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» We study these algebras by realizing them as 2-Hom-spaces of linear 2-categories.
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String diagrams

» The 2-cells of a (linear) 2-category can be depicted by a string diagram:

» Compositions:

p p’ q*0q’ P
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» These compositions satisfy exchange relations:
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This cellular extension defines a linear (3, 2)-polygraph presenting a linear 2-category C such that

Endc(n) ~ NH,

v

» It is left monomial, that is each source of a 3-cell is a monomial.
»> Assumption: All the linear (3,2)-polygraphs we consider are left-monomial.
> Given a linear (3,2)-polygraph P, rewriting paths w.r.t P are interpreted as 3-cells in the free linear (3, 2)-category

P4 generated by P.

> A rewriting step of a linear (3,2)-polygraph is 3-cell of the form

A

my my
-I- E-] Pl BT F-]
o = [l
-l BT P -l F--T P

ma ma

where « € Ps, and such that my x1 (m2 xo s2(a) o m3) x1 ma does not appear in the monomial decomposition of w.
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» Critical branching lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only if all its critical
branchings are confluent.

» Le P be a left-monomial and convergent linear (3,2)-polygraph. Let C be the linear 2-category presented by P.

» Theorem [Alleaume '16]: For any parallel 1-cells p, g of C, the set of monomials in normal form w.r.t P with
1-source p and 1-target q is a linear basis of C2(p, q).
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» Rewriting system modulo: (R, E,S) such that R C S C gRg, Jouannaud-Kirchner '84.
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T 4
u—-su > w
GJ/ Ve/
v —=1' >w'

g o

> It is local if f is a S-rewriting step, and g and e satisfy ¢(g) + ¢(e) = 1.

> It is confluent modulo E if there exists S-rewriting sequences f’, g’, and a 3-cell €’ in E5 as above.
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Linear bases from confluence modulo

» Theorem [D’ 19] (Linear critical branching lemma modulo): If £Re is terminating, S is locally confluent modulo
E iff the critical branchings of the form

S*(1) 5% , 5*(1) o+ ,
u——v >V u—mv >V
||\L VET ET(I)\L VET
—w >w' u’ > W
R*(1) S* S*

are confluent modulo E.
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» Theorem [D. '19] The set {v; « thus defined | u € C2(p, g)} is a linear basis of C2(p, q).

» This result extends to the case where S is quasi-terminating, that is it admits infinite rewriting paths that come
from rewriting loops.

» Reduce u into Y U;, where ; is a fixed monomial in quasi normal-form, that is for every 3-cell v = 0;, there exists
a 3-cell u; = v.
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» Bubble slide relations of the form

)\+1+aOT A=

for any orientations of the bubbles and of the strand.

3 (a+1-1) {a—fO

f=

A—=1+f
A

E
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Example: the 2-category U(sl,)

» Quantum relations:

QWUE T +zz S ONQ ST +228

OQ 3?#23” L U@* éni _n_lgf,
00=x 8 ULy
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‘Ofnfl ’

I
o

n
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Non degeneracy of Khovanov-Lauda’s diagrammatic calculus

» Corollary: A fixed set of quasi-normal forms containing diagrams with source p and target g in normal form with
respect to E and having:

» no loops,
» a minimal number of crossings, and permutation diagrams of through strands are left-adjusted,
> dots placed at the bottom of through strands and to the rightmost interval of arcs,

» no negative degree bubble, and all the bubbles at the rightmost region of the diagram,

gives a linear basis of U(sl2)(p, q).
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» Corollary: A fixed set of quasi-normal forms containing diagrams with source p and target g in normal form with
respect to E and having:

» no loops,
» a minimal number of crossings, and permutation diagrams of through strands are left-adjusted,
> dots placed at the bottom of through strands and to the rightmost interval of arcs,

» no negative degree bubble, and all the bubbles at the rightmost region of the diagram,

gives a linear basis of U(sl2)(p, q).

» Corollary: This implies the non-degeneracy of Khovanov and Lauda's diagrammatic calculus for U(sl2).

» This holds for any simply-laced Kac-Moody algebra g.
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IV. Conclusion and perspectives
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» In higher-dimensions: find homotopy generators to compute cofibrant replacements.

» Coherence from convergence: From a convergent presentation, a basis of syzygies is given by the cells Ar
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, 7

g\> v /

g

for every critical branching (f, g) and a chosen confluence (', g’).

» Coherence modulo results are expressed in n-categories enriched in double groupoids:
> Vertical cells are axioms of E, .

» Horizontal cells are rewriting sequences of S.
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» Theorem. [D.-Malbos 18] Let (R, E, S) be n-polygraph modulo, and I be a square extension of the pair of
(n+ 1, n)-categories (E",S") such that
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» S is [-confluent modulo E,
» Irr(E) is E-normalizing with respect to S, that is for any v in Irr(E), NF(u,S) NIrr(E) # @.

» £RE is terminating,

then E x I UPeiff(E,S) U Cd(E) is acyclic.
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» Objective: extend these constructions in higher dimensions.
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» Work in progress:

1.) Extension of these methods to the case of monoidal supercategories and 2-supercategories, work in progress
with M. Ebert and A. Lauda.

» Introduction of (3, 2)-superpolygraphs and of super rewriting theory using implicit rewriting modulo super-exchange
laws:

> Proof of non-degeneracy for the odd-categorification of Uq(sl2) using rewriting modulo super isotopies.
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» Long-term project: Implement computational tools to analyse confluence of diagrammatic presentations.
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Thank you for your attention.
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