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Résumé

En théorie des représentations, de nombreuses familles de catégories sont définies par générateurs et re-
lations diagrammatiques. Une des questions principales dans l’étude de ces catégories est le calcul de bases
linéaires des espaces de morphismes. Ces calculs de bases sont en général très difficiles en raison de la com-
plexité combinatoire des relations. Cette thèse introduit une approche constructive permettant de calculer ces
bases avec des méthodes issues de la théorie de la réécriture.

Nous introduisons un cadre catégorique de réécriture modulo, qui décrit le calcul dans une structure
algébrique par application de relations orientées modulo les axiomes de la structure. Ce cadre nous permet
de développer des outils pour réécrire dans des algèbres et catégories diagrammatiques admettant une structure
inhérente complexe, telles que la structure de catégorie pivotale dans laquelle les diagrammes sont représentés
à isotopie planaire près.

Nous définissons la notion de système de réécriture de dimension supérieure modulo, appelés polygraphes
modulo, dans un contexte ensembliste et linéaire. Ces structures polygraphiques fournissent un cadre pour
les preuves de cohérence modulo ainsi que le calcul de bases linéaires. En particulier, nous démontrons que
des bases linéaires pour les espaces de 2-cellules de 2-catégories pivotales peuvent être obtenues à partir de
présentations dont les relations forment un système de réécriture terminant, ou quasi-terminant, et confluent
modulo les relations disotopie planaire. Nous étudions via ces méthodes la catégorie définie par Khovanov,
Lauda et Rouquier pour catégorifier le groupe quantique associé à une algèbre de Kac-Moody symétrisable
simplement lacée. Nous calculons des bases explicites des espaces de 2-cellules de cette catégorie, et montrons
ainsi la non-dégénérescence du calcul diagrammatique introduit par Khovanov et Lauda, prouvant dans ce cas
le théorème de catégorification du groupe quantique associé. Enfin, nous étendons la structure de polygraphe
modulo au contexte de la réécriture modulo les axiomes décrits par une théorie algébrique de Lawvere. Nous
démontrons un lemme des paires critiques algébrique basé sur une notion de stratégie de réécriture adaptée au
contexte algébrique.
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Introduction (FR)

RÉÉCRITURE ALGÉBRIQUE ET CATÉGORIFICATION

Calcul formel en théorie des représentations

Le calcul formel est une branche des mathématiques et de l’informatique fondamentale qui vise à
développer et implémenter des algorithmes manipulant et analysant des expressions mathématiques. De
nombreux algorithmes effectifs ont été développés afin de résoudre des problèmes potentiellement diffi-
ciles dans de nombreux domaines en mathématiques. Par exemple, des outils ont vu le jour afin de sim-
plifier des expressions structurelles, de factoriser des polynômes, de calculer des plus grands communs
diviseurs etc. En algèbre, et en particulier en théorie des représentations, de tels outils sont nécessaires
pour calculer dans des présentations de structures algébriques par générateurs et relations. En particulier,
les questions principales sur ces présentations concernent le calcul de syzygies, c’est-à-dire relations en-
tre les relations, ou le calcul de bases linéaires. Ce travail s’incrit dans un projet visant à développer de
tels outils constructifs, à partir de la théorie de la réécriture, pour étudier des présentations d’algèbres et
de catégories diagrammatiques qui apparaissent dans divers domaines en mathématiques, et notamment
en théorie des représentations.

Calcul dans des structures linéaires. En général, étant donnée une algèbre admettant une présentation
par générateurs et relations, il n’est pas facile de quantifier le nombre d’éléments contenus dans cette
algèbre. En effet, il peut s’avérer qu’il y ait trop de relations définissant l’algèbre, impliquant que tous
les éléments sont finalement égaux à zéro. Souvent, il est faisable de déterminer un ensemble de mots en
les générateurs qui engendrent l’algèbre, et que nous conjecturons en être une base. Cependant, prouver
l’indépendance linéaire de cet ensemble de monômes peut être difficile, voir [46] pour des exemples.
Dans la plupart des cas, la preuve de l’indépendance linéaire consiste à définir une action de l’algèbre
sur un anneau de polynômes sur lequel les éléments de la base candidate agissent comme des opérateurs
linéairement indépendants, d’où nous déduisons que l’un ensemble fixé d’expressions réduites de ces
éléments forme une base. Toutefois, la définition d’une telle action et la preuve de l’indépendance
linéaire des opérateurs induits peut être compliquée, voir see [58, 71] pour des exemples tels que les
algèbres de Hecke à 2 paramètres ou encore les algèbres de Khovanov-Lauda-Rouquier. Nous montrons
que ces questions peuvent être abordées par des outils provenant de la théorie de la réécriture algébrique.

De nombreuses théories du calcul basées sur le principe de la théorie de la réécriture sont apparues
dans divers travaux en algèbre linéaire. En particulier, de nombreux outils ont été développés afin de
calculer des formes normales pour différents types d’algèbres présentées par générateurs et relations,
avec des applications dans la décidabilité du problème d’appartenance à un idéal et le calcul de bases
telles que des bases de type Poincaré-Birkhoff-Witt. Par exemple, Shirshov a introduit dans [108] un
algorithme permettant de calculer une base linéaire d’une algèbre de Lie présentée par générateurs et
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relations, et en a déduit une preuve constructive du théorème de Poincaré-Birkhoff-Witt. La théorie des
bases de Gröbner a été introduite pour calculer dans des idéaux d’anneaux de polynômes et d’algèbres
commutatives, [24, 25, 26]. Buchberger a décrit un algorithme permettant de calculer des bases de
Gröbner, à partir de la notion de S-polynôme, comme un analogue de la complétion de Knuth-Bendix et
du lemme des branchements critiques linéaires en réécriture, décrits dans la suite. Bokut and Bergman
ont ensuite indépendamment étendu les bases de Gröbner pour des algèbres associatives, avec les preuves
du lemme de composition et du lemme du diamant de Bergman [13, 9]. Ces résultats ont par la suite
été instanciés comme des résultats de réécriture. L’approche des bases de Gröbner et de l’algorithme
de Buchberger ont mené au développement d’une approche basée sur la théorie de la réécriture afin
de calculer dans des algèbres associatives, tout en s’affranchissant de l’hypothèse de compatibilité des
règles de réécriture avec un ordre monomial, voir [50].

Algèbres diagrammatiques. L’un des objectifs principaux de cette thèse est de développer des outils
pour calculer dans des algèbres diagrammatiques, c’est-à-dire des algèbres admettant des présentations
par générateurs et relations qui sont représentés par des diagrammes. De nombreuses familles de telles
algèbres sont apparues dans plusieurs domaines en mathématiques, par exemple les algèbres de Temperley-
Lieb [116] en mécanique quantique, les algèbres de Brauer [15] en théorie des représentations des
groupes orthogonaux, les algèbres de Birman-Wenzl [12] ou les algèbres planaires de Jones [59] en
théorie des noeuds, ou encore les algèbres de Khovanov-Lauda-Rouquier en théorie des représentations
de groupes quantiques, [71, 102].

Par exemple, pour un corps K fixé, considérons la K-algèbre du groupe symétrique Sn sur n lettres,
notée K[Sn]. Rappelons que Sn admet une présentation de groupe de Coxeter sur n − 1 générateurs si
pour 1 ≤ i ≤ n− 1, correspondant à la transposition (i i+ 1). Ces générateurs sont sujets aux relations
suivantes:

i) s2i = 1 pour 1 ≤ i ≤ n− 1,

ii) sisj = sjsi pour tous i, j tels que |i− j| > 1,

iii) sisi−1si = si−1sisi−1 pour tout 2 ≤ i ≤ n− 1.

Il existe une manière classique de représenter une permutation w de Sn par un diagramme de tresse.
C’est un diagramme, dessiné dans la bande du plan R × [0, 1], composé de 2n points répartis en deux
lignes, avec n points sur la ligne R × {0} et n points sur la ligne R × {1}, et dans lequel un point de
la ligne du haut est relié par un brin à un et un seul point de la ligne du bas. Dans cette représentation
graphique, le générateur si correspond à un croisement local entre le brun numéroté i (en numérotant les
brins de 1 à n de la droite vers la gauche) et le brin numéroté i+ 1, comme ci-dessous:

n
. . .

i
. . .

1

n . . . i . . . 1

! si.

La multiplication correspond alors à la juxtaposition verticale de diagrammes du bas vers le haut. Par
conséquent, les relations locales i)−iii) admettent également une interprétation diagrammatique, représentée
ci-dessous:

n
. . .

i
. . .
1

n. . . i. . . 1

=

n
. . .

i
. . .
1

n. . . i. . . 1

,

n
. . .

j
. . .

. . . . . .

i

. . .

. . .

=

n
. . .

j
. . .

. . . . . .

i

. . .

. . .

,
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n
. . .

i

. . . . . .

. . .

=

n
. . .

i

. . . . . .

. . .

,

faisant de K[Sn] une algèbre diagrammatique. Cependant, afin d’étudier les algèbres K[Sn] pour tout
n ∈ N, ces présentations ne sont pas économiques pour les raisons suivantes:

1) Il faut considérer toutes les algèbres K[Sn] pour chaque entier n ∈ N, et il y a donc une infinité
dénombrable d’algèbres à étudier.

2) Pour l’algèbre K[Sn], il y a un grand nombre de relations dans la présentation, plus grand que n2.

Il existe en général une approche plus efficace pour étudier une telle famille dénombrable d’algèbres: les
réaliser comme des espaces de morphismes d’une catégorie monoı̈dale K-linéaire, ou comme espaces de
2-cellules d’une 2-catégorie linéaire comme suit. Considérons la catégorie monoı̈dale K-linéaire Sym
avec un unique objet générateur noté 1, de telle sorte que les objets de Sym sont de la forme 1⊗n, dénotant
le produit ⊗ de 1 avec lui-même n fois pour tout n ∈ N, 1⊗0 étant l’objet unité, et une unique 1-cellule
génératrice s : 1⊗ 1→ 1⊗ 1, soumise aux relations suivantes:

s ◦ s = 1⊗ 1, (s⊗ 1) ◦ (1⊗ s) ◦ (s⊗ 1) = (1⊗ s) ◦ (s⊗ 1) ◦ (1⊗ s). (1)

où par 1 nous notons également la 1-cellule identité sur 1. L’ensemble EndSym(1⊗n) est muni d’une
structure de K-algèbre, et est isomorphe à K[Sn], de telle sorte que nous retrouvons toutes les algèbres
de groupes symétriques dans la catégorie monoı̈dale K-linéaire Sym. Cette présentation est beaucoup
plus économique, puisqu’il ne reste à étudier qu’une présentation d’une catégorie monoı̈dale admettant
trois relations.

Notons que les algèbres diagrammatiques admettent en général une interprétation en tant que catégorie
par elle-même, où peuvent être réalisées comme des espaces de morphismes de catégories linéaires de
cette manière. En particulier, nous allons étudier une structure de catégories appelées (2, 2)-catégories
linéaires, qui sont des 2-catégories telles que chaque ensemble de 2-cellules entre des 1-cellules par-
allèles admet une structure de K-espace vectoriel pour un certain corps K. Lorsque ces (2, 2)-catégories
linéaires admettent une unique 0-cellule, cette structure coı̈ncide avec la structure de catégorie monoı̈dale
K-linéaire. Les 2-cellules d’une telle catégorie admettent une représentation diagrammatique donnée par
des diagrammes de cordes, définis comme suit:

yn−1bn

��

. . .
bn−1oo y2

b3oo y1
b2oo

xm x0

b1
jj

a1uuxm−1
am

``

. . .
am−1

oo x2a3
oo x1a2

oo

f

KS

! f

. . .

. . .

am

bn

a1

b1

a2

b2

x0xm

y1

x1

,

utilisant la convention qu’un diagramme de corde se lit de droite à gauche, et de bas en haut. Ceci
nous permet de considérer une théorie du calcul sur des diagrammes construits à partir de diagrammes
générateurs. Dans l’example ci-dessus, en interprétant Sym comme une (2, 2)-catégorie linéaire avec
une seule 0-cellule, la 2-cellule génératrice s peut se représenter par un diagramme de corde de 1 ⊗ 1
vers 1⊗ 1, par exemple un croisement comme ci-dessous:

• s

1 1

11

(2)
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Quand il n’y a pas d’ambiguité, nous pouvons omettre les points et les étiquettes des 2-cellules et des
1-cellules source et but, de telle sorte que la 2-cellule (2) est juste représentée par un croisement. Les
relations (1) sont alors représentées par

= , = .

(3)

La catégorie Sym admet seulement 2 relations et sa structure est simple à étudier. En général cependant,
des présentations d’algèbres et catégories diagrammatiques peuvent admettre un grand nombre de rela-
tions, certaines d’entre elles étant potentiellement induites par la structure algébrique, nécessitant des
outils de calcul appropriés.

Catégorification. Le terme de catégorification a été introduit par Crane dans [35], suivant un précédent
travail avec Frenkel [34]. Ce nom réfère au processus de remplacer toutes les notions ensemblistes par
des notions catégoriques correspondantes. Afin d’étudier une structure donnée, l’idée est alors de définir
une catégorie de dimension supérieure correspondant d’une certaine manière à l’objet de départ via son
groupe de Grothendieck, mais admettant une structure plus riche permettant de l’étudier via l’apparition
de nouveaux phénomènes. En effet, l’objectif est d’être capable d’obtenir de nouvelles informations
sur l’objet original à partir de cette structure plus riche. Par exemple, afin d’étudier les représentations
d’une algèbre, nous étudions des actions de cette algèbre sur des espaces vectoriel, via des applications
linéaires. Dans le processus de catégorification en théorie des représentations de dimension supérieure,
les espaces vectoriels sont remplacés par des catégories linéaires de dimension supérieure, les appli-
cations linéaires par des foncteurs linéaires, et les équations entre applications par des transformations
naturelles de foncteurs, qui sont soumis à des relations de cohérence supplémentaires. Par conséquent,
les éléments de l’algèbre sont alors considérés comme des classes d’isomorphismes d’objets d’une cer-
taine catégorie, fournissant une structure à partir de laquelle nous souhaitons obtenir plus d’informations
sur l’algèbre originale. Par exemple, considérons l’ensemble N des entiers naturels. Cet ensemble peut
être catégorifié par la catégorie FinSet admettant pour objets les ensembles finis et pour morphismes
les fonctions ensemblistes via le cardinal, puisque deux ensembles finis de même cardinal sont en bijec-
tion. La somme et le produit de N correspondent alors respectivement à l’union disjointe et le produit
cartésien dans FinSet. Tandis que l’addition et la multiplication dans N satisfont de nombreuses pro-
priétés algébriques telles que la commutativité, l’associativité et la distributivité, l’union disjointe et le
produit cartésien dans FinSet ne satisfont de telles lois qu’à isomorphisme près.

Depuis les travaux pioniers de Crane et Frenkel, beaucoup de travaux sur la catégorification sont ap-
parus dans divers contextes, et ont aidé à résoudre de nombreux problèmes compliqués. Par exemple, la
catégorification du polynôme de Jones par Khovanov [68] utilisant la théorie des catégories et l’algèbre
homologique a mené à de nouvelles directions de recherche en topologie, basées sur la catégorification.
Cette théorie a permis d’éclaircir de nombreux problèmes et mené à de nouveaux résultats. De nom-
breuses algèbres étudiées en mathématiques ont à ce jour une version catégorifiée, par exemple les
algèbres de Heisenberg [70], les algèbres de Weyl [69], les algèbres de polynômes [74], les algèbres
de Hecke avec la catégorie des bimodules de Soergel [109], ou les groupes quantiques [102, 67]. En
théorie des représentations, de nombreuses représentations ont également été catégorifiées, telles que
les représentations des algèbres de Lie semi-simples et certaines représentations des groupes de Weyl
associés avec ls catégories O [11, 10], les représentations irréductibles de dimension finie des algèbres
de Lie slm [5], ou encore des produits tensoriels de représentations fondamentales de slm [115], pour
m ∈ N. De plus, de nombreuses catégorifications sont apparues pour d’autres concepts mathématiques,
telles que les actions de groupes de tresses, ou encore les invariants d’enchevêtrements [29]. Nous
référons à [73, 90, 104] pour d’autres exemples de résultats nouveaux provenant de cette théorie. La
plupart des catégorifications mentionnées ci-dessus ont été définies par présentation par générateurs et
relations définies par des diagrammes qui sont représentés à isotopie planaire près. Par conséquent, les
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(2, 2)-catégories linéaires étudiées dans ce travail sont en général enrichies d’une structure addition-
nelle, celle de (2, 2)-catégorie linéaire pivotale. Une telle structure est définie à partir de l’existence
d’adjonctions sur les 1-cellules, impliquant l’existence de 2-cellules unité et counité, diagrammatique-
ment représentées par des cups et des caps, et satisfaisant des relations d’isotopie. Dans cette structure,
deux diagrammes de cordes égaux à isotopie près représentent la même 2-cellule [32], de telle sorte que
les calculs sont compliqués à implémenter. La plupart des catégorifications définies dans la littérature
admettent une structure pivotale, ou quasi-pivotale, telles que la catégorie des gln-webs encodant la
théorie des représentations de l’algèbre de Lie gln [30, 45], la 2-categorification d’un groupe quan-
tique de Khovanov-Lauda et Rouquier [67, 102] ou encore les catégories de Heisenberg catégorifiant les
algèbres de Heisenberg [70].

La réécriture algébrique

Systèmes de réécriture abstraits. La notion sous-jacente derrière la théorie des bases de Gröbner et
les travaux de Buchberger, Bergman, Bokut and Shirshov est la notion de présentation d’une algèbre
par un système de réécriture convergent. La théorie de la réécriture est une théorie combinatoire des
classes d’équivalence, [96]. La première notion de système de réécriture a été introduite par Thue en
1914 afin d’étudier le problème du mot dans des semi-groupes, c’est à dire de décider si deux mots
en les générateurs sont égaux ou non modulo les relations de la présentation du semi-groupe. Cette
méthode consiste à orienter les relations et à étudier les expressions irreductibles, ou formes normales.
Par ailleurs, le problème du mot a été étudié dans de nombreux contextes en algèbre et en informatique.
D’autre part, la réécriture a été grandement développée en informatique fondamentale, produisant de
nombreuses variantes dépendant de la nature des objets étant transformés, par exemple: des mots dans
des monoı̈des [14, 54], des termes dans des théories algébriques [75, 6, 117], des λ-termes, des circuits
booléens [78], etc.

Une classe d’équivalence pour une relation donnée est composée d’objets qui peuvent être obtenus
l’un à partir de l’autre par une suite d’application de transformations non-orientées. La réécriture consiste
à orienter ces transformations. De manière explicite, un système de réécriture abstrait est la donnée d’un
ensemble X d’objet, ainsi que d’un sous ensemble R de X × X dont les éléments (x, y) sont notés par
x → y. Dans ce cas, nous disons que x se réécrit en y, ou que x → y est une étape de réécriture, ou
réduction de x vers y. Une suite

x1 → x2 → . . .→ xn → xn+1 → . . .

de telles étapes de réécriture est appelée un chemin de réécriture. A un tel système, nous associons
deux propriétés fondamentales: la terminaison et la confluence. Un système de réécriture abstrait (X, R)
termine si il n’existe pas de suite infinie de réécriture pour R. Il est dit confluent si pour tout branchement,
c’est à dire une paire de chemins provenant du même élément, il existe des chemins de réécriture donnant
le même résultat final, comme résumé dans le diagramme suivant:

x1 ∗
  

x

∗ >>

∗   

y

x2
∗
>>
,

où ∗→ dénote la clôture réflexive et transitive de →. Lorsque (X, R) termine, le lemme de Newman
[96] établit que sous l’hypothèse de terminaison, la confluence de (X, R) est équivalente à sa confluence
locale, c’est à dire la confluence des branchements locaux de la forme x1 ← x→ x2. Une forme normale
de (X, R) est un élément de X qui ne peut être réduit par aucune relation de R. Un système de réécriture
est dit convergent si il est à la fois terminant et confluent, et dans ce cas tout élément x de X admet une
et une seule forme normale.
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Réécriture algébrique et polygraphes. La réécriture algébrique consiste à développer des méthodes
constructives basées sur la théorie de la réécriture abstraite pour obtenir des propriétés de structures
algébriques présentées par générateurs et relations. Cela consiste à orienter les relation de la présentations,
et à appliquer la théorie de la réécriture en prenant en compte les axiomes de la structure inhérente. Dans
ce contexte, il existe un critère local afin de déterminer la confluence locale en fonction de la conflu-
ence des chevauchements entre deux relations minimaux par rapport à la structure sous-jacente. Ces
chevauchements sont appelés branchements critiques, [76, 97]. Avec le lemme de Newman, ces deux
résultats permettent, sous l’hypothèse de terminaison, de déduire la confluence à partir d’une analyse
locale et en général finie des branchements critiques. Par exemple, dans le cas de la catégorie monoı̈dale
Sym, si nous orientons les relations (3) de la gauche vers la droite, nous avons à examiner tous les
chevauchements possibles entre les sources des deux réductions, par exemple:

.

La notion de présentation convergente a été très utilisée afin d’obtenir des approches calculatoires
pour déduire des invariants homologiques par le calcul d’une base des syzygies [24, 4, 77, 48, 55], où
des bases linéaires de formes normales dans des structires linéaires [108, 24, 13, 9, 93, 26, 50, 2]. Dans
cette thèse, nous étudions des présentations de catégories de dimension supérieure par des systèmes
générateurs introduits indépendamment par Burroni sous le nom de polygraphes [28] et par Street sous
le nom de computads [112, 113], voir [54] pour plus de détails sur les propriétés de réécriture de ces
systèmes. Les polygraphes ont été largement utilisés dans le contexte de la réécriture algébrique, afin
de calculer des présentations cohérentes de catégories globulaires strictes de dimension supérieure [51],
d’obtenir des propriétés homologiques et homotopiques via les théorèmes de Squier [53, 54], de prouver
des propriétés de Koszulité pour des algèbres [50] ou encore pour calculer des bases linéaires explicites
d’algèbres [50] ou de catégories linéaires de dimension supérieure [2].

Cohérence par confluence. La théorie de la réécriture est adaptée au calcul de présentations cohérentes
de catégories de dimension supérieure. Une présentation cohérente d’une n-catégorie étend la notion de
présentation de cette catégorie par un (n+ 1)-polygraphe par ajout d’une extension cellulaire acyclique,
c’est à dire un ensemble de cellules en dimension n+2 qui engendrent toutes les relations entre relations
de la présentations de telle sorte que le quotient de cette catégorie par la congruence engendrée par ces
cellules est acyclique. Lorsque le n-polygraphe est convergent, le théorème de cohérence de Squier
[111, 51] établit qu’il peut être augmenté en une présentation cohérente par adjonction d’une famille de
(n+ 1)-cellules génératrices dans des diagrammes de confluence de la forme

v f ′

##
Af,g��

u

f 00

g --

w

v ′ g ′

<<

pour tout branchement critique (f, g) du n-polygraphe Pn. Les présentations cohérentes ainsi construites
généralisent les sytèmes de réécriture en gardant en mémoire les cellules construites par des diagrammes
de confluence. Cette construction a été initiée par Squier dans [111] pour des monoı̈des, et généralisée
au cadre des n-catégories dans [51]. Dans les dimensions supérieures, les polygraphes peuvent être
également utilisés pour construire des remplacements cofibrants de catégories globulaires strictes [53],
par adjonction à une catégorie libre des sphères correspondant à des diagrammes de confluence de
branchements critiques, puis des sphères dans la dimension suprieure correspondant aux diagrammes
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de confluence de triples branchements critiques, etc., construisant ainsi un ∞-ensemble globulaire qui
admet le même type d’homotopie que la catégorie originale.

Réécriture linéaire. Le contexte de réécriture linéaire introduit par Guiraud, Hoffbeck et Malbos dans
[50] pour des algèbres associatives dont l’orientation des relations ne dépend pas d’un ordre monomial
a été étendu au cadre des catégories linéaires de dimension supérieure par Alleaume [2]. Dans [2],
de nombreux résultats de réécriture ont été établis pour des présentations de (2, 2)-catégories linéaires
par des systèmes de réécriture appelés (3, 2)-polygraphes linéaires. Il y a deux difficultés principales
à la réécriture dans des structures linéaires: tout d’abord, le contexte algébrique impose de spécifier
des étapes de réécriture non-autorisées pour éviter des phénomènes de non-terminaison dûs au contexte
linéaire, [50]. La seconde difficulté est que la preuve de la confluence locale à partir de la confluence des
branchements critiques requiert une hypothèse de terminaison supplémentaire n’apparaissant pas dans
le cas ensembliste, [50, Section 4.2]. En effet, certains branchements locaux qui seraient trivialement
confluents si toutes les réécritures étaient autorisées peuvent devenir non confluents à cause de cette re-
striction, voir Remarque 2.9.3. Plus précisément, la confluence locale d’un polygraphe linéaire terminant
peut être obtenue à partir de la confluence de tous ses branchements critiques, [2].

Extension à la réécriture modulo. La réécriture modulo un ensemble d’équations étend les méthodes
constructives mentionnées précédemment en autorisant de réécrire avec un ensemble E de relations non-
orientées. Cela apparaı̂t naturellement dans le contexte de la réécriture algébrique, en réécrivant modulo
les axiomes de la structure algébrique ambiante, par exemple réécriture dans des structures commutatives,
groupoı̈dales, ou dans des catégories linéaires, non strictes, ou encore pivotales. Dans la littérature, il y a
trois paradigmes principaux de réécriture modulo bien connus. La première approche, considérée comme
la plus naı̈ve, consiste à considérer le système de réécriture ERE défini par des relations de réécriture sur
des classes d’équivalence modulo les relations de E. Cette approche est bien adaptée pour certaines
théories équationnelles telles que l’associativité et la commutativité. Cependant, elle est inadaptée en
général pour l’analyse de la confluence. En effet, la réductibilité d’une classe d’équivalence requiert
de parcourir toute la classe, ce qui est difficilement implémentable si ces classes sont infinies. Une
autre approche de réécriture modulo a été introduite par Huet dans [56], où les chemins de réécriture
sont constitués de règles orientées et pas d’axiomes de E, mais la propriété de confluence est formulée
modulo E-equivalence. Explicitement, les sources et buts des diagrammes de confluence ne sont pas
nécessairement égaux, mais égaux modulo la congruence engendrée par les équations de E, comme dans
le diagramme ci-dessous:

x

E

∗ // x ′
∗ // x ′′

E

y ∗
// y ′ ∗

// y ′′
.

Cependant, dans un contexte algébrique, réécrire sans possibilité d’utiliser les axiomes algébriques
peut s’avérer trop restrictif pour obtenir la confluence, voir [62]. Peterson et Stickel [99] ont intro-
duit une extension de la procédure de complétion de Knuth-Bendix, [76], pour prouver la confluence
d’un système de réécriture modulo une théorie équationnelle pour laquel un algorithme d’unification
fini et complet est connu. Ils ont appliqué cette procédure à des systèmes de réécriture modulo des
axiomes d’associativité et de commutativité, afin de réécrire dans des groupes abéliens libres, des an-
neaux commutatifs unitaires et des réseaux distributifs. Jouannaud et Kirchner ont élargi cette approche
dans [61] avec la définition de propriétés de réécriture pour un système de réécriture modulo S qui
est tel que R ⊆ S ⊆ ERE. Ils ont également prouvé un lemme des branchements critiques dans ce
contexte, et développé une procédure de complétion pour le système de réécriture ER, dont les étapes
de réécriture consistent en l’application d’une règle de R après une E-équivalence. Leur procédure de
complétion est basée sur un algorithme de E-unification fini. Bachmair et Dershowitz [7] ont développé
une généralisation de la procédure de complétion de Jouannaud et Kirchner via des règles d’inférence.
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De nombreuses autres approches ont également été étudiées pour des systèmes de réécriture de termes
modulo certaines théories équationnelles, voir [120, 89].

Réécriture modulo dans des 2-catégories pivotales. Dans ce travail, de nombreux exemples sont issus
de la réécriture modulo les axiomes d’isotopie de (2, 2)-catégories linéaires pivotales. Dans une telle
structure, deux diagrammes de cordes égaux à isotopie près représentent la même 2-cellule, [32]. De plus,
certaines relations peuvent être obtenues à partir d’autres par une simple transformation par isotopie.
Nous voulons ainsi traiter ces axiomes structurels séparément des relations définissant la 2-catégorie, en
réécrivant modulo ces relations. Cela autorise à déformer un diagramme de corde à isotopie près avant
d’appliquer des règles de réécriture, facilitant l’analyse calculatoire de la confluence des branchements
critiques.

RÉSUMÉ DE LA THÈSE ET CONTRIBUTIONS PRINCIPALES

Sujet de la thèse. Cette thèse développe de nouvelles approches pour calculer dans des présentations
de diverses structures algébriques par générateurs et relations. En particulier, nous introduisons des
outils de réécriture adaptés aux présentations diagrammatiques de (2, 2)-catégories linéaires en utilisant
la réécriture modulo, étendant ainsi les constructions polygraphiques bien connues en réécriture non
modulo [51, 53, 48, 54, 50, 2]. Nous autorisons ainsi une part des relations à être considérée comme non-
orientée, et à être vue comme des axiomes pouvant être utilisés librement dans les chemins de réécriture.
Les objectifs principaux de ces constructions nouvelles sont le calcul de syzygies pour des présentations
qui sont confluentes modulo une partie des axiomes algébriques, ou encore principalement le calcul de
bases linéaires dans des (2, 2)-catégories linéaires lorsque les méthodes usuelles d’actions polynomiales
sont difficilement applicables. Nous utilisons alors ces méthodes pour prouver la bonne définition de
certaines catégorifications candidates, en montrant que l’ensemble des relations de la présentation définit
bien une catégorie de taille attendue et non-dégénérée.

Structure de la thèse. Ce manuscrit est divisé en huit chapitres comme suit. Les deux premiers
chapitres sont des chapitres préliminaires sur la théorie de la réécriture algébrique polygraphique et
la catégorification en théorie des représentations. Dans le Chapitre 2, nous présentons la théorie de la
réécriture dans un contexte abstrait, puis la réécriture (resp. réécriture linéaire) dans des catégories de di-
mension supérieure (resp. catégories linéaires de dimension supérieure) avec la structure de polygraphe
(resp. polygraphe linéaire), et fournissons les propriétés et résultats de réécriture nécessaires pour la
suite. Dans le Chapitre 3, nous rappelons l’idée sous-jacente au processus de catégorification, et ex-
pliquons les idées menant à la construction d’un tel objet. Nous mettons l’accent sur la construction de
Khovanov, Lauda et Rouquier d’un groupe quantique associé à une algèbre de Kac-Moody symétrisable,
menant à la définition de la 2-catégorie KLR, qui est l’un des objets d’étude principaux de ce travail. Les
quatre chapitres suivants sont dédiés aux résultats principaux de cette thèse.

Dans le Chapitre 4, nous développons des méthodes de réécriture modulo pour étudier des ques-
tions de cohérence, et nous étendons ainsi le théorème de cohérence de Squier afin de calculer des
présentations cohérentes de catégories globulaires strictes de dimension supérieure. Nous illustrons les
résultats de ce chapitre dans le cas des monoı̈des commutatifs et des 2-catégores pivotales. Dans le
Chapitre 5, nous prouvons que des bases linéaires de (2, 2)-catégories linéaires peuvent être obtenues
à partir d’une présentation satisfaisant une hypothèse de confluence modulo une partie des relations, et
des hypothèses de terminaison supplémentaires. Ce résultat étend ainsi le résultat usuel de réécriture
linéaire, établissant qu’à partir d’une présentation convergente d’algèbre, les monômes en forme nor-
male forment une base linéaire de cette algèbre. Dans le Chapitre 6, nous illustrons ce résultat avec
l’étude de la 2-catégorification du groupe quantique de Khovanov, Lauda et Rouquier, en prouvant que
les ensembles conjecturés par Khovanov et Lauda comme étant des bases des espaces de 2-cellules sont
en effet des bases linéaires, ce qui implique le théorème de catégorification de [67]. Dans le Chapitre 7,
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nous étendons les constructions de réécriture modulo en définissant la notion de polygraphe algébrique,
correspondant à des systèmes de réécriture modulo une théorie algébrique de Lawvere. Nous prouvons
ainsi que l’hypothèse de terminaison du lemme des paires critiques linéaires provient d’un lemme des
branchements critiques modulo dans ce contexte. Dans le Chapitre 8, nous décrivons de nouvelles pistes
de recherche suggérées par ces travaux, ainsi que les travaux en cours. Enfin, le Chapitre 9 fournit un cat-
alogue des diverses familles d’algèbres et de 2-catégories diagrammatiques qui ont à ce jour été étudiées
via des méthodes de réécriture, ou de réécriture modulo.

Cohérence modulo

Nous conjecturons que les constructions de [53] de remplacements cofibrants de catégories de dimen-
sion supérieure peuvent s’étendre au cadre de réécriture modulo. La forme cubique des diagrammes
de confluence modulo suggère que les cellules à adjoindre en dimensions supérieures ne sont plus des
sphères de dimension supérieure, mais des cubes de dimension supérieure. Ainsi, la structure appro-
priée pour établir des résultats de confluence et de cohérence est celle de n-catégorie enrichie en p-fold
groupoı̈de, afin de prendre en compte la structure cubique dans la dimension de la réécriture et dans les
dimensions supérieures. Le Chapitre 4 présente la première étape de construction d’un tel remplacement
cofibrant, par adjonction à une double catégorie enrichie en double groupoı̈des libres une famille de
cellules carrées correspondant aux diagrammes de confluence de branchements critiques modulo. Dans
la dimension supérieure, nous conjecturons que l’adjonction de cubes correspondant aux diagrammes
de confluence modulo de triples branchements critiques modulo devrait être l’étape suivante afin de
construire une résolution polygraphique modulo d’une catégorie de dimension supérieure, et que des
constructions similaires à [53] peuvent être fournies dans toutes les dimensions.

Polygraphes modulo. Dans la Section 4.4, nous introduisons la notion den-polygraphe modulo comme
une donnée (R, E, S) constituée de deux n-polygraphes R et E correspondant respectivement aux règles
de réécriture orientées et aux axiomes satisfaisant des conditions de compatibilité sur les cellules de
basse dimension, et une extension cellulaire S qui dépend à la fois des extensions cellulaires Rn et En.
Nous définissions les propriétés de terminaison et de confluence pour les polygraphes modulo, suivant
les approches de Huet et Jouannaud-Kirchner. Nous présentons une procédure de complétion pour le
n-polygraphe modulo ER en terme de branchements critiques, qui implémente les règles d’inférence de
complétion modulo données par Bachmair et Dershowitz dans [7], suivant la procédure de complétion
de Knuth-Bendix [76].

Confluence modulo et doubles catégories. Nous étendons la notion de présentation cohérente d’une
(n − 1)-catégorie, pour n > 1, présentée par un n-polygraphe au contexte des polygraphes modulo.
Nous définissons une notion de cohérence modulo dans la structure de (n − 1)-catégorie enrichie en
doubles groupoı̈des. La notion de double catégorie a été initialement introduite par Ehresmann dans [44]
comme une catégorie interne à la catégorie des petites catégories. Les doubles groupı̈des, c’est-à-dire
des groupoı̈des internes à la catégorie des groupoı̈des, et leurs variantes de dimensions supérieures ont
été grandement étudiées en théorie de l’homotopie, [19, 17], voir [18] et [16] pour plus de détails. Une
double catégorie encode la donnée de quatre catégories liées: une catégorie verticale, une catégorie
horizontale, et deux catégories de carrés ayant soit des cellules horizontales soit des cellules verticales
pour sources et buts. Une cellule carrée A est ainsi représentée par

u
f //

e
��

v

e ′
��

u ′
g
// v ′

A
��

où f, g sont des cellules horizontales, et e, e ′ sont des cellules verticales. Dans [51], les chemins de
réécriture donnés par un n-polygraphe sont interprétés comme des n-cellules da la n-catégorie libre
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engendrée par ce polygraphe. Suivant cette idée, nous donnons en Section 4.4 une interprétation de la
confluence et la cohérence modulo pour des n-polygraphes modulo dans des (n−1)-catégories enrichies
en doubles groupoı̈des libres, où les cellules horizontales sont des chemins de réécriture pour S, les
cellules verticales sont des E-équivalences et les cellules carrées sont des cellules de cohérence modulo.

Confluence modulo cohérente. La notion de double cohérente présentation introduite dans le Chapitre 4
est basée sur une adapation de la structure de polygraphe, bien connue dans le cadre globulaire, [112,
100, 28], à un cadre cubique. Nous définissons ainsi un double (n + 1, n − 1)-polygraphe comme une
donnée de P = (Pv, Ph, Ps) composée de deuxn-polygraphes Pv et Ph ayant le même (n−1)-polygraphe
sous-jacent, avec une extension cubique Ps composée de cellules carrées génératrices de la forme

u
f //

e

��

u ′

e ′

��

v
g
// v ′

où f,g sont des n-cellules de la (n,n − 1)-catégorie libre (Pv)> engendrée par Pv, et e, e ′ sont des
n-cellules de la (n,n − 1)-catégorie libre (Ph)> engendrée par Ph. Nous définissons alors une double
présentation cohérente d’une (n − 1)-catégorie C comme un double (n + 1, n − 1)-polygraphe P =
(Pv, Ph, Ps) tel que C est présentée par le polygraphe coproduit Pv q Ph, et l’extension cubique Ps est
acyclique, c’est à dire pour tout carré S construit avec des cellules verticales de (Pv)> et des cellules
horizontales de (Ph)>, il existe une (n + 1)-cellule carrée A dans la (n − 1)-catégorie enrichie en
doubles groupoı̈des P

�
engendrée par P, définie en Section 4.2.7, dont le bord est le carré S.

