leq i \leq n$ and τ_{i} for $1 \leq i<n$;

$$
x_{i}=\left.\left.\right|_{1} \cdots \oint_{i} \cdots\right|_{n}, \quad \tau_{i}=|\underbrace{}_{1} \cdots \varliminf_{i+1} \cdots|_{n}
$$

- relations:

$$
\begin{gathered}
x_{i} x_{j}=x_{j} x_{i} \\
\tau_{i} x_{j}=x_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} \quad \text { if }|i-j|>1 \\
\tau_{i}^{2}=0 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \\
x_{i} \tau_{i}-\tau_{i} x_{i+1}=1 \\
\tau_{i} x_{i}-x_{i+1} \tau_{i}=1
\end{gathered}
$$

- We study these algebras by realizing them as 2-Hom-spaces of linear 2-categories.

String diagrams

- The 2-cells of a (linear) 2-category can be depicted by a string diagram:

String diagrams

- The 2-cells of a (linear) 2-category can be depicted by a string diagram:

- Compositions:

String diagrams

- The 2-cells of a (linear) 2-category can be depicted by a string diagram:

- Compositions:

String diagrams

- The 2-cells of a (linear) 2-category can be depicted by a string diagram:

- Compositions:

- These compositions satisfy exchange relations:

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3,2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3,2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3,2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3, 2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3, 2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.
- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- $P_{1}^{*} \simeq \mathbb{N} \quad$ (Number of strands).

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3,2)-polygraphs, made of a data $\left(P_{0}, P_{1}, P_{2}, P_{3}\right)$ where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.
- Cellular extension

$$
P_{2} \xrightarrow[t_{1}]{\xrightarrow{s_{1}}} P_{1}^{*}
$$

satisfying globular relations: $s_{0} s_{1}=s_{0} t_{1}, t_{0} s_{1}=t_{0} t_{1}$.

- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- $P_{1}^{*} \simeq \mathbb{N} \quad$ (Number of strands).

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3, 2)-polygraphs, made of a data $\left(P_{0}, P_{1}, P_{2}, P_{3}\right)$ where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.
- Cellular extension

$$
P_{2} \xrightarrow[t_{1}]{\xrightarrow{s_{1}}} P_{1}^{*}
$$

satisfying globular relations: $s_{0} s_{1}=s_{0} t_{1}, t_{0} s_{1}=t_{0} t_{1}$.

- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- $P_{1}^{*} \simeq \mathbb{N} \quad$ (Number of strands).
- $P_{2}=\{>: 2 \rightarrow 2, \quad \phi: 1 \rightarrow 1\}$

Presentations of linear 2－categories

－Linear 2－categories are presented by generating systems called linear（3，2）－polygraphs，made of a data $\left(P_{0}, P_{1}, P_{2}, P_{3}\right)$ where：
－$\left(P_{1}, P_{0}\right)$ is a directed graph，with source and target maps s_{0}, t_{0} ．
－P_{1}^{*} ：free 1－category generated by $\left(P_{0}, P_{1}\right)$ ．
－Cellular extension

$$
P_{2} \xrightarrow[t_{1}]{\xrightarrow{s_{1}}} P_{1}^{*}
$$

satisfying globular relations：$s_{0} s_{1}=s_{0} t_{1}, t_{0} s_{1}=t_{0} t_{1}$ ．
－P_{2}^{*} ：free 2－category on $\left(P_{0}, P_{1}, P_{2}\right)$ ．
－$P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
－$P_{1}^{*} \simeq \mathbb{N} \quad$（Number of strands）．
－$P_{2}=\{>: 2 \rightarrow 2, \quad \phi: 1 \rightarrow 1\}$

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3, 2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.
- Cellular extension

$$
P_{2} \xrightarrow[t_{1}]{\xrightarrow{s_{1}}} P_{1}^{*}
$$

satisfying globular relations: $s_{0} s_{1}=s_{0} t_{1}, t_{0} s_{1}=t_{0} t_{1}$.

- P_{2}^{*} : free 2-category on $\left(P_{0}, P_{1}, P_{2}\right)$.
- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- $P_{1}^{*} \simeq \mathbb{N} \quad$ (Number of strands).
- $P_{2}=\{>: 2 \rightarrow 2, \quad \emptyset: 1 \rightarrow 1\}$
- $P_{2}^{*}=\left\{\right.$ diagrams made of \star_{0}, \star_{1} compositions of dots and crossings $\}$.

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3, 2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.
- Cellular extension

$$
P_{2} \xrightarrow[t_{1}]{\xrightarrow{s_{1}}} P_{1}^{*}
$$

satisfying globular relations: $s_{0} s_{1}=s_{0} t_{1}, t_{0} s_{1}=t_{0} t_{1}$.

- P_{2}^{*} : free 2-category on $\left(P_{0}, P_{1}, P_{2}\right)$.
- P_{2}^{ℓ} : free linear 2-category on $\left(P_{0}, P_{1}, P_{2}\right)$:

$$
\forall x, y \in P_{1}^{*}: \quad P_{2}^{\ell}(x, y)=\mathbb{K}\left[P_{2}^{*}(x, y)\right]
$$

- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- $P_{1}^{*} \simeq \mathbb{N} \quad$ (Number of strands).
- $P_{2}=\{>: 2 \rightarrow 2, \quad \emptyset: 1 \rightarrow 1\}$
- $P_{2}^{*}=\left\{\right.$ diagrams made of \star_{0}, \star_{1} compositions of dots and crossings $\}$.

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3, 2)-polygraphs, made of a data $\left(P_{0}, P_{1}, P_{2}, P_{3}\right)$ where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.
- Cellular extension

$$
P_{2} \xrightarrow[t_{1}]{\stackrel{s_{1}}{\longrightarrow}} P_{1}^{*}
$$

satisfying globular relations: $s_{0} s_{1}=s_{0} t_{1}, t_{0} s_{1}=t_{0} t_{1}$.

- P_{2}^{*} : free 2-category on (P_{0}, P_{1}, P_{2}).
- P_{2}^{ℓ} : free linear 2-category on $\left(P_{0}, P_{1}, P_{2}\right)$:

$$
\forall x, y \in P_{1}^{*}: \quad P_{2}^{\ell}(x, y)=\mathbb{K}\left[P_{2}^{*}(x, y)\right]
$$

- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- $P_{1}^{*} \simeq \mathbb{N} \quad$ (Number of strands).
- $P_{2}=\{>: 2 \rightarrow 2, \quad \emptyset: 1 \rightarrow 1\}$
- $P_{2}^{*}=\left\{\right.$ diagrams made of \star_{0}, \star_{1} compositions of dots and crossings $\}$.
- $P_{2}^{\ell}=\left\{\mathbb{K}\right.$ - linear combinations of diagrams of $\left.P_{2}^{*}\right\}$

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3, 2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.
- Cellular extension

$$
P_{2} \xrightarrow[t_{1}]{\stackrel{s_{1}}{\longrightarrow}} P_{1}^{*}
$$

satisfying globular relations: $s_{0} s_{1}=s_{0} t_{1}, t_{0} s_{1}=t_{0} t_{1}$.