Dans la Section 4.5, nous définissons la notion de confluence cohérente modulo d’un n-polygraphe
modulo (R, E, S) par rapport à une extension cubique Γ du couple de n-catégories (E>, S∗). De manière
explicite, S est appelé Γ -confluent modulo E si pour tout branchement modulo (f, e, g) of S, il existe des
n-cellules f ′, g ′ de S∗, e ′ dans E> et une (n+ 1)-cellule carré A comme ci-dessous

u
f //

e

��

u ′
f ′ //

A
��

w

e ′

��

v
g
// v ′

g ′
// w ′

dans la (n − 1)-catégorie enrichie en doubles catégories définie à partir de Γ comme en Section 4.5.
Nous déduisons la confluence cohérente d’un n-polygraphe modulo à partir de propriétés de confluence
cohérente locale. En particulier, le Théorème 4.5.4 est une formulation du lemme de Newman pour
la confluence modulo, établissant que sous l’hypothèse de terminaison de ERE, la Γ -confluence modulo
et la Γ -confluence modulo locale sont équivalentes. Enfin, avec le Théorème 4.5.7 nous donnons une
formulation cohérente du lemme des branchements critiques modulo, permettant de déduire la confluence
locale modulo à partir de la confluence de certains branchements critiques modulo.

Complétion cohérente modulo. En Section 4.6, nous présentons plusieurs manières d’étendre une
présentation d’une (n − 1)-catégorie par un polygraphe modulo en une double présentation cohérente
de cette catégorie. À partir d’un n-polygraphe modulo, nous montrons comment construire une double
présentation cohérente de la (n−1)-catégorie présentée par ce polygraphe. Le Théorème 4.6.6 donne des
conditions pour étendre une extension cubique Γ définie sur les (n,n−1)-catégories horizontales et verti-
cales E> and S> d’un n-polygraphe modulo (R, E, S) en une extension acyclique. En Section 4.6.1,nous
définissons une complétion cohérente d’un n-polygraphe modulo comme une extension cubique du cou-
ple de (n,n − 1)-catégories (E>, S>) dont les éméments sont des (n + 1)-cellules carrées génératrices
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de la forme

u
f //

e

��

u ′
f ′ //

��

w

e ′

��

u
g
// v

g ′
// w ′

pour tout branchement critique (f, e, g) de S modulo E. En conséquence du Théorème 4.6.6, nous
montrons comment étendre une complétion cohérente Γ de S modulo E et une complétion cohérente
ΓE de E, non modulo, en une extension cubique acyclique. En particulier, lorsque le n-polygraphe E
contient un ensemble vide de n-cellules, nous retrouvons le théorème de cohérence de Squier pour des
n-polygraphes convergents, tel qu’établi en [51, Theorem 5.2.], voir également [53]. Nous prouvons en
Théorème 4.6.12 qu’une extension acyclique d’un couple de (n,n − 1)-catégories (E>, S>) provenant
d’un polygraphe modulo (R, E, S) peut également être obtenue à partir de stratégies de normalisation
pour les n-polygraphes S and E satisfaisant une hypothèse supplémentaire de commutation.

Cohérence par double cohérence. En Section 4.7, nous explicitons comment déduire une présentation
cohérente globulaire pour une n-catégorie à partir d’une double présentation cohérente générée par un
polygraphe modulo. Cette construction est basée sur la structure de dipolygraphes, étant définis comme
des systèmes générateurs de∞-catégories dont les k-catégories sous-jacentes ne sont pas nécessairement
libres, pour k ∈ N, voir see Section 4.2. Nous définissons les dipolygraphes comme une variation
des polygraphes pour lesquels les extensions cellulaires sont définies sur des quotients de catégories
libres. En Section 4.2.15, nous définissons un foncteur quotient V : DbPol(n+2,n) → DiPol(n+2,n) de la
catégorie des doubles (n+ 2, n)-polygraphes vers la catégorie des (n+ 2, n)-dipolygraphes.

Le dernier résultat du Chapitre 4 donne les conditions nécessaires pour pouvoir quotienter une double
présentation cohérente engendrée par un polygraphe modulo lorsque le n-polygraphe E est convergent,
S termine et est confluent modulo E. Le Théorème 4.7.3 montre comment déduire, d’une complétion
cohérente Γ de S modulo E, une présentation cohérente globulaire de la (n− 1)-catégorie (R∗n−1)E, dont
les n-cellules de cohérence sont définies par quotient des n-cellules cubiques de Γ par la congruence en-
gendrée par E. Enfin, nous illustrons ces méthodes en montrant comment obtenir de telles présentations
cohérentes pour des monoı̈des commutatifs en Section 4.7.5 et pour des catégories monoı̈dales pivotales
modulo les relations d’isotopie planaire en Section 4.7.7.

Bases linéaires par confluence modulo

Comme mentionné précédemment, de nombreuses relations provenant de la structure inhérente des
algèbres diagrammatiques apparaissant en théorie des représentations peuvent être sources d’obstructions
pour les preuves de confluence, en créant un grand nombre de branchements critiques à considérer. L’un
des objectifs principaux de cette thèse est d’étendre le théorème de base usuel, donné par les monômes
en forme normale pour une présentation convergente, au contexte de réécriture modulo. Dans ce cadre,
nous voulons affaiblir l’hypothèse de confluence globale incluant toutes les relations orientées, à une
hypothèse de confluence modulo une partie non-orientée des règles.

Confluence modulo par décroissance. Le polygraphe modulo ERE peut ne pas terminer, et même
lorsqu’il termine prouver la terminaison est en général difficile. En particulier, c’est le cas lors de l’étude
de (3, 2)-polygraphes linéaires modulo présentant des (2, 2)-catégories linéaires pivotales, à cause de
l’existence de 2-cellules ayant pour source et but la même 1-cellule identité, appelées bulles. En effet,
Alleaume a démontré que des (2, 2)-catégories linéaires admettant des relations impliquant que des bulles
peuvent traverser des brins de diagrammes ne peuvent être équippées d’un ordre monomial, de telle sorte
qu’elles ne preuvent être présentées par des sytèmes de réécriture terminants, voir [2]. De plus, la
cyclicité d’une 2-cellule par rapport aux biadjonctions données par la structure pivotale implique que le
diagramme de corde représentant cette 2-cellule peut être déplacé librement sur les 2-cellules cups et
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caps, créant ainsi des cycles de réécriture obstruant la terminaison. Cependant, même si ERE n’est pas
terminant, dans la plupart des cas considérés il sera quasi-terminant, c’est-à-dire que tous les chemins
de réécriture infinis proviennent de cycles de réécriture. Suivant [31], l’hypothèse de terminaison de
ERE peut être affaiblie en une hypothèse de quasi-terminaison afin de prouver la confluence modulo d’un
(3, 2)-polygraphe linéaire modulo à partir de la confluence de ses branchements critiques modulo. En
Section 5.2, nous introduisons également une notion de décroissance modulo pour un (3, 2)-polygraphe
linéaire, basée sur la propriété de décroissance en réécriture abstraite introduite par Van Oostrom dans
[119]. Nous démontrons alors le résultat suivant:

Théorème 5.2.4. Soit (R, E, S) un (3, 2)-polygraphe linéaire modulo monomial à gauche.
Si (R, E, S) est décroissant modulo E, alors S est confluent modulo E.

La propriété de décroissance modulo est donnée par l’existence d’un étiquetage bien fondé sur les
étapes de réécriture d’un (3, 2)-polygraphe linéaire (R, E, S), pour lequel nous supposons que toutes les
étiquettes sur les règles de E sont triviales, et vérifiant que les étiquettes sont strictement décroissantes
sur les diagrammes de confluence modulo. Lorsque ERE quasi-termine, il existe un étiquetage particulier
comptant la distance d’une 2-cellule à une quasi-forme normale choisie, c’est-à-dire une 2-cellule à partir
de laquelle nous ne pouvons appliquer que des cycles de réécriture. La Proposition 5.4.6, établie dans
[31], montre que la décroissance modulo ainsi que la confluence locale modulo peuvent être obtenues
en prouvant que tous les branchements critiques modulo sont décroissants pour un tel étiquetage à la
quasi-forme normale, ce qui revient à prouver leur confluence.

Bases linéaires par confluence modulo. Dans le Chapitre 5, nous prouvons comment obtenir une
hom-base d’une (2, 2)-catégorie linéaire C présentée par générateurs et relations, c’est à dire une famille
d’ensembles (Bp,q) indexés par les couples (p, q) de 1-cellules de C telle que Bp,q est une base linéaire
de l’espace vectoriel C2(p, q) des 2-cellules de C ayant pour 1-source p et pour 1-but q. Rappelons que
Alleaume a prouvé dans [2] qu’une telle hom-base peut être obtenue à partir d’une présentation finie con-
vergente par un (3, 2)-polygraphe linéaire, en considérant l’ensemble des monômes en forme normale.
Dans le cadre de réécriture modulo, il y a deux degrés de formes normales. Tout d’abord, nous sup-
posons que le (3, 2)-polygraphe linéaire modulo (R, E, S) est soit normalisant, soit quasi-terminant, de
telle sorte que chaque 2-cellule admette au moins une forme normale ou quasi-normale pour S. Par
ailleurs, nous pouvons également considérer des formes normales pour le (3, 2)-polygraphé linéaire
E des axiomes modulo, supposé convergent. Nous appelons alors forme normale pour (R, E, S) une
2-cellule apparaissant dans la décomposition monomiale de la forme normale relativement à E d’un
monôme en forme normale relativement à S. En Section 5.4, nous prouvons qu’une hom-base peut alors
être obtenue à partir d’un (3, 2)-polygraphe linéaire modulo satisfaisant une hypothèse de confluence
modulo E. Plus précisément, considérons une (2, 2)-catégorie linéaire pivotale présentée par un (3, 2)-
polygraphe linéaire P, et considérons un scindage convergent (R, E) de P, tel que défini en Section 5.4.1.
Un tel scindage est donné par un couple de (3, 2)-polygraphes linéaires tel que E est convergent et con-
tient tous les axiomes d’isotopie planaire de la structure pivotale, et R contient les autres relations. Cette
donnée permet de considérer des polygraphes modulo (R, E, S), et nous provuons alors en Section5.4 le
théorème suivant:

Théorème 5.4.4. Soit P un (3, 2)-polygraphe linéaire monomial à gauche présentant
une (2, 2)-catégorie linéaire C, (E, R) un scindage convergent de P et (R, E, S) un (3, 2)-
polygraphe linéaire modulo tel que

i) S est normalisant,

ii) S est confluent modulo E,

alors l’ensemble des formes normales pour (R, E, S) est une hom-base de C.
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Ce résultat est par ailleurs étendu dans le cadre quasi-terminant, en définissant une quasi-forme
normale pour (R, E, S) comme étant un monôme apparaissant dans la décomposition monomiale de la
E-forme normale de u, où u est une quasi-forme normale d’un monôme u fixée.

Théorème 5.4.8. Avec les mêmes notations que dans le Théorème 5.4.4, si

i) S est quasi-terminant,

ii) S est confluent modulo E,

l’ensemble des quasi-formes normales pour (R, E, S) est une hom-base de C.

Catégorification du groupe quantique de Khovanov, Lauda et Rouquier

Catégorification du groupe quantique. Étant donnée une donnée de racines correspondant à une
algèbre de Kac-Moody symétrisable g, Khovanov et Lauda ont défini dans [67] une 2-catégorie candi-
date pour catégorifier la version intégrale et idempotente de Lusztig du groupe quantique Uq(g) associé
à cette donnée de racines. Cette 2-catégorie, notée U(g), est définie par générateurs et relations. Kho-
vanov et Lauda ont prouvé [67, Theorems 1.1 & 1.2] que U(g) est bien une catégorification de Uq(g)
si le calcul diagrammatique introduit dans [67] est non-dégénéré, ce qui correspond au fait que chaque
espace de 2-cellules dans U(g) admette une base linéaire explicite. Khovanov et Lauda ont prouvé
cette non-dégénérescence pour des algèbres de Kac-Moody symétrisables de Type A, en construisant
une 2-représentation de U(g) sur l’anneau de cohomologie de variétés de drapeaux, et en montrant que
l’ensemble des relations était maximal et qu’il ne trivialisait pas la catégorie. La non-dégénérescence de
ce calcul diagrammatique a ensuite été prouvée pour des données de racines de type fini et pour tout corps
K indépendamment par Kang et Kashiwara [66], et par Webster [121], via la non-dégénérescence de quo-
tients cyclotimiques des algèbres KLR catégorifiant les modules de plus haut poids de Uq(g). Cependant,
en type infini il existe des poids hors du cône de Tits pour lesquels les quotients cyclotomiques ne four-
nissent pas d’informations. Webster a introduit dans [122] des déploiements des algèbres KLR pour
résoudre ce problème, et a ainsi prouvé cette non-dégénérescence dans le cas général. Dans ce travail,
nous allons établir ce résultat en utilisant des techniques de réécriture modulo. Nous nous restreignons
au cas des algèbres de Kac-Moody simplement lacées, c’est-à-dire des algèbres dont le graphe de Dynkin
n’admet pas de boucles ni d’arêtes multiples. Dans le cas non simplement lacé, les relations définissant
les algèbres KLR sont plus compliquées, les membres droits étant des polynômes contenant de nombreux
monômes. Cependant, nous conjecturons que les méthodes présentées dans le Chapitre 6 s’étendent au
cas général. Rouquier a défini dans [102] une 2-catégorie de Kac-Moody A(g), admettant moins de
2-cellules génératrices que U(g), de telle sorte que réécrire dansA(g) est plus adapté. Brundan a prouvé
dans [20] que les deux 2-catégories U(g) et A(g) sont en réalité isomorphes. Ainsi, nous réécrivons
dans la 2-catégorie A(g), et translatons les calculs dans U(g) par cet isomorphisme afin de prouver la
non-dégénérescence.

Algèbres KLR. Les algèbres KLR, également appelées algèbres de Hecke carquois, sont apparues dans
ce processus de catégorification du groupe quantique. Elles ont été introduites indépendamment par
Rouquier [102] et Khovanov et Lauda [71, 72] puisque la catégorie des modules projectifs finiment
engendrés sur ces algèbres catégorifie la moitié négative du groupe quantique associé. De plus, ces
algèbres agissent sur certains espaces de 2-cellules de la 2-catégorie U(g), ouA(g), de telle sorte que les
relations de ces algèbres se retrouvent dans la 2-catégorie. Nous rappelons suivant [102] la présentation
des algèbres (HV(Q))V∈N[I], où I est l’ensemble de sommets indexant le graphe de Dynkin de g, et nous
spécialisons cette définition à la présentation diagrammatique de Khovanov et Lauda, notée (R(V))V∈N[I]

dans le cas simplement lacé. Nous définissons une 2-catégorie CKLR contenant les algèbres KLR dans ses
espaces de 2-cellules, et construisons une présentation polygraphique KLR de CKLR. Nous établissons
alors le premier résultat principal de ce Chapitre:
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Théorème 6.1.6. Le (3, 2)-polygraphe linéaire KLR est une présentation convergente de la
(2, 2)-catégorie linéaire CKLR.

Par conséquent, nous obtenons des bases linéaires pour chaque algèbre R(V) en calculant les monômes
en forme normale pour KLR. En particulier, nous retrouvons ainsi les bases linéaires décrites par Kho-
vanov et Lauda dans [71, Theorem 2.5]. Nous prouvons suivant [102, Theorem 3.7], que ces bases sont
des bases de Poincaré-Birkhoff-Witt.

Non-dégénérescence du calcul diagrammatique de Khovanov et Lauda. En Section 6.2, nous rap-
pelons le théorème d’isomorphisme entre A(g) et U(g) établi par Brundan, avec la définition de nou-
veaux générateurs et relations dans A(g) induits par la définition de Rouquier. Nous prouvons ainsi des
relations supplémentaires dans A(g), afin d’obtenir des symétries dans l’ensemble de relations. Nous
définissons alors une présentation polygraphique KLR de A(g), que nous scindons en deux parties
comme dans le Chapitre 5: un (3, 2)-polygraphe linéaire E convergent contenant les 3-cellules d’isotopie
et un (3, 2)-polygraphe linéaire R contenant les 3-cellules restantes. Nous prouvons alors le second
résultat principal de ce Chapitre:

Théorème 6.2.16. Soit (R, E) le scindage convergent de KLR défini en Section 6.2.15.
Alors le (3, 2)-polygraphe modulo ER est quasi-terminant, et ER est confluent modulo E.

En conséquence, pour toutes 1-cellules Ei1λ et Ej1λ de U(g), en considérant l’ensemble des monômes
en quasi-forme normale, pour un choix de quasi-formes normales préétabli, avec 1-source Ei1λ et 1-
but Ej1λ, et en prenant leurs formes normales relativement à E, nous obtenons une base linéaire de
U(g)(Ei1λ, Ej1λ). Par conséquent, nous obtenons le résultat suivant:

Théorème 6.2.30. L’ensemble Bi,j,λ, défini en Section 6.2.29, est une base linéaire de
U(g)(Ei1λ, Ej1λ).

Nous prouvons alors, pour toutes 1-cellules i,j et pour tout λ dans X, que les ensembles Bi,j,λ corre-
spondent à un choix particulier de base candidate conjecturée par Khovanov et Lauda, voir [67, Section
3.2.3]. Ceci prouve la non-dégénérescence du calcul diagrammatique dans ce cadre, et donc que pour
une algèbre de Kac-Moody symétrisable simplement lacée g, la (2, 2)-catégorie linéaire U(g) est une
catégorification du groupe quantique intègre et idempotent Uq(g) associé à g.

Polygraphes algébriques et lemme des branchements critiques algébrique

Comme mentionné ci-dessus, et comme illustré dans les Chapitres 2, 4 et 5, de nombreux résultats de
réécriture sont basés sur la notion de présentation confluente, ou confluente modulo. D’après ce qui
précède, l’un des outils principaux pour prouver la confluence de systèmes de réécriture algébrique est
le lemme des branchements critiques [76, 97], établissant que la confluence locale peut être obtenue
par vérification (en général) finie de la confluence de chevauchements minimaux entre deux réductions.
La notion de complétion par branchements critiques est une approche introduite au milieu des années
soixante qui combine la notion de branchement critique avec les procédures de complétion [25]. Cette
approche provient de la théorie de la preuve [101], de la théorie des idéaux dans des anneaux poly-
nomiaux, [24], et du problème du mot [76, 97]. Dans les années quatre-vingt, sont apparues de nom-
breuses applications de ces approches en algèbre pour résoudre des problèmes de cohérence [111], ou
encore pour calculer des invariants homologiques [110]. Plus récemment, des extensions en dimen-
sion supérieure ont été utilisées pour calculer des remplacements cofibrants de structures algébriques et
catégoriques [53, 50]. Ces constructions basées sur la complétion par branchements critiques sont bien
connues pour des monoı̈des, des catégories (linéaires) de dimension supérieure, ou encore des algèbres
sur un corps. Cependant, les extensions de ces méthodes à un champ de structures algébriques plus large
est difficile de par l’intéraction entre les règles du système de réécriture et les axiomes inhérents à la
structure. Pour cette raison, les extensions de ces approches pour des structures telles que des groupes,
ou des algèbres de Lie, est encore un problème ouvert.
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Lemme des branchements critiques. Nivat a prouvé dans [97] que la confluence locale d’un système
de réécriture de mots est décidable, que ce système soit terminant ou non. La preuve de ce résultat est
basée sur la classification des branchements locaux, séparés en des branchements orthogonaux, impli-
quant deux règles qui ne chevauchent pas, et des chevauchements. Lorsque les branchements orthogo-
naux sont confluents, la locale confluence est vérifiée si tous les branchements critiques sont confluents.
Ainsi, l’argument principal pour obtenir un lemme des branchements critique est de prouver que les
branchements orthogonaux sont confluents, puis que les branchements critiques sont confluents. Pour
des sytèmes de réécriture de mots et de termes, les branchements orthogonaux sont toujours confluents,
et la confluence des branchements critiques implique la confluence des chevauchements. La situation
est plus compliquée pour des systèmes de réécriture dans une structure linéaire, comme expliqué dans
la Section 2.9.1.

Les approches connues de réécriture dans un contexte linéaire consistent à orienter les règles relative-
ment à un ordre monomial ambiant, et le lemme des branchements critiques est alors connu. Cependant,
avec l’approche de réécriture linéaire introduite dans [50], il y a deux conditions supplémentaires à garan-
tir pour obtenir un tel résultat, à savoir une restriction sur les réécritures et la terminaison. Une réduction
positive pour un système de réécriture linéaire, telle que définie en Section 2.8.3, consiste en l’application
d’une règle de réécriture sur un monôme qui n’apparaı̂t pas dans le contexte polynomial. Par exemple,
considérons suivant [50] le système de réécriture linéaire présentant l’algèbre associative sur un corps
K par générateurs x,y,z et relations α : xy → xz and β : zt → 2yt. Il n’admet pas de branchement
critique, mais il a un branchement orthogonal qui est non-confluent, voir Remarque 2.9.3, prouvant que
l’absence de terminaison est une obstruction à la confluence des branchements orthogonaux.

Lemme des branchements critiques algébrique. Dans le Chapitre 7, nous introduisons un cadre
catégorique pour réécrire dans des structures algébriques, qui formalise l’interaction entre les règles du
système et les axiomes inhérents à la stucture sous-jacente. En Section 7.1, nous rappelons la notion de
2-polygraphe cartésien, introduite dans [87], correspondant à des sytèmes de réécriture présentant une
théorie algébrique de Lawvere. Un 2-polygraphe cartésien définit ainsi une interprétation catégorique
d’un système de réécriture de termes. Un tel objet est défini par une signature équationnelle (P0, P1)
composée de types et d’opérations, et une extension cellulaire de la 1-théorie algébrique libre P×1 sur
(P0, P1) Nous définissons en Section 7.3 la structure de polygraphe algébrique comme une donnée com-
portant un 2-polygraphe cartésien, un ensembleQ de 1-cellules closes génératrices (appelées constantes)
et une extension cellulaire R de la 1-sous-théorie des termes clos.

Nous introduisons un cadre algébrique adapté à la formulation d’un lemme des branchements cri-
tiques. Nous définissons la structure de polygraphe modulo, formalisant l’intéraction entre les règles de
réécriture et les axiomes de la structure, et introduisons des stratégies de réécriture basées sur le choix
de certaines cellules admissibles, dont la nature dépend de la théorie algébrique sous-jacente. Nous in-
troduisons ensuite des propriétés de réécriture relativement à ces stratégies, et prouvons une extension
du lemme de Newman modulo du Chapitre 4 pour des polyraphes algébriques modulo quasi-terminants.
Nous déduisons alors un lemme des branchements critiques sur des structures algébriques dont les ax-
iomes sont spécifiés par des polygraphes cartésiens satisfaisant des hypothèses de confluence modulo
associativité et commutativité des opérations. Enfin, nous instancions ces résultats dans le cadre de la
réécriture linéaire, et expliquons pourquoi la terminaison est nécessaire pour caractériser la confluence
locale dans ce cas.
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CHAPTER 1

Introduction

1.1. ALGEBRAIC REWRITING AND CATEGORIFICATION

Symbolic computation in representation theory

Symbolic computation is a field of mathematics and computer science that aims at developing and imple-
menting algorithms that manipulate and analyze mathematical expressions. Many effective algorithms
have been developed in order to solve complicated problems in numerous domains of mathematics. For
instance, some methods have emerged in order to simplify structural expressions, to factorize some poly-
nomials, to compute greatest common divisors and so on. In algebra, and in particular in representation
theory, such tools are needed in order to study presentations of algebraic structures by generators and
relations. In particular, the main questions about these presentations concern the computation of syzy-
gies, that is relations among relations, or computations of linear bases. This work takes part of a project
aiming at developing such constructive rewriting methods in order to study presentations by generators
and relations of some algebras and 2-categories appearing in various domains of mathematics, especially
in representation theory.

1.1.1. Symbolic computation for linear structures. In general, given an algebra admitting a presen-
tation by generators and relations, it is not obvious to know how large this algebra is. Indeed, it may turn
out that there are too many relations defining the algebra, so that it vanishes to zero. We often are able to
find a set of words in the generators which span the algebra, and which we expect to be a basis. However,
proving the linear independence of this set of monomials can be difficult, see [46] for some examples. In
many cases, it is done by defining an action of the algebra on a polynomial ring on which the elements
of the candidate basis act by linearly independent operators. For example, consider the standard action
of the symmetric group Sn on a set of n elements, linearized to obtain a representation of the group
algebra. It is clear that the action of distinct permutations is linearly independent, from which we deduce
that a chosen set of reduced expression forms a basis. However, in general, defining such an action and
proving that the operators obtained in this way are linearly independant may be complicated, see [58, 71]
for some examples with Hecke algebras with 2 parameters or Khovanov-Lauda-Rouquier algebras. We
show that this can be done using rewriting theory.

Many symbolic computation theories following the principles of rewriting were developed in numer-
ous works in linear algebra. In particular, methods have been developed in order to compute normal
forms for different types of algebras presented by generators and relations, with applications to the
decision of the ideal membership problem, and to the construction of linear bases, such as Poincaré-
Birkhoff-Witt bases. For example, Shirshov introduced in [108] an algorithm to compute a linear basis
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of a Lie algebra presented by generators and relations, and deduced a constructive proof of the Poincaré-
Birkhoff-Witt theorem. Gröbner basis theory was introduced to compute with ideals of commutative
polynomial rings [24, 25, 26]. Buchberger described an algorithm to compute Gröbner bases from the
notion of S-polynomials, using an analogous of Knuth-Bendix completion and the linear critical branch-
ing lemma described in this work. Bokut and Bergman have independently extended Gröbner bases to
associative algebras with the proof of the composition lemma and the Bergman diamond lemma [13, 9].
All these results admit interpretations in the rewriting language developed in this work. The approach
of Gröbner bases and Buchberger’s algorithm was extended by developing a rewriting theoretical ap-
proach to compute bases in associative algebras without any assumption of compatibility with respect to
a well-founded total order on the monomials of the algebra, see [50].

1.1.2. Diagrammatic algebras. The main objective of this work is to develop effective tools to compute
in diagrammatic algebras, that is algebras admitting presentations by generators and relations diagram-
matically represented. Several families of algebras admitting diagrammatic presentations by generators
and relations emerged in various domains of mathematics, such as Temperley-Lieb algebras [116] in
quantum mechanics, Brauer algebras [15] for representation theory of the orthogonal groups, Birman-
Wenzl algebras [12] or Jones’ planar algebras [59] in knot theory, or Khovanov-Lauda-Rouquier algebras
[71, 102] in higher-representation theory.

As an example, let us consider, for a given field K, the K-algebra of the symmetric group Sn on n
letters, denoted by K[Sn]. Recall that Sn admits a Coxeter group presentation on n− 1 generators si, for
1 ≤ i ≤ n− 1, standing for the permutation (i i+ 1). It is subject to the following relations:

i) s2i = 1 for 1 ≤ i ≤ n− 1,

ii) sisj = sjsi for any i, j such that |i− j| > 1,

iii) sisi−1si = si−1sisi−1 for any 2 ≤ i ≤ n− 1.

There is a classical way to represent a permutation w in Sn using the notion of braid-like diagram. This
is a diagram, drawn in the strip of the plane R × [0, 1], made of 2n points arranged in two rows, n dots
being on the line R × {0} and n dots being on the line R × {1}, in which a dot on the top line is linked
by a strand to exactly one dot of the bottom line. In such a graphical representation, the generator si
corresponds to a crossing of the strand numerated i from the right and the strand numerated i + 1, as
follows:

n
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! si,

and multiplication corresponds, as usual, to vertical juxtaposition of diagrams. Therefore, the local
relations i) − iii) also admit diagrammatic interpretations, represented below:
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making K[Sn] into a diagrammatic algebra. However, in order to study the family of algebras K[Sn] for
any n ∈ N, it is quite inefficient to use these presentations for two reasons:

1) we have to consider the algebra K[Sn] for any n ∈ N, leading to an infinite number of algebras to
study,

2) for the algebra K[Sn], there are a lot of relations to take into account, more than n2.

It appears that there is a more efficient way to study this family of algebras: by realizing them as en-
domorphism spaces of a K-linear monoidal category as follows. Let us consider the K-linear monoidal
category Sym with only one generating objet denoted by 1, so that all the objets of Sym are of the form
1⊗n for any n ∈ N, with 1⊗0 being the unit object, and only one generating 1-cell s : 1 ⊗ 1 → 1 ⊗ 1,
subject to the following relations:

s ◦ s = 1⊗ 1, (s⊗ 1) ◦ (1⊗ s) ◦ (s⊗ 1) = (1⊗ s) ◦ (s⊗ 1) ◦ (1⊗ s). (1.1)

where by 1 we also denote the identity 1-cell on 1. Then, note that EndSym(1
⊗n) is a K-algebra that

is isomorphic to K[Sn], so that we recover all the algebras of the symmetric groups inside the K-linear
monoidal category Sym. This presentation is more economical, since we have to study only one object,
and this object only admits 3 relations.

Note that the diagrammatic algebras that we study either have a categorical structure by themselves,
or can be realized as endomorphism spaces of linear categories in this way. In particular, we study a
categorical structure called linear (2, 2)-category, that is 2-categories with a structure of vector space
over a given field K on each space of 2-cells between two 1-cells. When these categories admit only one
0-cell, this coincides with the notion of K-linear monoidal category. The 2-cells in such a category admit
a diagrammatic representation given by string diagram as follows:

yn−1bn

��

. . .
bn−1oo y2

b3oo y1
b2oo

xm x0

b1
jj

a1uuxm−1
am

``

. . .
am−1

oo x2a3
oo x1a2

oo

f

KS

! f

. . .

. . .

am

bn

a1

b1

a2

b2

x0xm

y1

x1

,

using the convention that string diagrams are read from right to left and from bottom to top. This allows
us to consider computations on diagrams built from generating pieces. In the example above, the generat-
ing 2-cell (when Sym is interpreted as a linear (2, 2)-category with only one object) is diagrammatically
represented by the following string diagram:

• s

1 1

11

(1.2)

When there is no ambiguity, we may omit dots and labels on 2-cells and on sources and targets, so that
the 2-cell (1.2) is simply depicted by a crossing. The relations (1.1) are then depicted by

= , = .

(1.3)

The category Sym admits only 2 relations and is relatively easy to study. However, in general,
presentations of diagrammatic algebras admit a great number of relations, some of them being induced
by the algebraic structure, needing appropriate computational methods.
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1.1.3. Categorification. The term categorification was introduced by Crane in [35], following the ideas
of a previous work with Frenkel [34]. It refers to the process of replacing set-theoretic notions by the
corresponding category-theoretic analogues. In order to study a given object, the main objective is to de-
fine an higher-dimensional category corresponding in a suited way to this object, but admitting a richer
structure, in order to see new phenomena appear. We expect to be able to obtain more information on the
original object from this new structure. For instance, when we study the representations of an algebra,
we study actions of the algebra on vector spaces via linear maps. In the process of higher-dimensional
representation theory and categorification, vector spaces are replaced by higher-dimensional linear cate-
gories, linear maps are replaced by linear functors and equations between maps are replaced by natural
transformations of functors, which are required to satisfy additional coherence laws. Therefore, elements
of the algebra are not seen as elements anymore, but are considered as isomorphism classes of objects in
a certain category, providing an additional structure from which we hope to deduce new information on
the original algebra. For example, consider the setN of natural numbers. This set can be categorified by
the category FinSet of finite sets and functions, using cardinality, since two sets having the same cardi-
nality are in bijection. The sum and product inN then correspond to disjoint union and cartesian product
in FinSet respectively. Whereas addition and multiplication in N satisfy various equational laws such
as commutativity, associativity and distributivity, disjoint union and cartesian product in FinSet satisfy
such laws only up to natural isomorphisms.

Since the pioneering works of Crane and Frenkel, categorification appeared in various contexts,
and helped to solve numerous complicated problems. For instance, Khovanov’s categorification of the
Jones’ polynomial [68] using category theory and homological algebra led to new research directions
in topology based on categorification. It completely changed the point of view on many long standing
problems and led to new results. Numerous algebras studied in mathematics have been now categorified,
for instance the Heisenberg rings [70], the Weyl algebras [69], polynomial algebras [74], the Hecke
algebras with the category of Soergel bimodules [109], quantum groups [102, 67]. In representation
theory, a lot of representations have also now a categorified version, such as representations of semi-
simple Lie algebras and some representations of the associated Weyl groups using categories O [11,
10], all finite-dimensional irreducible representations of the Lie algebras slm [5], or tensor products
of fundamental representations of slm [115], for m ∈ N. Moreover, a lot of categorifications have
also emerged for several mathematical concepts, such as braid group actions [103] or invariants of tangle
cobordisms [29]. We refer to [73, 90, 104] for other examples of new results coming from this area. Many
of the categorifications mentioned above have been defined by presentations by generators and relations
defined from diagrams that are represented up to planar isotopy. As a consequence, these 2-categories
are endowed with an additional pivotal structure. Such a pivotal structure if defined from the existence of
adjunctions on 1-cells, implying the existence of unit and counit 2-cells, diagrammatically represented
by caps and cups satisfying isotopy relations. In this structure, two isotopic diagrams represent the same
2-cell [32], so that the computations are even more difficult to achieve. Many categorifications defined
in the literature admit a pivotal structure, such as the category of gln-webs encoding the representation
theory of the Lie algebra gln [30, 45], the Khovanov-Lauda-Rouquier 2-categorification of a quantum
group [67, 102] and the Heisenberg categories categorifying the Heisenberg algebra [70].

Rewriting theory

1.1.4. Abstract rewriting systems. The underlying notion beyond the theory of Gröbner bases and the
works of Buchberger, Bergman, Bokut and Shirshov is actually the notion of presentation of an algebra
by a convergent rewriting system. Rewriting theory is a combinatorial theory of equivalence classes,
[96]. The first notion of abstract rewriting system was introduced by Thue in 1914 [118] to study the
word problem in semi-groups, that is to decide whether two words made of the generators are equal or not
modulo the relations of the semi-group. This method consists in orienting the relations of the semi-group
and to study irreducible expressions, or normal forms. Afterwards, the word problem has been studied
in many contexts in algebra and in computer science. On the other hand, rewriting has been mainly
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developed in theoretical computer science, producing several variants corresponding to different objects
being transformed, for instance: words in monoids [14, 54], terms in an algebraic theory [75, 6, 117],
λ-terms, Boolean circuits [78], etc.

A class with respect to an equivalence relation is composed of pairs of objects that can be transformed
one into another using sequences of non-oriented moves. Rewriting consists in orienting these moves.
Explicitely, an abstract rewriting system is made of a set X of objects together with a subset R of X× X
whose elements (x, y) are denoted by x → y. In that case, we say that x rewrites to y, or that x → y is
a rewriting step from x to y. A sequence

x1 → x2 → . . .→ xn → xn+1 → . . .

of such rewriting steps is called a rewriting sequence. A rewriting system (X, R) is called terminating if
there is no infinite rewriting sequence with respect to R. It is said to be confluent if for any branching, that
is a pair of rewriting sequences starting from the same element, there exist rewriting sequences giving
the same result, as summarized in the following diagram:

x1 ∗
  

x

∗ >>

∗   

y

x2
∗
>>
,

where ∗→ denotes the reflexive and transitive closure of →. When (X, R) is terminating, Newman’s
lemma [96] states that confluence can be obtained from local confluence, that is confluence of local
branchings of the form x1 ← x → x2. A normal form of (X, R) is an element of X that cannot be
reduced by any rewriting step. A rewriting system is called convergent if it is both terminating and
confluent. In that case, any element x admits a unique normal form.

1.1.5. Algebraic rewriting and polygraphs. Algebraic rewriting aims at giving constructive methods
based on rewriting theory to obtain properties of higher algebraic structures presented by generators and
relations. It consists in orienting relations, and applying rewriting theory by taking into account the
axioms of the structure. In this context, there exists a local criterion to prove local confluence from
confluence of minimal overlappings with respect to the structure between reductions, called critical
branchings, [76, 97]. Together, these two results allow to deduce confluence from a local and finite
analysis of branchings. For instance, in the case of the K-linear monoidal category Sym, if we decide
to orient the relations (1.3) from left to right, we have to examine all possible overlappings between the
sources of the two reductions, such as for instance

.

Convergent presentations have been widely used to obtain symbolic computational approaches to
deduce homological properties by computing bases of syzygies, [24, 4, 77, 48, 55], or linear bases from
normal forms when rewriting in linear structures, [108, 24, 13, 9, 93, 26, 50, 2]. In many constructions
of this work, we study presentations of higher-dimensional categories by generating systems introduced
independently by Burroni under the name of polygraphs [28] and by Street under the name of computads
[112, 113], see also [54] for more details on rewriting properties of these presentations. Polygraphs have
been used to compute coherent presentations of higher-dimensional categories [51], to obtain homo-
logical and homotopical properties using Squier’s theorems [53, 54], to prove Koszulness property for
algebras [50] or to compute explicit linear bases of algebras [50] or higher-dimensional linear categories
[2].
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1.1.6. Coherence by confluence. Rewriting theory is well-suited to compute coherent presentations of
higher-dimensional categories. A coherent presentation of a n-category extends the notion of presen-
tation of the n-category by an (n + 1)-polygraph by adding an acyclic cellular extension, that is a set
of higher-globular cells that generate all the relations among relations of the presentation, so that the
quotient of this category by the congruence generated by these cells is acyclic. When the n-polygraph is
convergent, Squier’s coherence theorem [111, 51] states that it can be extended into a coherent presenta-
tion by adding generating (n+ 1)-cells defined by a family of confluence diagrams of the form

v f ′

##
Af,g��

u

f 00

g --

w

v ′ g ′

<<

for every critical branching (f, g) of the n-polygraph Pn. Coherent presentations constructed in this
way generalize rewriting systems by keeping track of the cells generated by confluence diagrams. This
construction was initiated by Squier in [111] for monoids and generalized to n-categories in [51]. In
the above dimensions, polygraphs can be used to compute cofibrant replacements of globular small strict
categories [53], by gluing to a free category some spheres corresponding to diagrams of confluence
of critical branchings, and then gluing spheres corresponding to confluence diagrams of triple critical
branchings, and so on, constructing an ∞-globular set which admits the same homotopy type than the
original category.