- P_{2}^{*} : free 2-category on (P_{0}, P_{1}, P_{2}).
- P_{2}^{ℓ} : free linear 2-category on $\left(P_{0}, P_{1}, P_{2}\right)$:

$$
\forall x, y \in P_{1}^{*}: \quad P_{2}^{\ell}(x, y)=\mathbb{K}\left[P_{2}^{*}(x, y)\right]
$$

- Cellular extension

$$
P_{3} \xrightarrow[t_{2}]{s_{2}} P_{2}^{\ell}
$$

satisfying $s_{1} s_{2}=s_{1} t_{2}, t_{1} s_{2}=t_{1} t_{2}$.

- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- $P_{1}^{*} \simeq \mathbb{N} \quad$ (Number of strands).
- $P_{2}=\{>: 2 \rightarrow 2, \quad \phi: 1 \rightarrow 1\}$
- $P_{2}^{*}=\left\{\right.$ diagrams made of \star_{0}, \star_{1} compositions of dots and crossings $\}$.
- $P_{2}^{\ell}=\left\{\mathbb{K}\right.$ - linear combinations of diagrams of $\left.P_{2}^{*}\right\}$

Presentations of linear 2-categories

- Linear 2-categories are presented by generating systems called linear (3, 2)-polygraphs, made of a data ($P_{0}, P_{1}, P_{2}, P_{3}$) where:
- $\left(P_{1}, P_{0}\right)$ is a directed graph, with source and target maps s_{0}, t_{0}.
- P_{1}^{*} : free 1-category generated by $\left(P_{0}, P_{1}\right)$.
- Cellular extension

$$
P_{2} \xrightarrow[t_{1}]{\xrightarrow{s_{1}}} P_{1}^{*}
$$

satisfying globular relations: $s_{0} s_{1}=s_{0} t_{1}, t_{0} s_{1}=t_{0} t_{1}$.

- P_{2}^{*} : free 2-category on $\left(P_{0}, P_{1}, P_{2}\right)$.
- P_{2}^{ℓ} : free linear 2-category on $\left(P_{0}, P_{1}, P_{2}\right)$:

$$
\forall x, y \in P_{1}^{*}: \quad P_{2}^{\ell}(x, y)=\mathbb{K}\left[P_{2}^{*}(x, y)\right]
$$

- Cellular extension

$$
P_{3} \xrightarrow[t_{2}]{s_{2}} P_{2}^{\ell}
$$

satisfying $s_{1} s_{2}=s_{1} t_{2}, t_{1} s_{2}=t_{1} t_{2}$.

- $P_{0}=\{*\}, P_{1}=\{1: * \rightarrow *\}$.
- $P_{1}^{*} \simeq \mathbb{N} \quad$ (Number of strands).
- $P_{2}=\{>: 2 \rightarrow 2, \quad \phi: 1 \rightarrow 1\}$
- $P_{2}^{*}=\left\{\right.$ diagrams made of \star_{0}, \star_{1} compositions of dots and crossings $\}$.
- $P_{2}^{\ell}=\left\{\mathbb{K}\right.$ - linear combinations of diagrams of $\left.P_{2}^{*}\right\}$
- P_{3} fixes an orientation for the relations of the linear 2-category presented, that is

$$
P_{2}^{\ell} / \equiv P_{3} .
$$

Presentations of linear 2-categories

- Example: For the nil Hecke algebras,

Presentations of linear 2-categories

- Example: For the nil Hecke algebras,

Presentations of linear 2-categories

- Example: For the nil Hecke algebras,

- These are exchange relations, and do not have to be taken into account in the 2-category.

Presentations of linear 2－categories

－Example：For the nil Hecke algebras，

－These are exchange relations，and do not have to be taken into account in the 2－category．
－Remaining relations：

Presentations of linear 2-categories

- Example: For the nil Hecke algebras,

- These are exchange relations, and do not have to be taken into account in the 2-category.
- Remaining relations:

$$
\lessgtr \Rightarrow 0
$$

- This cellular extension defines a linear (3,2)-polygraph presenting a linear 2-category \mathcal{C} such that

$$
\operatorname{End}_{\mathcal{C}}(n) \simeq \mathcal{N} \mathcal{H}_{n}
$$

Presentations of linear 2-categories

- Example: For the nil Hecke algebras,

- These are exchange relations, and do not have to be taken into account in the 2-category.
- Remaining relations:

- This cellular extension defines a linear (3,2)-polygraph presenting a linear 2-category \mathcal{C} such that

$$
\operatorname{End}_{\mathcal{C}}(n) \simeq \mathcal{N} \mathcal{H}_{n}
$$

- It is left monomial, that is each source of a 3-cell is a monomial.
- Assumption: All the linear (3,2)-polygraphs we consider are left-monomial.

Presentations of linear 2-categories

- Example: For the nil Hecke algebras,

- These are exchange relations, and do not have to be taken into account in the 2-category.
- Remaining relations:

$$
\lessgtr \Rightarrow 0
$$

- This cellular extension defines a linear (3,2)-polygraph presenting a linear 2-category \mathcal{C} such that

$$
\operatorname{End}_{\mathcal{C}}(n) \simeq \mathcal{N} \mathcal{H}_{n}
$$

- It is left monomial, that is each source of a 3-cell is a monomial.
- Assumption: All the linear (3,2)-polygraphs we consider are left-monomial.
- Given a linear (3, 2)-polygraph P, rewriting paths w.r.t P are interpreted as 3-cells in the free linear (3,2)-category P_{3}^{ℓ} generated by P.

Presentations of linear 2-categories

- Example: For the nil Hecke algebras,

- These are exchange relations, and do not have to be taken into account in the 2-category.
- Remaining relations:

- This cellular extension defines a linear (3,2)-polygraph presenting a linear 2-category \mathcal{C} such that

$$
\operatorname{End}_{\mathcal{C}}(n) \simeq \mathcal{N} \mathcal{H}_{n}
$$

- It is left monomial, that is each source of a 3-cell is a monomial.
- Assumption: All the linear (3,2)-polygraphs we consider are left-monomial.
- Given a linear (3, 2)-polygraph P, rewriting paths w.r.t P are interpreted as 3-cells in the free linear (3,2)-category P_{3}^{ℓ} generated by P.
- A rewriting step of a linear (3,2)-polygraph is 3-cell of the form

where $\alpha \in P_{3}$, and such that $m_{1} \star_{1}\left(m_{2} \star_{0} s_{2}(\alpha) \star_{0} m_{3}\right) \star_{1} m_{4}$ does not appear in the monomial decomposition of u.

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear $(3,2)$-polygraphs: local branchings on minimal string diagrams.

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear (3,2)-polygraphs: local branchings on minimal string diagrams.
- Regular:

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear (3,2)-polygraphs: local branchings on minimal string diagrams.
- Regular:

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear (3,2)-polygraphs: local branchings on minimal string diagrams.
- Regular:
- Inclusion:

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear (3,2)-polygraphs: local branchings on minimal string diagrams.
- Regular:

- Inclusion:

- Right-indexed (also left-indexed, multi-indexed):

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear (3,2)-polygraphs: local branchings on minimal string diagrams.
- Regular:

- Inclusion:

- Right-indexed (also left-indexed, multi-indexed):

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear (3,2)-polygraphs: local branchings on minimal string diagrams.
- Regular:

- Inclusion:

- Right-indexed (also left-indexed, multi-indexed):

- Critical branching lemma: A terminating linear (3,2)-polygraph is locally confluent if and only if all its critical branchings are confluent.

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear (3,2)-polygraphs: local branchings on minimal string diagrams.
- Regular:

- Inclusion:

- Right-indexed (also left-indexed, multi-indexed):

- Critical branching lemma: A terminating linear (3,2)-polygraph is locally confluent if and only if all its critical branchings are confluent.
- Le P be a left-monomial and convergent linear (3,2)-polygraph. Let \mathcal{C} be the linear 2-category presented by P.

Bases of linear 2-categories from confluence

- Newman lemma: If P is terminating, then P is confluent if and only if it is locally confluent.
- Critical branchings of linear (3,2)-polygraphs: local branchings on minimal string diagrams.
- Regular:
- Inclusion:

- Right-indexed (also left-indexed, multi-indexed):

- Critical branching lemma: A terminating linear (3,2)-polygraph is locally confluent if and only if all its critical branchings are confluent.
- Le P be a left-monomial and convergent linear (3,2)-polygraph. Let \mathcal{C} be the linear 2-category presented by P.
- Theorem [Alleaume '16]: For any parallel 1-cells p, q of \mathcal{C}, the set of monomials in normal form w.r.t P with 1-source p and 1-target q is a linear basis of $\mathcal{C}_{2}(p, q)$.

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- These algebras appear in the process of categorifying a quantum groupe $\mathbf{U}_{q}(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g}.

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- These algebras appear in the process of categorifying a quantum groupe $\mathbf{U}_{q}(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g}.
- Let Γ be the Dynkin diagram of \mathfrak{g}, with set of vertices I, seen as colors.

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- These algebras appear in the process of categorifying a quantum groupe $\mathbf{U}_{q}(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g}.
- Let Γ be the Dynkin diagram of \mathfrak{g}, with set of vertices I, seen as colors.

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- These algebras appear in the process of categorifying a quantum groupe $\mathbf{U}_{q}(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g}.
- Let Γ be the Dynkin diagram of \mathfrak{g}, with set of vertices I, seen as colors.

Let $\mathcal{V}=\sum_{i \in I} \nu_{i} . i$ be an element of $\mathbb{N}[I]$, we consider the set $\operatorname{Seq}(\mathcal{V})$ of sequels of elements of Γ where i appears \mathcal{V}_{i} times.

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- These algebras appear in the process of categorifying a quantum groupe $\mathbf{U}_{q}(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g}.
- Let Γ be the Dynkin diagram of \mathfrak{g}, with set of vertices I, seen as colors.

Let $\mathcal{V}=\sum_{i \in I} \nu_{i} . i$ be an element of $\mathbb{N}[I]$, we consider the set $\operatorname{Seq}(\mathcal{V})$ of sequels of elements of Γ where i appears \mathcal{V}_{i} times.

- Exemple: $\operatorname{Seq}(2 i+k)=\{i i k, i k i, k i i\}$

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- These algebras appear in the process of categorifying a quantum groupe $\mathbf{U}_{q}(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g}.
- Let Γ be the Dynkin diagram of \mathfrak{g}, with set of vertices I, seen as colors.

Let $\mathcal{V}=\sum_{i \in I} \nu_{i} . i$ be an element of $\mathbb{N}[I]$, we consider the set $\operatorname{Seq}(\mathcal{V})$ of sequels of elements of Γ where i appears \mathcal{V}_{i} times.

- Exemple: $\operatorname{Seq}(2 i+k)=\{i i k, i k i, k i i\}$
- For such an element \mathcal{V}, we define an algebra $R(\mathcal{V})$.
- Theorem [Khovanov-Lauda '08]: If $R=\underset{\mathcal{V} \in \mathbb{N}[/]}{\bigoplus} R(\mathcal{V})$,

$$
K_{0}(R-\operatorname{pmod}) \simeq \mathbf{U}_{q}^{-}(\mathfrak{g})
$$

Example: Khovanov-Lauda-Rouquier (KLR) algebras

- These algebras appear in the process of categorifying a quantum groupe $\mathbf{U}_{q}(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g}.
- Let Γ be the Dynkin diagram of \mathfrak{g}, with set of vertices I, seen as colors.

Let $\mathcal{V}=\sum_{i \in I} \nu_{i} . i$ be an element of $\mathbb{N}[I]$, we consider the set $\operatorname{Seq}(\mathcal{V})$ of sequels of elements of Γ where i appears \mathcal{V}_{i} times.

- Exemple: $\operatorname{Seq}(2 i+k)=\{i i k, i k i, k i i\}$
- For such an element \mathcal{V}, we define an algebra $R(\mathcal{V})$.
- Theorem [Khovanov-Lauda '08]: If $R=\underset{\mathcal{V} \in \mathbb{N}[/]}{\bigoplus} R(\mathcal{V})$,

$$
K_{0}(R-\operatorname{pmod}) \simeq \mathbf{U}_{q}^{-}(\mathfrak{g})
$$

- $R(\mathcal{V})$ is generated by

$$
x_{k, \mathrm{i}}=\left|\ldots \oint_{i_{1}} \cdots\right|_{i_{k}} \cdots \quad \text { and } \quad \tau_{k, \mathrm{i}}=\left.|\ldots \underbrace{}_{i_{m}} \ldots|_{i_{\ell+1}} \ldots\right|_{i_{m}}
$$

for any $\mathbf{i}=i_{1} \ldots i_{m} \in \operatorname{Seq}(\mathcal{V}), 1 \leq k \leq m$ and $1 \leq \ell<m$.
\checkmark Relations to realize the algebras $R(\mathcal{V})$ as 2 Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

iii) Close colors:

$$
\xi=1
$$

$$
\xi=\phi \mid+1 \phi
$$

iv) Different colors:

vi) Braid relations:

- Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \rightarrow \longrightarrow \longrightarrow \longrightarrow ~})$
i) Same color:
ii) Distant colors:

$$
\xi \Rightarrow 1
$$

iii) Close colors:

$$
\xi \Rightarrow \phi \mid+1
$$

iv) Different colors:

vi) Braid relations:

\triangle Relations to realize the algebras $R(\mathcal{V})$ as 2 Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:
ii) Distant colors:

$$
\xi \Rightarrow \mid
$$

iii) Close colors:

$$
\xi \Rightarrow \phi \mid+1
$$

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.

Convergent presentation of the KLR algebras

\checkmark Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow \mid
$$

iii) Close colors:

$$
\xi \Rightarrow \phi|+|
$$

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.