1.1.7. Linear rewriting. The context of linear rewriting introduced by Guiraud, Hoffbeck and Malbos
in [50] for associative algebras has been extended to higher-dimensional linear categories by Alleaume
[2]. In [2], many results have been established for linear (2, 2)-categories, admitting presentations by
rewriting systems called linear (3, 2)-polygraphs. There are two main difficulties when rewriting in
linear structures: first of all, we have to specify allowed rewriting steps in order to avoid non-termination
due to the linear context, [50]. The second difficulty is that proving local confluence from confluence of
critical branchings require a termination assumption, see [50, Section 4.2]. Indeed, some branchings that
would be trivially confluent if all rewriting steps were allowed may become non-confluent because of
this restriction, see Section 1.2.13 and Remark 2.9.3. More precisely, confluence of a terminating linear
polygraph can be obtained by proving that all its critical branchings are confluent, see [2].

1.1.8. Extension to rewriting modulo. Rewriting modulo a set of equations extends these constructive
methods by allowing to consider a set E of non-oriented relations in computations. It appears naturally
in algebraic rewriting when studied reductions are defined modulo the axioms of an ambiant algebraic
structure, e.g. rewriting in commutative, groupoidal, linear, pivotal, weak structures. In the literature,
three different paradigms of rewriting modulo are well-known. The most naive approach is to consider
the rewriting system ERE consisting in rewriting on congruence classes modulo E. This approach works
for some equational theories, such as associative and commutative theory. However, it appears inefficient
in general for the analysis of confluence. Indeed, the reducibility of an equivalence class needs to explore
all the class, hence it requires all equivalence classes to be finite. Another approach of rewriting modulo
has been considered by Huet in [56], where rewriting sequences involve only oriented rules and no
equivalence steps, and the confluence property is formulated modulo equivalence. Explicitely, sources
and targets in confluence diagrams are not required to be equal but congruent modulo E, as summarized
in the following diagram:

x

E

∗ // x ′
∗ // x ′′

E

y ∗
// y ′ ∗

// y ′′
.

However, in an algebraic context, rewriting without allowing any E-steps in the rewriting paths may be
too restrictive for computations, see [62]. Peterson and Stickel introduced in [99] an extension of Knuth-
Bendix’s completion procedure, [76], to reach confluence of a rewriting system modulo an equational
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theory, for which a finite, complete unification algorithm is known. They applied their procedure to
rewriting systems modulo axioms of associativity and commutativity, in order to rewrite in free com-
mutative groups, commutative unitary rings, and distributive lattices. Jouannaud and Kirchner enlarged
this approach in [61] with the definition of rewriting properties for any rewriting system modulo S such
that R ⊆ S ⊆ ERE. They also proved a critical branching lemma and developed a completion proce-
dure for a rewriting system modulo ER, whose one-step reductions consist in application of a rule in R
using E-matching. Their completion procedure is based on a finite E-unification algorithm. Bachmair
and Dershowitz in [7] developed a generalization of Jouannaud-Kirchner’s completion procedure using
inference rules. Several other approaches have also been studied for term rewriting systems modulo to
deal with various equational theories, see [120, 89].

1.1.9. Rewriting modulo isotopies in pivotal 2-categories. In this work, many examples are based
on rewriting modulo the pivotal axioms of pivotal linear 2-categories. Recall from [32] that in such a
structure, two isotopic string diagrams represents the same 2-cells. We thus want to treat these axioms
separately from the defining relations of the 2-category, and rewrite modulo these relations. This allows
to deform a diagram up to isotopy in order to apply a rewriting rule on it, facilitating the computation of
confluence.

1.2. THESIS SUMMARY AND MAIN CONTRIBUTIONS

1.2.1. Subject of the thesis. This thesis presents new effective tools to compute in presentations of
various algebraic structures by generators and relations. In particular, we develop some tools to rewrite
in string diagrammatic presentations of linear 2-categories using rewriting modulo, which extends the
usual constructions in polygraphic rewriting theory [51, 53, 48, 54, 50, 2] by allowing a part of relations
to be non-oriented, and to be considered as axioms that we freely use when rewriting. Among these new
constructions arise the questions of computing syzygies from presentations which are confluent modulo
a part of the axioms of the ambient algebraic structure, and mainly the question of computing linear bases
of linear 2-categories when the usual methods of polynomial actions do not apply. We use these methods
in order to prove the well-foundedness definition of some candidate categorifications.

1.2.2. Structure of the thesis. This manuscript is divided into eight chapters as follows. The first two
chapters are preliminary chapters on rewriting theory and categorification in representation theory. In
Chapter 2, we present rewriting theory (resp. linear rewriting theory) in higher dimensional categories
(resp. higher-dimensional linear categories) using the notion of polygraphs (resp. linear polygraphs),
and provide a state-of-the-art of the known rewriting results that we need in the sequel. In Chapter
3, we recall the idea beyond the process of categorification and how to explicitely construct such an
object. We lay the emphasis on the construction of Khovanov-Lauda-Rouquier’s categorification of a
quantum group, leading to the definition of the KLR 2-category which is one of the main objects studied
in this work. The next four chapters are dedicated to the main results of the thesis. In Chapter 4, we
introduce a categorical context of rewriting modulo to study coherence problems, and we extend Squier’s
coherence theorem providing a method to compute coherent presentations of globular strict categories
in the context of rewriting modulo. We illustrate the results of this chapter on commutative monoids
and pivotal 2-categories. In Chapter 5, we prove that linear bases for the sets of 2-cells in (2, 2) linear
categories can be computed from a presentation which satisfies an assumption of confluence modulo
a part of the relations together with some termination assumption. This result extends the well-known
rewriting result stating that from a convergent presentation of an algebra, monomials in normal form give
a basis of the algebra. In Chapter 6, we illustrate this result on the KLR 2-categorification of a quantum
group associated with a symmetrizable Kac-Moody algebra, proving that the sets expected by Khovanov
and Lauda to be linear bases are indeed bases, implying the categorification theorem. In Chapter 7,
we extend the constructions of rewriting modulo by defining algebraic polygraphs, which correspond to
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rewriting systems modulo the axioms of an algebraic Lawvere theory. We thus prove that the termination
assumption in the linear critical pair lemma comes from an algebraic critical branching lemma modulo.
In Chapter 8, we describe the new directions of research suggested by these works and the current work
in progress. Finally, Chapter 9 gives a catalogue of the numerous families of diagrammatic algebras and
2-categories that already have been studied using rewriting methods.

Coherence modulo relations

We expect that the methods of [53] to construct cofibrant replacements of higher-dimensional categories
can be extended to the context of rewriting modulo. The cubical shape of confluence diagrams suggest
that we do not glue higher-dimensional spheres anymore, but higher-dimensional cubes. It turns out that
the apropriate structure to present confluence and coherence results is the structure of free n-category
enriched in p-fold groupoids, to take into account this cubical structure in the dimension of rewritings
and in above dimensions. Chapter 4 presents the first step of such a construction, where we glue to a free
double category enriched in double groupoids a family of squares corresponding to diagrams of conflu-
ence modulo of critical branchings modulo. We expect that gluing cubes corresponding to diagrams of
confluence modulo of triple critical branchings should be the next step to construct a polygraphic modulo
resolution of a category, and that similar constructions to [53] can be done in higher dimensions.

1.2.3. Polygraphs modulo. In Section 4.4 we introduce the notion ofn-polygraph modulo as a data (R, E, S)
made of two n-polygraphs R and E corresponding respectively to rewriting rules and axioms satisfying
some compatibility conditions on cells of low dimensions and a cellular extension S depending on both
cellular extensions Rn and En. We define termination and confluence properties for polygraphs mod-
ulo following Huet and Jouannaud-Kirchner’s definitions. We present a completion procedure for the
n-polygraph modulo ER in terms of critical branchings that implements inference rules for completion
modulo given by Bachmair and Dershowitz in [7], following Knuth-Bendix’s completion procedure [76].

1.2.4. Confluence modulo and double categories. We extend the notion of coherent presentation of
an (n − 1)-category, for n > 1, presented by an n-polygraph to the context of polygraphs modulo. We
define a notion of coherence modulo using the structure of (n−1)-category enriched in double groupoids.
The notion of double category was first introduced by Ehresmann in [44] as an internal category in the
category of categories. The notion of double groupoids, that is internal groupoids in the category of
groupoids, and its higher-dimensional versions have been widely used in homotopy theory, [19, 17], see
[18] and [16] for a complete account on the theory. A double category gives four related categories: a
vertical category, an horizontal category and two categories of squares with either vertical or horizontal
cells as sources and targets. A square cell A is pictured by

u
f //

e
��

v

e ′
��

u ′
g
// v ′

A
��

where f, g are horizontal cells, and e, e ′ are vertical cells. In [51], rewriting sequences with respect to an
n-polygraph are interpreted by n-cells in the free category generated by the polygraph. Following this
idea, we give in Section 4.4 an interpretation of confluence and coherence modulo for n-polygraphs mod-
ulo in free (n − 1)-categories enriched in double groupoids, where the horizontal cells are the rewriting
sequences with respect to S, the vertical cells are the E-equivalences and the square cells are the coher-
ence cells modulo.

1.2.5. Coherent confluence modulo. The notion of coherent presentation modulo introduced in Chap-
ter 4 is based on an adaptation of the structure of polygraph known in the globular setting, [112, 100, 28],
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to a cubical setting. We thus define a double (n + 1, n − 1)-polygraph as a data P = (Pv, Ph, Ps) made
of two n-polygraphs Pv and Ph with the same underlying (n − 1)-polygraph, together with a square
extension Ps made of generating square cells of the form

u
f //

e

��

u ′

e ′

��

v
g
// v ′

where f, g are n-cells of the free (n,n − 1)-category (Pv)> generated by Pv and e, e ′ are n-cells of
the free (n,n − 1)-category (Ph)> generated by Ph. We define a double coherent presentation of an
(n − 1)-category C as a double (n + 1, n − 1)-polygraph P = (Pv, Ph, Ps) such that C is presented by
the polygraph Pv q Ph, and the square extension Ps is acyclic, that is for any square S constructed with
vertical cells in (Pv)> and horizontal cells in (Ph)>, there exists a square (n + 1)-cell A in the free
(n − 1)-category P

�
enriched in double groupoids generated by P, defined in Subsection 4.2.7, whose

boundary is S.
In Section 4.5, we define the notion of confluence modulo of an n-polygraph modulo (R, E, S) with

respect to a square extension Γ of the pair of n-categories (E>, S∗). Explicitly, we say that S is Γ -
confluent modulo E if for any branching (f, e, g) of S modulo E, there exist n-cells f ′, g ′ in S∗, e ′ in E>

and an (n+ 1)-cell

u
f //

e

��

u ′
f ′ //

A
��

w

e ′

��

v
g
// v ′

g ′
// w ′

in a free (n − 1)-category enriched in double categories defined from Γ as in Section 4.5. We deduce
coherent confluence of an n-polygraph modulo from local coherent confluence properties. In particular,
Theorem 4.5.4 is a formulation of the Newman lemma for confluence modulo, stating that under termi-
nation of ERE, Γ -confluence modulo and local Γ -confluence modulo are equivalent properties. Finally,
with Theorem 4.5.7 we give a coherent formulation of the critical branching lemma modulo, deducing
coherent local confluence from coherent confluence of some critical branchings modulo.

1.2.6. Coherent completion modulo. In Section 4.6, we present several ways to extend a presentation
of an (n − 1)-category by a polygraph modulo into a double coherent presentation of this category.
Starting with an n-polygraph modulo, we show how to construct a double coherent presentation of the
(n−1)-category presented by this polygraph. Theorem 4.6.6 gives conditions for ann-polygraph modulo
(R, E, S) to extend a square extension Γ on the vertical and horizontal (n,n − 1)-categories E> and S>

into an acyclic extension. In Section 4.6.1, we define a coherent completion of an n-polygraph modulo
(R, E, S) as a square extension of the pair of (n,n − 1)-categories (E>, S>) whose elements are the
generating square (n+ 1)-cells

u
f //

e

��

u ′
f ′ //

��

w

e ′

��

u
g
// v

g ′
// w ′

for any critical branchings (f, e, g) of S modulo E. As a consequence of Theorem 4.6.6, we show how
to extend a coherent completion Γ of S modulo E and a coherent completion ΓE of E into an acyclic
extension. In particular, when E is empty, we recover Squier’s coherence theorem for convergent n-
polygraphs as given in [51, Theorem 5.2.], see also [53]. We prove in Theorem 4.6.12 that an acyclic
extension of a pair (E>, S>) of (n,n−1)-categories coming from a polygraph modulo (R, E, S) can also
be obtained from an assumption of commuting normalization strategies for the polygraphs S and E.
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1.2.7. Globular coherence from double coherence. In Section 4.7, we give a way to deduce a globular
coherent presentation for an n-category from a double coherent presentation generated by a polygraph
modulo. Our construction is based on the structure of dipolygraph as a presentation by generators and
relations for∞-categories whose underlying k-categories are not necessarily free, see Section 4.2. We
define dipolygraphs as variations of polygraphs for which the cellular extensions are defined on quotients
of free categories. In Section 4.2.15, we define a quotient functor V : DbPol(n+2,n) → DiPol(n+2,n) from
the category of double (n+ 2, n)-polygraphs to the category of (n+ 2, n)-dipolygraphs.

The last result of Chapter 4 gives the conditions on how to take the quotient of a double coherent
presentation generated by a polygraph modulo when the n-polygraph E is convergent, and S is termi-
nating and confluent modulo E. Theorem 4.7.3 shows how to deduce from a coherent completion Γ of
S modulo E a globular coherent presentation of the (n− 1)-category (R∗n−1)E, whose generating n-cells
are defined by quotienting the n-cells of Γ by the cellular extension E. Finally, we illustrate this method
by showing how to construct coherent presentations for commutative monoids in Section 4.7.5 and for
pivotal monoidal categories modulo isotopy relations defined by adjunction in Section 4.7.7.

Linear bases from confluence modulo

As mentioned previously, many structural relations coming from the inherent structure of the diagram-
matic algebras arising in representation theory may create obstructions to prove confluence, by leading
to a huge number of critical branchings. One of the main objective of this work was then to extend the
usual basis theorem given my monomials in normal form with respect to a convergent presentation to
the context of rewriting modulo. In this setting, we want to weaken the whole confluence property to a
property of confluence modulo these chosen axiomatic rules.

1.2.8. Confluence modulo by decreasingness. The polygraph modulo ERE may not terminate, and
when it does the termination is in general difficult to prove. In particular, this is the case when considering
linear (3, 2)-polygraphs modulo presenting pivotal linear (2, 2)-categories, due to the existence of 2-
cells with source and target the same identity 1-cell, called bubbles. Indeed, Alleaume enlighted the
fact that linear (2, 2)-categories with bubbles that can go through strands can in general not be enriched
with a monomial order, so that they can not be presented by terminating rewriting systems, see [2].
Moreover, the cyclicity of a 2-cell with respect to the biadjunctions of the pivotal structure implies that
the dot picturing this 2-cell can be moved around the cap and cup 2-cells, eventually creating rewriting
cycles and making termination fail. However, even if ERE is not terminating, in many cases it will
be quasi-terminating, that is all infinite rewriting sequences are generated by cycles. Following [31],
the termination assumption for ERE can be weakened to a quasi-termination assumption, in order to
prove confluence modulo of a linear (3, 2)-polygraph modulo (R, E, S) from confluence of its critical
branchings modulo. We introduce in Section 5.2 a notion of decreasingness modulo for a linear (3, 2)-
polygraph modulo following Van Oostrom’s abstract decreasingness property [119]. We then establish
the following result:

Theorem 5.2.4. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo. If
(R, E, S) is decreasing modulo E, then S is confluent modulo E.

The property of decreasingness modulo is defined by the existence of a well-founded labelling on the
rewriting steps of a linear (3, 2)-polygraph modulo (R, E, S), for which we require that all labels on the
cells of E are trivial, and such that labels are strictly decreasing on confluence modulo diagrams. When
ERE is quasi-terminating, there exists a particular labelling counting the distance between a 2-cell and
a fixed quasi-normal form, that is a 2-cell from which we can only apply rewriting cycles. Proposition
5.4.6, proved in [31], shows that we can obtain decreasingness by proving that all the critical branchings
modulo E are decreasing with respect to any such quasi-normal form labelling.
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1.2.9. Linear bases from confluence modulo. In Chapter 5, we give a way to compute a hom-basis of
a linear (2, 2)-category C presented by generators and relations, that is a family of sets (Bp,q) indexed
by pairs (p, q) of 1-cells such that Bp,q is a linear basis of the vector space C2(p, q) of 2-cells of C with
1-source p and 1-target q. Recall that Alleaume proved that such a basis may be obtained from a finite
convergent presentation, considering all the monomials in normal form, [2]. In the context of rewriting
modulo, there are two different degrees of normal forms. First of all, we require that the linear (3, 2)-
polygraphs modulo (R, E, S) is either normalizing or quasi-terminating so that one can either consider
normal forms or quasi-normal forms with respect to S. Then, one can also consider normal forms with
respect to the polygraph E for which we rewrite modulo, that we require to be convergent. We say
that a normal form for (R, E, S) is a 2-cell appearing in the monomial decomposition of the E-normal
form of a monomial in normal form with respect to S. In Section 5.4, we give a method to compute a
hom-basis of a linear (2, 2)-category from an assumption of confluence modulo some relations. More
precisely, we consider a pivotal linear (2, 2)-category C presented by a linear (3, 2)-polygraph P, and
(R, E) a convergent splitting of P, given by a couple of linear (3, 2)-polygraphs such that E is convergent
and contains all the isotopy 3-cells corresponding to the pivotal axioms, and R contains the remaining
relations, as defined in Section 5.4.1. This data allows to consider polygraphs modulo (R, E, S), and we
prove in Section 5.4 the following result:

Theorem 5.4.4. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C,
(E, R) a convergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

i) S is normalizing,

ii) S is confluent modulo E,

then the set of normal forms for (R, E, S) is a hom-basis of C.

This result is extented to the quasi-terminating setting, by defining a quasi-normal form for (R, E, S)
as a monomial appearing in the monomial decomposition of the E-normal form of a monomial in the
decomposition of u, where u is the fixed quasi-normal form of a monomial 2-cell u.

Theorem 5.4.8. With the same assumptions as in Theorem 5.4.4, if

i) S is quasi-terminating,

ii) S is confluent modulo E,

then the set of quasi-normal forms for (R, E, S) is a hom-basis of C.

Khovanov-Lauda-Rouquier’s categorification of quantum groups

1.2.10. Categorification of quantum groups. Given any root datum corresponding to a symmetrizable
Kac-Moody algebra g, Khovanov and Lauda defined in [67] a candidate 2-category to be a categorifi-
cation of Lusztig’s idempotented and integral version of the quantum group Uq(g) associated with this
root datum. The 2-category U(g) is defined by a presentation by generators and relations. Khovanov and
Lauda established [67, Theorems 1.1 & 1.2] that U(g) is a categorification of Uq(g) if the diagrammatic
calculus they introduce in [67] is non degenerated, which corresponds to the fact that each vector space
of 2-cells in U(g) admits an explicit linear basis. They proved the non-degeneracy of their calculus for
symmetrizable Kac-Moody algebras of type A by constructing an apropriate 2-representation of U(g)
on the cohomology ring of flag varieties, by showing that no more relations can occur, and by proving
that this set of relations does not collapse all the elements. The non-degeneracy of this diagrammatic
calculus has then been proved for any root datum of finite type and any field K independently by Kang
and Kashiwara [66], and by Webster [121], using non-degeneracy of cyclotomic quotients of the KLR
algebras categorifying highest-weight modules of Uq(g). However, in infinite types there are weights
outside the Tits cone for which cyclotomic quotients provide no information. Webster introduced in
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[122] unfurlings of the KLR algebras to solve this issue and to prove the non-degeneracy in the general
case. In this work, we prove these results using rewriting methods. We restrict our study to the case
of simply-laced symmetrizable Kac-Moody algebras, that is Kac-Moody algebras whose Dynkin graph
does not admit loops nor multiple edges. In the non simply-laced setting, the relations coming from
the KLR algebras are more complicated, their right hand-side being polynomials. However, we expect
that these methods extend to the non simply-laced setting. Rouquier defined in [102] a Kac-Moody 2-
category A(g), which has less generating 2-cells than U(g), so that rewriting in this 2-category is more
adapted. Brundan proved in [20] that the two 2-categories U(g) and A(g) are isomorphic. Therefore,
we use rewriting approaches to study A(g) and its diagrammatic presentation given by Brundan, and
translate the computations in U(g) through this isomorphism in order to study the non-degeneracy.

1.2.11. Khovanov-Lauda-Rouquier algebras. The family of KLR algebras, also called quiver Hecke
algebras, emerged in the process of categorifying quantum groups. These algebras were discovered
independently by Rouquier [102], Khovanov and Lauda [71] since the category of finitely-generated
projective modules over these algebras categorifies the negative part of the associated quantum group,
[71, 72]. Furthermore, these algebras act on some endomorphism spaces of 2-cells of U(g). We recall
following [102] the presentation of the KLR algebras (HV(Q))V∈N[I], where I is the set of vertices
indexing the Dynkin graph of the Kac-Moody algebra g, and we specialize this definition to Khovanov
and Lauda’s diagrammatic presentation, denoted by (R(V))V∈N[I] in simply-laced type. We also define
a linear 2-category CKLR encoding the family of KLR algebras in its spaces of 2-cells, and we construct
a polygraphic presentation KLR of CKLR. We then establish the first main result of this Chapter:

Theorem 6.1.6. The linear (3, 2)-polygraph KLR is a convergent presentation of the lin-
ear 2-category CKLR.

As a consequence, we obtain linear bases for each algebra R(V) by computing monomials in normal
form with respect to KLR. In particular, we recover the linear bases described by Khovanov and Lauda in
[71, Theorem 2.5]. Following [102, Theorem 3.7], we prove that these bases are Poincaré-Birkhoff-Witt
bases.

1.2.12. Non-degeneracy of Khovanov-Lauda’s calculus. In Section 6.2, we recall Brundan’s iso-
morphism between the 2-categories A(g) and U(g) with the definition of the additional generators and
relations provided by these. We prove some further relations in A(g) in order to obtain symmetries in
the set of relations. We then define a polyraphic presentation KLR of A(g), that we split into two parts
following the ideas of Chapter 5: a convergent linear (3, 2)-polygraph E containing all isotopy 3-cells
and a linear (3, 2)-polygraph R containing the remaining 3-cells. We then prove the second main result
of this Chapter:

Theorem 6.2.16. Let (R, E) be the convergent splitting of KLR defined in Section 6.2.15.
Then ER is quasi-terminating and ER is confluent modulo E.

As a consequence, for any 1-cells Ei1λ and Ej1λ of U(g), fixing a set of monomials in quasi-normal
forms with 1-source Ei1λ and 1-target Ej1λ, and taking their normal form with respect to E gives a linear
basis of U(g)(Ei1λ, Ej1λ). Therefore the following result holds:

Theorem 6.2.30. The setBi,j,λ, defined in Section 6.2.29, is a linear basis of U(g)(Ei1λ, Ej1λ).

We prove that these sets Bi,j,λ for any 1-cells i,j and any λ in X correspond to a particular choice for
Khovanov and Lauda’s expected bases, see [67, Section 3.2.3]. This proves the non-degeneracy of their
diagrammatic calculus in that case, and thus that for a simply-laced symmetrizable Kac-Moody algebra
g, the linear 2-category U(g) is a categorification of the Lusztig’s quantum group Uq(g) associated with
g.
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Algebraic polygraphs and critical branching lemma

As explained above and illustrated in chapters 2, 4 and 5, many rewriting results are based on the notion
of confluent (resp. confluent modulo) presentations. We have seen that one of the main tools to reach
confluence for algebraic rewriting systems is the critical branching lemma, [76, 97], stating that local
confluence can be obtained by a finite checking of minimal overlappings between two reductions. The
critical pair completion (CPC) is an approach developed in the mid sixties that combines completion
procedure and the notion of critical pair [25]. It originates from theorem proving [101], polynomial ideal
theory [24], and the word problem [76, 97]. In the mid eighties, it has found deep applications in algebra
to solve coherence problems [111], or to compute homological invariants [110]. More recently, higher-
dimensional extensions of the CPC approach were used for the computation of cofibrant replacements of
algebraic and categorical structures [53, 50]. These constructions based on CPC are known for monoids,
small categories, and algebras over a field. However, the extension of these methods to a wide range
of algebraic structures is made difficult because of the interaction between the rewriting rules and the
inherent axioms of the algebraic structure. For this reason, the higher-dimensional extensions of the
CPC approach for a wide range of algebraic structures, including groups, Lie algebras, is still an open
problem.

1.2.13. Critical branching lemma. Nivat showed in [97] that the local confluence of a string rewriting
system is decidable, whether it is terminating or not. The proof of this result is based on classification of
the local branchings into orthogonal branchings, that involve two rules that do not overlap, and overlap-
ping branchings. When the orthogonal branchings are confluent, if all critical branchings are confluent,
then local confluence holds. Thus, the main argument to achieve critical branching lemma is to prove that
orthogonal and overlapping branchings are confluent. For string and term rewriting systems, orthogonal
branchings are always confluent, and confluence of critical branchings implies confluence of overlapping
branchings. The situation is more complicated for rewriting systems on a linear structure, as explained
in Section 2.9.1.

The well known approaches of rewriting in the linear context consist in orienting the rules with
respect to an ambiant monomial order, and critical branching lemma is well known in this context. How-
ever, with approach of linear rewriting where the orientation of rules does not depend of a monomial
order introduced in [50], there are two conditions to guarantee a critical branching lemma, namely ter-
mination and positivity of reductions. A positive reduction for a linear rewriting system, as defined
in Section 2.8.3, is the application of a reduction rule on a monomial that does not appear in the polyno-
mial context. For instance, consider the linear rewriting system on an associative algebra over a field K
given in [50] defined by the rules α : xy → xz and β : zt → 2yt. Following Remark 2.9.3, it has no
critical branching, but one non-confluent orthogonal branching, proving that the lack of termination is an
obstruction to confluence of orthogonal branchings.

1.2.14. An algebraic critical branching lemma. In Chapter 7, we introduce a categorical model for
rewriting in algebraic structures which formalizes the interaction between the rules of the rewriting sys-
tem and the inherent axioms of the algebraic structure. In Section 7.1, we recall the notion of cartesian
2-dimensional polygraph introduced in [87], corresponding to rewriting systems that present a Lawvere
algebraic theory. A cartesian 2-polygraph defines a categorical interpretation of term rewriting systems.
It is defined by an equational signature (P0, P1) made of sorts and operations, and a cellular extension of
the free algebraic theory P×1 on (P0, P1). One defines in Section 7.3 the structure of algebraic polygraph
as a data made of a cartesian 2-polygraph P and a set Q of or generating ground 1-cells (or constants)
and a cellular extension R on the set of ground 1-cells.

We introduce an algebraic setting for the formulation of the critical branching lemma. We define
the structure of algebraic polygraph modulo which formalizes the interaction between the rules of the
rewriting system and the inherent axioms of the algebraic structure. We introduce rewriting strategies
based on the choice of only some rewriting steps, depending on whether their source is a normal form
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or not with respect to the inherent algebraic axioms. We then introduce rewriting properties with respect
to these strategies, and prove an extension of the terminating Newman lemma modulo proved in Chapter
4, for quasi-terminating algebraic polygraphs modulo. We then prove a critical branching lemma for
algebraic polygraphs modulo. We deduce from this result a critical branching lemma for rewriting sys-
tems on algebraic structures whose axioms are specified by term rewriting systems satisfying appropriate
convergence relations modulo associativity and commutativity. Finally, we explicit our results in linear
rewriting, and explain why termination is a necessary condition to characterize local confluence in that
case.
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CHAPTER 2

Algebraic rewriting
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Rewriting theory is a combinatorial theory of equivalence classes, [96], allowing to transform one
object into another by successive applications of moves, or oriented relations. It originates from com-
binatorial algebra, and was introduced by Thue when he considered systems of transformation rules on
combinatorial objects such as strings, trees or graphs in order to solve the world problem. Rewriting
tools have then been developed in many domains in theoretical computer science, and more recently
in various algebraic contexts. Algebraic rewriting consists in studying presentations by generators and
relations of algebraic structures by orienting the relations. Many constructions of this thesis are based
on the notion of presentations of higher-dimensional globular strict categories (resp. linear categories)
by generating systems called polygraphs, or computads, introduced independently by Burroni [28] and
Street [112, 113].

This chapter is a preliminary chapter recalling all the rewriting properties of polygraphs and rewriting
results that are used in the sequel. At first, we recall the notion of abstract rewriting system, that we see
as a 1-polygraph consisting of a set of objects and a set of oriented relations between these objects. We
introduce the abstract rewriting properties of termination, confluence, convergence and decreasingness in
this context. We extend those definitions to the context of rewriting modulo some non-oriented relations.
We then rise in dimensions by giving properties of presentations of higher-dimensional globular strict
categories by higher-dimensional polygraphs, and give local criteria to reach confluence of these poly-
graphs from confluence of minimal overlappings of relations, called critical branchings. We then expand
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these constructions in the dimensions of string rewriting systems (2-polygraphs) and of 2-categories with
string diagrams (3-polygraphs).

In the last part of this Chapter, we recall following [50, 2] the linear rewriting theory. In particular,
we define the notion of linear polygraphs as a presentation of higher-dimensional linear categories, and
expand their rewriting properties, which differ from the non-linear case by the fact that we have to restrict
the allowed reductions because of the linear context. We then recall from [50] the linear critical branching
lemma.

2.1. ABSTRACT REWRITING

2.1.1. Abstract rewriting systems. An abstract rewriting system is a data made of a setX and a relation→ on X, that is a subset R of X × X whose elements (x, y) are denoted by x → y. In that case, we say
that x→ y is a rewriting step from x to y.

Throughout this section, we fix (X,→) an abstract rewriting system. The transitive (resp. transitive
reflexive, symmetric transitive) closure of→ will be denoted by +→ (resp. ∗→, ∗↔). Thus recall that for
any x and y in X, we have

i) x +→ y if and only if there exists n ≥ 1 and a family (xk)1≤k≤n of elements of X such that x = x1,
y = xn and xk → xk+1 for any 0 ≤ k ≤ n− 1. If x +→ y, we say that there x rewrites to y.

ii) x ∗→ y if and only if x = y or x +→ y. If x ∗→ y, we say there there is a rewriting sequence from x

to y.

iii) x ∗↔ if and only if there exists n ≥ 1 and a family (xk)1≤k≤n of elements of X such that

x = x1
∗→ x2

∗← x3
∗→ . . .

∗→ xn = y.

2.1.2. 1-polygraphs. The notion of abstract rewriting system can be encapsulated in the terminology
of 1-polygraphs. A 1-polygraph is a direct graph P, that is it consists in a diagram of sets and maps

P0 P1
s0
oo

t0oo

where the set P0 correspond to the vertices of P and P1 are edges in P. The maps s0 and t0 are source
and target maps of edges in P1. The elements of Pi are called i-cells, for i = 0, 1. A 1-polygraph is said
finite if it has finitely many 0-cells.

An abstract rewriting system (X,→) can then be seen as a 1-polygraph whose 0-cells are the elements
of X and whose 1-cells are edges with 1-source x and target y whenever x→ y in (X,→).

Let us now introduce some categorical material needed to introduce rewriting properties of 1-polygraphs
that we use in the sequel. These definitions are expanded in the more general context of n-polygraphs
in Section 2.4.3. Given a 1-polygraph P = (P0, P1), the free (1-)category generated by P is the category
denoted by P∗1 and defined as follows:

i) the 0-cells of P∗1 are the ones of P,

ii) the 1-cells of P∗1 from x to y are the finite paths of P, i.e. the finite sequences

x
u1 // x1

u2 // x2
u3 // . . .

un−1 // xn−1
un // y

of 1-cells of P. Such a path is said to be of length n, and we denote by ` the length function.

iii) the composition of 1-cells is given by concatenation of paths, and the identities are the empty paths
x→ x.
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In this interpretation of an abstract rewriting system as a 1-polygraph, we have that x ∗→ y if and
only if there exists a 1-cell f : x → y in P∗1 . This will still be denoted by x ∗→ y. Therefore, a rewriting
step corresponds to a 1-cell of P∗1 of length 1, we still denote by x → y if there is a rewriting step with
0-source x and 0-target y. Similarly, the free (1, 0)-category generated by P is the 1-category denoted
by P>1 whose 0-cells are the ones of P, and whose 1-cells with 0-source x and 0-target y are given by

P>1 (x, y) = (P1 q P−1 )
∗(x, y)/Inv(P1),

where:

i) the 1-polygraph P− is defined from P by reversing its 1-cells, that is P−1 = {t0(u)→ s0(u) |u ∈ P1}.

ii) Inv(P1) is a cellular extension of (P1
∐
P−1 )

∗, as defined in Section 2.1.3, that contains the following
families of relations for every 1-cell u : x→ y of P:

u ?0 u
− ⇒ 1s0(u), u− ?0 u⇒ 1t0(u),

where 1y denotes the identity 1-cell on the 0-cell y. In the quotient category P>1 (x, y), the 1-cells
u ?0 u

− (resp. u− ?0 u) and 1s0(u) (resp. 1t0(u)) are thus equal.

Namely, there is a 1-cell in P>1 with 0-source x and 0-target y if and only if there exists a zigzag sequence

x
u1 // x1 x2

u2oo
u3 // . . . xn−2

un−2oo
un−1 // xn−1

un // y ,

where each ui is a 1-cell of P∗1 for 1 ≤ i ≤ n. We will recall more about (n, p)-categories in the sequel.

2.1.3. Spheres and cellular extensions. A sphere of a 1-category C is a pair (u, v) of 1-cells u and v
of C such that s0(u) = s0(v) and t0(u) = t0(v). Such 1-cells are said parallel. We denote by Sph(C)
the set of all spheres of C. The 1-cell u (resp. v) is then called the source (resp. target) of the sphere
(u, v). A cellular extension of C is a set Γ equipped with a map from Γ to Sph(C). It is equivalent to the
data of a set Γ and two maps s1, t1 : Γ → C satisfying the globular relations:

s0s1 = s0t1, t0s1 = t0t1.

Note that the elements of such a cellular extension Γ can be seen as formal 2-cells tiling the corresponding
spheres of Γ :

x

u

��

v

??
yγ

��
for (u, v) ∈ Γ .

In the sequel, many rewriting properties of a 1-polygraph P are defined in terms of a cellular extension Γ
of P>1 . We denote by Γ>2 the free (2, 1)-category generated by the (2, 1)-polygraph (P0, P1, Γ ∪ Γ−), as
defined in Section 2.4.6. Explicitely, the (2, 1)-category Γ>2 is the 2-category defined as follows:

i) the 0-cells of Γ>2 are the ones of P,

ii) for any 0-cells x and y of P, the category Γ>2 (x, y) is defined as:

• the free (1, 0)-category over the 1-polygraph whose 0-cells are the 1-cells in P∗1(x, y), and
whose 1-cells are elements of the form

x ′
w // x

u

��

v

??
y

w ′ // y ′γ
��

with γ : u⇒ v in Γ and w,w ′ in P∗1
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• quotiented by the congruence generated by the cellular extension made of all the relations
αwv ?1 u

′wβ ∼= uwβ ?1 αwv
′ for all α : u⇒ u ′ and β : v⇒ v ′ in Γ and w ∈ P∗1 such that

both sides are well-defined.

iii) for any 0-cells x, y and z of P, the composition functor ?0 is given by concatenation on 1-cells and,
on 2-cells, as follows:

(u1α1u
′
1 ?1 · · · ?1 umαmu ′m) ?0 (v1β1v ′1 ?1 · · · ?1 vnβnv ′n)

=u1α1u
′
1v1s1(β1)v

′
1 ?1 · · · ?1 umαmu ′mv1s(β1)v ′1 ?1 umt(αm)u ′mv1β1v ′1 ?1 · · · ?1 umt1(αm)u ′mvnβnv ′n.

Let us also recall for the purposes of the following definitions that there are two ways to compose
1-cells in a 2-category:

x

u

��

v

@@
y

u ′

��

v ′

BB zα

�

β
��

?0 x

u?0u
′

��

v?0v
′

BB zα?0β
��

, x

u

��
v //

w

@@
y

α��

β
�

?1→ x

u

��

w

BB zα?1β
��

and that these compositions are required to satisfy the exchange relation, that is

(α ?1 α
′) ?0 (β ?1 β

′) = (α ?0 β) ?1 (α
′ ?0 β

′). (2.1)

We will give more details about the properties of globular strict n-categories and (n, p)-categories in
Sections 2.4.1 and 2.4.5. For the rest of this section, let us fix a 1-polygraph P = (P0, P1), and a cellular
extension Γ of the free (1, 0)-category P>1 .

2.1.4. Normal forms and quasi-normal forms. We say that a 0-cell x of P is a normal form if there
does not exist y in X such that x → y. A normal form of a 0-cell x is a normal form x ′ in P such that
x
∗→ x ′. We say that P is normalizing if all 0-cells of P admit a normal form. We say that a 0-cell x in P

is a quasi-normal form if for all 0-cell y in P such that x→ y, we have y ∗→ x. A quasi-normal form of
x in P0 is a quasi-normal form x ′ ∈ P0 such that x ∗→ x ′. We say that P is quasi-normalizing if all the
0-cells of P admit a quasi-normal form.

For instance, the 1-polygraph having P0 = {a, b} as a set of 0-cells and two 1-cells α : a → b and
β : b → a is quasi-normalizing, since a (resp. b) is a quasi-normal form of b (resp. a). However, P is
not normalizing since a does not admit any normal form.

2.1.5. Termination and quasi-termination. The 1-polygraph P is said to be terminating if there does
not exist any sequence (uk)k∈N such that uk → uk+1 for all k, namely if there does not exist any infinite
rewriting sequence in P. It is said to be quasi-terminating if any infinite sequence (uk)k∈N of 0-cells of
P such that uk → uk+1 for all k contains infinitely many occurences of the same 0-cell. In particular, a
1-polygraph is quasi-terminating if the only non-terminating derivations are provided by rewriting loops.