Convergent presentation of the KLR algebras

\checkmark Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow \mid
$$

iii) Close colors:

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

\checkmark Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow \mid
$$

iii) Close colors:

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3,2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

\checkmark Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow \mid
$$

iii) Close colors:

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

\checkmark Relations to realize the algebras $R(\mathcal{V})$ as 2Hom－spaces of a linear 2－category：$\quad(\Gamma=\underset{i}{\bullet \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i）Same color：

ii）Distant colors：

$$
\xi \Rightarrow 1
$$

iii）Close colors：

iv）Different colors：

vi）Braid relations：

－Theorem［D．＇19］：This linear（3，2）－polygraph is convergent．
－Idea for termination：number of crossings is decreasing，permutations are left adjusted and dots move to the bottom．
－Confluence：exhaustive study of all critical branchings．

Convergent presentation of the KLR algebras

\checkmark Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow 1
$$

iii) Close colors:

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

Convergent presentation of the KLR algebras

\checkmark Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow \mid
$$

iii) Close colors:

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

\rightarrow Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow 1
$$

iii) Close colors:

$$
\xi \Rightarrow \phi \mid+1
$$

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

\rightarrow Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow 1
$$

iii) Close colors:

$$
\xi \Rightarrow \phi|+|
$$

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

\rightarrow Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $\quad(\Gamma=\underset{i}{\bullet \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow})$
i) Same color:

ii) Distant colors:

$$
\xi \Rightarrow 1
$$

iii) Close colors:

$$
\xi \Rightarrow \phi|+| \phi
$$

iv) Different colors:

vi) Braid relations:

- Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.
- Idea for termination: number of crossings is decreasing, permutations are left adjusted and dots move to the bottom.
- Confluence: exhaustive study of all critical branchings.

III．Confluence modulo in the KLR 2－category

Rewriting modulo

- Proving confluence for presentations admitting a great number of relations may be complicated.

Rewriting modulo

- Proving confluence for presentations admitting a great number of relations may be complicated.
- Some structural relations may make the analysis of critical branchings complicated.

Rewriting modulo

- Proving confluence for presentations admitting a great number of relations may be complicated.
- Some structural relations may make the analysis of critical branchings complicated.
- Example: Adjunction and isotopy relations in pivotal linear 2-categories:

Rewriting modulo

- Proving confluence for presentations admitting a great number of relations may be complicated.
- Some structural relations may make the analysis of critical branchings complicated.
- Example: Adjunction and isotopy relations in pivotal linear 2-categories:
- Rewriting modulo these relations: R set of oriented relations and E set of non-oriented axioms.

Rewriting modulo

- Proving confluence for presentations admitting a great number of relations may be complicated.
- Some structural relations may make the analysis of critical branchings complicated.
- Example: Adjunction and isotopy relations in pivotal linear 2-categories:
- Rewriting modulo these relations: R set of oriented relations and E set of non-oriented axioms.
- Three main paradigms of rewriting modulo:
- Rewriting with relations of R, and confluence modulo E, Huet '80.

Rewriting modulo

- Proving confluence for presentations admitting a great number of relations may be complicated.
- Some structural relations may make the analysis of critical branchings complicated.
- Example: Adjunction and isotopy relations in pivotal linear 2-categories:

$$
\bigcap=\mid=\bigcup, \bigcap J=\phi=\bigcup \cap=\bigcap, \quad \bigcup=\bigcup .
$$

- Rewriting modulo these relations: R set of oriented relations and E set of non-oriented axioms.
- Three main paradigms of rewriting modulo:
- Rewriting with relations of R, and confluence modulo E, Huet '80.

- Rewriting with R on E-equivalence classes:

Rewriting modulo

- Proving confluence for presentations admitting a great number of relations may be complicated.
- Some structural relations may make the analysis of critical branchings complicated.
- Example: Adjunction and isotopy relations in pivotal linear 2-categories:
- Rewriting modulo these relations: R set of oriented relations and E set of non-oriented axioms.
- Three main paradigms of rewriting modulo:
- Rewriting with relations of R, and confluence modulo E, Huet '80.

- Rewriting with R on E-equivalence classes:

- Rewriting system modulo: (R, E, S) such that $R \subseteq S \subseteq{ }_{E} R_{E}$, Jouannaud-Kirchner '84.

Linear (3, 2)-polygraphs modulo

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.

Linear (3, 2)-polygraphs modulo

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3, 2)-polygraph modulo is a triple (R, E, S) made of

Linear (3, 2)-polygraphs modulo

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3,2)-polygraph modulo is a triple (R, E, S) made of
- a linear (3, 2)-polygraph R,

Linear (3, 2)-polygraphs modulo

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3,2)-polygraph modulo is a triple (R, E, S) made of
- a linear (3,2)-polygraph R,
- a linear (3,2)-polygraph E such that $E_{0}=R_{0}, E_{1}=R_{1}$ and $E_{2} \subseteq R_{2}$,

Linear (3, 2)-polygraphs modulo

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3,2)-polygraph modulo is a triple (R, E, S) made of
- a linear (3,2)-polygraph R,
- a linear (3,2)-polygraph E such that $E_{0}=R_{0}, E_{1}=R_{1}$ and $E_{2} \subseteq R_{2}$,
- S is a cellular extension of R_{2}^{ℓ} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by triples $\left(e, f, e^{\prime}\right) \in E^{\ell} \times R^{\ell(1)} \times E^{\ell}$ as follows:

Linear (3, 2)-polygraphs modulo

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3,2)-polygraph modulo is a triple (R, E, S) made of
- a linear (3, 2)-polygraph R,
- a linear (3,2)-polygraph E such that $E_{0}=R_{0}, E_{1}=R_{1}$ and $E_{2} \subseteq R_{2}$,
- S is a cellular extension of R_{2}^{ℓ} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by triples $\left(e, f, e^{\prime}\right) \in E^{\ell} \times R^{\ell(1)} \times E^{\ell}$ as follows:

Linear (3, 2)-polygraphs modulo

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3,2)-polygraph modulo is a triple (R, E, S) made of
- a linear (3, 2)-polygraph R,
- a linear (3,2)-polygraph E such that $E_{0}=R_{0}, E_{1}=R_{1}$ and $E_{2} \subseteq R_{2}$,
- S is a cellular extension of R_{2}^{ℓ} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by triples $\left(e, f, e^{\prime}\right) \in E^{\ell} \times R^{\ell(1)} \times E^{\ell}$ as follows:

- f is a rewriting step of R,

Linear (3, 2)-polygraphs modulo

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3, 2)-polygraph modulo is a triple (R, E, S) made of
- a linear (3, 2)-polygraph R,
- a linear (3,2)-polygraph E such that $E_{0}=R_{0}, E_{1}=R_{1}$ and $E_{2} \subseteq R_{2}$,
- S is a cellular extension of R_{2}^{ℓ} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by triples $\left(e, f, e^{\prime}\right) \in E^{\ell} \times R^{\ell(1)} \times E^{\ell}$ as follows:

- f is a rewriting step of R,
- e and e^{\prime} are 3 -cells of E_{3}^{ℓ}, namely E-congruences.
- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3,2)-polygraph modulo is a triple (R, E, S) made of
- a linear (3,2)-polygraph R,
- a linear (3,2)-polygraph E such that $E_{0}=R_{0}, E_{1}=R_{1}$ and $E_{2} \subseteq R_{2}$,
- S is a cellular extension of R_{2}^{ℓ} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by triples $\left(e, f, e^{\prime}\right) \in E^{\ell} \times R^{\ell(1)} \times E^{\ell}$ as follows:

- f is a rewriting step of R,
- e and e^{\prime} are 3 -cells of E_{3}^{ℓ}, namely E-congruences.
- A branching modulo E of S modulo S is a triple $(f, e, g$) where f and g are S-rewriting sequences (with f non trivial) and e is an E-congruence, such that:

- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear (3,2)-polygraph modulo is a triple (R, E, S) made of
- a linear (3,2)-polygraph R,
- a linear (3,2)-polygraph E such that $E_{0}=R_{0}, E_{1}=R_{1}$ and $E_{2} \subseteq R_{2}$,
- S is a cellular extension of R_{2}^{ℓ} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by triples $\left(e, f, e^{\prime}\right) \in E^{\ell} \times R^{\ell(1)} \times E^{\ell}$ as follows:

- f is a rewriting step of R,
- e and e^{\prime} are 3 -cells of E_{3}^{ℓ}, namely E-congruences.
- A branching modulo E of S modulo S is a triple $(f, e, g$) where f and g are S-rewriting sequences (with f non trivial) and e is an E-congruence, such that:

- It is local if f is a S-rewriting step, and g and e satisfy $\ell(g)+\ell(e)=1$.
- We introduce a polygraphic setting for rewriting modulo in diagrammatic linear 2-categories.
- A linear $(3,2)$-polygraph modulo is a triple (R, E, S) made of
- a linear (3,2)-polygraph R,
- a linear (3,2)-polygraph E such that $E_{0}=R_{0}, E_{1}=R_{1}$ and $E_{2} \subseteq R_{2}$,
- S is a cellular extension of R_{2}^{ℓ} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by triples $\left(e, f, e^{\prime}\right) \in E^{\ell} \times R^{\ell(1)} \times E^{\ell}$ as follows:

- f is a rewriting step of R,
- e and e^{\prime} are 3 -cells of E_{3}^{ℓ}, namely E-congruences.
- A branching modulo E of S modulo S is a triple $(f, e, g$) where f and g are S-rewriting sequences (with f non trivial) and e is an E-congruence, such that:

- It is local if f is a S-rewriting step, and g and e satisfy $\ell(g)+\ell(e)=1$.
- It is confluent modulo E if there exists S-rewriting sequences f^{\prime}, g^{\prime}, and a 3 -cell e^{\prime} in E_{3}^{ℓ} as above.

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.
- Let (R, E, S) be a linear (3,2)-polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.
- Let (R, E, S) be a linear (3,2)-polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
- E is convergent,
- S is terminating,
- S is confluent modulo E.

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.
- Let (R, E, S) be a linear (3,2)-polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
- E is convergent,
- S is terminating,
- S is confluent modulo E.
- Let us consider a 2-cell $u \in \mathcal{C}_{2}(p, q)$,

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.
- Let (R, E, S) be a linear (3,2)-polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
- E is convergent,
- S is terminating,
- S is confluent modulo E.
- Let us consider a 2-cell $u \in \mathcal{C}_{2}(p, q)$,

$$
u \stackrel{s^{*}}{\Rightarrow} \sum \hat{u}_{i}
$$

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.
- Let (R, E, S) be a linear (3,2)-polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
- E is convergent,
- S is terminating,
- S is confluent modulo E.
- Let us consider a 2-cell $u \in \mathcal{C}_{2}(p, q)$,

$$
u \stackrel{S^{*}}{\Rightarrow} \sum \hat{u}_{i}, \quad \hat{u}_{i} \stackrel{N F(E)}{\leadsto>} \sum v_{i, k}
$$

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.
- Let (R, E, S) be a linear (3,2)-polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
- E is convergent,
- S is terminating,
- S is confluent modulo E.
- Let us consider a 2-cell $u \in \mathcal{C}_{2}(p, q)$,

$$
u \stackrel{S^{*}}{\Rightarrow} \sum \hat{u}_{i}, \quad \hat{u}_{i} \stackrel{N F(E)}{\leadsto \sim} \sum v_{i, k} .
$$

- Theorem [D. '19] The set $\left\{v_{i, k}\right.$ thus defined $\left.\mid u \in \mathcal{C}_{2}(p, q)\right\}$ is a linear basis of $\mathcal{C}_{2}(p, q)$.

Linear bases from confluence modulo

- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.
- Let (R, E, S) be a linear (3,2)-polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
- E is convergent,
- S is terminating,
- S is confluent modulo E.
- Let us consider a 2-cell $u \in \mathcal{C}_{2}(p, q)$,

$$
u \stackrel{S^{*}}{\Rightarrow} \sum \hat{u}_{i}, \quad \hat{u}_{i} \stackrel{N F(E)}{\leadsto>} \sum v_{i, k} .
$$

- Theorem [D. '19] The set $\left\{v_{i, k}\right.$ thus defined $\left.\mid u \in \mathcal{C}_{2}(p, q)\right\}$ is a linear basis of $\mathcal{C}_{2}(p, q)$.
- This result extends to the case where S is quasi-terminating, that is it admits infinite rewriting paths that come from rewriting loops.
- Theorem [D' 19] (Linear critical branching lemma modulo): If ${ }_{E} R_{E}$ is terminating, S is locally confluent modulo E iff the critical branchings of the form

are confluent modulo E.
- Let (R, E, S) be a linear (3,2)-polygraph modulo, and \mathcal{C} be the linear 2-category presented by $R \sqcup E$.
- Assume that
- E is convergent,
- S is terminating,
- S is confluent modulo E.
- Let us consider a 2-cell $u \in \mathcal{C}_{2}(p, q)$,

$$
u \stackrel{S^{*}}{\Rightarrow} \sum \hat{u}_{i}, \quad \hat{u}_{i} \stackrel{N F(E)}{\rightsquigarrow} \sum v_{i, k} .
$$

- Theorem [D. '19] The set $\left\{v_{i, k}\right.$ thus defined $\left.\mid u \in \mathcal{C}_{2}(p, q)\right\}$ is a linear basis of $\mathcal{C}_{2}(p, q)$.
- This result extends to the case where S is quasi-terminating, that is it admits infinite rewriting paths that come from rewriting loops.
- Reduce u into $\sum \widetilde{u}_{i}$, where \widetilde{u}_{i} is a fixed monomial in quasi normal-form, that is for every 3-cell $v \Rightarrow \widetilde{u}_{i}$, there exists a 3 -cell $\widetilde{u}_{i} \Rightarrow v$.

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

- Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

- Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{0}=X\left(\mathfrak{s l}_{2}\right)=\mathbb{Z}$ the weight lattice of $\mathfrak{s l}_{2}$,

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

- Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{0}=X\left(\mathfrak{s l}_{2}\right)=\mathbb{Z}$ the weight lattice of $\mathfrak{s l}_{2}$,
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by

- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{0}=X\left(\mathfrak{s l}_{2}\right)=\mathbb{Z}$ the weight lattice of $\mathfrak{s l}_{2}$,
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{2}$ is made of the following generating 2-cells:
$\lambda+2 \oint_{+}^{\lambda}$
$\lambda-2 \emptyset_{\lambda}^{-}$

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

- Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{0}=X\left(\mathfrak{s l}_{2}\right)=\mathbb{Z}$ the weight lattice of $\mathfrak{s l}_{2}$,
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{2}$ is made of the following generating 2-cells:

- subject to the following relations:

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

- Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{0}=X\left(\mathfrak{s l}_{2}\right)=\mathbb{Z}$ the weight lattice of $\mathfrak{s l}_{2}$,
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{2}$ is made of the following generating 2-cells:
$\lambda+2 \oint_{+}$

- subject to the following relations:
- The KLR relations for both orientation of strands.

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

- Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{0}=X\left(\mathfrak{s l}_{2}\right)=\mathbb{Z}$ the weight lattice of $\mathfrak{s l}_{2}$,
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{2}$ is made of the following generating 2-cells:

- subject to the following relations:
- The KLR relations for both orientation of strands.
- Pivotal isotopy axioms:

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by

- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{0}=X\left(\mathfrak{s l}_{2}\right)=\mathbb{Z}$ the weight lattice of $\mathfrak{s l}_{2}$,
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{2}$ is made of the following generating 2-cells:

subject to the following relations:
- The KLR relations for both orientation of strands.
- Pivotal isotopy axioms:

$$
\left.\left.\bigcap_{ \pm} \Rightarrow\right|_{ \pm} \vDash \bigcap_{ \pm}, \bigcap_{ \pm} \cup \Rightarrow \oint_{ \pm} \vDash \bigcap_{ \pm}, \bigcap_{ \pm} \Rightarrow \bigcap_{ \pm}, \quad \bigcup^{ \pm} \Rightarrow \bigcup^{ \pm}\right\} E
$$

- Bubble relations:

$$
\begin{aligned}
& n \oint \lambda \Rightarrow\left\{\begin{array}{ll}
1_{1_{\lambda}} & \text { if } n=\lambda-1 \\
0 & \text { if } n<\lambda-1
\end{array} \quad ; \quad \lambda \Rightarrow \begin{cases}1_{1_{\lambda}} & \text { if } n=-\lambda-1 \\
0 & \text { if } n<-\lambda-1\end{cases} \right. \\
& \lambda-1+\alpha \oint \lambda \Rightarrow-\sum_{l=1}^{\alpha} \lambda-1+\alpha-\oint \lambda<\lambda-1+l \text { for all } \lambda \in \mathbb{Z} \text { and } \alpha>0 \text { such that } \lambda-1+\alpha \geq 0
\end{aligned}
$$

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

Let $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ be the linear 2-category defined by

- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{0}=X\left(\mathfrak{s l}_{2}\right)=\mathbb{Z}$ the weight lattice of $\mathfrak{s l}_{2}$,
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{1}=\left\{\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell(\varepsilon)}\right)\right.$ with $\left.\varepsilon_{i} \in\{-,+\}\right\}$.
- $\mathcal{U}\left(\mathfrak{s l}_{2}\right)_{2}$ is made of the following generating 2-cells:

subject to the following relations:
- The KLR relations for both orientation of strands.
- Pivotal isotopy axioms:

$$
\left.\bigcap_{ \pm} \Rightarrow\right|_{ \pm} \Leftarrow \bigcap_{ \pm}, \bigcap_{ \pm}\left\langle\Rightarrow \oint_{ \pm} \leqslant \bigcap_{ \pm}, \bigcap_{ \pm} \Rightarrow \bigcap_{ \pm}, \quad \bigcup^{ \pm} \Rightarrow \bigcup^{ \pm}\right\} E
$$

- Bubble relations:

$$
\begin{aligned}
& n \oint \lambda \Rightarrow\left\{\begin{array}{ll}
1_{1_{\lambda}} & \text { if } n=\lambda-1 \\
0 & \text { if } n<\lambda-1
\end{array} \quad ; \quad \lambda \Rightarrow \begin{cases}1_{1_{\lambda}} & \text { if } n=-\lambda-1 \\
0 & \text { if } n<-\lambda-1\end{cases} \right. \\
& \lambda-1+\alpha \oint \lambda \Rightarrow-\sum_{l=1}^{\alpha} \lambda-1+\alpha-\oint \lambda<\lambda-1+l \text { for all } \lambda \in \mathbb{Z} \text { and } \alpha>0 \text { such that } \lambda-1+\alpha \geq 0
\end{aligned}
$$

- Bubble slide relations of the form

$$
\lambda+1+\alpha \oint \lambda \Rightarrow \sum_{f=0}^{\alpha}(\alpha+1-f) \oint_{\alpha-f} \lambda-1+f
$$

for any orientations of the bubbles and of the strand.
－Quantum relations：

$$
\Rightarrow-\uparrow \downarrow_{\lambda}+\sum_{n=0}^{\lambda-1} \sum_{r \geq 0}^{\lambda}
$$

- Quantum relations:

$$
\begin{aligned}
& \bigcup^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{n}^{\bigotimes_{-n-1}^{\lambda}}, \\
& \left.\bigcap \bigcap^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda}-n-1\right)_{n}^{\lambda}, \\
& \bigcup^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda} \underbrace{n}_{-n-1}{ }^{\lambda},
\end{aligned}
$$

- Split this linear (3, 2)-polygraph into E made of isotopy 3-cells and R containing the remaining relations.

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

- Quantum relations:

$$
\Rightarrow-\uparrow \downarrow \lambda+\sum_{n=0}^{\lambda-1} \sum_{r \geq 0}^{\lambda}
$$

- Split this linear (3,2)-polygraph into E made of isotopy 3-cells and R containing the remaining relations.
- Theorem [D' 19]:
- R is terminating without bubble slide 3 -cells.
- R and ${ }_{E} R$ are quasi-terminating.
- $E_{E} R$ is confluent modulo E.

Example: the 2-category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

- Quantum relations:

$$
\begin{aligned}
& \bigcup \downarrow^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{n}^{\bigotimes^{n-1}}, \\
& \bigcup^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda} \bigcup_{-n-1}^{0^{n}}{ }^{\lambda}, \\
& \bigcap \bigcap^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda}{ }^{-n-1)_{n}^{\lambda},}
\end{aligned}
$$

- Split this linear (3,2)-polygraph into E made of isotopy 3-cells and R containing the remaining relations.
- Theorem [D' 19]:
- R is terminating without bubble slide 3 -cells.
- R and ${ }_{E} R$ are quasi-terminating.
- ${ }_{E} R$ is confluent modulo E.
- Sketch of the proof:
- Successive derivations to reduce the set of 3 -cells that we need to prove terminating.