2.1.6. Noetherian induction from termination. If the 1-polygraph P is terminating, the relation +→ is
well-founded, that is there does not exist any infinite strictly decreasing sequence for this relation. So
one can use proofs based on induction on this relation. This is called noetherian induction, and has been
introduced by Huet in [56].

2.1.7 Lemma. Any terminating abstract rewriting system is normalizing

Proof. Proof is made using noetherian induction. Assume that P is terminating, and consider a 0-cell
x in P0. If x is a normal form, it is a normal form of x. Suppose that for any 0-cell x ′ in P0 such that
x

+→ x ′, x ′ admits a normal form x̂ ′. Then x̂ ′ is also a normal form of x.
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2.1.8. Confluence and local confluence. We say that P is Γ -confluent if for any 1-cells f : x ∗→ y and
g : x

∗→ z in P∗1 , there exist 1-cells f ′ and g ′ in P∗1 and a 2-cell γ ∈ Γ> as depicted in the following
diagram:

y f ′

��

x

f 00

g //

t

z g ′

CC
γ

��
.

The pair of rewriting sequences (f, g) with the same 0-source x is called a branching of the 1-polygraph
P with source x. Note that when Γ = Sph(P∗1) the set of all 1-spheres in P∗1 , the existence of the 2-
cell γ is trivial so that this property reduces to the existence of two rewriting sequences closing the
branching (f, g). The 1-polygraph P is said to be confluent if it is Sph(P∗1)-confluent. The 1-polygraph
P is said to be locally confluent if for rewriting steps f : x → y and g : x → z, there exists rewriting
sequences f ′ and g ′ in P∗1 and a 2-cell γ in Γ> as above. Similarly, the pair of rewriting steps (f, g) is
called a local branching is called a local branching, and P is said to be locally confluent if it is locally
Sph(P∗1)-confluent. We say that the triple (f ′, g ′, γ) is a Γ -confluence of the branching (f, g).

2.1.9 Remark. In the sequel, we may use the notation (f : x → y, g : x → z) for both branchings and
local branchings with source x, and omit the ∗ on the arrows. However, we will precise the nature of the
branching when referring to it, so that there is no ambiguity.

2.1.10 Theorem (Coherent Newman’s lemma). Consider a terminating 1-polygraph P, and Γ a cellular
extension of P>1 . Then P is Γ -confluent if and only if it is locally Γ -confluent.

Proof. If P is Γ -confluent, it is locally Γ -confluent. Conversely, let us assume that it is locally Γ -confluent,
and pick a branching (f : x→ y, g : x→ z) of P. We prove the confluence of P by Noetherian induction.
If x is a normal form of P, then x = y = z. Otherwise, choose some decompositions f = f1 ?0 f2 and
g = g1?0g2 where f1 and g1 are 1-cells of P∗1 of length 1, and f2,g2 are in P∗1 . By local Γ -confluence of P,
there exists a Γ -confluence (f ′1, g

′
1, γ1) of the local branching (f1, g1). We then have f1 : x→ t0(f1) and

by induction hypothesis, there exists a Γ -confluence (f3, h, γ2) of the branching (f2, f
′
1) of P. By another

application of the induction hypothesis on the branching (g1 ?0 h, g2) of P with source t0(g1), there
exists a Γ -confluence (h ′, g3, γ3) of this branching. Finally, this yields a Γ -confluence of the branching
(f, g) as summarized on the following diagram:

f3

$$y

f ′1
$$

f2
99

h ′

##x

f1
99

g1 %%

h

;;

z

g ′1

99

g2 &&

g3

::γ1

��

γ2

��

γ3

��

This theorem was originally proved by Newman in [96], and states that under a termination assump-
tion, the confluence of an abstract rewriting system is equivalent to its local confluence.

2.1.11. Church-Rosser’s property. The 1-polygraph P is said to be Γ -Church-Rosser if for any 1-cell
h in P>1 with 0-source x and 0-target y, there exists 1-cells f and g in P∗1 and a 2-cell γ in Γ> as in the
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following diagram:

x

f
��

h // y

g

��
z

γ

��

(2.2)

2.1.12 Theorem. A 1-polygraph P is Γ -confluent if and only if it is Γ -Church-Rosser.

Proof. By definition, if P is Γ -church Rosser, it is Γ -confluent by considering a 1-cell h of the form

x
h1← x0

h2→ y. Let us now assume that P is Γ -confluent, and consider a 1-cell h in P>1 with 0-source x and
0-target y. Let us proceed by induction on the smallest n such that there exists a sequence (xk)1≤k≤n of
elements of X such that

x = x1 ↔ x2 ↔ · · ·↔ xn−1 ↔ xn = y,

where xi ↔ xi+1 means that either xi reduces into xi+1 or xi+1 reduces into xi with respect to P. We
show that there exists positive 1-cells f : x→ z and g : y→ z in P∗1 and a 2-cell γ as in (2.2). If n = 0,
then x = y and we can choose identity cells. If n > 0, using induction hypothesis there exists rewriting
steps f ′ : x → t and g ′ : xn−1 → t in P∗1 , and a 2-cell δ as below. We then distinguish between two

cases: if y
hn−1→ xn−1, then we choose the rewriting steps (f ′, hn−1 ?0 g ′) and construct the 2-cell γ as in

Case 1 below. If xn−1 → y, we use Γ -confluence to prove the Γ -Church-Rosser property as depicted in
Case 2 below.

x

f ′

��

oo // xn−1

g ′

}}

y
hn−1oo

hn−1gppt

α

��
1
��

x

f ′

��

oo h // xn−1

g ′

}}

hn−1 // y

g

��
t

f ′′
// z

α


�
β

��

Case 1 Case 2

2.1.13. Convergence. We say that a 1-polygraph P is convergent if it is both terminating and confluent.
If P is convergent, any 0-cell of P admits a unique normal form. Indeed, it is in particular terminating
and thus normalizing by Lemma 2.1.7. Thus, any 0-cell of P admits at least one normal form, and if it
admits two normal forms x1 and x2, then confluence imposes that x1 = x2.

2.2. CONFLUENCE BY DECREASINGNESS

2.2.1. Labelled polygraphs. A well-founded labelled 1-polygraph is a data (P, X,<,ψ) made of:

i) a 1-polygraph P;

ii) a set X;

iii) a well-founded order < on X;

iv) a map ψ which associates to each rewriting step f of P an element ψ(f) of X called the label of f.

The map ψ is called a well-founded labelling of P. Given a rewriting sequence f = f1 ?1 . . . ?1 fk, we
denote by LX(f) the set {ψ(f1), . . . , ψ(fk)}.
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2.2.2. Labelling to the normal form. Let P be a terminating 1-polygraph, then from Lemma 2.1.7 any
0-cell of P admits a normal form with respect to P. For any 0-cell u in P0, fix a normal form û of x
with respect to P such that d(u, û), denoting the length of the shortest rewriting sequence from u to û,
is minimal. The labelling to the normal form is the map that associates to any rewriting step f of P the
integer d(t0(f), t̂0(f)). Note that all the proofs made using Noetherian induction defined in Section 2.1.6
can be formalized as proofs by induction on the normal form labelling of the 1-polygraph P.

2.2.3. Labelling to the quasi-normal form. Let P be a quasi-terminating 1-polygraph. Then any 0-cell
of P admits a quasi-normal form with respect to P. Let us fix a family of quasi-normal formsQ such that
any 0-cell in P0 rewrites into a 0-cell of Q. For each x in P0, let us choose ũ a quasi-normal form of u
in Q such that d(u, ũ) is minimal. The labelling to the quasi-normal form is the map that associates to
any rewriting step f of P the integer d(t0(f), t̃0(f)).

2.2.4. Multiset ordering. Recall that a multiset is a collection in which elements are allowed to occur
more than once or even infinitely many times, contrary to an usual set. It is called finite when every
element appears a finite number of times. These multisets are equipped with three operations: union ∪,
intersection ∩ and difference −.

Given a well-founded set of labels (X,<), we denote by ∨x the multiset {y ∈ X | y < x} for any x
in X, and by ∨M the multiset ⋃

x∈M
∨x

for any multiset M over X. The order < extend to a partial order <mult on the multisets over X defined
byM <mult N if there exists multisetsM1,M2 andM3 such that

i) M =M1 ∪M2, N =M1 ∪M3 andM3 is not empty,

ii) M2 ⊆ ∨M3, that is for every x2 inM2, there exists x3 inM3 such that x2 < x3.

Following [41], if < is well-founded, then so is <mult. Let us recall the following lemma from [119,
Lemma A.3.10] establishing the properties of the operations on multisets, needed to prove confluence
from decreasingness:

2.2.5 Lemma. For any multisetsM, N and S, the following properties hold:

i) ∪ is commutative, associative and admits ∅ as unit element,

ii) ∪ is distributive over ∩,

iii) S ∩ (M ∪N) = (S ∩M) ∪ (S ∩N),

iv) M ∩ (N− S) = (M ∩N) − (M ∩ S)

v) (M ∩N) − S = (M− S) ∩ (N− S),

vi) (S ∪M) −N = (S−N) ∪ (M−N),

vii) (M ∪N) − S = (M− S) ∪ (N− S),

viii) (M−N) − S =M− (N ∪ S),

ix) M = (M ∩N) ∪ (M−N),

x) (M−N) ∩ S = (M ∩ S) −N.

2.2.6. Lexicographic maximum measure. Let (P, X,<,ψ) be a well-founded labelled 1-polygraph.
Let x = x1 . . . xn and x ′ = x ′1 . . . x

′
m be two elements in the free monoid X∗. We denote by x(x

′) the
1-cell x1 . . . xn where each xi is defined as

- 1 if xk < x ′j for some 1 ≤ m;

- xk otherwise.
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Following [119], we consider the measure | · | from X∗ to the set of multisets over X and defined as
follows:

i) for any x in X, the multiset |x| is the singleton {x}.

ii) for any i in X and any element x of X∗, |ix| = |i| ∪ |x(i)|.

This measure is extended to the set of finite rewriting sequences of P by setting for every rewriting
sequence f1 ?1 . . . ?1 fn:

|f1 ?1 . . . ?1 fn| = |k1 . . . kn|

where each fi is labelled by ki and k1 . . . kn is a product in the monoid X∗. Finally, the measure | · | is
extended to the set of finite branchings (f, g) of P be setting|(f, g)| = |f] ∪ |g|.

Recall from [119, Lemma 3.2] that for any elements x1 and x2 in X∗, we have

|x1x2| = |x1| ∪ |x
(x1)
2 |

and as a consequence, for any rewriting sequences f and g of P, the following relations hold:

|f ?1 g| = |f| ∪ |k1 . . . k
(l1...ln)
m |

where f = f1 ?0 . . . ?0 fn (resp. g = g0 ?0 . . . ?0 gm) and each fi (resp. gj) is labelled by li (resp. kj).

2.2.7. Decreasingness. Recall from [119, Definition 3.3] the definition of a decreasing confluence dia-
gram. Let (P, X,<) be a well-founded labelled 1-polygraph. A local branching (f, g) P is decreasing if
there exists a confluence diagram of the following form

f //

g

��

f ′

��

g ′′

��

h1
��

g ′
//

f ′′
//

h2

//

such that the following properties hold:

i) k < ψ(f) for all k in LX(f ′).

ii) k < ψ(g) for all k in LX(g ′).

iii) f ′′ is an identity or a rewriting step labelled by ψ(f).

iv) g ′′ is an identity or a rewriting step labelled by ψ(g).

v) k < ψ(f) or k < ψ(g) for all k in LX(h1) ∪ LX(h2).

Such a 1-polygraph P is said to be decreasing if all its local branchings are decreasing. Following [119]
and by Lemma 2.2.5, one may prove the following two lemmas needed in order to establish Theorem
2.2.10.

2.2.8 Lemma. Let (P, X,<,ψ) be a decreasing labelled 1-polygraph. For every diagram of the following
form

f ′1
��

f2

&&f1 --

g1
11

g ′1

CC
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where f1 is a non trivial rewriting sequence, f2 and g1 are rewriting sequences and the confluence
diagram (f1 ?0 f

′
1, g1 ?0 g

′
1) is decreasing, then the inequality |(f ′1, f2)| 6mult |(g1, f1 ?0 f2)| holds.

2.2.9 Lemma. Let (P, X,<,ψ) be a decreasing labelled 1-polygraph. For every diagram of the following
form

γ1 //

δ0
��

δ1
��

γ2 //

δ2
��

τ1
//

τ2
//

satisfying:

|δ0?0τ1| 6mult |(δ0, γ1)|, |γ1?0δ1| 6mult |(δ0, γ1)|, |δ1?0τ2| 6mult |(δ1, γ2)|, |γ2?0δ2| 6mult |(δ1, γ2)|,

the following inequalities hold:

|δ0 ?0 τ1 ?0 τ2| 6mult |(δ0, γ1 ?0 γ2)| and |γ1 ?0 γ2 ?0 δ2| 6mult |(δ0, γ1 ?0 γ2)|.

2.2.10 Theorem (Confluence from decreasingness, Thm 2.3.5 [119]). Any decreasing 1-polygraph is
confluent.

Proof. Let (P, X,<) be a decreasing labelled 1-polygraph, and let (f, g) be a non trivial branching of P.
We proceed by well-founded induction on the order <mult on the labellings of branchings. Let us prove
that (f, g) can be completed into a confluence (f ′, g ′) such that

|f ?0 f
′| 6mult |(f, g)|, |g ?0 g

′| 6mult |(f, g)|. (2.3)

Let us choose some decompositions f = f1?0f2 and g = g1?0g2 where f1 and g1 are rewriting steps of P
and f2,g2 are 1-cells of P∗1 . By decreasingness assumption, there exists a decreasing confluence (f ′1, g

′
1)

of the local branching (f1, g1). Then, using induction on the branching (f2, f
′
1) whose labelling is smaller

than |(f1, g1)| by decreasingness, we construct a decreasing confluence (f3, f ′′1 ) of the branching (f ′1, f
′
2).

Now, using Lemma 2.2.8, we have |(g2, g
′
1 ?0 f

′′
1 )| <mult |(f, g)| so that we can use induction on the

branching (g2, g
′
1 ?0 f

′′
1 ) to construct a confluence of (f, g), which satisfies some inequalities of the form

(2.3) using Lemmas 2.2.8 and 2.2.9. This is summarized in the following picture:

$$y

f ′1
$$

f2
99

##x

f1
99

g1 %%

;;

z

g ′1

99

g2 &&

::Decr.

Ind

Ind

2.3. ABSTRACT REWRITING MODULO

2.3.1. Abstract rewriting systems modulo. Let us consider a set X and two binary relations→R and→E on X. In the sequel,

1. (X,→R) will be an abstract rewriting system, and reductions with respect to→R are oriented, that
is they have a distinguished source and a distinguished target.

2. (X,→E) will be considered as a set of non-oriented equations on the set X, forgetting which side
is the source and which side is the target.
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Let us denote by ∼ the congruence generated by E, that is ∼= ∗↔E and by à the one-step congruence
of ∼, that is for any x and x ′ in X,

x à x ′ if and only if x→E x
′ or x←E x

′.

2.3.2 Example. Given a set X and two binary relations→R and→E on X, we consider three prototypical
examples of abstract rewriting systems built from this data:

i) The rewriting system ERE that consists in rewriting with →R on E-equivalence classes, that is
x→

ERE y if and only if ∃ x ′, y ′ ∈ X such that x ∼ x ′, y ∼ y ′ and x ′ →R y
′.

ii) The rewriting system ER that consists in rewriting with →R with E-matching on the sources of
reductions: x→

ER y if and only if ∃ x ′ ∈ X such that x ∼ x ′ and x ′ →R y.

iii) The rewriting system RE that consists in rewriting with →R with E-matching on the targets of re-
ductions: x→RE y if and only if ∃ y ′ ∈ X such that y ∼ y ′ and x→R y

′.

Following [61], a abstract rewriting system modulo is a quadruple (X,→R,→E,→S) satisfying

→R⊆→S⊆→ ERE .

2.3.3. 1-polygraphs modulo. As in Section 2.1.2, the abstract rewriting systems (X,→R) and (X,→E)
can be considered as 1-polygraphs (X, R) and (X, E) whose respective source and target maps are denoted
by sR0 , t

R
0 and sE0 , t

E
0 . We the define the cellular extension ERE on X by the set of spheres (sE0 (e), t

E
0 (e
′))

where:

i) e and e ′ are 1-cells of the free (1, 0)-category E> generated by the 1-polygraph (X, E),

ii) there is a rewriting step f in R∗ such that sR0 (f) = t
E
0 (e) and tR0 (f) = s

E
0 (e
′).

Therefore, a rewriting step from u to v in ERE is given by a composite u e↔ u ′
f→ v ′

e ′↔ v where e and
e ′ are 1-cells of E> and f is a rewriting step of R. A 1-polygraph modulo is then the data of (X, R, E, S)
where (X, R) and (X, E) are two 1-polygraphs, and S is a cellular extension on X such that the inclusion
R ⊆ S ⊆ ERE holds. When there is no ambiguity, such a 1-polygraph modulo will be denoted by (X, S)
or simply by S.

2.3.4. E-equivalence. If (X, E) is a 1-polygraph as above, we denote by x
e
∼ y if there exists a 1-cell

e : x → y in the free (1, 0)-category E> generated by E. If moreover we have that `(e) = 1 in E>, this

is denoted by x
e

à y.

2.3.5. Confluence modulo. A 1-polygraph modulo (X, S) is said to be confluent modulo E if for any x

and y in X such that x
e
∼ y, and for any rewriting sequences f : x → x ′ and g : y → y ′ in S∗, one of

them possibly being an identity, there exists rewriting sequences f ′′ : x ′ → x ′′ and g ′′ : y ′ → y ′′ in S∗

such that x ′′
e ′
∼ y ′′, as depicted on the following diagram:

x
e

f // x ′
f ′ // x ′′

e ′

y
g
// y ′

g ′
// y ′′

The triple (f, e, g) is then called a branching modulo of the 1-polygraph modulo (X, S), and the triple
(f ′, e ′, g ′) is called a confluence modulo of this branching.
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2.3.6. Termination. Given a 1-polygraph modulo (X, R, E, S), if S 6= R then ER is terminating if and
only if RE is terminating, if and only if ERE is terminating, if and only if S is terminating. An order
relation ≺ on X is compatible with→R modulo E if it satisfies the two following conditions:

i) y ≺ x, for any x, y ∈ X such that there exists a rewriting sequence x ∗→R y,

ii) if y ≺ x for x, y ∈ X, then y ′ ≺ x ′ holds for any x ′, y ′ ∈ X such that x ∼ x ′ and y ∼ y ′.

A termination order for R modulo E is a well-founded order relation compatible with Rmodulo E. Many
results of rewriting modulo will need the termination of the rewriting system ERE, which can be proved
by constructing a termination order either for ER, RE and ERE, or by constructing a termination order for
R compatible with E.

2.3.7. Normal forms. An element x ∈ X is S-reduced if it cannot be reduced by any rewriting step of
S. A S-normal form for an element x ∈ X is an S-reduced element y in X such that there is a 1-cell f in
S∗ with 0-source x and 0-target y. We will denote by Irr(S) the set of S-reduced elements of X, and by
NF(S, x) the set of S-normal forms of an element x of X. If S is terminating, every element of X admits at
least one S-normal form. If moreover S is confluent modulo E, then any x in X may admit manyr normal
forms with respect to S, but all these normal forms are E-equivalent. Actually, the following result is
proved in [56]:

2.3.8 Lemma. Let us denote by ≡ the congruence generated by the coproduct 1-polygraph (X, R ∪ E).
If S is terminating, then S is confluent modulo E if and only if for any x, y ∈ X such that x ≡ y, then
x̂ ∼ ŷ for any S-normal form x̂ (resp. ŷ) of x (resp. y).

2.3.9. Double Noetherian induction. Let us recall the double Noetherian induction principle intro-
duced by Huet in [56] to prove the equivalence between confluence modulo and local confluence modulo
under a termination hypothesis. Let us fix a 1-polygraph modulo (X, R, E, S) and construct the auxiliary
1-polygraph (X × X, Sq) as follows: there is a rewriting step (x, y) → (x ′, y ′) in Sq in any of the
following situations:

i) x ∗→ x ′ with respect to S and y = y ′;

ii) x ∗→ x ′ and x ∗→ y ′ with respect to S;

iii) x = x ′ and y ∗→ y ′ with respect to S;

iv) y ∗→ x ′ and y ∗→ y ′ with respect to S;

v) x
e1
∼ y ∼ x ′

e2
∼ y ′ with `(e1) > `(e2).

Note that this definition implies that, if u → u ′ and v → v ′ with respect to S, then there is a rewriting
sequence (u, v)→ (u ′, v ′) in Sq given by the following reduction: (u, v)→ (u ′, v)→ (u ′, v ′).

2.3.10 Lemma ([56], Prop. 2.2). If ERE is a terminating 1-polygraph, then so is Sq.

2.3.11. Church-Rosser modulo property. We say that a 1-polygraph modulo (X, R, E, S) is Church-
Rosser modulo E if for any 0-cells u,v in R0 such that there exist a zig-zag sequence

u
f1 // u1 u2

f2oo
f3 // . . .

fn−2 // un−1 un
fn //

fn−1oo v

where the fi are 1-cells of E> or R>, there exist rewriting sequences f ′ : u → u ′ and g ′ : v → v in
S∗ such that u ′

e
∼ v ′. In particular, when S is normalizing, the Church-Rosser modulo property implies

that for any 0-cells u and v such that u = v in the category presented by the coproduct 1-polygraph
(X, R∪ E), two normal forms û and v̂ of u and v respectively with respect to S are equivalent modulo E.
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2.3.12. Jouannaud-Kirchner confluence modulo. In [61], Jouannaud and Kirchner introduced an-
other notion of confluence modulo E, given by two properties that they call confluence modulo E and
coherence modulo E. We say that a 1-polygraph modulo (X, R, E, S) is

i) JK confluent modulo E if any branching (f, g) of S is confluent modulo E:

u

=

��

f // v
f ′ // v ′

e

u
g
// w

g ′
// w ′

ii) JK coherent modulo E, if any branching (f, e) : u→ (u ′, v) modulo E is confluent modulo E:

u
f //

e

v
f ′ // v ′

e ′

u ′
g ′

// w

with g ′ being a non-identity rewriting sequence of S.

However, we prove that this notion of confluence modulo is equivalent to that defined in Section 2.3.5.

2.3.13 Lemma. For any linear 1-polygraph modulo (X, R, E, S) such that S is terminating, the following
assertions are equivalent:

i) S is confluent modulo E.

ii) S is JK confluent modulo E and JK coherent modulo E.

Proof. By definition, the property of confluence modulo E implies both JK confluence modulo E and
JK coherence modulo E. Conversely, suppose that the 1-polygraph (X, R, E, S) is JK confluent and JK
coherent modulo E and let us consider a branching (f, e, g) of S modulo E. If `(e) = 0, then it is clearly
confluent modulo E by JK confluence modulo E so let us assume that `(e) ≥ 1. If g is an identity 1-cell,
then the confluence of the branching (f, e) modulo E is given by JK coherence modulo E. Otherwise,
by JK coherence modulo E on the branching (f, e), there rewriting sequences f ′ and h in S∗ with h non
trivial and a 1-cell e ′ : t2(f ′) → t2(h) in E>. Applying JK confluence modulo on the branching (h, g)
of S, there exists rewriting sequences g ′ and h ′ in Sast and a 1-cell e ′′ : t2(h ′)→ t2(g

′) in E>. By JK
coherence modulo E on the branching ((e ′)−, h ′) modulo E, we get the existence of rewriting sqeucnes
f ′′ and h ′′ in S∗ and a 1-cell e ′′′ : t2(f ′′)→ t2(h

′′) in E> as depicted in the following diagram:

u
f //

e

��

u ′
f ′ // u ′′

f ′′ //

e ′

��

u ′′′

e ′′′

��

v h //

=

��

w h ′ // w ′

e ′′

��

h ′′ // w ′′

v g // v ′ g ′ // v ′′

JK coh.

JK confl.

JK coh.

At this point, either h ′′ is trivial and thus e ′′′ : u ′′′ → w ′ so that the branching (f, e, g) is confluent mod-
ulo, or it is non-trivial and we can apply JK coherence on the branching (h ′′, e ′′). Since S is terminating,
this process can not apply infinitely many times, and thus in finitely many steps we prove the confluence
modulo of the branching (f, e, g).

Now, following [61, Theorem 5] and Lemma 2.3.13, given a linear (3, 2)-polygraph modulo (R, E, S)
such that S is terminating, the following properties are equivalent:
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i) S is confluent modulo E. ii) S is Church-Rosser modulo E.

2.3.14. Local confluence modulo. We say that a branching (f, e, g) of S modulo E is local if f is a
rewriting step of S, g is a 1-cell of S∗ and e is a 1-cell of E> such that `(g)+`(e) = 1. As a consequence,
local branchings are divided into two families:

1. local branchings of the form (f, g), where f and g are rewriting steps of S,

2. local branchings of the form (f, e), where f is a rewriting step of S and e is a one-step E-
equivalence.

We say that S is locally confluent modulo E if any of its local branching modulo E is confluent modulo
E. Under some termination assumptions, it is proven in Section 4.5 that the set of local branchings that
need to be considered to reach local confluence can be reduced: indeed, it suffices to check that the
1-polygraph (X, R, E, S) satisfies the following two properties:

a) for any rewriting steps f : x→ y of S and g : x→ z of R, there exists a confluence modulo (f ′, e ′, g ′)
of (f, g).

b) for any rewriting step f : x→ of S and any 1-cell x
e

à x ′ in E>, there exists a confluence modulo of
(f, e).

This is depicted in the following diagrams:

a) :

x
S1 // y

S∗ // y ′

x
R1

// z
S∗
// z ′

,

b) :

x_

_

S1 // x ′
S∗ // x ′′

y
S∗

// y ′
.

2.3.15 Theorem (Newman Lemma modulo). Let (X, R, E, S) be a 1-polygraph modulo such that ERE is
terminating, then S is confluent modulo E if and only if it is locally confluent modulo E.

This result was originally proved by Huet in [56] for the case S = R. In Chapter 4, Section 4.5, this
result is proved in the more general setting of Γ -confluence modulo, generalizing Theorem 2.1.10 to this
context of cubical confluence diagrams.

2.4. HIGHER-DIMENSIONAL POLYGRAPHS

2.4.1. Higher-dimensional categories. If C is a (small, globular, strict) n-category, we denote by Cn
the set of n-cells in C. For any 0 ≤ k < n and any k-cells p and q in C, we denote by Ck+1(p, q) the set
of (k+ 1)-cells in C with k-souce p and k-target q. If p is a k-cell of C, we denote respectively by si(p)
and ti(p) the i-source and i-target of p for 0 ≤ i ≤ k − 1. These assignments define source and target
maps, satisfying the globular relations

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1

for any 0 ≤ i ≤ n − 2. Two k-cells p and q are i-composable when ti(p) = si(q). In that case, their
i-composition is denoted by p ?i q. The compositions of C satisfy the exchange relations:

(p1 ?i q1) ?j (p2 ?i q2) = (p1 ?j p2) ?i (q1 ?j q2)

for any i < j and for all cells p1,p2,q1,q2 such that both sides are defined. If p is a k-cell of C, we denote
by 1p its identity (k + 1)-cell. A k-cell p of C is invertible with respect to ?i-composition (i-invertible
for short) when there exists a (necessarily unique) k-cell q− in C with i-source ti(p) and i-target si(p)
such that

49



p ?i q = 1si(p) and q ?i p = 1ti(p) (2.4)

When i = k− 1, we just say that f is invertible and we denote by f− its inverse. Note that if a k-cell f is
invertible and if its i-source u and i-target v are invertible, then f is (i−1)-invertible, with (i−1)-inverse
given by v− ?i−1 f

− ?i−1 u
−. A 0-sphere of C is a pair γ = (f, g) of 0-cells of C and, for 1 ≤ k ≤ n,

a k-sphere of C is a pair S = (f, g) of k-cells of C such that sk−1(f) = sk−1(g) and tk−1(f) = tk−1(g).
The k-cell f (resp. g) is called the source (resp. target) of S denoted by ∂−(S) (resp. ∂+(S)). We will
denote by Sphk(C) the set of k-spheres of C. If f is a k-cell of C, for 1 ≤ k ≤ n, the boundary of f is the
(k− 1)-sphere (∂−(f), ∂+(f)) denoted by ∂(f).

2.4.2. n-graphs. An n-graph in a category C is a diagram

G0 G1
s0
oo

t0oo . . .
s1
oo

t1oo Gn−1
sn−2
oo

tn−2oo Gn
sn−1
oo

tn−1oo

such that the globular relations sk−1◦sk = sk−1◦tk and tk−1◦sk = tk−1◦tk hold for any 1 ≤ k ≤ n−1.
An n-graph in the category Set is just called an n-graph. The maps sk and tk are respectively called the
k-source and k-target maps, for any 0 ≤ k ≤ n− 1. A morphism of n-graphs F : G→ G ′ is a collection
(Fk : Gk → G ′k)0≤k≤n of maps such that for all 0 < k ≤ n, the following diagrams commute:

Gk−1

Fk−1
��

Gk
sk−1oo

Fk
��

G ′k−1 G ′ks ′k−1

oo

Gk−1

Fk−1
��

Gk
tk−1oo

Fk
��

G ′k−1 G ′kt ′k−1

oo

We denote by Grphn the category of n-graphs, and by Un the forgetful functor Catn → Grphn consist-
ing in forgetting the compositions and identities of an n-category C. We also denote by UGn : Grphn+1 →
Grphn the forgetful functor consisting in forgetting the elements of Gn+1 and the maps sn, tn.

2.4.3. Cellular extensions. We extend the notion of a cellular extension defined for a free 1-category
in Section 2.1.2 to globular n-categories. A cellular extension of an n-category C is a data made of a set
Γ together with two maps sn, tn : Γ → C making the diagram

C0 C1
s0
oo

t0oo . . .
s1
oo

t1oo Cn−1
sn−2
oo

tn−2oo Cn
sn−1
oo

tn−1oo Γ
sn
oo
tnoo

an (n+ 1)-graph in Set. We define the category Cat+n of globular n-categories with a cellular extension
by the following pullback diagram in Cat:

Cat+n Grphn+1

Catn Grphn

y
UGn

Un

As a consequence, there exists a forgetful functor Catn+1 → Cat+n . This functor has a left adjoint
FWn+1 : Cat+n → Catn+1, which is explicitely constructed in [92], and is the free functor assigning to an
n-category C with a cellular extension Γ the free (n + 1)-category generated by Γ over C, denoted by
C[Γ ]. Such a category is constructed by considering all the formal compositions of elements of Γ , seen
as (n + 1)-cells with source and target in C. We denote by (C)Γ the quotient of the n-category C by the
congruence generated by Γ , i.e. the n-category one gets from C by identification of the n-cells sn(f) and
tn(f), for all (n+ 1)-cell f of Γ .
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2.4.4. Contexts of n-categories. A context of an n-category C is a pair (S,C) made of an (n − 1)-
sphere S of C and an n-cell C in C[S] such that S, formally seen as an n-cell, appears only once in C. We
often denote simply by C, such a context. Recall from [51, Proposition 2.1.3] that every context of C has
a decomposition

fn ?n−1 (fn−1 ?n−2 · · · (f1 ?0 S ?0 g1) · · · ?n−2 gn−1) ?n−1 gn,

where S is an (n − 1)-sphere and, for every k in {1, . . . , n}, fk and gk are n-cells of C. Moreover, one
can choose these cells so that fk and gk are (the identities of) k-cells. A whisker of C is a context with a
decomposition

fn−1 ?n−2 · · · (f1 ?0 S ?0 g1) · · · ?n−2 gn−1

such that, for every k in {1, . . . , n− 1}, fk and gk are k-cells.

2.4.5. (n, p)-categories. Let p ≤ n. An (n, p)-category is an n-category such that all the k-cells
are invertible for any k > p. The category of (n, p)-categories will be denoted by Catn,p. There is a
forgetful functor Un,p : Catn,p → Grphn. Similarly, the category Cat+n,p of (n, p)-categories with a
globular extension is defined by the following pullback diagram:

Cat+n,p Grphn+1

Catn,p Grphn

y
UGn

Un,p

The functor FWn+1, defined in Section 2.4.3, restricts to a free functor Cat+n,p → Catn+1,p, and this
restriction is denoted by FWn+1,p.

2.4.6. (n, p)-polygraphs. Polygraphs (or computads) are presentations by generators and relations of
some higher-dimensional categories [112, 28], see also [113, 114]. We recall for any n ≥ p ≥ 1 the
definition of an n-polygraph and of an (n, p)-polygraph. We recall the presentations of (n, p)-categories
by (n+ 1, p)-polygraphs.

Let us define the category Poln,p of (n, p)-polygraphs and the free functor Fn,p : Poln,p → Catn,p
constructing the free (n, p)-category generated by an (n, p)-polygraph by induction on n ≥ p. We first
set Pol0,0 = Set and F0,0 is the identity functor. Let us assume that Poln,p and Fn,p are defined for some
n ≥ p ≥ 0. We define Poln+1,p as the following pullback diagram in Cat:

Poln+1,p Grphn+1

Poln,p Catn,p Grphn

y

UGn+1,p

UPn,p UGn

Fn,p Un,p

To define the functor Fn+1,p, we consider at first the unique functor FPn+1,p making the following dia-
grams commute:

Poln+1,p

Cat+n,p Grphn+1

Poln,p Catn,p Grphn

UPn,p

FPn+1,p

UPn+1,p

y
UGn

Fn,p Un
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and define the functor Fn+1,p as the composition

Poln+1,p
FPn+1,p

// Cat+n,p
FWn+1,p

// Catn+1,p .

Given an (n, p)-polygraph P, the (n, p)-category Fn,p(P) is called the free (n, p)-category gener-
ated by P. The fact that the functor Fn,p : Poln,p → Catn,p is free is proven in [92]. For n > p, an
(n, p)-polygraph can be defined as a data made of an (n − 1, p)-polygraph P together with a cellular
extension of P>n−1.

2.4.7. n-polygraphs. An n-polygraph is an (n,n)-polygraph. In the original paper of Burroni [28],
n-polygraphs were defined inductively as diagrams

P0 P1

s0,t0

xx

xx (· · · )

s1,t1

xx

Pn−1

sn−2,tn−2

ww

ww Pn

sn−1,tn−1

xx

P0 P∗1s0,t0

oo (· · · )
s1,t1

oo P∗n−1sn−2,tn−2

oo

in the category Set, where for any 1 ≤ k ≤ n−1, P∗k is the free k-category generated by the k-polygraph
(P0, . . . , Pk) such that, for any k in {0, . . . , n− 1}, the following two conditions hold:

• The diagram P∗0 P∗1
s0

oo
t0oo (· · · )

s1

oo
t1oo P∗k

sk−1

oo

tk−1oo is a k-category,

• The diagram P∗0 P∗1
s0

oo
t0oo (· · · )

s1

oo
t1oo P∗k

sk−1

oo

tk−1oo Pk+1
sk
oo
tkoo is a (k+ 1)-graph.

For an n-polygraph P = (P0, . . . , Pn), for any 0 ≤ k ≤ n, we denote by P≤k := (P0, . . . , Pk) its
underlying k-polygraph, and by P≥k := (Pk, . . . , Pn) the (n − k)-graph given by considering only the
sets of i-cells, for i ≥ k. We denote by P∗n (resp. P>n ) the free n-category Fn,n(P) (resp. the free
(n,n − 1)-category Fn,n−1(P)) generated by P. Recall from [51, Proposition 2.1.5] that every n-cell f
in P∗ with size k ≥ 1 has a decomposition

f = C1[γ1] ?n−1 · · · ?n−1 Ck[γk],

where γ1, . . . , γk are generating n-cells of P and C1, . . . , Ck are whiskers of P∗n. We then say that k
is the length of the n-cell f, that we denote by `(f) = k. For any 1 ≤ i ≤ n − 1 and for any cellular
extension Γ ⊆ Pi+1 of P∗i , we denote by ||f||Γ the number of occurences of the (i + 1)-cells of Γ in the
(i+ 1)-cell f of P∗i+1.

2.4.8. Rewriting steps. From now on, we fix an n-polygraph P = (P0, . . . , Pn). A rewriting step of
P is an n-cell of the free n-category P∗n of length 1. Namely, it is an application of a rule γ of Pn
inside a context C of P∗n−1. As a consequence, to any n-polygraph P = (P0, . . . , Pn), we associate the
1-polygraph P≥n−1, which has 0-cells the set of (n − 1)-cells in P∗n−1 and it admits a 1-cell u → v

whenever there exists a rewriting step from u to v in P∗n. This is an abstract rewriting system in the
sense of Section 2.1.2. We thus say that an n-polygraph satisfies the rewriting property P if this abstract
rewriting system satisfies P . In this interpretation, an n-cell of P∗n with source u and target v corresponds
to a rewriting path u ∗→ v in P≥n−1 and a rewriting step of P is indeed a rewriting step in P≥n−1.

2.4.9. Presentation of an n-category. Let C be an n-category, and P be an (n+ 1)-polygraph. We say
that P is a presentation of C if C is isomorphic to the quotient of the free n-category P∗n by the equivalence
relation generated by the cellular extension Pn+1. We will denote by P the n-category presented by the
polygraph P, that is P := (P∗n)Pn+1 .

52



2.4.10. Homotopy bases and coherent presentations. Given an n-category C, a homotopy basis of C
is a cellular extension Γ of C such that for any pair (α,β) of parallel n-cells of C, there exists an (n+1)-
cell from α to β in the free (n + 1)-category generated by (C, Γ) ∈ Cat+n . A coherent presentation of C
is an (n+ 2, n)-polygraph such that:

i) The underlying (n+ 1)-polygraph P≤n+1 is a presentation of C,

ii) Pn+2 is an homotopy basis of the free (n+ 1, n)-category P>n+1.

2.5. CRITICAL BRANCHING LEMMA

For an n-polygraph P, we want to obtain criteria to prove confluence P from local confluence and con-
fluence of overlappings between rewriting steps of P.