Example：the 2－category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

－Quantum relations：

$$
\begin{aligned}
& \bigcap^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{n} \bigodot_{-n-1}^{-1}, \\
& \bigcup^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda} \bigcup_{-n-10^{n}}^{\lambda}, \\
& \downarrow \bigcap^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda}-n-1 \varliminf_{n}, \\
& \nprec)^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{-n-1}^{\underbrace{}_{n}} \text {. }
\end{aligned}
$$

－Split this linear（3，2）－polygraph into E made of isotopy 3－cells and R containing the remaining relations．
－Theorem［D＇19］：
－R is terminating without bubble slide 3－cells．
－R and ${ }_{E} R$ are quasi－terminating．
－$E_{E} R$ is confluent modulo E ．
－Sketch of the proof：
－Successive derivations to reduce the set of 3 －cells that we need to prove terminating．
－Procedure to reduce any 2－cell into a linear combination of 2－cells on which we can only derive bubble slide loops and indexed isotopy loops．

Example：the 2－category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

－Quantum relations：

$$
\begin{aligned}
& \bigcap^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{n} \bigodot_{-n-1}^{-1}, \\
& \bigcup^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda} \bigcup_{-n-10^{n}}^{\lambda}, \\
& \downarrow \bigcap^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda}-n-1 \varliminf_{n}, \\
& \nprec)^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{-n-1}^{\underbrace{}_{n}} \text {. }
\end{aligned}
$$

－Split this linear（3，2）－polygraph into E made of isotopy 3－cells and R containing the remaining relations．
－Theorem［D＇19］：
－R is terminating without bubble slide 3 －cells．
－R and ${ }_{E} R$ are quasi－terminating．
－$E R$ is confluent modulo E ．
－Sketch of the proof：
－Successive derivations to reduce the set of 3 －cells that we need to prove terminating．
－Procedure to reduce any 2－cell into a linear combination of 2－cells on which we can only derive bubble slide loops and indexed isotopy loops．

－Exhaustive study of all the critical branchings modulo．

Example：the 2－category $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$

－Quantum relations：

$$
\begin{aligned}
& \bigcap^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{n} \bigodot_{-n-1}^{-1}, \\
& \bigcup^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda} \bigcup_{-n-10^{n}}^{\lambda}, \\
& \downarrow \bigcap^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda}-n-1 \varliminf_{n}, \\
& \nprec)^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{-n-1}^{\underbrace{}_{n}} \text {. }
\end{aligned}
$$

－Split this linear（3，2）－polygraph into E made of isotopy 3－cells and R containing the remaining relations．
－Theorem［D＇19］：
－R is terminating without bubble slide 3 －cells．
－R and ${ }_{E} R$ are quasi－terminating．
－$E R$ is confluent modulo E ．
－Sketch of the proof：
－Successive derivations to reduce the set of 3 －cells that we need to prove terminating．
－Procedure to reduce any 2－cell into a linear combination of 2－cells on which we can only derive bubble slide loops and indexed isotopy loops．

－Exhaustive study of all the critical branchings modulo．
－Quantum relations：

$$
\begin{aligned}
& \bigcup \downarrow^{\lambda} \Rightarrow \sum_{n=0}^{\lambda} \bigodot_{n}^{\bigotimes^{-n-1}}, \\
& \bigcup^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda} \underbrace{n}_{-n-1}{ }^{\lambda}, \\
& \left.\bigcap \bigcap^{\lambda} \Rightarrow-\sum_{n=0}^{-\lambda}-n-1\right)_{n}^{\lambda}, \\
& \text { 民边 } \Rightarrow \sum_{n=0}^{\lambda} \bigcup_{-n-1}^{\infty} \text {. }
\end{aligned}
$$

－Split this linear（3，2）－polygraph into E made of isotopy 3－cells and R containing the remaining relations．
－Theorem［D＇19］：
－R is terminating without bubble slide 3－cells．
－R and ${ }_{E} R$ are quasi－terminating．
－$E R$ is confluent modulo E ．
－Sketch of the proof：
－Successive derivations to reduce the set of 3 －cells that we need to prove terminating．
－Procedure to reduce any 2－cell into a linear combination of 2－cells on which we can only derive bubble slide loops and indexed isotopy loops．

－Exhaustive study of all the critical branchings modulo．

Non degeneracy of Khovanov-Lauda's diagrammatic calculus

- Corollary: A fixed set of quasi-normal forms containing diagrams with source p and target q in normal form with respect to E and having:
- no loops,
- a minimal number of crossings, and permutation diagrams of through strands are left-adjusted,
- dots placed at the bottom of through strands and to the rightmost interval of arcs,
- no negative degree bubble, and all the bubbles at the rightmost region of the diagram,
gives a linear basis of $\mathcal{U}\left(\mathfrak{s l}_{2}\right)(p, q)$.

Non degeneracy of Khovanov-Lauda's diagrammatic calculus

- Corollary: A fixed set of quasi-normal forms containing diagrams with source p and target q in normal form with respect to E and having:
- no loops,
- a minimal number of crossings, and permutation diagrams of through strands are left-adjusted,
- dots placed at the bottom of through strands and to the rightmost interval of arcs,
- no negative degree bubble, and all the bubbles at the rightmost region of the diagram,
gives a linear basis of $\mathcal{U}\left(\mathfrak{s l}_{2}\right)(p, q)$.
- Corollary: This implies the non-degeneracy of Khovanov and Lauda's diagrammatic calculus for $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$.

Non degeneracy of Khovanov-Lauda's diagrammatic calculus

- Corollary: A fixed set of quasi-normal forms containing diagrams with source p and target q in normal form with respect to E and having:
- no loops,
- a minimal number of crossings, and permutation diagrams of through strands are left-adjusted,
- dots placed at the bottom of through strands and to the rightmost interval of arcs,
- no negative degree bubble, and all the bubbles at the rightmost region of the diagram,
gives a linear basis of $\mathcal{U}\left(\mathfrak{S l}_{2}\right)(p, q)$.
- Corollary: This implies the non-degeneracy of Khovanov and Lauda's diagrammatic calculus for $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$.
- This holds for any simply-laced Kac-Moody algebra \mathfrak{g}.
IV. Conclusion and perspectives

Coherence modulo

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.

Coherence modulo

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- Question: Prove coherence results for rewriting modulo.
- Find a basis of the set of syzygies, i.e. relations among relations.
- In higher-dimensions: find homotopy generators to compute cofibrant replacements.

Coherence modulo

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- Question: Prove coherence results for rewriting modulo.
- Find a basis of the set of syzygies, i.e. relations among relations.
- In higher-dimensions: find homotopy generators to compute cofibrant replacements.
- Coherence from convergence: From a convergent presentation, a basis of syzygies is given by the cells $A_{f, g}$

for every critical branching (f, g) and a chosen confluence $\left(f^{\prime}, g^{\prime}\right)$.

Coherence modulo

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- Question: Prove coherence results for rewriting modulo.
- Find a basis of the set of syzygies, i.e. relations among relations.
- In higher-dimensions: find homotopy generators to compute cofibrant replacements.
- Coherence from convergence: From a convergent presentation, a basis of syzygies is given by the cells $A_{f, g}$

for every critical branching (f, g) and a chosen confluence $\left(f^{\prime}, g^{\prime}\right)$.
- Coherence modulo results are expressed in n-categories enriched in double groupoids:
- Vertical cells are axioms of E_{n}^{\top}.
- Horizontal cells are rewriting sequences of S_{n}^{*}.