2.5.1. Branchings. Recall from Section 2.1.8 that a branching of P is a pair of n-cells of P∗n with the
same (n − 1)-source. A local branching of P is a pair of rewriting steps (f, g) of Pn with the same
(n − 1)-source. Such a branching is confluent if there exists n-cells f ′ and g ′ in P∗n such that f ?n−1 f ′

and g ?n−1 g
′ have the same (n − 1)-target. In that case, we say that the pair (f ′, g ′) is a confluence

of (f, g). Such a confluence is not unique in general. Similarly, given a cellular extension Γ of P∗n, a
branching (f, g) is said Γ -confluent is there exists n-cells f ′ and g ′ as above together with an (n+1)-cell
γ in Γ> such that sn(γ) = f?n−1 f ′ and tn(γ) = g?n−1 g ′. The triple (f ′, g ′, γ) is called a Γ -confluence
of the branching (f, g).

2.5.2. Classification of local branchings. Local branchings of an n-polygraph P can be classified into
the following three families:

i) Aspherical branchings, which are branchings of the form (α,α):

v

u

α 22

α ,, v

ii) Peiffer branchings, which are of the form (α ?i v, u ?i β) where u and v are k-cells for k ≥ i + 1
and α : u→ u ′ and β : v→ v ′ are rewriting steps of P:

u ′ ?k v

u ?i v

α?iv 33

u?iβ **
u ?i v

′

iii) Overlapping branchings, which are all the remaining local branchings.

2.5.3. Critical branchings. Let @ be the order relation on P∗n−1 defined by u @ v if there exists a
context C of P∗n−1 such that v = C[u]. A critical branching in P is an overlapping branching of P whose
source is a minimal (n− 1)-cell for the relation order @.

2.5.4 Theorem (Critical pair lemma). An n-polygraph P is locally confluent if and only if all the critical
branchings of P are confluent.
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Proof. If P is locally confluent, then the critical branchings of P are confluent by definition. Assume
now that all critical branchings of P are confluent, and let us consider a local branching (α,β) of P. We
have to distinguish three cases. If (α,β) is an aspherical branching, that is α = β, then it is trivially
confluent via the confluence (1tn−1(α), 1tn−1(α)). If (α,β) = (α ′ ?i v, u ?i β

′) is a Peiffer branching,
then it is confluent via the confluence (u ′ ?i β

′, α ′ ?i v
′). If (α,β) is an overlapping branching, there

exists a critical branching (α0, β0) of P and a context C of P∗n−1 such that α = C[α0] and β = C[β0].
By assumption, the critical branching (α0, β0) is confluent, so there exists a confluence (α ′0, β

′
0) of this

critical branching, and we then check that (C[α ′0, β
′
0]) is a confluence of (α,β).

2.5.5. Coherence from convergence. Let us fix a convergent n-polygraph P = (P0, . . . , Pn). Recall
following [54] that a family of generating confluences of P is a cellular extension of P>n containing
exactly one (n+ 1)-cell Af,g of the form

v f ′

��

u

f 00

g --

u ′

w g ′

DD
Af,g
��

for any critical branching (f, g) of P and any choice of a confluence (f ′, g ′) of (f, g). Note that an
n-polygraph always admits a family of generating confluences, but is it not unique in general since a
given critical branching may admit several confluences. In [53], a determinstic way is given to construct
a family of generating confluences, using the notion of normalisation strategies.

A Squier’s completion of P is the (n+1, n−1)-polygraph denoted by S(P) defined by S(P)≤n = P
and S(P)n+1 is a choice of a family of generating confluences of P. By the following result, then Squier’s
completion gives a way to obtain a coherent presentation of a category C from a convergent presentation
of C:

2.5.6 Theorem ([111], Thm 5.2). Let P be a convergent n-polygraph. Every family of generating con-
fluences of P is a homotopy basis of P>.

Proof. Let us fix a family of generating confluences Γ of P, and denote by S(P) the associated Squier
compltion. We proceed in three steps, following [54].

Step 1. We prove that, for every local branching (f, g) : u → (v,w) of P, there exist a Γ -confluence
(f ′, g ′, α) of (f, g). If (f, g) is an aspherical or Peiffer branching, we can choose n-cells f ′ and g ′ in P∗n
such that f?n−1f ′ = g?n−1g ′, and then α is an identity (n+1)-cell. Moreover, if (f, g) is an overlapping
branching that is not critical, there exists a context C of P∗n such that (f, g) = (C[f ′], C[g ′]), and (f ′, g ′)
is a critical branching of P. We consider the chosen confluence (f ′′, g ′′) of the critical branching (f ′, g ′),
and the (n+ 1)-cell Af ′,g ′ of S(P) corresponding to this confluence. We conclude that (f, g) admits the
Γ -confluence (C[f ′′], C[g ′′], Af ′,g ′).

Step 2. We prove that, for every parallel n-cells f and g of P∗n such that tn−1(f) = tn−1(g) is a normal
form, there exists an (n + 1)-cell with n-source f and n-target g in S(P)>. Using the termination of P,
we proceed by noetherian induction on the source u of the branching (f, g). If u is a normal form, then
both f and g are the identity 1-cell on u, so that 11u : 1u ⇒ 1u is an (n + 1)-cell of S(P)> from f to g.
Now, assume that for any (n− 1)-cell v of P∗n−1 such that there is a rewriting step from u to v in P, and
for any parallel n-cells f, g : u→ v̂ = û of P∗n, there exists an (n+ 1)-cell with n-source f and n-target
g in S(P)>. Let us consider such n-cells f and g. Since the source u of the branching (f, g) is not a
normal form by assumption, we can choose decompositions f = f1 ?n−1 f2 and g = g1 ?n−1 g2 where f1
and g1 are rewriting steps of P, and f2,g2 are n-cells in P∗n. Using Step 1 on the local branching (f1, g1),
there exists a Γ -confluence (f ′1, g

′
1, γ) of this branching. Then, denote by u ′ = tn−1(f

′
1) = tn−1(g

′
1)

and consider an n-cell h : u ′ → û in P∗n, that must exist by confluence of P. Then, using the induction
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hypothesis on the confluent branchings (f ′1 ?n−1 h, f2) and (g ′1 ?n−1 h, g2), there exists (n+ 1)-cells β1
and β2 in S(P)> as follows:

u1

f ′1
��

f2

##
α
��

u

f

��

g

DD

f1

88

g1

&&

u ′ h // u

v1

g ′1

??

g2

;;

=

=

β1��

β2��

Step 3. We prove that every n-sphere of P>n is the boundary of an (n + 1)-cell of S(P)>. First, let us
consider an n-cell f : u → v in P∗n. Using the confluence of P, we can choose n-cells σu : u ⇒ u

and σv : v ⇒ v = u in P∗n. By construction, the n-cells f ?n−1 σv and σu are parallel and their
common target u is a normal form. Thus, using Step 2, there exists an (n + 1)-cell with n-source
f ?1 σv and n-target σu in S(P)>. Equivalently, there is an (n + 1)-cell with n-source f and n-target
σu ?n−1 σ

−
v in S(P)>, denoted by σf. Moreover, the (n+1, n−1)-category S(P)> contains an (n+1)-

cell σf− : f− ⇒ σv ?1 σ
−
u , given by the following composite:

u σ−v

��
v

f− // u

f

::

σu
55

v
σv // u

σ−u // uσ−f��

Now, let us consider an n-cell f : u → v of P>n , and consider a decomposition f = f1 ?n−1 g
−
1 ?n−1

f2 ?n−1 · · · ?n−1 g−n−1 ?n−1 fn ?n−1 g
−
n into a zigzag of n-cells in P∗n. We define σf as the following

composite (n+ 1)-cell of S(P)>, with source f and target σu ?1 σ−v :

u
f1 //

σu
((

v1
g−1 //

σv1

""

(· · · ) fn //

σun

""

vn
g−n //

σvn

""

v

u

σ−v1

<<

u

σ−u2

<<

(· · · ) u

σ−vn

<<

u
σ−v

DD

σf1��
σ
g−
1��

σfn��
σ
g−n��= =

Similarly, for any other n-cell g : u → v of P>n , there is an (n + 1)-cell σg : g ⇒ σu ?1 σ
−
v in S(P)>.

Thus, the composite σf ?n σ−g is an (n+ 1)-cell with n-source f and n-target g in S(P)>.

2.5.7. Polygraphic resolutions from convergence. In [53], Guiraud and Malbos give a procedure to
compute Squier completions in above dimensions. Explicitely, given a convergent n-polygraph P, one
can complete P into an (∞, 1)-polygraph c∞(P). The k-cells of c∞(P) for k ≤ n are the ones of P, and
the (n + 1)-cells of c∞(P) are given by a Squier completion of P. To describe the next dimension of
c∞(P), we consider the critical triple branchings, that is minimal overlappings of three n-cells (f, g, h).
Using a normalisation strategy σ, we build the (n + 2)-cell Af,g,h corresponding to this triple critical
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branching as follows:

v σv

��

α
��

v σv

��
γ

��

u

f

77

g //

h
&&

w

β
��

σw // u
Af,g,h *4 u

f

77

h
&&

u

x σx

FF

x σx

FF

where α, β and γ are (n + 1)-cells in c∞(P)≤n+1 built from a Squier completion of P and the nor-
malisation strategy σ. The next step of the resolution would be to define (n + 3)-cells between parallel
(n + 2)-cells in c∞(P)>≤n+2 by considering critical 4-fold branchings, that is minimal overlappings of
four rewriting steps (f, g, h, k). In higher dimensions, we build the (n + l)-cells of the resolution from
the critical (l− 1)-fold branchings.

2.5.8 Theorem ([53], Thm 4.5.3). If an n-polygraph P is a convergent presentation of an (n − 1)-
category C, then c∞(P) is a polygraphic resolution of C.

The (∞, 1)-polygraph c∞(P) is a polygraphic resolution of the category C in the sense of Métayer
[91], since it produces a cofibrant approximation of C, that is a free object which is homotopically
equivalent to C in the canonical model structure on∞-categories [79].

2.5.9. Termination orders of n-polygraphs. Given an n-polygraph P, a termination order on P is a
strict order relation ≺ on P∗n−1 such that:

i) for each parallel (n− 2)-cells u and v of P∗n−2, the restriction of ≺ to P∗n−1(u, v) is a well-founded
order;

ii) for any (n− 1)-cells f and g of P∗n−1 such that g rewrites into f, then f ≺ g.

iii) for any parallel (n − 1)-cells f and g such that f ≺ g and any context C of P∗n−1, we have C[f] ≺
C[g].

Such a termination order is called a total termination order when we require the further assumption that
its restriction to P∗n−1(u, v) also is a total order. Note that a total termination order for an n-polygraph P
does not always exist, see the example in Section 2.6.4.

2.5.10. Knuth-Bendix completion. Given a terminating and non-confluent n-polygraph P, with a ter-
mination order ≺ on P, Knuth-Bendix’s procedure [76] either does not terminate, or it gives a way to
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complete P into a convergent n-polygraph KB(P). This procedure is defined as follows:
Input : A terminating n-polygraph P with a termination order ≺
KB(P)n ← P ;
Cb := {critical branchings of P} ;
while Cb 6= ∅ do

Pick a branching (f : u→ v, g : u→ w) in Cb:

v

u

f 11

g ,, w

Cb := Cb \ {(f, g)} ;
Reduce v into a fixed normal form v̂ with respect to KB(P)n ;
Reduce w into a fixed normal form ŵ with respect to KB(P)n ;

v // v̂

u

f 22

g ,, w // ŵ

if v̂ 6= ŵ then
if ŵ ≺ v̂ then
KB(P)n := KB(P)n ∪ {α : v̂→ ŵ}

else
KB(P)n := KB(P)n ∪ {α : ŵ→ v̂}

end
else
end
Cb := Cb ∪ {New critical branchings generated by α}

end

2.5.11 Remark. For this procedure to be implemented, we need to have a way to explicitely describe the
set of all critical branchings of a polygraph, which is difficult in higher dimension. For string rewriting
systems, see Section 2.6.1 computing the set of critical branchings is easy with a pattern-matching algo-
rithm, and all the shapes of critical branchings are well known. For diagrammatic rewriting systems, see
Section 2.6.3, we know all the shapes of critical branching but there does not exist an algorithmic way to
provide the exhaustive list of critical branchings, because of the exchange relation which is hard to han-
dle. In this case, we thus have to compute the set of critical branching by hand, by checking all the pairs
of relations and see if there is an overlapping between them. In higher dimensions, computing the set
of critical branchings is even more difficult, and so Knuth-Bendix procedure can hardly be implemented
for n-polygraphs with n ≥ 4.

2.6. EXAMPLES

2.6.1. Dimension 2: string rewriting systems. In this Section, we consider the example of string
rewriting systems, that is rewriting systems over a set of strings on an alphabet. These rewriting systems
originally appeared in formal language theory. They are also used in combinatorial algebra as a tool for
presenting semigroups, groups or monoids. In terms of polygraphs, string rewriting systems correspond
to 2-polygraphs with only one 0-cell.

Explicitely, a 2-polygraph is a triple P = (P0, P1, P2) made of a 1-polygraph (P0, P1) and a cellular
extension of the free 1-category P∗1 . When P has only one 0-cell, then P∗1 is precisely the free monoid on
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the elements of P1. For instance, the string rewriting systems on the alphabet {s, t} with one rewriting
rule sts→ tst is described by the 2-polygraph P defined by

P0 = {•}, P1 = {s, t}, P2 = {sts
α⇒ tst}.

The rule α ∈ P2 corresponds to the following globular 2-cell on the free 1-category P∗1 :

• t // • s

��
•

s 33

t **

•

•
s
// • t

FF
α
��

Note that this polygraph presents a monoid C which is isomorphic to P∗1/P2, which is the braid
monoid on 3-strands, given by generators and relations as follows:

s = , t = , = .

2.6.2. String diagrams. In free 2-categories, there is a convenient and intuitive way to represent the
2-cells using string diagrams. They were introduced by Feynman [47] and Penrose [98] in physics, and
were formally studied by Joyal and Street [63]. We refer to [82, 105, 107] for complete surveys on the
equivalence between 2-cells in free 2-categories and string diagrams. Consider a 2-category C freely
generated by a 2-polygraph P. The idea is that a 2-cell f : a1 . . . am ⇒ b1 . . . bn can be thought of as a
device having m inputs with types ai and n outputs with types bj. As a consequence, instead of using
the usual globular representation for such a 2-cell as shown on the left below, there is a graphical notation
adapted to this situation, as depicted on the right below:

yn−1bn

��

. . .
bn−1oo y2

b3oo y1
b2oo

xm x0

b1
jj

a1uuxm−1
am

``

. . .
am−1

oo x2a3
oo x1a2

oo

f

KS

! f

. . .

. . .

am

bn

a1

b1

a2

b2

x0xm

y1

x1

.

This representation is Poincaré dual to the globular representation since the 0-cells are pictured as 2-
dimensional regions of the plane, 1-cells are pictured as wires or strands and 2-cells are either pictured as
boxes as above, or as dots in many references. String diagrams can be composed in the two different ways
expected in a 2-category. The ?0-composition of 2-cells f1 : a1 . . . am ⇒ a ′1 . . . a

′
k and f2 : b1 . . . bn ⇒

b ′1 . . . b
′
l is depicted by horizontal juxtaposition of the two string diagrams corresponding to f1 and f2.

The ?1-composition of two 1-composable 2-cells f : a1 . . . am ⇒ b1 . . . bn and g : b1 . . . bn ⇒ c1 . . . ck
is depicted by vertically juxtaposing the corresponding string diagrams and linkind the wires in the
middle component. These two representations are summarized as follows:

f1 ?0 f2!
f2

. . .

. . .
bn

b ′l

b1

b ′1

f1

. . .

. . .
am

a ′m

a1

a ′1

s0(f1)t0(f2) , f ?1 g!

f

. . .

. . .

. . .

am a1

g

ck c1

s0(f)t0(f) .

Note that by the convention chosen above, we read our diagrams from right to left and from bottom to top.
We could have adopted a totally different convention, but we chose this one as it seems to be the mostly
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used in the literature, and it is coherent with the work of Khovanov and Lauda on the categorification of
quantum groups. Another convention that we will use in the sequel is that when the target (or the source)
of a 2-cell f is the identity 1x on a 0-cell x, we omit drawing the wire labeled by 1x. For instance, if
f : a1a2 ⇒ 1x with a1 : x→ y and a2 : y→ x, then the corresponding string diagram is depicted as:

f

a2 a1

x

y
.

2.6.3. Dimension 3: diagrammatic rewriting systems. A 3-polygraph is given by the data of a cellular
extension on a free 2-category. As 2-cells in such a category admit a representation by string diagrams,
as explained in Section 2.6.2, such a 3-polygraph can be interpreted as a rewriting system on string
diagrams, called a diagrammatic rewriting system. In [51, Section 5.1], Guiraud and Malbos classified
all the different forms of critical branchings in this dimension, in a non linear case. There are 3 different
forms of critical branchings between two rewriting steps α and β of P:

• Regular critical branchings:

s(α)

g

. . .

. . .

=

f

h

g

. . .

. . .

=

f

s(β)

. . .

. . .

,

• Inclusion critical branchings:

s(α)

. . .

. . .

= s(β)

C

. . .

. . .

,

• Right-indexed critical branchings (also left-indexed, multi-indexed):

s(α)

g

k

. . .

. . .

=

f

g

kh

. . .

. . .

=

f

k

s(β)

. . .

. . .

.

where f, g, h, k are 2-cells in P∗2 , and C is a context of P∗2 . Following [78, 51], it suffices to check
the confluence of the indexed branchings for the instance k being in normal form, using the following
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diagram from [51, Section 5.3]:

tA f

. . .

. . .

F *4 tA g

. . .

. . .

�$

sA
=
sB

f

. . .

. . .

B
�$

A

:I

F *4
sA
=
sB

g

. . .

. . .

A

:I

B
�$

h

C

. . .

. . .

tB f

. . .

. . .

F *4 tB g

. . .

. . .

:I

where g is the normal form of f and F : fV g is a 3-cell. Actually, the two squares on the left are Peiffer
branchings, and thus are trivially confluent, and then the confluence of the whole square is assured by
the confluence of the right square.

2.6.4. Termination of 3-polygraphs by derivation. In general, it may be difficult to prove termination
of 3-polygraphs, since monomial orders may not exist. For instance, recall from [2] the 2-polygraph P
with only one 0-cell, one 1-cell and the following two generating 2-cells:

, .

If there is a monomial order ≺ on P, one of the following inequalities holds:

≺ or ≺ .

If the first one holds (that we can assume without loss of generality since the other case is symmetric),
we have

≺ = ≺ .

As a consequence, a bubble slide 3-cell (that is a 3-cell making an endomorphism of 1• go through a
vertical strand) can not be oriented in a terminating way, as it in the case in the linear (2, 2)-category
AOB in Section 9.4. However, in this Section we introduce following Guiraud and Malbos [49, 51] a
way to prove termination of 3-polygraphs in which there are no caps and cups generating 2-cells. This is
based on the notion of derivation on a 2-category.

Let us at first recall that the category of contexts of C is the category denoted by Cont(C),whose
objects are the 2-cells of C and whose morphisms from f to g are the contexts C[∂f] of C such that
C[f] = g holds. If C : f → g and D : g → h are morphisms of Cont(C), then D ◦ C : f → h is D[C].
The identity context on a 2-cell f of C is the context corresponding to the sphere (s1(f), t1(f)). When P
is a 2-polygraph, one writes Cont(P) instead of Cont(P∗) where P∗ is the free 2-category generated by
P.
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2.6.5. Modules over 2-categories. Let C be a 2-category. A C-module is a functor from the category of
contexts Cont(C) to the category Ab of abelian groups. Hence, a C-module M is specified by an abelian
groupM(f) for every 2-cell f ∈ C, and a morphismM(C) :M(f)→M(g) of groups, for every context
C : f→ g of C.

2.6.6 Prototypical example. Let Ord be the category of partially ordered sets and monotone maps. We
will see it as a 2-category with one object, ordered sets as 1-cells and monotone maps as 2-cells. We
recall that an internal abelian group in Ord is a partially ordered set equipped with a structure of abelian
group whose addition is monotone in both arguments.
Let us fix such an internal abelian group G, a 2-category C and a 2-functor X : C → Ord. Following
[51], we can define a C-moduleMX,G as follows:

• Every 2-cell f : u⇒ v is sent to the abelian group of morphismsMX,G(f) = Ord(X(u), G).

• If w and w ′ are 1-cells of C and C = w ?0 x ?0 w
′ is a context from f : u ⇒ v to w ?0 f ?0 w

′,
thenMX,G(C) sends a morphism a : X(u)→ G in Ord to:

X(w)× X(u)× X(w ′) −→ G

(x ′, x, x ′′) 7−→ a(x).

• If g : u ′ ⇒ u and h : v ⇒ v ′ are 2-cells of C and C = g ?1 x ?1 h is a context from f : u ⇒ v to
g ?1 f ?1 h, thenMX,G(C) sends a morphism a : X(u)→ G in Ord to a ◦ X, that is:

X(u ′) −→ G

x 7−→ a (X(g)(x)) .

By construction, when C is freely generated by a 2-polygraph P, such a C-module is uniquely and entirely
determined by the values X(u) for every generating 1-cell u ∈ P1 and the morphisms X(γ) : X(u) →
X(v) for every generating 2-cell γ : u ⇒ v ∈ P2. Note that in [51], prototypical modules MX,Y,G are
constructed from two functors X : C → Ord and Y : Cop → Ord, where Cop is the 2-category C in which
the sources and targets of 2-cells are exchanged. We do not recall the definition of the modules MX,Y,G

in full generality here, since in the sequel we consider examples in which the 2-functor Y is trivial.

2.6.7. Derivations of 2-categories. Let C be a 2-category and let M be a C-module. A derivation of C
into M is a map sending every 2-cell f of C to an element d(f) ∈M(f) such that the following relation
holds, for every i-composable pair (f, g) of 2-cells of C:

d(f ?i g) = f ?i d(g) + d(f) ?i g.

2.6.8 Theorem ([51], Thm 4.2.1). Let P be a 3-polygraph such that there exist:

i) Two 2-functors X : P∗2 → Ord and Y : (P∗2)
op → Ord such that, for every 1-cell a in P1, the

sets X(a) and Y(a) are non-empty and, for every 3-cell α in P3, the inequalities X(sα) ≥ X(tα)
and Y(sα) ≥ Y(tα) hold.

ii) An abelian group G in Ord whose addition is strictly monotone in both arguments and such that
every decreasing sequence of non-negative elements of G is stationary.

iii) A derivation d of P∗2 into the module MX,Y,G such that, for every 2-cell f in P∗2 , we have d(f) ≥ 0
and, for every 3-cell α in P3, the strict inequality d(sα) > d(tα) holds.

Then the 3-polygraph P terminates.
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2.6.9 Remark. This theorem generalizes a process described in [49] for term rewriting systems and
operads. The idea is to see each 2-cell as an electronical circuit whose components are given by the
generating 2-cells. Then, we fix a value for each circuit, that can be interpreted as its heat production,
and with this value each input and output of the circuit receives a certain intensity of current. There
are two types of currents, that is descending and ascending, that are represented by the two functors X
and Y. The heat produced by a fixed circuit is calculated this way: an operator is arbitrarily chosen.
Then, currents are propagated through the other operators to the chosen one. This requires that choices
have been made for each operator: for each one, one must be able to compute the intensities of currents
transmitted when he knows the intensities of incoming current. When one knows the intensities of each
current coming into the chosen operator, one computes the heat it produces, according to values fixed
in advance. Then, one repeats the same procedure for each operator, and sums the results to get the
heat produced by the considered circuit, for the chosen current intensities. Two circuits with the same
number of inputs and the same number of outputs are compared this way: if, for the current intensity,
one produces more heat than the other one, then the first one is said to be greater. The idea to build this
reduction order is to compare all the sources and targets of 2-cells following this method. We place all
the values for the current intensities in G, so that it has to have an addition monotone in both variables.
In a categorical framework, this construction is precisely expressed by the construction of a derivation
on a 2-category, yielding Theorem 2.6.8.

2.7. LINEAR REWRITING

2.7.1. Linear (n, p)-categories. Linear (n, p)-categories are defined by induction on p 6 n. We
denote by Vect the category of vector spaces over a fixed field K. An internal n-category in Vect consists
in the data of:

• an n-graph in Vect:

V0 V1
s0
oo

t0oo . . .
s1
oo

t1oo Vn−1
sn−2
oo

tn−2oo Vn
sn−1
oo

tn−1oo

• for each 0 6 k < l 6 n, there is a unit map Vk → Vk+1, v 7→ 1v which is linear, that is:

1λu+µv = λ1u + µ1v

for any scalars λ and µ and any k-cells u and v such that p 6 k < n,

• for each 0 6 k < l 6 n, there is a composition map ?k : Vl ×Vk Vl to Vk, which is linear, that is:

(f+ g) ?k (f
′ + g ′) = f ?k f

′ + g ?k g
′, λf ?k λf

′ = λ(f ?k f
′).

for any scalar λ and any pairs (f, f ′) and (g, g ′) of k-composable l-cells

satisfying the unit and composition axioms of an n-category. A linear (n, 0)-category is an internal n-
category in Vect. Let us assume linear (n, p)-categories are defined for p > 0. A linear (n + 1, p+ 1)-
category is the data of a set C0 of 0-cells together with:

• for any a and b in C0, a linear (n, p)-category C(a, b),

• for any a in C0, an identity morphism ia from the terminal n-category In to C(a, a),

• for any a, b and c in C0, a bilinear composition morphism ?a,b,c from C(a, b)×C(b, c) to C(a, c).

such that:

i) ?a,c,d ◦ (?a,b,c × idC(c,d)) = ?a,b,d ◦ (idC(a,b) × ?b,c,d),
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ii) ?a,a,b ◦ (ia× idC(a,b)) ◦ isl = idC(a,b) = ?a,b,b ◦ (idC(a,b)× iq) ◦ isr where isl and isr respectively
denote the canonic isomorphisms from C(a, b) to In × C(a, b) and to C(a, b)× In.

In particular, a linear (n, p)-category is an n-category. A morphism of linear (n, p)-categories from
C to C ′ is an n-functor F = (F0, . . . , Fn) such that the map Fk : Ck → C ′k is linear for any p ≤ k ≤ n and
the following diagrams commute:

C0
F0
��

C1
s0
oo

t0oo

F1
��

. . .
s1
oo

t1oo Cn−1
sn−2
oo

tn−2oo

Fn−1
��

Cn
sn−1
oo

tn−1oo

Fn
��

C ′0 C ′1
s ′0

oo

t ′0oo . . .
s ′1

oo

t ′1oo C ′n−1
s ′n−2

oo

t ′n−2oo C ′n
s ′n−1

oo

t ′n−1oo

We denote by LinCatn,p the category of linear (n, p)-categories, and by Un,p the forgetful functor
from LinCatn,p to Grphn. The category LinCat+n,p of linear (n, p)-categories with a globular extension
is defined by the following pullback diagram:

LinCat+n,p Grphn+1

GrphnLinCatn,p Grphn
Un,p

UGn

Similarly, the forgetful functor LinCatn+1,p → LinCat+n,p admits a left adjoint FWn+1,p which is the free
functor assigning to a linear (n, p)-category C with a cellular extension Γ the free linear (n + 1, p)-
category generated by Γ over C.

2.7.2. Free linear (n, p)-categories. Let us define a free functor Fcn,p : Catn → LinCatn,p which
constructs a free linear (n, p)-category generated by an n-category. Given an n-category C, we define
Fcn,0 to be the linear (n, 0)-category such that for any 0 ≤ k ≤ n, Fcn,0(C) is the free K-vector space
over Ck. Let us now assume that p 6= 0, we define Fcn,p(C) to be the linear (n, p)-category such that:

i) for any 0 ≤ k < p, the linear (n, p)-category Fcn,p(C) has the same k-cells than C,

ii) for any p ≤ k < n and any parallel (p − 1)-cells x and y,
(
Fcn,p(C)

)
k
(x, y) is the free K-vector

space on Ck(x, y).

The compositions of Fcn,p(C) are defined by:

• for any 0 ≤ k < n, the compositions of k-cells of C remain unchanged,

• for any 0 ≤ k < p, the composition ?k : Ck−1(u, v)⊗ Ck−1(v,w)→ Ck−1(u,w) is K-linear,

• for any parallel (p−1)-cells a and b of C, for any p ≤ i < n, any i < j ≤ n, any scalars λ, µ ∈ K,
any i-composable j-cells f and f ′ of Cj(a, b) and any i-composable j-cells g and g ′ of Cj(a, b),
we have

(λf+ µg) ?i (λf
′ + µg ′) = λ(f ?i f

′) + µ(g ?i g
′),

so that the composition ?i is linear on the set Cj(a, b)×Ci Cj(a, b) of pairs of i-composable j-cells
with source a and target b.
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Moreover, these compositions satisfy some exchange relations: for any 0 ≤ i < j < p− 1, we have(∑
x∈X

λxfx

)
?i

∑
y∈Y

µygy

 ?j

(∑
x ′∈X ′

λ ′x ′f
′
x ′

)
?i

∑
y ′∈Y ′

µ ′y ′g
′
y ′


=

((∑
x∈X

λxfx

)
?j

(∑
x ′∈X ′

λ ′x ′f
′
x ′

))
?i

∑
y∈Y

µygy

 ?j

∑
y ′∈Y ′

µ ′y ′g
′
y ′


whenever both sides of this equality are well defined. The functor Fcn,p extends n-functors between
n-categories by linearity into morphisms of linear (n, p)-categories. Recall from [50, Proposition 1.2.3]
that a linear (n, p)-category C admits the structure of a (n, p)-category since for any k-cell f in C, f is
(k− 1)-invertible and its inverse is given by sk−1(f) + tk−1(f) − f.

2.7.3. Linear (n, p)-polygraphs. Let us define the category LinPoln,p of linear (n, p)-polygraphs and
their morphisms, together with the free functor F `n,p : LinPoln,p → LinCatn,p by induction on n ≥ p.
First of all, set LinPoln,n = Poln,n and F `n,n = Fn ◦ Fcn,n, where Fn is the free functor Poln → Catn
defined in Section 2.4.6. Let us then assume that LinPoln,p and F `n,p are defined for integers n ≥ p.
Then, we define LinPoln+1,p by the following pullback diagram in Cat:

LinPoln+1,p Grphn+1

GrphnLinPoln,p LinCatn,p
Un,pF `n,p

UGnUPn,p

UGPn+1,p

The functor F `n+1,p is then defined as follows: first consider the unique functor FP`n+1,p making the
following diagram commutative:

LinCat+n,p Grphn+1

GrphnLinCatn,p Grphn
Un,p

UGn

LinPoln+1,p

LinPoln,p

FP`n+1,p

F `n,p

UPn,p

UGPn+1,p

,

and then define F `n+1,p as the following composition:

LinPoln+1,p
FP`n+1,p

// LinCat+n,p
FWn+1,p

// LinCatn+1,p .

Given a linear (n, p)-polygraph P, the linear (n, p)-category F `n,p(P) is called the free linear (n, p)-
category generated by P. When n = p, the linear (n,n)-category F `n,n(P) is denoted by P`n. Following
this inductive construction, for n > p, a linear (n, p)-polygraph can be defined as a data made of an
(n− 1, p)-linear polygraph P together with a cellular extension Γ of the linear (n− 1, p)-category P`n−1.
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2.7.4. Presentation of a linear (n, p)-category. Let n ≥ p and C be a linear (n, p)-category. We say
that a linear (n + 1, p)-polygraph P is a presentation of C, or that P presents C if C is isomorphic to the
quotient of the linear (n, p)-category P`n by the congruence generated by the cellular extension Pn+1.

2.8. REWRITING IN LINEAR (n+ 1, n)-POLYGRAPHS

Let us fix for the rest of this chapter a non-negative integer n and a linear (n+ 1, n)-polygraph P.

2.8.1. Monomials. A monomial of P is an n-cell of the n-category P∗n. We say that P is left-monomial
if for any α ∈ Pn+1, the n-cell sn(α) is a monomial.

Any n-cell f in P∗n can be uniquely decomposed into a sum of monomials f =
∑
fi, which is called

the monomial decomposition of f. The support of f, denoted by Supp(f), is the set {fi} of n-cells that
appear in the monomial decomposition of f.

In the sequel, all the linear (n+ 1, n)-polygraphs we consider are left-monomial.

2.8.2. Linear contexts. A context of the linear (n,n)-category P`n has the shape λC(�) + h, where λ
is a scalar in K, C is a context of the free n-category P∗n, as defined in Section 2.4.4, and h is an n-cell
of P`n.

2.8.3. Rewriting steps. A rewriting step of P is an (n + 1)-cell of the free (n + 1, n)-category P`n+1
generated by P of the following form:

λC[α] + f : λC[s2(α)] + f→ C[t2(α)] + f

where α is a generating n + 1-cell in Pn+1, C is a context of the free n-category P∗n such that the
monomial C[s2(α)] does not appear in the monomial decomposition of f. We denote by Pstp the set of
rewriting steps of the linear (n+ 1, n)-polygraph P.

We denote by P`n+1 the free linear (n + 1, n)-category generated by P, as defined in Section 2.7.3.
The congruence generated by P is the equivalence relation ≡ on P`n defined by u ≡ v if there is an
(n+ 1)-cell α in P`n+1 such that sn(α) = u and tn(α) = v. An (n+ 1)-cell in P`n+1 is said elementary
if it is of the form λC[α] + h where λ is a non zero scalar, α is a generating (n + 1)-cell in P3, C is a
context of P∗n and h is an n-cell in P`n.

An (n+ 1)-cell α of P`n+1 is called positive if it is a ?n-composition α = α1 ?2 · · · ?2αn of rewriting
steps of P. The length of a positive (n + 1)-cell α in P`n+1 is the number of rewriting steps of P needed

to write α as a ?n-composition of rewriting steps. We denote by P`(1)n+1 the set of positive (n+ 1)-cells of
P of length 1.

2.8.4 Lemma ([50], Lemma 3.1.3). Let α be an elementary (n + 1)-cell in P`n+1, then there exist two
rewriting sequences β and γ of P of length at most 1 such that α = β ?n γ

−.

2.8.5. 1-polygraph of rewritings. From this definition of rewriting step, to any linear (n + 1, n)-
polygraph P = (P0, . . . , Pn, Pn+1), we associate as in Section 2.4.8 the 1-polygraph P≥n, which has
0-cells the set of n-cells in the free linear (n,n)-category P`n, and has a 1-cell u → v whenever there
exists a rewriting step from u to v in P`n+1. This is an abstract rewriting system in the sense of Section
2.1.2. We thus say that a linear (n + 1, n)-polygraph satisfies the rewriting property P if P≥n satisfies
the property P . In this interpretation, a positive (n + 1)-cell of P`n+1 with n-source u and n-target v
corresponds to a rewriting path u ∗→ v in P≥n.
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2.8.6. Rewriting order. The rewrite order of a linear (n+ 1, n)-polygraph P is the relations �P on P`n
defined by:

i) if u and v are monomials in P`n, then v �P u if u = v or there is a rewriting sequence in from u to
v with respect to P,

ii) if for any y ∈ Supp(v) such that y /∈ Supp(u), there is an n-cell x ∈ Supp(u) with x /∈ Supp(v)
such that y �P x, then v �P u.

The strict rewrite order of P is the strict order relation ≺P on P`n defined by v ≺P u if v �P u but not
u �P v. Note that when the linear (n + 1, n)-polygraph P is terminating, this relation is well-founded.
Moreover, proofs by Noetherian induction on P correspond to proofs by induction on the well-founded
relation ≺P.

2.8.7. Linear monoidal categories and linear (2, 2)-categories. A (strict) monoidal category is a
category A equipped with a tensor product ⊗ : A × A → A which is associative, a unit object 1 in A
such that 1⊗A = A = A⊗ 1 for all object ofA. Such a categoryA is K-linear if for any 0-cells A and
B in A, the space A1(A,B) is a K-vector space. Moreover, composition and tensor product of 1-cells
are K-bilinear.

A linear (2, 2)-category is a 2-category C such that:

i) for any p and q in C1, the set C2(p, q) is a K-vector space.

ii) for any p, q, r in C1, the map ?1 : C2(p, q)⊗ C2(q, r)→ C2(p, r) is K-linear.

When the set C0 of 0-cells of a linear (2, 2)-category is a singleton, then C can be interpreted as a linear
monoidal categoryA whose 0-cells are the 1-cells of C and whose 1-cells are the 2-cells of C. The tensor
product in A is given by the ?0-composition of C, and the composition of 1-cells in A is given by the
?2-composition in C.

In the sequel, we consider linear (2, 2)-categories that admit presentations by generators and relations
by linear (3, 2)-polygraphs, as defined in Section 2.8.8. In such a presentation, there are generating 1-
cells, and generating 2-cells that are represented by string diagrams as in Section 2.6.2. A monomial
in C is a 2-cell that can be obtained from ?0 and ?1-compositions of the generating 2-cells. Given a
linear (2, 2)-category C, a hom-basis of C is a family of sets (Bp,q)p,q∈C1 indexed by pairs (p, q) of
1-cells of C such that for any 1-cells p and q, the set Bp,q is a linear basis of C2(p, q). Following Section
2.8.2, a context of a linear (2, 2)-category C has the shape

C = λm1 ?1 (m2 ?0 � ?0m3) ?1m4 + u,

where themi are monomials in C, λ is a scalar in K and u is a 2-cell in C.

2.8.8. Linear (3, 2)-polygraphs. Explicitely, a linear (3, 2)-polygraph is made of a data
(P0, P1, P2, P3) where:

i) (P0, P1, P2) is a 2-polygraph, on which we construct the free linear (2, 2)-category P`2 whose set of
0-cells is given by P0, whose 1-cells are the 1-cells elements of P∗1 and for any p, q in P∗1 , P`2(p, q)
is the free K-vector space on P∗2(p, q), where P∗2 if the free 2-category generated by (P0, P1, P2).

ii) P3 is a cellular extension of P`2.
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2.8.9. Termination of linear (3, 2)-polygraphs. We extend the derivation method to prove termination
of 3-polygraphs from Theorem 2.6.8 in the linear setting. Given a linear (3, 2)-polygraph P, proving
termination of P by derivation consists in constructing 2-functors X : P`2 → Ord and Y : (P`2)

op → Ord
and a derivation d : P`2 →MX,Y,G as in Theorem 2.6.8. To take into account the linear structure, this data
is required to satisfy the following conditions to ensure termination of P:

i) For any 1-cell a in P1, the sets X(a) and Y(a) are non-empty and, for any generating 3-cell α in P3,
the inequalities X(s(α)) ≥ X(h) and Y(s(α)) ≥ Y(h) hold for any h in Supp(t(α)).

ii) The addition in G is strictly monotone in both arguments and every decreasing sequence of non-
negative elements of G is stationary.

iii) For any monomial f in P`2, we have d(f) ≥ 0 and, for every 3-cell α in P3, the strict inequality
d(s(α)) > d(h) holds for any h in Supp(t(α)).

2.9. LINEAR CRITICAL BRANCHING LEMMA

2.9.1. Terminating linear critical branching lemma. The local branchings of linear (n + 1, n)-
polygraphs can be classified in four different forms, see [2, Section 4.2]. An aspherical branching
of P is a branching of the form

t(α)← s(α)→ t(α).

A Peiffer branching is a branching formed with two rules which does not overlap:

t2(α) ?1 s2(β) + h← s2(α) ?1 s2(β) + h→ s2(α) ?1 t2(β) + h.

An additive branching is a branching of the form

t2(α) + s2(β)← s2(α) + s2(β)→ s2(α) + t2(β).

Overlapping branchings are all the remaining local branchings. In the case of left-monomial lin-
ear (3, 2)-polygraphs, the classification of overlapping branchings is the same than in the case of non-
linear 3-polygraphs, given in Section 2.6.3. We define an order on monomials of P`2 by f v g if there
exists a context C of P∗2 such that g = C[f]. A critical branching of P is an overlapping branching of P
which is minimal for v.

2.9.2 Theorem ([2], Thm 4.2.13). Let P be a terminating linear (3, 2)-polygraph. Then P is locally
confluent if and only if its critical branchings are confluent.

2.9.3 Remark. Note that if P is not terminating, this result may fail. Indeed, because of the restriction
of rewriting steps to the set of positive 3-cells in P`3, some Peiffer or additive branchings may not be
confluent. For instance, consider following [50] the following example of a linear (2, 1)-polygraph
(P0 = {∗}, P1 = {x, y, z, t}, P2 = {α : xy → xz, β : zt → 2yt}). It has an additive branching with
source xyt + xzt, which is not confluent since the dotted arrows in the diagram below are 2-cells of P`2
that are not positive.

4xyt
4αt

// 4xzt
4xβ
// · · ·

2xzt

2xβ
00

xzt+ xβ
**

xyt+ xzt

αt+ xzt 00

xyt+ xβ
--

xzt+ 2xyt

3xyt αt+ 2xyt

44

3αt
-- 3xzt

3xβ

// 6xyt
6αt

// · · ·
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2.9.4. Exponentiation freedom. Letn be a non-negative integer and P be a linear (n+1, n)-polygraph.
We say that P is exponentiation free if there is no rewriting sequence in P` of the form

m→ λm+ f,

where m is a monomial in P`, λ is a non zero scalar in K, and f is a non-zero n-cell of P` which does
not containm in its monomial decomposition.

Note that if P is quasi-terminating, then exponentiation freedom is equivalent to the fact that for every
monomial m rewriting into a n-cell f such that m ∈ Supp(f), we have f = m. With the terminology
of Dershowitz [40], when P is quasi-terminating and exponentiation free, then any infinite rewriting
sequence contains cycles of the form

u1 → u2 → . . .→ uk = u1,

and no infinite rewriting sequence of the form

u
(1)
1 → u

(2)
1 → . . .→ u

(n)
1

where for any k ∈ N, u(k+1)1 is a ”term” containing u(k)1 as a ”subterm”, which in the polygraphic
context means that u(k)1 rewrites to u(k+1)1 = C[u

(k)
1 ], where C is a context. In other words, if P is

quasi-terminating and exponentiation free, then the only obstructions to termination of P are created by
cycles.

2.9.5. Quasi-terminating linear critical branching lemma. Following [1], we prove the following
result:

2.9.6 Theorem. Let P be a quasi-terminating and exponentiation free linear (n+ 1, n)-polygraph. If al
critical branchings of P are confluent, then P is locally confluent.

Proof. Let us at first prove that, under these assumptions, all additive branchings of P are confluent. Let
f (resp. g) be be a rewriting step of P monomial source u (resp. v) and target u ′ (resp. v ′), λ and µ non
zero scalars in K and h a n-cell of P`n which does not contain u or v in its monomial decomposition. We
prove that the additive branching (λf+ µv+ h, λu+ µg+ h) is confluent by considering four cases.
Case 1. If u /∈ Supp(v ′) and v /∈ Supp(u ′), the (n + 1)-cells λu ′ + µg + h and λf + µv ′ + h are
rewriting steps and make the branching confluent.
Case 2. If u ∈ Supp(v ′) and v /∈ Supp(u ′), let us write λu+ µv ′ = γu+ k, where u /∈ Supp(k). As a
consequence, γf+k+h is a rewriting step with source γu+k+h and target γu ′+k+h. On the other
side, the n-cell λu ′+µv+h reduces via λu ′+µg+h into λu ′+µv ′+h = λu ′+h+(γ−λ)u+k+h.
Since u /∈ Supp(u ′), this n-cell reduces into γu ′+k+h, proving the confluence of the branching. This
is summarized in the following diagram:

λu ′ + µv+ h // λu ′ + µv ′ + k+ h = λu ′ + (γ− λ)u+ k+ hλu ′+(γ−λ)f+k+h
++

λu+ µv+ h

λf+µv+h 22

λu+µg+h ..

γu ′ + k+ h

λu+ µv ′ + h = γu+ k+ h

OO

33

Case 3. If u /∈ Supp(v ′) and v ∈ Supp(u ′), the proof is symmetric to Case 2.
Case 4. If u ∈ Supp(v ′) and v ∈ Supp(u ′), we can write decompositions

u ′ = γvv+ k1, v ′ = γuu+ k2
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where k1 and k2 are n-cells such that u /∈ Supp(k2) and v /∈ Supp(k1), and γv, σu are non zero scalars.
Because P is exponentiation free, we can also assume that v /∈ Supp(k2) and u /∈ Supp(k1). Therefore,
we have the following rewriting sequence in P∗:

u
f // u ′ = γvv+ k1

γvg+k1// γvv
′ + k1 = γvγuu+ γvk2 + k1 .

The scalar γvγu being non zero, by exponentiation free assumption we get that γvk2+k1 = 0, and since
P is quasi-terminating we thus necessarily obtain that γvγu = 1. Thus, we have

v ′ = γuu+ k2, u ′ = γv(v− k2).

Now, the n-cell λu + µv + h rewrites via f into λu ′ + µv + h = (λγv + µ)v − λγvk2 + h on the one
side. On the other side, by applying g, we have the following rewriting sequence in P∗:

λu+ µv+ h
λu+µg+h

// λu+ µv ′ + h = (λ+ µγu)u+ µk2 + h
(λ+µγu)f+µk2+h// (λ+ µγu)u

′ + µk2 + h

and the last term is equal to (λγv+µ)v+µk2+h using the relations satisfied by γu, γv, k1 and k2, proving
the confluence of this branching. Now, in order to prove the theorem, it remains to prove that Peiffer and
overlapping local branchings are confluent. We proceed by well-founded induction on the rewriting order
≺P defined in Section 2.8.6. If (f, g) is an overlapping branching, we can write (f, g) = (λf ′+h, λg ′+h)
where (f ′, g ′) is a critical branching. By assumption, there exists a confluence (f ′′, g ′′) of the critical
branching (f ′, g ′). However, the (n+ 1)-cells λf ′′ + h and λg ′′ + h may not be positive, for instance if
tn(f

′) ∈ Supp(h) or if tn(g ′) ∈ Supp(h). However, if they are not positive, according to Lemma 2.8.4,
there exists positive (n+ 1)-cells f1, f2, g1, g2 in P`n+1 of length at most 1 as in the following diagram:

λtn(f
′) + h

λf ′′+h

""

f2

%%

λu+ h

f 33

g **

v
f1

GG

g1

��λtn(g
′) + h

λg ′′+h

<<

g2
99

Now, if f1 and g1 are both of length 0, then the pair (f2, g2) is a confluence of the branching (f, g). If
`(f1) = 1 and `(g1) = 0 (the other case being symmetric), then the pair (f2, g2 ?n g1) is a confluence of
the branching (f, g). Otherwhise, we have that v ≺P λu+h, and thus by induction assumption the local
branching (f1, g1) is confluent, which proves the confluence of the branching (f, g). The case of local
Peiffer branchings of the form λu ′ ?n−1 v+h← λu ?n−1 v+h→ λu ?n−1 v

′+h is treated in a similar
fashion.

This result fails without the assumption of exponentiation freedom. Indeed, consider the linear (2, 1)-
polygraph P = (P = 0 = {•}, P1 = {x, y}, P2 = {x ⇒ y, y ⇒ −x}). It is quasi-terminating, but not
exponentiation free, and has a non-confluent local additive branching 2y⇐ x+ y⇒ 0.

2.9.7. Linear bases from confluence. Following [1], there are two different situations in which we can
compute hom-bases of linear (n,n)-categories from presentations by linear (n+ 1, n)-polygraphs:

a) Given a convergent presentation of a linear (n,n)-category C by a linear (n+ 1, n)-polygraph P, for
any (n − 1)-cells p and q in Cn−1, the set of monomial n-cells with source p and target q in normal
form with respect to P form a linear basis of the vector space Cn(p, q), [2, Proposition 4.2.15]. As a
consequence, the set of all monomials in normal form with respect to P forms a hom-basis of C.
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b) Given a presentation of a linear (n,n)-category C by a quasi-terminating and confluent linear (n +
1, n)-polygraph P, fix for any n-cell u of C a choice of a quasi-normal form ũ of u with respect to P.
Then, for any n-cell u in C, reduce u into ũ and consider all the elements in Supp(ũ). This gives a
set of monomials, which are in quasi-normal form since P is left-monomial, and the reunion of these
sets over all the n-cells u ∈ C gives a hom-basis of C.
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CHAPTER 3

Categorification
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The term categorification refers to the process of replacing set-theoretic notions by the corresponding
category-theoretic analogues, in order to study a given algebraic structure. The objective of this process
is to define an higher-dimensional category, related to the original object in the way that this object is
isomorphic to the Grothendieck group of this category, in order to have a richer structure making new
phenomena appear. Since the pioneer works and categorification by Crane and Frenkel [34], this idea
has been used in various contexts, and helped to solve numerous complicated problems.

In this Chapter, we recall the general notions of Grothendieck groups, decategorification and weak
categorification. As we are interested in categorifying objects that already admit a categorical structure,
we also expand on the notion of strong categorification, and how to construct such an object. In the
last part of this chapter, we illustrate these definitions and ideas by recalling Khovanov and Lauda’s
construction of a candidate categorification for a quantum groups associated with a symmetrizable Kac-
Moody algebra. We start by recalling notions about quantum groups and root data needed in the sequel,
and then recall following [81, 82, 67] the various steps in order to define the candidate 2-category.

3.1. GROTHENDIECK GROUPS

In this section, we recall the general notions on decategorification and Grothendieck groups for additive
and abelian categories as in [90, 104].

3.1.1. Idea of the categorification process. The idea of categorification, coming from works of Crane
and Frenkel [34], refers to the process of replacing set-theoretic notions by the corresponding category-
theoretic analogues. For instance, a set should be replaced by a category, an element of this set by a
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0-cell in the category, a map by a functor, a relation between elements by a 1-cell and so on. The general
idea for doing this is that, replacing a “simpler“ object by something “more complicated“, one gets a
bonus in the form of some extra structure which may be used to study the original object. However, the
difficulty of the process is that there are no explicit rules how to categorify an algebraic object and the
answer might depend on what kind of extra structure and properties one expects.

3.1.2. Grothendieck group of a monoid. The idea of Grothedieck group is originally defined for
commutative monoids: it provides the universal way of making a monoid into an abelian group. Let
M = (M,+, 0) be a commutative monoid. The Grothendieck group of M is a pair (G,ϕ), where G
is a commutative group and ϕ : M → G is a homomorphism of monoids, such that for every monoid
homomorphism ψ :M → A, where A is a commutative group, there is a unique group homomorphism
Ψ : G→ A making the following diagram commutative:

M
ϕ //

ψ   

G

Ψ��

A

.

The functor that sends a commutative monoid M to its Grothendieck group G is left adjoint to the
forgetful functor from the category of abelian groups to the category of commutative monoids. The
idea can be easily generalized to small categories with some additional structure, for instance abelian,
triangulated, derived categories.

3.1.3. Grothendieck group of additive categories. Recall that an additive category is a category sats-
fying the two following properties:

i) It is enriched in abelian groups, that is the space of morphisms between two given objects is an
abelian group. (Sometimes, such a category is called a pre-additive category.)

ii) It admits finite coproducts, and thus finite biproducts.

Let F(A) be the free abelian group with basis the isomorphism classes [M] of 0-cells M in A, and let
Nsplit(A) be the subgroup generated by the elements [A1] − [A2] + [A3] for every 0-cells of A such
that A2 ' A1 ⊕ A3. The split Grothendieck group of A, denoted by Ksplit

0 (A) is the quotient group
F(A)/Nsplit(A). We still denote the image of [A] in Ksplit

0 (A) by [A]. This comes together with a map
(·) : A → K

split
0 (A) which maps a 0-cell M in A to the class [M] in Ksplit

0 (A). The group Ksplit
0 (A) then

has the following universal property: for every abelian group A and for any additive function χ : A→ A,
that is χ(Y) = χ(X) + χ(Z) if Y = X ⊕ Z, there is a unique group homomorphism χ : K

split
0 (A) → A

making the following diagram commute:

A
(·)

//

χ
��

K
split
0 (A)

χ
{{

A

.

3.1.4. Grothendieck group of abelian categories. Let us recall that an abelian category A is an ad-
ditive category in which every morphism f : A → B in A admits a kernel and a cokernel, yielding the
following exact sequence:

A
p
// Coker Ker(f)) f // Ker Coker(f)) i // B ,

and satisfying moreover that the arrow f above is an isomorphism, and that every monomorphism is a
kernel and every epimorphism is a cokernel. Let us assume that A is a small abelian category. We still
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denote by F(A) the free abelian group with basis the isomorphism classes [M] of 0-cells M in A. Let
N(A) be the subgroup of F(A) generated by the elements [A1] − [A2] + [A3] for every exact sequence

0→ A1 → A2 → A3 → 0

in A. The Grothendieck group of A, denoted K0(A), is the quotient group F(A)/N(A). We still denote
the image of [A] in K0(A) by [A].

For instance, if K is a field and A = A − mod the category of finite-dimensional left modules over
some finite dimensional K-algebra A, the group [A] is isomorphic to the free abelian group with the
basis given by classes of simple A-modules. Note that any abelian category is additive. However, if A
is abelian, then Ksplit

0 (A) can be bigger than K0(A) if there are exact sequences which do not slit. In
the sequel, we will only be interested in Grothendieck groups of additive categories, and thus we will
only consider split Grothendieck groups. As a consequence, the split Grothendieck group of an additive
category A will be denoted by K0(A).

3.1.5. Decategorification. Let A be an additive category. The decategorification of A is the abelian
group K0(A). Note that this is one method of decategorification that can be found in the literature, but
there exist other ways of decategorifying an algebraic structure, for instance with the trace map, see
[104]. In what follows, we would like to categorify algebras over some base ring, so that we have to
extend the notion of decategorification to allow base rings. Let us consider a commutative ring F, with
unit 1. The F-decategorification of A is the F-module

K0(A)F := F⊗Z K0(A).

The element 1⊗ [M] of some F-decategorification will be denoted by [M] for simplicity.

3.1.6. Graded setup. Let R be a Z-graded ring. Consider the category R-gMod of all graded R-modules
and denote by 〈1〉 the shift of grading autoequivalence of R-gMod normalized as follows: for a graded
module M = ⊕i∈ZMi one has (M〈1〉)j = Mj+1. Assume that A is a category of graded R-modules
closed under 〈±1〉 , then the group [A] becomes a Z[v, v−1]-module via vi[M] = [M〈−i〉] for any
M ∈ A, i ∈ Z.

To extend the notion of decategorification to a category of graded modules, let F be a unitary com-
mutative ring and ι : Z[q, q−1]→ F be a homomorphism of unitary rings. This defined a right Z[q, q−1]-
module structure on F. The ι-decategorification of A is the F-module

[A](F,ι) := F⊗Z[q,q−1] [A].

3.2. NAIVE AND WEAK CATEGORIFICATION

In this section, we fix a commutative ring with unit F.

3.2.1. Categorification of an F-module. An F-categorification of an F-module V is a pair (A, ϕ)
made of an additive categoryA and an isomorphismϕ from V to the F-decategorification ofA. Whereas
the decategorification of a category is uniquely defined, there are usually many different categorifications
of an F-module V .

3.2.2. Example: categorification of Z. Consider the category VectK of all finite-dimensional K-vector
spaces and linear maps over a base field K. Then Ksplit

0 (VectK) ' Z. Indeed, consider the surjective
homomorphism

f : VectK → Z, V 7→ dim(V)
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Since dim(V ⊕ W) = dim(V) + dim(W), we have N(VectK) ⊆ Ker(f). Now, let us consider an
element

∑n
i=1 ci[Vi] of Ker(f). We have

∑n
i=1 cidim(Vi) = f (

∑n
i=1 ci[Vi]) = 0 so in K0(VectK), since

[Vi] = dim(Vi)[K], we have
n∑
i=1

ci[Vi] =

n∑
i=1

(cidim(Vi))[K] = 0,

so that Ker(f) = N(VectK) and by the first isomorphism theorem, we get that K0(VectK) ∼ Z, so that
VectK is a categorification of Z.

3.2.3. Naive and weak categorification. Let B be a unital associative R-algebra, and let {bi}i∈I be a
fixed generating set for B. If M is a B-module, then the action of each bi on M defines an R-linear
endomorphism bMi of M. A naive categorification of (B, {bi}i∈I,M) is a tuple (M, {Fi}i∈I, ϕ) where
M is an abelian category, ϕ : K0(M)⊗Z R→M is an isomorphism, and for each i ∈ I, Fi :M→M
is an exact endofunctor ofM such that the following diagram is commutative:

K0(M)⊗Z R

ϕ

��

[Fi]⊗id
// K0(M)⊗Z R

ϕ

��

M
bMi

//M
.

We refer the reader to [90, 104] for details on why this is a naive concept of categorification. In this
definition, we only require that the functors Fi induce the right maps on the level of the Grothendieck
group. A stronger notion would be to categorify the relations amongst the generators bi: that is, given a
set of relations of B generating all the relations in B, we want isomorphism of functors that descend to
these relations in the Grothendieck group. A weak categorification (M, {Fi}i∈I, ϕ) of (B, {bi}i∈I,M) is
a naive categorification that satisfies more conditions given by isomorphisms of functors descending in
the Grothendieck group ofM on the defining relations of B.

3.2.4 Example. Let B = C[x]/(x2 − 2x) with the generating set {x}. Let M = C be the B-module with
action given by b · z = 0 for z ∈M, and letN = C be the B-module with action given by b · z = 2z for
z ∈ N. LetM = VectC be the category of finite-dimensional C-vector spaces and define the functors
F,G :M→M by

F = 0, G(V))V ⊕ V, for all V ∈M.

Define ϕ : K0(M)⊗Z C→M and ψ : K0(M)⊗Z C→ N by z[C] 7→ z, where [C] denotes the class of
the simple one-dimensional C-module. For all z ∈ C, we have

ϕ ◦ [F](z[C]) = 0 = b ·ϕ(z[C]),

ψ ◦ [G](z[C])) = ψ(z[G(C)]) = ψ(z[C⊕ C]) = ψ(2z[C]) = 2z = b · z = b ·ψ(z[C]),

so that that (M, ψ, F) and (M, ϕ,G) are naive categorifications of (B, {b},M) and (B, {b}, N) respec-
tively. Moreover, there are isomorphism of functors F ◦ F ' F⊕ F and G ◦G ' G⊕G so that in K0(M)
the relations [F]2 = 2[F] and [G]2 = 2[G] hold. So these isomorphisms lift the relation b2 = 2b, and
these categorifications are weak categorifications.

3.3. STRONG CATEGORIFICATION

We have defined the notion of weak categorification, allowing to categorify an algebra presented by
generators and relations. However, we would like to categorify richer structures. In order to categorify
something which already has the structure of a category, the categorification will be a 2-category, and we
will define its Grothendieck group as the direct sum of the Grothendieck groups of the hom-categories.
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3.3.1. Grothendieck group of a 2-category. A 2-category is said to be additive (resp. abelian, R-
linear) if it is a 1-category enriched in additive (resp. abelian, R-linear) categories. Given an additive
2-category A, the (split) Grothendieck group of A is the 1-category K0(A) whose:

i) 0-cells are the 0-cells of A,

ii) set of 1-cells with 0-sourceA and 0-target B is given by K0(A1(A,B)), the split Grothendieck group
of the additive category A1(A,B). The composition of 1-cells in K0(A) is defined by

[f] ◦ [g] = [f ?0 g] for all f ∈ A1(B,C), g ∈ A1(A,B).

3.3.2. Strong categorification. Let C be an R-linear category. A strong categorification of C is a pair
(C, ϕ) where C is an additive 2-category andϕ : K0(C)⊗ZR→ C is an isomorphism. Here, the operation
of tensoring the morphisms with R is realized in order to turn the additive category K0(C) into an R-linear
category.

In particular, when C has only one 0-cell, C is a unital and associative R-algebra and thus this
definition encodes the notion of weak categorification for such R-algebras. In that case, the 2-category C
also has only one 0-cell, and thus can be seen as a monoidal category.

3.3.3. Karoubian envelope. As illustrated in [90], one can require when defining a strong categori-
fication to have a 2-category C wither further properties such as the Krull-Schmidt property of unique
decomposition of any 1-cell into a direct sum of indecomposable 1-cells. However, there can exist in this
2-category some idempotent elements that does not split, making this property fail. A natural idea in that
process is thus to take the Karoubian envelope (also called idempotent completion) of C, which is in fact
a category associated with C in which all idempotents split. An idempotent e : x → x in a category C is
a morphism such that e ◦ e = e. The idempotent is said to split if there exist morphisms g : x→ x ′ and
h : x ′ → x such that e = g ?0 h and h ?0 g = 1x ′ . In an additive category we can write b ′ = Im(e) so
that the idempotent e can be viewed as the projection onto a summand b ∼= Im(e)⊕ Im(1− e).
For a category C the Karoubi envelope Kar(C) is a minimal enlargement of the category C in which all
idempotents split, see [82]. For a 2-category C, its Karoubi envelope Kar(C) is defined as follows

i) the 0-cells of Kar(C) are triples (b, e, µ) where e : b → b is an idempotent in C and µ is an
idempotent 2-cell (under ?1-composition) of e in C.

ii) the 1-cells of Kar(C) between 0-cells (b, e, µ) and (b ′, e ′, µ ′) are pairs (f, β) where f : b → b ′

is a 1-cell in C such that e ?0 f ?0 e ′ = f and β : f ⇒ f is an idempotent 2-cell in C such that
µ ?0 β ?0 µ

′ = β.

iii) the 2-cells between parallel 1-cells (f, β), (g, γ) : (x, e, µ) → (x ′, e ′, µ ′) are 2-cells
α : f⇒ g in C such that γ ◦ α ◦ β = α.

There is a natural inclusion of C into Kar(C) sending a 0-cell x to the triple (x, 1x, 11x) and the 1-cell
f to (f, 1f). The 2-category C admits the universal property that any 2-functor C → D to a 2-category
D in which all idempotent 1-cells and 2-cells split factors through a 2-functor Kar(C) → D. Note that
if C is an additive 2-category, we can also define an idempotent completion of C by gluing the Karoubi
envelopes of all the additive categories C(x, y) for any 0-cells x and y in C as in [82]. The notion of
Karoubi envelope defined above is in general bigger than the one obtained with this construction.

3.4. QUANTUM GROUPS

We introduce all the required material about Kac-Moody algebras and quantum groups. We recall from
[64] the definitions of symmetrizable Cartan matrices, Cartan data and root data needed in the sequel. In
this section, we fix a ground field K.

75



3.4.1. Cartan matrices. A matrix A = (ai,j) ∈ Mn(K) is a generalized Cartan matrix if it satisfies
the following conditions:

i) for any 1 ≤ i ≤ n, ai,i = 2,

ii) for any 1 ≤ i < j ≤ n, ai,j ∈ Z<0,

iii) for any 1 ≤ i, j ≤ n, ai,j = 0 if and only if aj,i = 0.

3.4.2. Realization of a matrix. Let A = (ai,j)1≤i,j≤n a matrix of rank l with coefficients in K. A
realization of A is the data of a triple (h, Π,Π∨) where h is a K-space and Π = {α1, . . . , αn} ⊂ h∗,
Π∨ = {α∨

1 , . . . , α
∨
n } ⊂ h satisfying:

• Π and Π∨ are free,

• For all 1 ≤ i, j ≤ n, 〈α∨
i , αj〉 = ai,j, where 〈α∨

i , αj〉 stands for the quantity α∨
i (αj),

• dim (h) = 2n− l.

The elements of Π and Π∨ are respectively called simple roots and simple co-roots. Recall from [64,
Proposition 1.1] that any complex matrix A admits up to isomorphism a unique realization.

3.4.3. The Kac-Moody algebra g(A). LetA = (ai,j)1≤i,j≤n a complex matrix of rank l and (h, Π,Π∨)
a realization of A. We introduce an auxiliary Lie algebra g̃(A) given by generators ei, fi for 1 ≤ i ≤ n
and h modulo the following relations:

[ei, fj] = δi,jα
∨
i (1 ≤ i, j ≤ n)

[h, h ′] = 0 (h, h ′ ∈ h)

[h, ei] = 〈αi, h〉ei (1 ≤ i ≤ n, h ∈ h)

[h, fi] = −〈αi, h〉fi (1 ≤ i ≤ n, h ∈ h)

(3.1)

The unicity of the realization of A implies that g̃(A) only depends on A. We denote ñ+ (resp. ñ− ) the

subalgebra of g̃(A) generated by the ei (resp. the fi). We also set Q =
n∑
i=1

Zαi and Q+ =
n∑
i=1

Nαi. Let

τ be the unique maximal ideal that intersects h trivially, and consider the algebra g(A) = g̃(A)/τ. It is
a Lie algebra, called the Kac-Moody algebra associated with the generalized Cartan matrix A. We will
keep the same notation for the images of the generators ei, fi and h ∈ h in g(A). The subalgebra h of
g(A) is called the Cartan subalgebra. The ei and fi are called Chevalley generators.

3.4.4 Example. For instance, the Lie algebra of 2× 2 traceless matrices sl2 is given by the generators

E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
, H =

(
1 0

0 −1

)
,

so that sl2 = CE⊕ CH⊕ F modulo the relations[E, F] = H, [H,E] = 2E, [H, F] = −2F. Therefore, sl2
is a Kac-Moody algebra corresponding to the Cartan Matrix A = (2), and the ideal τ is trivial.

3.4.5. Cartan datum. A Cartan datum (I, ·) consists of a finite set I and a bilinear form on Z[I], taking
values in Z such that:

i) i.i ∈ {2, 4, 6, . . . } for any i ∈ I;

ii) −di,j := 2
i.j
i.i ∈ {0,−1,−2, . . . } for any i 6= j ∈ I.

We say that such a Cartan datum is simply-laced if the two following conditions hold:
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i ′) For any i ∈ I, i · i = 2; ii ′) For any i, j ∈ I, i · j ∈ {0,−1}.

3.4.6 Remark. If we set (I, ·) a Cartan datum and A =
(
−2 i.ji.i

)
1≤i,j≤#I

, then A is a generalized Cartan

matrix and so we can associate to each Cartan datum a Kac-Moody algebra as in the previous section.

3.4.7. Root datum of type (I, ·). Let us fix a Cartan datum (I, ·). A root datum of type (I, ·) consists of

i) two free finitely generated abelian groups X,Y and a perfect pairing 〈, 〉 : Y × X→ Z;

ii) inclusions I ⊂ X (i 7→ αi) and I ⊂ Y (i 7→ hi) such that 〈i, αj〉 = 2 i·ji·i = −dij for all i, j ∈ I.

This implies 〈hi, αi〉 = 2 for all i.

3.4.8. Quantum groups. The quantum group U associated to a root datum as above is the unital asso-
ciativeQ(q)-algebra given by generators Ei, Fi, Kµ for i ∈ I and µ ∈ Y, subject to the relations:

i) K0 = 1, KµKµ ′ = Kµ+µ ′ for all µ, µ ′ ∈ Y,

ii) KµEi = q〈µ,αi〉EiKµ for all i ∈ I, µ ∈ Y,

iii) KµFi = q−〈µ,αi〉FiKµ for all i ∈ I, µ ∈ Y,

iv) EiFj − FjEi = δij K̃i−K̃−i

qi−q
−1
i

, where K̃±i = K±(i·i/2)i,

v) For all i 6= j,
∑

a+b=−〈hi,αJ〉+1
(−1)aE

(a)
i EjE

(b)
i = 0 and

∑
a+b=−〈hi,αJ〉+1

(−1)aF
(a)
i FjF

(b)
i = 0.

3.5. KHOVANOV AND LAUDA’S CATEGORIFICATION OF QUANTUM GROUPS

In this section, we explain the main ideas beyond Khovanov and Lauda’s construction of a strong cat-
egorification of Lusztig’s idempotent and integral form U̇(g) of a quantum group associated to a sym-
metrizable Kac-Moody algebra g.

3.5.1. The quantum group Uq(sl2). The universal enveloping algebra U̇(sl2) of the Lie algebra sl2 is
the associative algebra given by generators E, F and H modulo the relations

HE− EH = 2E, HF− FH = −2F, EF− FE = H.

The quantum group (or quantum deformation) Uq(sl2) of U(sl2) is an algebra over the ring Q(q) of
rational functions in the indeterminate q given by generators E, F, K, K−1 and relations

• KK−1 = K−1K = 1,

• KE = q2EK,

• KF = q−2FK,

• EF− FE = K−K−1

q−q−1
.

3.5.2. Representations of sl2 and Uq(sl2). Let W be a finite dimensional representation of sl2. As it
is a semi-simple Lie algebra, such a representation admits a decomposition

W =
⊕

Wα where Wα = {w ∈ C;H ·w = αw}

There is an action of E and F on the Wα’s given by H(E(w)) = E(H(w)) + [H,E](w) = E(αw) +
2E(w) = (α+ 2)E(w) and similarly, H(F(w)) = (α− 2)F(w). Therefore, the matrix E (resp. F) sends
an element of Vα to an element of Vα+2 (resp. Vα−2). One can show that ifW is irreducible, all the α that
appears in the decomposition have to be congruent modulo 2, so that one has W =

⊕
n∈ZWα0+2n =
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⊕
n∈ZWn. Here, Wn is called the n-th weight space and X = Z is said to be the weight lattice of the

Lie algebra.
Similarly, any finite-dimensional representation V of Uq(sl2) can be decomposed into eigenspaces

Vn for the action of K, with v ∈ Vn if and only if K · v = qnv. We are in particular interested in
representations that admit a decomposition

V =
⊕
n∈Z

Vn

into weight spaces. Given a weight vector v ∈ Vn the weights of Ev and Fv are determined using the
relations

K(Ev) = q2EKv = qn+2(Ev), K(Fv) = q−2FKv = qn−2(Fv),

so that E: Vn → Vn+2 and F: Vn → Vn−2. Therefore, such a representation of Uq(sl2) can be thought
of as a collection of vector spaces Vn for n ∈ Z where E maps the nth weight space to the n + 2
weight space and F maps the nth weight space to the n − 2 weight space such that the main sl2 relation
EF− FE = K−K−1

q−q−1
holds. Note that on a weight vector v ∈ Vn this relation takes the form

(EF− FE)v =
K− K−1

q− q−1
v =

Kv− K−1v

q− q−1
=
qn − q−n

q− q−1
v = [n]v.

where [n] := qn−q−n

q−q−1
= qn−1 + qn−3 + · · ·+ q1−n is called the n-quantum number.

3.5.3. Lusztig’s idempotent and integral quantum group. Let us fix a Cartan datum (I, ·) and a
root datum associated with it. In [85], Lusztig defined an integral and idempotented version U̇(g) of
a quantum group Uq(g) associated with a symmetrizable Kac-Moody algebra g. This version admits
interesting features to study its representations. It is defined as the algebra Uq(sl2) in which the unit
element is substituted by a collection of mutually orthogonal idempotents 1λ projecting on the λ weight
space for any λ ∈ X the weight lattice of g, and satisfying 1λ1λ ′ = δλ,λ ′1λ. In the sequel, when there is
no ambiguity we simply denote the algebra U̇(g) by U̇. It does not generally have a unit, since the infinite
sum

∑
x∈X

1λ does not belong to U̇. As a consequence of the relations in Uq(g), the following identities

have to be satisfied in U̇:

Ei1λ = 1λ+ixEi, Fi1λ = 1λ−ixFi, (EiFj − FjEi)1λ = δi,j[〈hi, λ〉]i1λ,

where [〈hi, λ〉]i is the quantum number q〈hi,λ〉−1i + · · ·+q1−〈hi,λ〉i , with qi = q
i·i
2 . There are also further

relations corresponding to Serre relations, see [85].
For g = sl2 (and sln in general), the algebra U̇(sl2) was at first introduced by Beilinson, Lusztig and

MacPherson, [8]. In that case, the weight lattice X is Z, so we add a collection of idempotents 1n for
n ∈ Z, and we require the following relations:

K1n = qn1n , E1n = 1n+2E = 1n+2E1n , F1n = 1n−2F = 1n−2F1n.

The main sl2 relation becomes
EF1n − FE1n = [n]1n. (3.2)

3.5.4. The 0-cells and 1-cells of U(sl2). The idempotented completion U̇(sl2) can be interpreted as a
K-linear monoidal category whose 0-cells are the elements of X and whose 1-cells from n tom are linear
combinations of elements 1mEε1 . . . Eεs1n where (ε1, . . . , εs) is a sequence of signs, E+ := E, E− := F
andm− n = 2

∑s
i=1 ε1.

For a general Kac-Moody algebra g associated with a root datum (I, ·), U̇ is interpreted as a K-linear
monoidal category whose 0-cells are elements of the weight lattice X of g, and whose 1-cells are linear
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combinations of elements of the form 1 ′λEε1i1 . . . Eεsis1λ where i1, . . . , im are elements of I, (ε1, . . . , εs)
is a sequence of signs, E+i := Ei, E−i := Fi and λ ′ = λ +

∑s
i=1 ε1(is)X. The identity 1-cell on the 0-

cell λ ∈ X is the idempotent 1λ, and composition of 1-cells is given by multiplication of the algebra
U̇(λ, µ)⊗ U̇(µ, ν)→ U̇(λ, ν).

We want to define a strong categorification of U̇ as an additive 2-category U . Following [82], we
sketch the various steps to define the 1-cells and 2-cells in this category for g = sl2 so as the relations
that the 2-cells should satisfy in order to construct a categorification. The 0-cells of U are given by the
elements of X = Z. Moreover, given two weights n,n ′ ∈ X, U(n,n ′) has to be an additive category.
The generating 1-cells E+ and E− of Uq(sl2) should be lifted as 1-cells E− and E+ in U . In order to
define actions of E− and E+, vector spaces should be replaced by additive categories Vn for any n ∈ Z,
and in order to preserve the graded structure on the weight spaces Vn, these categories are required to be
equipped with an autoequivelance {1} : Vλ → Vλ corresponding to the grading shift functor. We denote
by {s} the auto-equivalence obtained by applying {1} s times. All the linear maps in U̇ are replaced
by functors, and we impose that there are functors 1n : Vn → Vn, E1n : Vn → Vn+2, F1n : Vn →
Vn−2, that commute with the grading shift functor. We then lift the relations of U̇ as natural isomorphisms
of 1-cells in U . For instance, the relation (3.2) is lifted to

EF1n ∼= FE1n ⊕ 1⊕[n]
n for n ≥ 0,

FE1n ∼= EF1n ⊕ 1⊕[−n]
n for n ≤ 0,

where we write 1⊕[n]
n := 1n{n− 1}⊕ 1n{n− 3}⊕ · · ·⊕ 1n{1−n}. Note that U(n,n ′) has the structure

of a Q(q)-module. Following 3.1.6, we need to have a structure of Z[q, q−1]-module to be able to lift
the action of q, and we thus consider an integral version of U̇, defined in [85], as the Z[q, q−1]-algebra
AU̇ spanned by products of divided powers of the generators E+ and E−, that is by the elements

E(a)1n :=
Ea

[a]!
1n, F(b)1n :=

Fb

[b]!
1n.

for any a ∈ N. However, we still denote this algebra by U̇. We also want to identify the space 1nU̇1n ′
with the split Grothendieck group of an additive category denoted by U̇(n,n ′). We further require
that the 1-cells in U̇ lift the Z[q, q−1]-module structure on 1nU̇1n ′ by requiring that [x{t}] = qt[x],
so that multiplication by q lifts to the invertible functor {1} of shifting the grading by 1. Recall from
Section 3.3.1 that the split Grothendieck group K0(U̇) of the additive 2-category U is defined by K0(U̇) =⊕
n,n ′∈Z

K0(U̇(n,n ′), with the requirement that

[x] = [x1][x2] if x = x1 ?0 x2.

In this way, the composition of 1-cells in the 2-category U corresponds to the multiplication in U̇. Note
that this can be done since Lusztig established in [85] that the algebra U̇ has a canonical basis Ḃ which
has the property that

[bx][by] =
∑
z

mz
x,y[bz] for [bx], [by], [bz] ∈ Ḃ,

where the structure coefficients mz
x,y are elements of N[q, q−1]. As isomorphisms classes of indecom-

posables 1-morphisms in U̇ , up to grading shift, give a basis in the split Grothendieck ring K0(U̇), the
positivity of these strucure coefficients suggests that it is possible to define U̇ such that its indecompos-
able 1-cells correspond up to grading shift to elements in Lusztig’s canonical basis Ḃ.