Coherence modulo

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- Question: Prove coherence results for rewriting modulo.
- Find a basis of the set of syzygies, i.e. relations among relations.
- In higher-dimensions: find homotopy generators to compute cofibrant replacements.
- Coherence from convergence: From a convergent presentation, a basis of syzygies is given by the cells $A_{f, g}$

for every critical branching (f, g) and a chosen confluence $\left(f^{\prime}, g^{\prime}\right)$.
- Coherence modulo results are expressed in n-categories enriched in double groupoids:
- Vertical cells are axioms of E_{n}^{\top}.
- Horizontal cells are rewriting sequences of S_{n}^{*}.
- Theorem. [D.-Malbos '18] Let (R, E, S) be n-polygraph modulo, and Γ be a square extension of the pair of $(n+1, n)$-categories $\left(E^{\top}, S^{\top}\right)$ such that
- E is convergent,
- S is Γ-confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S, that is for any u in $\operatorname{Irr}(E), N F(u, S) \cap \operatorname{Irr}(E) \neq \varnothing$.
- ${ }_{E} R_{E}$ is terminating,
then $E \rtimes \Gamma \cup \operatorname{Peiff}(E, S) \cup \operatorname{Cd}(E)$ is acyclic.

Coherence modulo

- We developed effective tools based on rewriting modulo to compute in (linear) diagrammatic presentations.
- Question: Prove coherence results for rewriting modulo.
- Find a basis of the set of syzygies, i.e. relations among relations.
- In higher-dimensions: find homotopy generators to compute cofibrant replacements.
- Coherence from convergence: From a convergent presentation, a basis of syzygies is given by the cells $A_{f, g}$

for every critical branching (f, g) and a chosen confluence $\left(f^{\prime}, g^{\prime}\right)$.
- Coherence modulo results are expressed in n-categories enriched in double groupoids:
- Vertical cells are axioms of E_{n}^{\top}.
- Horizontal cells are rewriting sequences of S_{n}^{*}.
- Theorem. [D.-Malbos '18] Let (R, E, S) be n-polygraph modulo, and Γ be a square extension of the pair of ($n+1, n$)-categories $\left(E^{\top}, S^{\top}\right)$ such that
- E is convergent,
- S is Γ-confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S, that is for any u in $\operatorname{Irr}(E), N F(u, S) \cap \operatorname{Irr}(E) \neq \varnothing$.
- ${ }_{E} R_{E}$ is terminating,
then $E \rtimes \Gamma \cup \operatorname{Peiff}(E, S) \cup \operatorname{Cd}(E)$ is acyclic.
- Objective: extend these constructions in higher dimensions.

Work in progress and perspectives

- Work in progress:

Work in progress and perspectives

- Work in progress:
1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with M. Ebert and A. Lauda.
- Introduction of (3,2)-superpolygraphs and of super rewriting theory using implicit rewriting modulo super-exchange laws:

- Proof of non-degeneracy for the odd-categorification of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ using rewriting modulo super isotopies.

Work in progress and perspectives

- Work in progress:
1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with M. Ebert and A. Lauda.
- Introduction of (3,2)-superpolygraphs and of super rewriting theory using implicit rewriting modulo super-exchange laws:
- Proof of non-degeneracy for the odd-categorification of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ using rewriting modulo super isotopies.
2.) Categorification of tensor products of Verma modules over $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, work in progress with G . Naisse.
- Definition of candidate algebras, and proof of a basis theorem using rewriting in the dimension of the algebras, modulo distant planar isotopies.
- Application: Define braid group actions on some weight spaces, to categorify Burau and Lawrence-Krammer-Bigelow representations.
- Further question: Construction of $d g$-enhancements using rewriting.

Work in progress and perspectives

- Work in progress:
1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with M. Ebert and A. Lauda.
- Introduction of (3,2)-superpolygraphs and of super rewriting theory using implicit rewriting modulo super-exchange laws:
- Proof of non-degeneracy for the odd-categorification of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ using rewriting modulo super isotopies.
2.) Categorification of tensor products of Verma modules over $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, work in progress with G . Naisse.
- Definition of candidate algebras, and proof of a basis theorem using rewriting in the dimension of the algebras, modulo distant planar isotopies.
- Application: Define braid group actions on some weight spaces, to categorify Burau and Lawrence-Krammer-Bigelow representations.
- Further question: Construction of $d g$-enhancements using rewriting.
3.) Obtain explicit proofs of categorification results:
- Categorification of Mackey's induction/restriction theorem for Brauer algebras, work in progress.

Work in progress and perspectives

- Work in progress:
1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with M. Ebert and A. Lauda.
- Introduction of (3,2)-superpolygraphs and of super rewriting theory using implicit rewriting modulo super-exchange laws:

$$
\begin{array}{|c|c|c|c|}
\hline \ldots & \ldots \\
\hline \phi & \ldots \\
\hline \ldots & \psi \\
\hline \ldots & =(-1)^{|\psi||\phi|} & \cdots & \psi \\
\hline \phi & \ldots \\
\hline \ldots & \ldots \\
\hline
\end{array}
$$

- Proof of non-degeneracy for the odd-categorification of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ using rewriting modulo super isotopies.
2.) Categorification of tensor products of Verma modules over $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, work in progress with G. Naisse.
- Definition of candidate algebras, and proof of a basis theorem using rewriting in the dimension of the algebras, modulo distant planar isotopies.
- Application: Define braid group actions on some weight spaces, to categorify Burau and Lawrence-Krammer-Bigelow representations.
- Further question: Construction of $d g$-enhancements using rewriting.
3.) Obtain explicit proofs of categorification results:
- Categorification of Mackey's induction/restriction theorem for Brauer algebras, work in progress.
4.) Develop heuristics of computations in various families of diagrammatic presentations.
- Categorification of $\mathbf{U}_{q}(\mathfrak{g})$ in general, Heisenberg categorifications, category of $\mathfrak{g l}_{n}$-webs, of Soergel bimodules, ...

Work in progress and perspectives

- Work in progress:
1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress with M. Ebert and A. Lauda.
- Introduction of (3,2)-superpolygraphs and of super rewriting theory using implicit rewriting modulo super-exchange laws:
- Proof of non-degeneracy for the odd-categorification of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ using rewriting modulo super isotopies.
2.) Categorification of tensor products of Verma modules over $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, work in progress with G . Naisse.
- Definition of candidate algebras, and proof of a basis theorem using rewriting in the dimension of the algebras, modulo distant planar isotopies.
- Application: Define braid group actions on some weight spaces, to categorify Burau and Lawrence-Krammer-Bigelow representations.
- Further question: Construction of $d g$-enhancements using rewriting.
3.) Obtain explicit proofs of categorification results:
- Categorification of Mackey's induction/restriction theorem for Brauer algebras, work in progress.
4.) Develop heuristics of computations in various families of diagrammatic presentations.
- Categorification of $\mathbf{U}_{q}(\mathfrak{g})$ in general, Heisenberg categorifications, category of $\mathfrak{g l}_{n}$-webs, of Soergel bimodules, ...
- Long-term project: Implement computational tools to analyse confluence of diagrammatic presentations.

Thank you for your attention.