To sum up, the 2-category U(sl2) has for 0-cells the set X = Z of weights of sl2, and as 1-cells
all the formal direct sums (since we want any category U(n,n ′) to be additive) of elements of the form
1n ′Eε1n = Eε1 . . . Eεm1n{t} where ε1, . . . , εm are signs, E+ = E , E− = F ,
n ′ = n +

∑
1≤k≤m

2εk, and t ∈ Z is a grading shift. These 1-cells can be interpreted as sequences

ε = (ε1, . . . , εm) of signs, together with the shift t ∈ Z.
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3.5.5. Extension to the general case. Using similar arguments, for a Kac-Moody algebra g associated
with a root datum of type (I, ·), the 2-category U(g) has for 0-cells the weight lattice X, for 1-cells the
linear combinations of elements of the form 1µEε1i1 . . . Eεmim1λ{t} where i1, . . . , im are elements of I,
ε1, . . . , εm are signs and E+i = Ei, E−i = Fi with
µ = λ +

∑
1≤k≤m

(ik)X, and where t ∈ Z is a grading shift. Similarly, these 1-cells can be interpreted

as signed sequences of elements of I, together with the shift t ∈ Z.

3.5.6. Expected dimensions of the spaces of 2-cells. In order to construct the 2-cells in U , we could
expect to consider only degree preserving maps, that is the space of 2-cells U(x, y) between two 1-cells
x and y should form a K-vector space of degree preserving 2-cells. However, it is a classical argument
in the theory of graded vector spaces to consider decompositions of these vector spaces into spaces of
degree homogeneous 2-cells, that is

U(x, y) :=
⊕
t∈Z
U(x{t}, y).

As a consequence, there is a map

U(·, ·) : U1 × U1 GrVectK
(x, y) U(x, y)

//

� //

assigning to 1-cells x and y in U1 the graded vector space of all 2-cells with 1-source x and 1-target y. If
the 1-cells of U correspond to elements of U̇, then descending this map through the Grothendieck group
gives a pairing on U̇:

U(·, ·) : U1 × U1
K0
��

K0
��

// GrVectK
gdim
��

〈·, ·〉 : U̇× U̇ // Z[[q, q−1]]

That is,

〈[x], [y]〉 := gdim HOMU (x, y) =
∑
t∈Z

qt dim HomU (x{t}, y), (3.3)

where dim HomU (x{t}, y) is the usual dimension of the graded vector space U(x{t}, y) of degree zero
2-morphisms. Hence, any choice of 2-morphisms in HomU (x, y) gives rise to a pairing 〈[x], [y]〉 on U̇
given by taking the graded dimension gdim of the graded vector space HomU (x, y). Therefore we know
that the graded Hom on the 2-category U must categorify that semilinear form on U̇.

Actually, there is a well known candidate for such a semilinear form 〈, 〉 : U̇ × U̇ → Z[q, q−1], that
is Luzstig’s pairing on the quantum group [85]. This map arises as the graded dimension of a certain
Ext algebra between sheaves on quiver varieties in Lusztig’s geometric realization of U̇. It has a lot of
defining properties, see [82], implying that one may compute any value of this bilinear pairing. As a
consequence, Khovanov and Lauda constructed the 2-cells in U so that

gdim HOMU (1λEε1λ, 1λEε ′1λ) = 〈1µEε1λ, 1µEε ′1λ〉. (3.4)

This means that each term aqt appearing in 〈1µEε1λ, 1µEε ′1λ〉 is the dimension of the a-dimensional
homogeneous space of 2-cells in degree t. If the coefficient a is zero for a term aqt, this means that
there are no 2-cells in degree t. When a is nonzero we add new graded 2-cells as basis vectors for the
space of 2-cells in that degree.
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3.5.7. The 2-cells in U . There are only two types of generating 1-cells Ei and Fi, so we introduce
following [82, 67] a suited string diagrammatic representation for the identity 2-cells on Ei1λ{t} and
Fi1λ{t}: they are respectively represented by

OO λλ+ ix

i

�� λλ− ix

i

in string notation. The grading shift is omitted from the string diagram so that the same diagrams cor-
responds to the identity 2-morphisms of Ei1λ{t} and Fi1λ{t} for any shift {t}. Now, we construct the
remaining generating 2-cells using Section 3.5.6. Let us focus on the case g = sl2, and expand on some
examples of generating 2-cells. Ona may check that

〈E1n, E1n〉 =
1

1− q2
= 1+ q2 + q4 + q6 + . . . (3.5)

The coefficient of qt for t < 0 being always zero, this imply that U(E1n{t}, E1n) = {0} for t < 0.
The identity 2-cell of E1n must be of degree zero, and we interpret the 1 = q0 appearing above as the
dimension of the 1-dimensional K-vector space spanned by linear combinations of the identity 2-cell
on E1n. Because the coefficient of q0 is 1 all degree zero endomorphisms of E1n should be equal to
multiple of this identity 2-cell. The term q2 suggests that there should be an additional 2-morphism from
E1n to itself in degree 2. We formally add such a generating 2-cell that we represent by:

OO

•
nn+ 2

.

The coefficients in (3.5) impose to define a new generator in all positive even degree, but this is not
needed since one can vertically compose this degree two 2-cell with itself to get a 2-cell in every degree
2k for k ≥ 1. Another example is given by the computation

〈EE1n, EE1n〉 = (1+ q−2)

(
1

1− q2

)2
imposing to define an additional generating 2-cell of degree −2, represented by

n .

As a consequence, the vertical composition of this 2-cell with itself is a 2-cell of degree −4. However,
the coefficient of q−4 in (3.6) is 0, so this forces to introduce a relation of the form

n = 0.

One can then repeat this process by computing different values of Lusztig’s pairing to define new gen-
erating 2-cells and identify some relations between their composites. In order to see that all the needed
generating 2-cells are defined, one could either show that with the appropriate relations the indecompos-
able 1-cells of U corresponds bijectively with Lusztig’s canonical basis as it was done in [81], or give a
purely diagrammatric interpretation of the semilinear form and argue that these generators can account
for all the diagrams, as it was done in [67].

For the general case of a symmetrizable Kac-Moody algebra g with weight lattice X and Dynkin
diagram Γ with set of vertices I, the 2-category U admits the following generating 2-cells for any i, j ∈ I
and any λ ∈ X:

•
i

λ ,

i j

λ , •
i
λ
,

i j

λ ,
i

λ

,
i

λ
,

i

λ
,

i

λ
. (3.6)
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3.5.8. Lift of the relations of U̇. All the 2-cells of U are now defined, and some relations that they
have to satisfy have been identified. However, it remains to lift the defining relations of U̇ to explicit
isomorphisms. In the case of sl2, we have to obtain the following isomorphisms:

EF1n ∼= FE1n ⊕ 1⊕[n]
n for n ≥ 0,

FE1n ∼= EF1n ⊕ 1⊕[−n]
n for n ≤ 0.

Following [82], for n ≥ 0 there is a natural map FE1n ⊕ 1⊕[n]
n → EF1n given by the direct sum of

maps:
EF1n

FE1n ⊕ 1n{n− 1} ⊕ · · · ⊕ ⊕ · · · ⊕1n{n− 1− 2`} 1n{1− n}

��

OO
n

00

��QQ • n−1

::

��QQ •n−1−`

UU ��QQ
nn

and likewise there is a similar map for n ≤ 0. It then remains to define an inverse for this map, which as a
component for each summand. To ensure the condition (3.3), one can explicitely compute the summands
of the inverses, as in [82]. Finally, lifting all the relations of U̇ give rise to all the missing relations
between 2-cells in U(g). As a consequence, we obtain a presentation by generators and relations of the
candidate 2-categorification of U̇, which is the Karoubi envelope of the 2-category U given in Section
6.2 of Chapter 6.
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CHAPTER 4

Coherent confluence modulo

Contents
4.1 Double groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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4.4 Polygraphs modulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Coherent confluence modulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Coherent completion modulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7 Globular coherence from double coherence . . . . . . . . . . . . . . . . . . . . . . 118

Squier’s coherence theorem [111] states that a convergent presentation of a category can be extended
into a coherent presentation of this category by gluing 3-cells corresponding to confluence diagrams of
critical branchings of the presentations. These constructions have been extended for higher-dimensional
globular strict categories [54], associative algebras [50] and higher-dimensional linear categories [1].
In this Chapter, we give a coherence result based on Squier’s constructions in the context of rewriting
modulo. This Chapter recalls the results of [43].

Following the rewriting modulo approach developed by Huet [56] and Jouannaud and Kirchner [61],
confluence modulo diagrams do not admit a globular shape anymore, but a cubical shape. This suggests
that coherence modulo should not be defined in higher-dimensional globular strict categories anymore,
but in a categorical structure adapted to these cubical shapes, that is higher-dimensional categories en-
riched in double groupoids. At first, we define a notion of double coherent presentation, as an adaptation
of the notion of globular coherent presentation to this cubical setting. We then define the notion of
higher-dimensional polygraphs modulo based on the extension of the notion of an higher-dimensional
polygraph, made of oriented rules and denoted by R, by another polygraph denoted by E made of rules
that are not oriented in rewriting paths. We then introduce following [61] rewriting properties of termi-
nation and confluence modulo of these polygraphs, and prove a Newman lemma and a critical branching
lemma for polygraphs modulo, under an additional termination assumption. Then, we extend Squier’s
coherence theorem by proving that a double coherent presentation can be obtained from a presentation
that is confluent modulo by gluing a square cell for each confluence modulo diagram of critical branching
modulo.
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We then give a way to take the quotient of a double coherent presentation by the congruence gener-
ated by the relations in E, in order to obtain coherent presentations of categories that are not necessarily
free in low dimensions. This quotient functor, with values in the category of dipolygraphs, seen as gener-
ating objects of these categories in which cellular extensions are defined categories that may not be free,
gives a way to obtain a coherent presentation of a category by splitting the relations into two parts and
applying these constructions of rewriting modulo one part of the rules.

Notations:. For simplicity in the cubical relations for source and target maps, if f is a k-cell of an n-
category C, we denote by ∂−,i(f) and ∂+,i(f) respectively denote the i-source and i-target of f, while
(k− 1)-source and (k− 1)-target will be denoted by ∂−(f) and ∂+(f) respectively.

4.1. DOUBLE GROUPOIDS

4.1.1. Internal categories. The notion of double category was introduced by Ehresmann in [44] as an
internal category in the category Cat of all (small) categories and functors. Recall that given V be a
category with finite limits, an internal category C in V is a data (C1, C0, ∂C−, ∂C+, ◦C , iC), where

∂C−, ∂
C
+ : C1 −→ C0, iC : C0 −→ C1, ◦C : C1 ×C0 C1 −→ C1

are morphisms of V satisfying the usual axioms of a category, that is

C0
iC //

1 ��

C1
∂C−
��

C0

C0
iC //

1 ��

C1
∂C+
��

C0

C1 ×C0 C1
◦C //

π1

��

C1
∂C−
��

C1
∂C−

// C0

C1 ×C0 C1
c //

π2

��

C1
∂C+
��

C1
∂C+

// C0

C1 ×C0 C1
◦C×C01//

1×C0
��

C1 ×C0 C1
◦C
��

C1 ×C0 C1 ◦C
// C1

C1 ×C0 C1
iC×C0 //

π2
''

C1 ×C0 C1
◦C
��

C1 ×C0 C1
1×C0 iCoo

π1
wwC1

where C1 ×C0 C1 denotes the pullback in V over morphisms ∂C− and ∂C+. An internal functor from C to D
is a pair of morphisms C1 → D1 and C0 → D0 in V making the following diagrams commute:

C1
∂C− //

F1
��

C0
F0
��

D1
∂D−

// D0

C1
∂C+ //

F1
��

C0
F0
��

D1
∂D+

// D0

C0
iC //

F0
��

C1
F1
��

D0
iD
// D1

C1 ×C0 C1
◦C //

F1×F1
��

C1
F1
��

D1 ×D0 D1 ◦D
// D1

We denote by Cat(V) the category of internal categories in V and their functors. In the same way, we
define an internal groupoid G in V as an internal category (G1,G0, ∂

G
−, ∂

G
+, ◦G, iG) with an additional

morphism
(·)−G : G1 → G1

satisfying the axioms of groups, that is

∂G
− ◦ (·)−G = ∂G

+, ∂G
+ ◦ (·)−G = ∂G

−, (4.1)

iG ◦ ∂G
− = ◦G ◦ (id× (·)−G) ◦ ∆, iG ◦ ∂G

+ = ◦G ◦ ((·)−G × id) ◦ ∆, (4.2)

where ∆ : G1 → G1 × G1 is the diagonal functor. We denote by Grpd(V) the category of internal
groupoids in V and their functors.
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4.1.2. Double categories and double groupoids. The category of double categories is defined as the
category Cat(Cat), and the category of double groupoids is defined as the category Grpd(Grpd) of
internal groupoids in the category Grpd of groupoids and their functors. Explicitly, a double category is
an internal category (C1, C0, ∂C−, ∂C+, ◦C , iC) in Cat, that gives four related categories:

Csv := (Cs, Cv, ∂v−,1, ∂v+,1, �v, iv1), Csh := (Cs, Ch, ∂h−,1, ∂h+,1, �h, ih1 ),
Cvo := (Cv, Co, ∂v−,0, ∂v+,0, ◦v, iv0), Cho := (Ch, Co, ∂h−,0, ∂h+,0, ◦h, ih0 ),

where Csh is the category C1 and Cvo is the category C0. The sources, target and identity maps pictured
in the following diagram

Cs
∂h+,1

""
∂h−,1

""

∂v−,1
}}

∂v+,1

}}

Cv
∂v+,0

!!∂v−,0
!!

iv1

==

Ch

∂h−,0
||

∂h+,0

||

ih1

bb

Co

ih0

<<

iv0

aa

satisfy the following relations:

i) ∂hα,0∂
h
β,1 = ∂

v
β,0∂

v
α,1, for all α,β in {−,+},

ii) ∂µα,1i
η
1 = i

µ
0∂
η
α,0, for all α in {−,+} and µ, η in {v, h},

iii) iv1i
v
0 = i

h
1 i
h
0 ,

iv) ∂µα,1(A �
µ B) = ∂

µ
α,1(A) ◦

µ ∂
µ
α,1(B), for all α ∈ {−,+}, µ ∈ {v, h} and any squares A,B such that

both sides are defined,

v) middle four interchange law :

(A �v A ′) �h (B �h B ′) = (A �h B) �v (A ′ �h B ′), (4.3)

for any cells A,A ′, B, B ′ in Cs such that both sides are defined.

Elements of Co are called point cells, the elements of Ch and Cv are respectively called horizontal cells
and vertical cells and pictured by

x1
f // x2

x1

e

��
x2

Following relations i), the elements of Cs are called square cells and can be pictured by squares as
follows:

·
∂h−,1(A)//

∂v−,1(A)
��

·
∂v+,1(A)
��

·
∂h+,1(A)

// ·
A��
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and by the followings squares for identities

x1
f //

iv0(x1)

��

x2

iv0(x2)

��
x1

f
// x2

ih1 (f)��

x
ih0 (x) //

e

��

x

e

��
y
ih0 (y)
// y

iv1(e)�� or simply by

x1
f //

=

��

x2

=

��
x1

f
// x2

ih1 (f)

x
= //

e

��

x

e

��
y =

// y

iv1(e)

The compositions �v (resp. �h) are called respectively vertical and horizontal compositions, and can
be pictured as follows

x1
f1 //

e1

��

x2

e2

��

f2 // x3

e3

��
y1 g1

// y2

A��

g2
// y3

B��  

x1
f1◦hf2 //

e1

��

x3

e3

��
y1

g1◦hg2
// y3

A�vB��

for all xi, yi in Co, fi, gi in Ch, ei in Cv and A,B in Cs,

x1
f //

e1

��

x2

e2

��
y1 g

//

e ′1

��

y2

e ′2

��

A��

z1
h
// z2

A ′��

 

x1
f //

e1◦ve ′1

��

x2

e2◦ve ′2

��
z1

h
// z2

A�hA ′
��

for all xi, yi, zi in Co, f, g, h in Ch, ei, e ′i in Cv and A,A ′ in Cs.
Similarly a double groupoid is given by the same data (G1,G0, ∂

G
−, ∂

G
+, ◦G, iG), with an inverse

operation (·)−G : G1 → G1 satisfying the relations (4.1) and (4.2). As a consequence the four related
categories Gsv, Gsh, Gvo and Gho are groupoids. For any square cell

· f //

e
��

·
e ′

��
·

g
// ·

A��

in Gs, the inverse square cell with respect to �µ, for µ ∈ {v, h}, is denoted by A−,µ and satisfy the
following relations

A �µ (A−,µ) = iµ1 (∂
µ
−,1(A)), (A−,µ) �µ A = iµ1 (∂

µ
+,1(A)). (4.4)

The sources and targets of these inverse are given as follows

· f− //

e ′

��

·
e

��
·

g−
// ·

A−,v

��

· g
//

e−

��

·
(e ′)−

��
·

f
// ·

A−,h

��
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4.1.3. Squares. A square of a double category C is a quadruple (f, g, e, e ′) such that f, g are horizontal
cells and e, e ′ are vertical cells that compose as follows:

u
f //

e
��

v

e ′
��

u ′
g
// v ′

The boundary of a square cell A in C is the square (∂−,h(A), ∂+,h(A), ∂−,v(A), ∂+,v(A)), denoted
by ∂(A). We will denote by Sqr(C) the set of square cells of C.

4.1.4. 2-categories as double categories. From a 2-category C, one can construct two canonical double
categories, by setting the vertical or horizontal cells to be only identities in C. In this way, 2-categories
can be considered as special cases of double categories. The quintet construction gives another way
to associate a double category, called the double category of quintets in C and denoted by Q(C) to a
2-category C. The vertical and horizontal categories of Q(C) are both equal to C, and there is a square
cell

u
f //

g

��

u ′

k
��

v
h
// v ′

A��

in Q(C) whenever there is a 2-cell A : f ?1 k⇒ g ?1 h in C. This defines a functor Q : Cat2 → DbCat.
Similarly, for n ≥ 2 one can associate to an n-category an (n−2)-category enriched in double categories
by a quintet construction.

4.1.5. n-categories enriched in double categories. The coherence results for rewriting systems mod-
ulo presented in this article are formulated using the notion of n-categories enriched in double categories
and double groupoids. Let us expand the latter notion for n > 0. Consider the category Cat(Grpd)
equipped with the cartesian product defined by

C × D = (C1 ×D1, C0 ×D0, sC × tC , cC × cD, iC × iD),

for any double groupoids C and D. The terminal double groupoid T has only one point cell, denoted
by •, and identities iv0(•), ih0 (•), iv1ih0 (•) = ih1 iv0(•).

An n-category enriched in double groupoids is an n-category C such that for any x, y in Cn−1 the
homset Cn(x, y) has a double groupoid structure, whose point cells are the n-cells in Cn(x, y). We will
denote by Cvn+1 (resp. Chn+1, Csn+2) the union of sets Cn(x, y)v (resp. Cn(x, y)h, Cn(x, y)s) for all x, y in
Cn−1. An (n+ 2)-cell A in Csn+2 can be represented by the following diagrams:

u
f //

e
��

v

e ′
��

u ′
g
// v ′

A��

with u, u ′, v, v ′ in Cn, f, g in Chn+1 and e, e ′ in Cvn+1. The compositions of the (n + 2)-cells and the
identities (n+ 2)-cells are induced by the functors of double categories

?x,y,zn−1 : Cn(x, y)× Cn(y, z)→ Cn(x, z), 1x : T→ Cn(x, x),
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for all (n−1)-cells x, y, z. The (n−1)-composite of an (n+2)-cellA in Cn(x, y) with an (n+2)-cell B
in Cn(y, z) of the form

u1
f1 //

e1
��

v1

e ′1
��

u ′1 g1
// v ′1

A
��

u2
f2 //

e2
��

v2

e ′2
��

u ′2 g2
// v ′2

B
��

is defined by ?n−1 compositions of n-cells, vertical (n+1)-cells and horizontal (n+1)-cells and denoted
by:

u1 ?n−1 u2
f1?n−1f2 //

e1?n−1e2

��

v1 ?n−1 v2

e ′1?n−1e
′
2

��

u ′1 ?n−1 u
′
2 g1?n−1g2

// v ′1 ?n−1 v
′
2

A?n−1B

��

By functoriality, the (n− 1)-composition satisfies the following exchange relations:

(A �µ A ′) ?n−1 (B �µ B ′) = (A ?n−1 B) �µ (A ′ ?n−1 B ′), (4.5)

(A �µ A ′) ?n−1 (B �η B ′) = ((A ?n−1 B) �µ (A ′ ?n−1 B)) �η ((A ?n−1 B
′) �µ (A ′ ?n−1 B ′)). (4.6)

Using middle four interchange law (4.3), the identity (4.6) is equivalent to the following identity

(A �µ A ′) ?n−1 (B �η B ′) = ((A ?n−1 B) �η (A ?n−1 B
′)) �µ ((A ′ ?n−1 B) �η (A ′ ?n−1 B ′))

for all µ 6= η in {v, h} and any (n+2)-cellsA,A ′, B, B ′ such that both sides are defined. We will denote
by Catn(DbCat) (resp. Catn(DbGrpd)) the category of n-categories enriched in double categories
(resp. double groupoids) and enriched n-functors.

4.2. DOUBLE COHERENT PRESENTATIONS

Recall from Section 2.4.10 that a coherent presentation of an n-category C is an (n + 2, n)-polygraph
P such that the underlying (n + 1)-polygraph P≤(n+1) is a presentation of C and Pn+2 is an acyclic
extension of the free (n+ 1, n)-category generated by P. In Section 4.2.4, we introduce dipolygraphs in
order to extend the notion of coherent presentation to n-categories whose underlying (n−1)-category is
not free. We also introduce the notion of double n-polygraph generating n-categories enriched in double
groupoids. In Section 4.5, we will formulate coherence results modulo using the structure of double
n-polygraph. Finally, we introduce in Subsection 4.2.7 double coherent presentations of n-categories.
This notion allows us to obtain coherent presentations from polygraphs modulo as it will be explained
in 4.7.

4.2.1. Square extensions. Let (Cv, Ch) be a pair of n-categories with the same underlying (n − 1)-
category Ḃ. A square extension of the pair (Cv, Ch) is a set Γ equipped with four maps ∂µα,n,
with α ∈ {−,+}, µ ∈ {1, 2}, as depicted by the following diagram:

Γ
∂h+,n

$$∂h−,n
$$

∂v−,n
zz

∂v+,n

zz

Cv
∂v+,n−1

##
∂v−,n−1

##

Ch

∂h−,n−1
{{

∂h+,n−1

{{

Ḃ
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and satisfying the following relations:

∂vα,n−1∂
v
β,n = ∂hβ,n−1∂

h
α,n,

for all α,β in {−,+}. The point cells of a square A in Γ are the (n− 1)-cells of Ḃ of the form

∂
µ
α,n−1∂

η
β,n(A)

with α,β in {−,+}, and η, µ in {h, v}. Note that by construction these four (n − 1)-cells have the same
(n− 2)-source and (n− 2)-target in Ḃ respectively denoted by ∂−,n−2(A) and ∂+,n−2(A).

A pair of n-categories (Cv, Ch) has two canonical square extensions, the empty one, and the full one
that contains all squares on (Cv, Ch), denoted by Sqr(Cv, Ch). We will write Sph(Cv, 1) (resp. Sph(1, Ch))
the square extension of (Cv, Ch) made of all squares of the form

u
= //

e
��

u

e ′

��
v =

// v

(
resp.

u
f //

=

��

u ′

=

��

u
g
// u ′

)

for all n-cells e, e ′ in Cv (resp. n-cells in f, g in Ch). The Peiffer square extension of the pair (Cv, Ch) is
the square extension of (Cv, Ch), denoted by Peiff(Cv, Ch), containing the squares of the form

u ?i v
f?iv //

u?ie
��

u ′ ?i v

u ′?ie
��

u ?i v
′
f?iv

′
// u ′ ?i v

′

w ?i u
w?if //

e ′?iu
��

w ?i u
′

e ′?iu
′

��

w ′ ?i u
w ′?if

// w ′ ?i u
′

for all n-cells e, e ′ in Cv and n-cell f in Ch.

4.2.2. Double polygraphs. We define a double n-polygraph as a data P = (Pv, Ph, Ps) made of

1. two (n+ 1)-polygraphs Pv and Ph such that Pv≤n = Ph≤n,

2. a square extension Ps of the pair of free (n+ 1)-categories ((Pv)∗, (Ph)∗).

Such a data can be pictured by the following diagram

Ps

∂h+,n+1

""∂h−,n+1 ""
∂v−,n+1

||

∂v+,n+1

||

(Pv)∗
∂v−,n

""

∂v+,n

""

(Ph)∗

∂h+,n

||

∂h−,n

||

Pv
∂v+,n //

∂v−,n

//

ιvn+1

OO

P∗n+1

∂−,n−1

��

∂+,n−1

��

Ph

∂h−,n

oo

∂h+,noo

ιhn+1

OO

P∗n

For 0 ≤ k ≤ n, the k-cells of the (n + 1)-polygraphs Pv and Ph are called generating k-cells of P.
The (n + 1)-cells of Pv (resp. Ph) are called generating vertical (n + 1)-cells of P (resp. generating
horizontal (n+ 1)-cells of P), and the elements of Ps are called generating square (n+ 2)-cells of P.
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4.2.3. The category of double n-polygraphs. Given two double n-polygraphs P = (Pv, Ph, Ps) and
Q = (Qv, Qh, Qs), a morphism of double n-polygraphs from P to Q is a triple (fv, fh, fs) made of two
morphisms of (n+ 1)-polygraphs

fv : Pv → Qv, fh : Ph → Qh,

and a map fs : Ps → Qs such that the following diagrams commute:

P
µ
n+1

f
µ
n+1

��

Ps
∂
µ,P
−,n−1oo

fs

��

Q
µ
n+1 Qs

∂
µ,Q
−,n−1

oo

P
µ
n+1

f
µ
n+1

��

Ps
∂
µ,P
+,n−1oo

fs

��

Q
µ
n+1 Qs

∂
µ,Q
+,n−1

oo

for µ in {v, h}. We will denote by DbPoln the category of double n-polygraphs and their morphisms.
Let us explicit two full subcategories of DbPoln used in the sequel to formulate coherence and

confluence results for polygraphs modulo. We define a double (n + 2, n)-polygraph as a double n-
polygraph whose square extension Ps is defined on the pair of (n + 1, n)-categories ((Pv)>, (Ph)>).
We denote by DbPol(n+2,n) the category of double (n + 2, n)-polygraphs. In some situations, we will
also consider double n-polygraphs whose square extension is defined on the pair of (n + 1)-categories
((Pv)>, (Ph)∗) (resp. ((Pv)∗, (Ph)>)). We will respectively denote by DbPolvn (resp. DbPolhn) the full
subcategories of DbPoln they form.

4.2.4. Dipolygraphs. We define the structure of dipolygraph as presentation by generators and relations
for∞-categories whose underlying k-categories are not necessarily free. Note that a similar notion was
introduced by Burroni in [27]. Let us define the notion of n-dipolygraph by induction on n ≥ 0. A
0-dipolygraph is a set. A 1-dipolygraph is a triple ((P0, P1), Q1), where (P0, Q1) is a 1-polygraph and
P1 is a cellular extension of the quotient category (P∗0)Q1 . For n ≥ 2, an n-dipolygraph is a data
(P,Q) = ((Pi)0≤i≤n, (Qi)1≤i≤n) made of

i) a 1-dipolygraph ((P0, P1), Q1),

ii) for every 2 ≤ k ≤ n, a cellular extension Qk of the (k− 1)-category

[Pk−2]Qk−1 [Pk−1],

where [Pk−2]Qk−1 denotes the (k− 2)-category

((((P∗0)Q1 [P1])Q2 [P2])Q3 . . . [Pk−2])Qk−1 ,

iii) for every 2 ≤ k ≤ n, a cellular extension Pk of the (k− 1)-category

[Pk−1]Qk .

For 0 ≤ k ≤ n− 1, we will denote by (P,Q)≤k the underlying k-dipolygraph ((Pi)0≤i≤k, (Qi)1≤i≤k).

4.2.5. Dipolygraphs. For 0 ≤ p ≤ n, an (n, p)-dipolygraph is a data ((Pi)0≤i≤n, (Qi)1≤i≤n) such
that:

i) ((Pi)0≤i≤p+1, (Qi)1≤i≤p+1) is a (p+ 1)-dipolygraph,

ii) for every p+ 2 ≤ k ≤ n, Qk is a cellular extension of the (k− 1, p)-category

([Pp]Qp+1)(Pp+1)Qp+2 . . . (Pk−1),
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iii) for every p+ 2 ≤ k ≤ n, Pk is a cellular extension of the (k− 1, p)-category

((([Pp]Qp+1)(Pp+1))Qp+2 . . . (Pk−1))Qk .

We define a morphism of (n, p)-dipolygraphs

((Pi)0≤i≤n, (Qi)1≤i≤n)→ ((P ′i)0≤i≤n, (Q
′
i)1≤i≤n)

as a family of pairs ((fk, gk))1≤k≤n, where fk : Pk → P ′k and gk : Qk → Q ′k are maps such that the
following diagram commute

Qk
//
//

gk

��

[Pk−2]Qk−1 [Pk−1]

f̃k−1

��

Q ′k
//
// [P ′k−2]Q ′k−1 [P

′
k−1]

Pk
//
//

fk

��

[Pk−1]Qk

[fk−1]gk
��

P ′k
//
// [P ′k−1]Q ′k

for any 1 ≤ k ≤ p+ 1, and such that the following diagrams commute

Qk
//
//

gk

��

([Pp]Qp)(Pp+1)Qp+2 . . . (Pk−1)

f̃k−1

��

Q ′k
//
// ([P ′p]Q ′p)(P

′
p+1)Q ′p+2 . . . (P

′
k−1)

Pk
//
//

fk

��

((([Pp]Qp+1)(Pp+1))Qp+2 . . . (Pk−1))Qk

[fk−1]gk
��

P ′k
//
// ((([P ′p]Q ′p+1)(P

′
p+1))Q ′p+2 . . . (P

′
k−1))Q ′k

for any p+ 2 ≤ k ≤ n, where the map f̃k−1 is induced by the map fk−1 and the map [fk−1]gk is defined
by the following commutative diagram:

(([Pp]Qp+1)(Pp+1))Qp+2 . . . (Pk−1)
π //

f̃k−1

��

((([Pp]Qp+1)(Pp+1))Qp+2 . . . (Pk−1))Qk

[fk−1]gk
��

(([P ′p]Q ′p+1)(P
′
p+1))Q ′p+2 . . . (P

′
k−1) π ′

// ((([P ′p]Q ′p+1)(P
′
p+1))Q ′p+2 . . . (P

′
k−1))Q ′k

We will denote by DiPol(n,p) the category of (n, p)-dipolygraphs and their morphisms.

4.2.6. Presentations by dipolygraphs. The (n− 1)-category presented by an n-dipolygraph (P,Q) is
defined by

(P,Q) := ([Pn−1]Qn)Pn .

Let C be an (n− 1)-category. A presentation of C is an n-dipolygraph (P,Q) whose presented category
(P,Q) is isomorphic to C. A coherent presentation of C is an (n+1, n−1)-dipolygraph (P,Q) satisfying
the following conditions

i) the underlying n-dipolygraph (P,Q)≤n is a presentation of C,

ii) the cellular extension Pn+1 is acyclic,

iii) the cellular extension Qn+1 is empty.

4.2.7. Double coherent presentations. In this subsection, we introduce the notion of double coherent
presentation of an n-category, defined using the structure of double n-polygraph. Let us first explicit the
construction of a free n-category enriched in double categories generated by a double n-polygraph.
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4.2.8. Construction of free double categories. The question of the construction of free double cate-
gories was considered in several works, [38, 37, 39, 36]. In particular, Dawson and Pare gave in [39]
constructions of free double categories generated by double graphs and double reflexive graphs. Such
free double categories always exist, and they show how to describe their cells explicitly in geometrical
terms. However, they show that free double categories generated by double graphs cannot describe many
of the possible compositions in free double categories. They fixed this problem by considering double
reflexive graphs as generators.

The coherence results that we will state in Section 4.6 are formulated in free n-categories enriched
in double categories generated by double n-polygraphs. For every n ≥ 0, let us consider the forgetful
functor

Wn : Catn(DbCat)→ DbPoln (4.7)

that sends an n-category enriched in double categories C on the double n-polygraph, denoted by

Wn(C) = (Wv
n+1(C),Wh

n+1(C),Ws
n+2(C)),

where Wv
n+1(C) (resp. Wh

n+1(C)) is the underlying (n + 1)-polygraph of the (n + 1)-category ob-
tained as the extension of the underlying n-category of C by the vertical (resp. horizontal) (n+ 1)-cells
and Ws

n+2(C) is the square extension generated by all squares of C. Explicitly, for µ ∈ {v, h}, con-
sider Cµn+1 the (n+ 1)-category whose

1. underlying (n− 1)-category coincides with the underlying (n− 1)-category of C,

2. set of n-cells is given by

(Cµn+1)n :=
∐

x,y∈Cn−1

(Cn(x, y))o,

3. set of (n+ 1)-cells is given by

(Cµn+1)n+1 :=
∐

x,y∈Cn−1

(Cn(x, y))µ.

The (n − 1)-composition of n-cells and (n + 1)-cells of Cµn+1 are defined by enrichment. The n-
composition of (n + 1)-cells of Cµn+1 are induced by the composition ◦µ. We define Wµ

n+1(C) as the
underlying (n+ 1)-polygraph of the (n+ 1)-category Cµn+1 :

W
µ
n+1(C) := U

Pol
n+1(C

µ
n+1).

Finally, the square extensionWs
n+2(C) is defined on the pair of (n+ 1)-categories (Cvn+1, Chn+1) by

Ws
n+2(C) :=

∐
x,y∈Cn−1

Cn(x, y)s.

4.2.9 Proposition. For every n ≥ 0, the forgetful functor Wn defined in (4.7) admits a left adjoint
functor Fn.

The proof of this result consists in constructing explicitly in 4.2.10 the free n-category enriched in
double categories generated by a double n-polygraph and the proof in 4.2.11 of universal property of
free object.
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4.2.10. Freen-category enriched in double categories. Consider a doublen-polygraph P = (Pv, Ph, Ps).
We construct the free n-category enriched in double categories on P, denoted by P�, as follows:

i) the underlying n-category of P� is the free n-category P∗n,

ii) for all (n− 1)-cells x and y of P∗n−1, the hom-double category P�(x, y) is constructed as follows

a) the point cells of P�(x, y) are the n-cells in P∗n(x, y),

b) the vertical cells of P�(x, y) are the (n+1)-cells of the free (n+1)-category (Pv)∗ with (n−1)-
source x and (n− 1)-target y,

c) the horizontal cells of P�(x, y) are the (n + 1)-cells of the free (n + 1)-category (Ph)∗ with
(n− 1)-source x and (n− 1)-target y,

d) the set of square cells of P�(x, y) is defined recursively and contains

• the square cells A of Ps such that ∂−,n−1(A) = x and ∂+,n−1(A) = y,

• the square cells C[A] for any context C of the n-category P∗n and A in Ps, such that
∂−,n−1(C[A]) = x and ∂+,n−1(C[A]) = y,

• identities square cells ih1 (f) and iv1(e), for any (n + 1)-cells f in (Ph)∗ and (n + 1)-cell e
in (Pv)∗ whose (n− 1)-source (resp. (n− 1)-target) in P∗n−1 is x (resp. y),

• all formal pastings of these elements with respect to �h-composition and �v-composition.

e) two square cells constructed as such formal pastings are identified by the associativity, and iden-
tity axioms of compositions �v and �h and middle four interchange law given in (4.3),

iii) for all (n− 1)-cells x, y, z of P∗n−1, the composition functor

?n−1 : P
�(x, y)× P�(y, z) −→ P�(x, z)

is defined for any

u1
f1 //

e1
��

v1

e ′1
��

u ′1 g1
// v ′1

A1�� in P�(x, y), and

u2
f2 //

e2
��

v2

e ′2
��

u ′2 g2
// v ′2

A2�� in P�(y, z),

by

u1 ?n−1 u2
f1?n−1f2 //

e1?n−1e2

��

v1 ?n−1 v2

e ′1?n−1e
′
2

��

u ′1 ?n−1 u
′
2 g1?n−1g2

// v ′1 ?n−1 v
′
2

A1?n−1A2

��

where the square cell A1 ?n−1 A2 is defined recursively using exchanges relations (4.5-4.6) from
functoriality of the composition ?n−1, and the middle four identities (4.3),

iv) for all (n − 1)-cell x of P∗n−1, the identity map T −→ P�(x, x), where T is the terminal double
groupoid, sends the one point cell • on x and the identity iµα(•) on iµα(x) for all µ ∈ {v, h} and
α ∈ {0, 1}.
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4.2.11. Universal property of a free object. The functor Fn : DbPoln → Catn(DbCat) defined
by Fn(P) = P� for any double n-polygraph P satisfies the universal property of a free object in
Catn(DbCat). Indeed, given a double n-polygraph P = (Pv, Ph, Ps), a morphism ηP : P →Wn(Fn(P))
of double n-polygraphs, an n-category enriched in double categories C, and a morphismϕ : P →Wn(C)
of double n-polygraphs, there exists a unique enriched morphism ϕ̃ : Fn(P)→ C such that the following
diagram commutes

P
ηP //

ϕ
%%

Wn(Fn(P))

Wn(ϕ̃)

��

Wn(C)

The functor ϕ̃ = (ϕ̃k)0≤k≤n+2 is defined as follows.

i) By construction, the morphism ϕ induces morphisms of (n+ 1)-polygraphs ϕµ : Pµ →W
µ
n+1(C),

for µ ∈ {v, h}. The morphism ϕµ extends by universal property of free (n + 1)-categories into a
functor ϕ̃µ : (Pµ)∗ → Cµn+1. We set ϕ̃k = ϕvk = ϕ

h
k for 0 ≤ k ≤ n, and

ϕ̃n+1(f) = ϕ
h(f), ϕ̃n+1(e) = ϕ

v(e),

for every horizontal (n+ 1)-cell f and every vertical (n+ 1)-cell e.

ii) By construction, any square (n + 2)-cell A in Fn(P) is a composite of generating square (n + 2)-
cells in Ps with respect to the compositions �v, �h and ?n−1. Moreover, following [38, Theorem
1.2], if a compatible arrangement of square cells in a double category is composable in two different
ways, the results are equal modulo the associativity, identity axioms of compositions �v and �h, and
middle four interchange law (4.3). We extend the functor ϕ to the functor ϕ̃ by setting

ϕ̃(A �µ B) = ϕ(A) �µ ϕ(B), ϕ̃(A ?n−1 B) = ϕ(A) ?n−1 ϕ(B),

for every µ ∈ {v, h} and all square generating (n+ 2)-cells A,B in Ps whenever the composites are
defined.

4.2.12. Free n-categories enriched in double groupoids. By a similar construction to the free n-
category enriched in double categories on a double n-polygraph P = (Pv, Ph, Ps) given in 4.2.10, we
construct the free n-category enriched in double groupoids generated by a double (n+ 2, n)-polygraph
P = (Pv, Ph, Ps), that we denote by P

�
. It is obtained as the free n-category enriched in double cate-

gories P� having in addition

• inverse vertical (n+ 1)-cells e− for any generating vertical (n+ 1)-cell e,

• inverse horizontal (n+ 1)-cells f− for any generating vertical (n+ 1)-cell f,

• inverse square (n+ 2)-cells A−,µ for any generating square (n+ 2)-cell A in Ps,

that satisfy the inverses axioms of groupoids for vertical and horizontal cells and the relations (4.4) for
square cells.

Finally, we will also consider the free n-category enriched in double categories, whose vertical cat-
egory is a groupoid, generated by a double n-polygraph P = (Pv, Ph, Ps) in DbPolv, that we denote by
P
�
,v. In that case, we only require the invertibility of vertical (n+1)-cells and the invertibility of square

(n+ 2)-cells with respect to �h-composition.

4.2.13. Acyclicity. Let P = (Pv, Ph, Ps) be a double (n + 2, n)-polygraph. The square extension Ps

of the pair of (n + 1, n)-categories ((Pv)>, (Ph)>) is acyclic if for any square S over ((Pv)>, (Ph)>)
there exists a square (n + 2)-cell A in the free n-category enriched in double groupoids P

�
such that

∂(A) = S. For example, the set of squares over ((Pv)>, (Ph)>) forms an acyclic extension.
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4.2.14. Double coherent presentations of n-categories. Recall that a presentation of an n-category C
is an (n + 1)-polygraph P whose presented category P is isomorphic to C. We define a double coherent
presentation of C as a double (n+ 2, n)-polygraph (Pv, Ph, Ps) satisfying the two following conditions:

i) the (n + 1)-polygraph (Pn, P
v
n+1 ∪ Phn+1) is a presentation of C, where Pn is the underlying n-

polygraph of Pv and Ph,

ii) the square extension Ps is acyclic.

4.2.15. Globular coherent presentations from double coherent presentations. We define a quotient
functor

V : DbPol(n+2,n) → DiPol(n+2,n) (4.8)

that sends a double (n+ 2, n)-polygraph P = (Pv, Ph, Ps) to the (n+ 2, n)-dipolygraph

V(P) = ((P0, . . . , Pn+2), (Q1, . . . , Qn+2)) (4.9)

defined as follows:

i) (P0, . . . , Pn) is the underlying n-polygraph Pv≤n = Ph≤n := Pn,

ii) for every 1 ≤ i ≤ n, the cellular extension Qi is empty,

iii) Qn+1 is the cellular extension Pvn+1

∂v−,n //

∂v+,n

// P∗n ,

iv) Pn+1 is the cellular extension Phn+1

∂̃h−,n //

∂̃h+,n

// (P∗n)Pvn+1 , where the maps ∂̃h−,n and ∂̃h+,n are defined by

∂̃hµ,n = ∂hµ,n ◦ π,

for any µ in {−,+}, where π : P∗n � (P∗n)Pvn+1 denotes the canonical projection sending an n-cell
u in P∗n on its class, denoted by [u]v, modulo Pvn+1. Moreover, for any f : u → v in Phn+1, we will
denote by [f]v : [u]v → [v]v the corresponding element in Pn+1,

v) the cellular extension Qn+2 is empty,

vi) Pn+2 is defined as the cellular extension Ps
š //

ť

// (P∗n)Pvn+1(P
h
n+1) , where the maps š and ť are

defined by the following commutative diagrams:

Ps

∂h−,n+1

��

∂h+,n+1

��

š

&&ť &&

(Phn+1)
>

F
//

∂h−,n

��

∂h+,n

��

(P∗n)Pvn+1(P
h
n+1)

∂̃
h

−,n

��

∂̃
h

+,n

��

P∗n π
// (P∗n)Pvn+1

where the maps ∂̃
h

−,n and ∂̃
h

+,n are induced from ∂̃h−,n and ∂̃h+,n, and the (n+ 1)-functor F is defined
by:
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a) F is the identity functor on the underlying (n− 1)-category P∗n−1,

b) F sends an n-cell u in P∗n to its equivalence class [u]v modulo Pvn+1,

c) F sends an (n + 1)-cell f : u → v in (Phn+1)
> to the (n + 1)-cell [f]v : [u]v → [v]v in

(P∗n)Pvn+1(P
h
n+1) defined as follows

- for any f in Phn+1, [f]
v is defined by iv),

- F is extended to the (n+ 1)-cells of (Phn+1)
> by functoriality by setting

[xn ?n . . . (x1 ?0g?0y1) . . .?nyn]
v = [xn]

v ?nxn−1 ?n . . . (x1 ?0 [g]
v ?0y1) . . .?nyn−1 ?n [yn]

v

for all whisker xn ?n . . . (x1 ?0 − ?0 y1) . . . ?n yn of (Phn+1)
> and (n+ 1)-cell g in (Phn+1)

>,
and

[f1 ?n f2]
v = [f1]

v ?n [f2]
v,

for all (n+ 1)-cells f1, f2 in (Phn+1)
>.

4.2.16. Quotient of a square extension. Given a generating square (n+ 2)-cell

u
f //

g

��

u ′

k
��

v
h
// v ′

A��

of Ps, we denote by [A]v the generating (n+2)-cell of the globular cellular extension Pn+2 on (P∗n)Pvn+1(P
h
n+1)

defined in (4.9) as follows:

[u]v = [u ′]v

[f]v

$$

[g]v

::
[v]v = [v ′]v[A]v

��

Note that by construction in the (n + 2, n)-category ((P∗n)Pvn+1(P
h
n+1))(Pn+2) the following relations

hold
[A]v ?n [A

′]v = [A �v A ′]v, [A]v ?n+1 [A
′]v = [A �h A ′]v,

for all generating square (n+ 2)-cells A and A ′ in Ps such that these compositions make sense.

4.2.17 Proposition. Let P = (Pv, Ph, Ps) be a double (n + 2, n)-polygraph. If the square extension Ps

is acyclic then the cellular extension Pn+2 of the (n + 1)-category (P∗n)Pvn+1(P
h
n+1) defined in (4.9) is

acyclic.
In particular, if P is a double coherent presentation of an n-category C. Then, the (n + 2, n)-

dipolygraph V(P) is a globular coherent presentation of the quotient n-category (P∗n)Pvn+1 , that is the

n-category is isomorphic to V(P)≤(n+1) and Pn+2 is an acyclic extension of (P∗n)Pvn+1(P
h
n+1).

Proof. Given an (n + 1)-sphere γ := ([f]v, [g]v) in (P∗n)Pvn+1(P
h
n+1), by definition of the functor V

defined in (4.8), there exists an (n+ 1)-square

S :=

u
f //

e

��

u ′

e ′

��

v
g
// v ′
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in ((Pvn+1)
>, (Phn+1)

>), such that F(f) = [f]v and F(g) = [g]v and V(S) = γ. By acyclicity assumption,
there exists a square (n + 2)-cell A in the free n-category enriched in double groupoids (Pv, Ph, Ps)

�

such that ∂(A) = S. Then [A]v is an (n + 2)-cell in (P∗n)Pvn+1(P
h
n+1))(Pn+2) such that ∂([A]v) = γ.

Finally, the fact that V(P)≤(n+1) is a presentation of the quotient n-category (P∗n)Pvn+1 follows from the
definition of the functor V and the fact that the (n + 1)-polygraph (Pn, P

v
n+1 ∪ Phn+1) is a presentation

of C.

4.3. EXAMPLES

We illustrate how to define coherent presentations of algebraic structures in terms of dipolygraphs on the
cases of groups, commutative monoids and pivotal categories.

4.3.1. Coherent presentations of groups. A presentation of a group G is defined by a set X of gen-
erators and a set R of relations equipped with a map from R to the free group F(X) on X such that G is
isomorphic to the quotient of F(X) by the normal subgroup generated by R. The free group F(X) can be
presented by the 2-polygraph, denoted by Gp2(X), with only one 0-cell, its set of generating 1-cells is
X ∪ X−, where X− := {x− | x ∈ X} and its generating 2-cells are

xx− ⇒ 1, x−x⇒ 1,

for any x in X. A coherent presentation of the group G is a (3, 1)-dipolygraph (P,Q) such that:

i) (P0, P1, Q2) is the 2-polygraph Gp2(X), and the cellular extension Q1 is empty,

ii) the cellular extension P2 of F(X) has for generating set R, its source map is the identity and its target
is constant equal to 1,

iii) the cellular extension Q3 is empty, and P3 is an acyclic extension of the 2-group (F(X))(R).

4.3.2. Coherent presentation of commutative monoids. A presentation of a commutative monoid
M is defined by a set X of generators and a cellular extension R of relations on the free commutative
monoid 〈X〉 on X such that M is isomorphic to the quotient of 〈X〉 by the congruence generated by R.
The free commutative monoid 〈X〉 on X can be defined by the 2-polygraph, denoted by Com2(X), with
only one 0-cell, its set of generating 1-cells is X, and the generating 2-cells are

xixj ⇒ xjxi

for any xi, xj in X, such that xi > xj for a given total order > on X. A coherent presentation of the
commutative monoidM is a (3, 1)-dipolygraph (P,Q) such that:

i) (P0, P1, Q2) is the 2-polygraph Com2(X), and the cellular extension Q1 is empty,

ii) P2 = R, Q3 is empty, and P3 is an acyclic extension of the 2-category 〈X〉(R).

4.3.3. Coherent presentation of monoidal pivotal categories. Recall that a (strict monoidal) pivotal
category C is a monoidal category, seen as 2-category with only one 0-cell, in which every 1-cell p has a
right dual 1-cell p̂, which is also a left-dual, that is there are 2-cells

η−p : 1⇒ p̂ ?0 p, η+p : 1⇒ p ?0 p̂, ε−p : p̂ ?0 p⇒ 1, and ε+p : p ?0 p̂⇒ 1, (4.10)

respectively represented by the following diagrams:

p̂ p

,
p p̂

,
p̂ p , and p p̂

. (4.11)
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These 2-cells satisfy the relations

(ε+p ?0 1p) ?1 (1p ?0 η
−
p ) = 1p = (1p ?0 ε

−
p ) ?1 (η

+
p ?0 1p)

(ε−p ?0 1p̂) ?1 (1p̂ ?0 η
+
p ), = 1p̂ = (1p̂ ?0 η

+
p ) ?1 (η

−
p ?0 1p̂),

that can be diagrammatically depicted as follows

ε+p

η−pp

=

p

=

η+p

ε−p

p

ε−p

η+pp̂

=

p̂

=

η−p

ε+q

p̂

Any 2-cell f : p ⇒ q in C is cyclic with respect to the biadjunctions p̂ ` p ` p̂ and q̂ ` q ` q̂ defined
respectively by the family of 2-cells (η−p , η

+
p , ε

−
p , ε

+
p ) and (η−q , η

+
q , ε

−
q , ε

+
q ), that is f∗ = ∗f, where f∗ and

∗f are respectively the right and left duals of f, defined using the right and left adjunction as follows:

∗f :=

ε−q

η+p

•f
p̂

q̂

f∗ := •f
p̂

η−p

ε+q

q̂

A 2-category in which all the 2-cells are cyclic with respect to some biadjunction is called a pivotal
2-category. In this structure, it is proved in [32] that given a string diagram representing a cyclic 2-cell,
between 1-cells with chosen biadjoints, then any isotopy of the diagram represents the same 2-cell.

4.3.4 Example. We consider a 2-category with only one 0-cell, two 1-cells E and F whose identites are
respectively represented by upward and downward arrows and such that E a F a E, that is E and F

are biadjoint. We denote respectively by , , , the units and counits for these

adjunctions. Assume that this category has 2-cells given by • , • , , Then, requiring

that the 2-cells are cyclic in this 2-category are made by the following equalities:

• = • = • ,
OOOO

= =
OO OO

.

and their mirror image through a reflection by a vertical axis.

We refer the reader to [63, 32] for more details about the notion of pivotal monoidal category. The
cyclic relations also imply relations of the form

•f
p̂q

η+p

= •∗f
p̂q

η+q

, and •f
p̂ q

ε−p

= •∗f
p̂ q

ε−q

and the same relations for cap 2-cells. A presentation of a pivotal category C is defined by a set X1 of
generating 1-cells, a set X2 of generating cyclic 2-cells, and a cellular extension R on the free pivotal
category P(X1, X2) on the data (X1, X2), such that C is isomorphic to the quotient of P(X1, X2) by the
congruence generated by R. The free pivotal category P(X1, X2) can be presented by the 3-polygraph
Piv3(X1, X2) defined as follows

i) it has only one 0-cell,
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ii) its set of generating 1-cells is X1 ∪ X̂1, where X̂1 := {p̂ | p ∈ X1},

iii) its set of generating 2-cells is

X2 ∪ {η−p , η
+
p , ε

−
p , ε

+
p | p ∈ X1},

where the 2-cells η−p , η+p , ε−p , ε+p are defined by (4.10),

iv) its generating 3-cells are

ε−q

η+p

•f
p̂

q̂

V

q̂

p̂

∗f• •f
p̂

η−p

ε+q

q̂

V

q̂

p̂

f∗•

for any generating 2-cell f in X2 or f is an identity cell.

A coherent presentation of the pivotal category C is a (4, 2)-dipolygrah (P,Q) such that:

i) (P0, P1, P2, Q3) is the 3-polygraph Piv3(X1, X2) and the cellular extensions Q1 and Q2 are empty,

ii) P3 = R, Q4 is empty and P4 is an acyclic extension of the 2-category P(X1, X2)(R).

4.4. POLYGRAPHS MODULO

In this section, we introduce the notion of polygraph modulo and we define the rewriting properties of
termination, confluence and local confluence for these polygraphs.

4.4.1. Cellular extensions modulo. Consider two n-polygraphs E and R such that E≤n−2 = R≤n−2
and En−1 ⊆ Rn−1. One defines the cellular extension

γ ER : ER→ Sphn−1(R
∗
n−1),

where the set ER is defined by the following pullback in Set:

E>n ×R∗n−1 R
∗(1)
n

π1

��

π2 // R
∗(1)
n

∂−,n−1

��

E>n ∂+,n−1

// R∗n−1

and the map γ ER is defined by γ ER(e, f) = (∂−,n−1(e), ∂+,n−1(f)) for all e in E> and f in R∗(1)n . Simi-
larly, one defines the cellular extension

γRE : RE → Sphn−1(R
∗
n−1),

where the set RE is defined by the following pullback in Set:

R
∗(1)
n ×R∗n−1 E

>
n

π1
��

π2 // E>n

∂−,n−1

��

R
∗(1)
n

∂+,n−1

// R∗n−1
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and the map γRE is defined by γRE(f, e) = (∂−,n−1(f), ∂+,n−1(e)) for all e in E> and f in R∗(1)n . Finally,
one defines the cellular extension

γ ERE : ERE → Sphn−1(R
∗
n−1),

where the set ERE is defined by the following composition of pullbacks in Set:

E>n ×R∗n−1 R
∗(1)
n ×R∗n−1 E

>
n

(π2,π3) //

(π1,π2)

��

R
∗(1)
n ×R∗n−1 E

>
n

π1

��

π2 // E>n

∂−,n−1

��

E>n ×R∗n−1 R
∗(1)
n

π1

��

π2 // R
∗(1)
n

∂+,n−1

//

∂−,n−1

��

R∗n−1

E>n ∂+,n−1

// R∗n−1

and the map γ ERE is defined by γ ERE(e, f, e ′) = (∂−,n−1(e), ∂+,n−1(e
′)).

4.4.2. Polygraphs modulo. A n-polygraph modulo is a data (R, E, S) made of

i) an n-polygraph R, whose generating n-cells are called primary rules,

ii) an n-polygraph E such that E≤(n−2) = R≤(n−2) and En−1 ⊆ Rn−1, whose generating n-cells are
called modulo rules,

iii) S is a cellular extension of R∗n−1 such that the inclusions of cellular extensions

R ⊆ S ⊆ ERE

holds.

If no confusion may occur, an n-polygraph modulo (R, E, S) will be simply denoted by S. For
simplicity of notation, the n-polygraphs modulo (R, E, ER), (R, E, RE) and (R, E, ERE) will be denoted
by ER, RE and ERE respectively. Given an n-polygraph modulo (R, E, S), we will consider in the sequel
the following categories:

- the free n-category R∗n−1[Rn, En
∐
E−1n ]/Inv(En, E−1n ), denoted by R∗(E).

- the free n-category generated by S, denoted by S∗,

- the free (n,n− 1)-category generated by S, denoted by S>.

4.4.3. Branchings modulo and confluence. Recall that a branching of S modulo E is a triple (f, e, g)

where f and g are n-cells of S∗ with f non trivial and e is an n-cell of E>. Such a branching is depicted
by

u
f //

e

��

u ′

v
g
// v ′

(4.12)

and is denoted by (f, e, g) : (u, v)⇒ (u ′, v ′). The pair of (n− 1)-cells (u, v) (resp. (u, u)) is called the
source of this branching modulo E. Note that any branching (f, g) of S is also a branching modulo E of
the form (f, e, g) where e = iv1(∂

h
−,(n−1)(f)) = i

v
1(∂

h
−,(n−1)(g)).
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4.4.4. Confluence and confluence modulo. A confluence modulo E of the n-polygraph modulo S is
a triple (f ′, e ′, g ′), where f ′, g ′ are n-cells of S∗ and e ′ is an n-cell of E> such that ∂h+,(n−1)(f

′) =

∂v−,(n−1)(e
′) and ∂h+,(n−1)(g

′) = ∂v+,(n−1)(e
′). Such a confluence is denoted by (f ′, e ′, g ′) : (u ′, v ′) ⇒

(w,w ′). A branching modulo E as in (4.12) is confluent modulo E if there exist n-cells f ′, g ′ in S∗ and
e ′ in E> as in the following diagram:

u
f //

e

��

u ′
f ′ // w

e ′

��

v
g
// v ′

g ′
// w ′

.

We say that the n-polygraph modulo S is confluent (resp. confluent modulo E) if all of its branchings
(resp. branchings modulo E) are confluent (resp. confluent modulo E).

4.4.5. Diconvergence. The n-polygraph modulo S is called convergent if it is both terminating and
confluent. It is called convergent modulo E when it is confluent modulo E and ERE is terminating. We
say that S is diconvergent when E is convergent and S is convergent modulo E.

4.4.6. Classification of local branchings modulo. Recall that a branching (f, e, g) modulo E is local
if f is an n-cell of S∗(1), g is an n-cell of S∗ and e an n-cell of E> such that `(g) + `(e) = 1. Local
branchings modulo are classified into the following five families:

i) local aspherical branchings of the form:

u
f //

=

��

v

=

��
u

f
// v

where f is an n-cell of S∗(1);

ii) local Peiffer branchings of the form:

u ?i v
f?iv //

=

��

u ′ ?i v

u ?i v u?ig
// u ?i v

′

where 0 ≤ i ≤ n− 2, f and g are n-cells of S∗(1),

iii) local Peiffer modulo of the forms:

u ?i v
f?iv //

u?ie
��

u ′ ?i v

u ?i v
′

w ?i u
w?if //

e ′?iu
��

w ?i u
′

w ′ ?i u

(4.13)

where 0 ≤ i ≤ n− 2, where f is an n-cell of S∗(1) and e, e ′ are n-cells of E>(1);

iv) overlapping branchings are the remaining local branchings:

u
f //

=

��

v

u
g
// v ′
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where f and g are n-cells of S∗(1),

v) overlapping branchings modulo are the remaining local branchings modulo:

u
f //

e
��

v

v ′

(4.14)

where f is an n-cell of S∗(1) and e is an n-cell of E>(1).

4.4.7. Critical branchings modulo. Let (f, e, g) be a branching of Smodulo Ewith source (u, v) and a
whisker C[∂u] of R∗n−1 composable with u and v, the triple (C[f], C[e], C[g]) is a branching of Smodulo
E of the n-polygraph modulo S. If (f, e, g) is local, then (C[f], C[e], C[g]) is local. We denote by v
the order relation on branchings modulo E of S defined by (f, e, g) v (f ′, e ′, g ′) when there exists a
whisker C of R∗n−1 such that (C[f], C[e], C[g]) = (f ′, e ′, g ′) hold. A branching (resp. branching modulo
E) is minimal if it is minimal for the order relationv. A branching (resp. branching modulo E) is critical
if it is an overlapping branching or an overlapping branching modulo that is minimal for the relation v.

4.4.8. Completion procedure for ER. We give a completion procedure for an n-polygraph modulo
(R, E, ER), when ER is not confluent modulo E, following the idea of Knuth-Bendix’s completion proce-
dure. Either it does not terminate, or it computes an n-polygraph Ř such that EŘ is confluent modulo E.
Note that the property of JK coherence is trivially satisfied for ER. Indeed, any branching (f, e) of ER

modulo E is trivially confluent modulo E as follows:

u
f //

e
��

v

=

��
v ′

e−·f
// v

(4.15)

where e− · f is a rewriting step of ER. Following the critical branching lemma modulo, Theorem 4.5.7
given in the next section, we describe a completion procedure for confluence of ER modulo E in terms
of critical branchings, similar to the Knuth-Bendix completion. From (4.15) and Theorem 4.5.7, when
ER is terminating, ER is confluent modulo E if and only if all critical branchings (f, g) of ER modulo E
with f in ( ER)

∗(1) and g in R∗(1) are confluent modulo E, as depicted by:

u
f∈( ER)∗(1) //

=

��

v
f ′∈( ER)∗ // v ′

e ′

��

u
g∈R∗(1)

// w
g ′∈( ER)∗

// w ′

We denote by CP( ER, R) the set of such critical branchings.

4.4.9. Completion procedure for ER. Let us consider R and E two n-polygraphs such that E≤n−2 =
R≤n−2 and En−1 ⊆ Rn−1, and ≺ a termination order compatible with R modulo E. In this paragraph,
we describe a procedure to compute a completion Ř of the n-polygraph R such that EŘ is confluent
modulo E. We denote by û ER a normal form of an element u in R∗n−1 with respect to ER. To simplify the
notations, for any (n− 1)-cells u and v in R∗n−1, we denote u ≈E v if there exists an n-cell e : u→ v in
E>.
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Input:
- R and E 2-polygraphs over a 1-polygraph X.
- ≺ a termination order for R compatible with E,

which is total on the set of ER-irreducible elements.

begin
C← CP( ER, R);
while C 6= ∅ do

Pick any branching c = (f : u⇒ v, g : u⇒ w) in C, with f in ER
∗ and g in R∗;

Reduce v to v̂ ER a ER-normal form;
Reduce w to ŵ ER a ER-normal form;
C← C\{c} ;
if v̂ ER ��≈E ŵ ER then

if ŵ ER ≺ v̂ ER then
R← R ∪ {v̂ ER

α⇒ ŵ ER};
end
if v̂ ER ≺ ŵ ER then

R← R ∪ {ŵ ER α⇒ v̂ ER};
end

end
C← C ∪ {( ER, R)-critical branchings created by α};

end
end

This procedure may not be terminating. However, it does not fail because of the hypothesis that ≺ is
total on the set of ER-irreducible elements.

4.4.10 Proposition. When it terminates, the completion procedure for ER returns an n-polygraph Ř such
that EŘ is confluent modulo E.

Proof. The proof of soundness of the completion procedure for ER is a consequence of the inference
system given by Bachmair and Dershowitz in [7] in order to get a set of rules Ř such that EŘ is confluent
modulo E. Given two n-polygraphs R and E and a termination order > compatible with R modulo E,
their inference system is given by the following six elementary rules:

1) Orienting an equation:

(A ∪ {s = t}, R)  (A,R ∪ {s→ t}) if s > t.

2) Adding an equational consequence:

(A,R)  (A ∪ {s = t}, R) if s ∗←−R∪E u ∗−→R∪E t.

3) Simplifying an equation:

(A ∪ {s = t}, R)  (A ∪ {u = t}, R) if s ER→ u.

4) Deleting an equation:
(A ∪ {s = t}, R)  (A,R) if s ≈E t.

5) Simplifying the right-hand side of a rule:

(A,R ∪ {s→ t})  (A,R ∪ {s→ u}) if t ER→ u.
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6) Simplifying the left-hand side of a rule:

(A,R ∪ {s→ t})  (A ∪ {u = t}, R) if s ER→ u.

The soundness of Procedure 4.4.9 is a consequence of the following arguments:

i) For any critical branching (f : u → v, g : u → w) in CP( ER, R), we can add an equation v = w

using the rule Adding an equational consequence, and simplify it to v̂ ER = ŵ ER using the rule
Symplifying an equation.

ii) If v̂ ER ≈E ŵ ER, we can delete the equation using the rule Deleting an equation.

iii) Otherwise, we can always orient it using the rule Orienting an equation.

Thus, each step of this completion procedure comes from one of the inference rules given by Bachmair
and Dershowitz. Following [7], it returns a set R of rules so that ER is confluent modulo E.

4.4.11. Completion procedure for ERE. As noted in [7, Section 2], the polygraph R is the polygraph
for which is the most difficult to reach confluence modulo. Indeed, if R is confluent modulo E, then any
polygraph modulo (R, E, S) is confluent modulo E. In particular, the polygraph ER is confluent modulo
E if and only if the polygraph ERE is confluent modulo E. As a consequence, we will either prove
confluence modulo for ER or ERE in the sequel, leading to the same quotient. We can extend the above
completion procedure in the case of the polygraph modulo ERE. In that case, the critical branchings of
the form (f, e) with f in ER

∗(1)
E and e in E>(1) are still trivially confluent. Let us denote by CP( ERE, R)

the set of critical branchings of ERE modulo R. All these critical branchings can be written as a pair
(f · e, g), where (f, g) is a critical branching in CP( ER, R) and e is an n-cell in E>.

As a consequence, the completion procedure for ER given in 4.4.9 can be adapted for the polygraph
modulo ERE. In that case, the procedure differs from 4.4.9 by the fact that when adding a rule α : u⇒ v

in R, one can choose as target of α any element of the equivalence class of v with respect to E. We
prove in the same way than when it terminates, this completion procedure returns an n-polygraph Ř such
that ERE is confluent modulo E.

4.5. COHERENT CONFLUENCE MODULO

In this section, we introduce the property of coherent confluence modulo defined by the adjunction of a
square cell for each confluence diagram modulo. Under a termination hypothesis, Theorem 4.5.4 shows
how to deduce coherent confluence modulo for a polygraph modulo from coherent local confluence
modulo. This result is a coherent version of Newman’s lemma that states the equivalence between local
confluence and confluence under a termination hypothesis, [96]. Theorem 4.5.7 formulates a coherent
version of the critical branching lemma, it shows how to deduce local coherent confluence modulo from
the coherent confluence modulo of critical branchings.

4.5.1. Biaction of E> on Sqr(E>, S∗). Let (R, E, S) be an n-polygraph modulo. Let Γ be a square
extension of the pair of n-categories (E>, S∗). As the inclusions R ⊆ S ⊆ ERE of cellular extensions
hold, any n-cell f in S∗ can be decomposed in f = e1 ?n−1 f1 ?n−1 e2 ?n−1 f2 with f1 in R∗(1), f2 in S∗

such that `(f2) = `(f) − 1, e1 and e2 are n-cells in E> possibly identities, and ?n−1 denoting for the
composition along (n− 1)-cells in the free n-category generated by R ∪ E.

Thus, a branching (f, e, g) of S modulo E with a choice of a generating confluence (f ′, e ′, g ′) may
correspond to different squares in Sqr(E>, S∗). For instance, if g can be decomposed g = e1?n−1g1?n−1
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e2, the following squares in Sqr(E>, S∗) correspond to the same branching of S modulo E:

u
f //

e

��

v
f ′ // v ′

e ′

��

u
g
// w

g ′
// w ′

and

u
f //

e?n−1e1

��

v
f ′ // v ′

e ′

��

u1 g1e2
// w

g ′
// w ′

When computing a coherent presentation of Smodulo E, one does not want to consider two different
elements in a coherent completion of S modulo E, as defined in 4.6.1, to tile these squares which are
not equal in the free n-category enriched in double category generated by the double (n− 1)-polygraph
(E, S, Γ ∪ Peiff(E>, S∗)).

In order to avoid these redundant squares, we define a biaction of E> on Sqr(E>, S∗). For any
n-cells e1 and e2 in E> and any (n+ 1)-cell

u
f //

e

��

u ′

e ′

��

u
g
// v ′

A
��

in Sqr(E>, S∗) satisfying the following conditions

i) ∂+,n−1(e1) = ∂h−,n−1∂
v
−,n(A),

ii) ∂−,n−1(e2) = ∂h+,n−1∂
v
−,n(A),

iii) e1∂h−,n(A) ∈ S,

iv) e−2 ∂
h
+,n(A) ∈ S,

we define the square (n+ 1)-cell e1e2A as follows:

u1
e1f //

e1ee2

��

u ′

e ′

��

u2
e−2 g

// v ′

e1
e2
A

��

where u1 = ∂−,n−1(e1) and u2 = ∂+,n−1(e2). For a square extension Γ of (E>, S∗), we denote by Eo Γ
the set containing all elements e1e2A with A in Γ and e1, e2 in E>, whenever it is well defined. For any
e1,e2 in E> and A,A ′ in Γ , the following equalities hold whenever both sides are defined:

i) e ′1
e ′2
(e1e2A) =

e ′1e1
e2e
′
2
A;

ii) e1
e2(A �v A ′) = (e1e2A) �v A ′;

iii) e1
e2(A �h A ′) = (e11 A) �

h (1e2A
′).

4.5.2. Coherent confluence modulo. Let (R, E, S) be an n-polygraph modulo. Let Γ be a square ex-
tension of the pair of n-categories (E>, S∗). Let us denote

Γg := (E, S, Eo Γ ∪ Peiff(E>, S∗))
�
,v

the free (n − 1)-category enriched in double categories, whose vertical n-cells are invertible, generated
by the double (n− 1)-polygraph (E, S, Eo Γ ∪ Peiff(E>, S∗)) in DbPolvn−1.
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A branching modulo E as in (4.12) is Γ -confluent modulo E if there exist n-cells f ′, g ′ in S∗, e ′ in E>

and an (n+ 1)-cell A in Γg as in the following diagram:

u
f //

e

��

u ′
f ′ //

A
��

w

e ′

��

v
g
// v ′

g ′
// w ′

.

We say that S is Γ -confluent (resp. locally Γ -confluent, resp. critically Γ -confluent) modulo E if
every branching (resp. local branching, resp. critical branching) modulo E is Γ -confluent modulo E, and
that S is Γ -convergent if it is Γ -confluent modulo E and ERE is terminating. The polygraph modulo S
is called Γ -diconvergent, when it is Γ -convergent and E is convergent. Note that when Γ = Sqr(E>, S∗)
(resp. Γ = Sph(S∗)), the property of Γ -confluence modulo E corresponds to the property of confluence
modulo E (resp. confluence) given in 2.3.5.

In the sequel, proofs of confluence modulo results will be based on Huet’s double Noetherian induc-
tion principle on the rewriting system Sq defined in 2.3.9 and the property P on R∗n−1 × R∗n−1 defined,
for any u, v in R∗n−1, by

P(u, v) : any branching (f, e, g) of S modulo E with source (u, v) is Γ -confluent modulo E.

4.5.3 Proposition (Coherent half Newman’s modulo lemma). Let (R, E, S) be an n-polygraph modulo
such that ERE is terminating, and Γ be a square extension of (E>, S∗). If S is locally Γ -confluent modulo
E then the two following conditions hold

i) any branching (f, e) of S modulo E with f in S∗(1) and e in E> is Γ -confluent modulo E,

ii) any branching (f, e) of S modulo E with f in S∗ and e in E>(1) is Γ -confluent modulo E,

Proof. We prove condition i), the proof of condition ii) is similar. Let us assume that S is locally Γ -
confluent modulo E, we proceed by double induction.

We denote by u the source of the branching (f, e). If u is irreducible with respect to S, then f is an
identity n-cell, and the branching is trivially Γ -confluent.

Suppose that f is not an identity and assume that for any pair (u ′, v ′) of (n − 1)-cells in R∗n−1 such
that there is an n-cell (u, u)→ (u ′, v ′) in Sq, any branching (f ′, e ′, g ′) of source (u ′, v ′) is Γ -confluent
modulo E. Prove that the branching (f, e) is Γ -confluent modulo E.

We proceed by induction on `(e) ≥ 1. If `(e) = 1, (f, e) is a local branching of S modulo E and
it is Γ -confluent modulo E by local Γ -confluence of S modulo E. Now, let us assume that for k ≥ 1,
any branching (f ′′, e ′′) of S modulo E such that `(e ′′) = k is Γ -confluent modulo E, and let us consider
a branching (f, e) of S modulo E such that `(e) = k + 1, with source u. We choose a decomposition
e = e1?n−1e2 with e1 in E>(1) and e2 in E>. Using local Γ -confluence on the branching (f, e1) of source
u, there exist n-cells f ′ and f1 in S∗, an n-cell e ′1 : tn−1(f

′)→ tn−1(f1) in E> and an (n+ 1)-cell A in
Γg such that ∂h−,n(A) = f ?n−1 f

′ and ∂h+,n(A) = f1. Then, we choose a decomposition f1 = f11 ?n−1 f
2
1

with f11 in S∗(1) and f21 in S∗. Using the induction hypothesis on the branching (f11, e2) of S modulo E of
source u1 := tn−1(e1) = sn−1(e2), there exist n-cells f ′1 and g in S∗, an n-cell e2 : tn−1(f ′1)→ tn−1(g)
in E> and an (n + 1)-cell B in Γg such that ∂h−,n(B) = f11 ?n−1 f

′
1 and ∂h+,n(B) = g. This can be
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represented by the following diagram:

u

e1

��

f // u ′
f ′ // u ′′

e ′1

��

u1

=

��

f11
// u ′1

=

��

f21
// u ′′1

u1 f11
//

e2

��

u ′1 f ′1
// u ′2

e ′2

��

v
g

// v ′

Local Γ -conf mod E

Induction on `(e)

ih1 (f
1
1)

Now, there is an n-cell (u, u)→ (u ′1, u
′
1) in Sq given by the composition

(u, u)→ (u1, u1)→ (u1, u
′
1)→ (u ′1, u

′
1)

where the first step exists because `(e1) > 0 and the remaining composition is as in 2.3.9. Then, we
apply double induction on the branching (f21, f

′
1) of S modulo E of source (u ′1, u

′
1): there exist n-cells f2

and f ′2 in S∗ and an n-cell e3 : tn−1(f2)→ tn−1(f
′
2) in E>. By a similar argument, we can apply double

induction on the branchings (f2, (e ′1)
−) and (f ′2, e

′
2) of S modulo E, so that there exist n-cells f ′′,f3, f ′3

and g ′ in S∗ and n-cells e ′′1 : tn−1(f
′′) → tn−1(f3) and e ′′2 : tn−1(f

′
3) → tn−1(g

′) as in the following
diagram:

u

e1

��

f // u ′
f ′ // u ′′

e ′1

��

f ′′ // u ′′′

e ′′1

��

u1

=

��

f11
// u ′1

=

��

f21
// u ′′1 f2 // w1 f3 //

e3

��

w ′1

u1 f11
//

e2

��

u ′1 f ′1
// u ′2

e ′2

��

f ′2
// w2 f ′3

// w ′2

e ′′2

��

v
g

// v ′
g ′

// v ′′

Local Γ -conf mod E

Induction on `(e)

ih1 (f
1
1) Db Ind.

Db Ind.

Db Ind.

We can then repeat the same process using double induction on the branching (f3, e3, f
′
3) of S modulo

E of source (w1, w2) and so on, and this process terminates in finitely many steps, otherwise it leads
to an infinite rewriting sequence wrt S starting from u1, which is not possible since ERE, and thus S, is
terminating. This yields the Γ -confluence of the branching (f, e).

4.5.4 Theorem (Coherent Newman’s lemma modulo). Let (R, E, S) be an n-polygraph modulo such that
ERE is terminating, and Γ be a square extension of (E>, S∗). If S is locally Γ -confluent modulo E then it
is Γ -confluent modulo E.

Proof. Prove that any branching (f, e, g) of S modulo E is Γ -confluent modulo E. Let us choose such a
branching and denote by (u, v) its source. We assume that any branching (f ′, e ′, g ′) of S modulo E of
source (u ′, v ′) such that there is an n-cell (u, v) → (u ′, v ′) in Sq is Γ -confluent modulo E. We follow
the proof scheme used by Huet in [56, Lemma 2.7]. Let us denote by n := `(f) and m := `(g). We
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assume without loss of generality that n > 0 and we fix a decomposition f = f1 ?n−1 f2 with f1 in S∗(1)

and f2 in S∗.
If m = 0, by Proposition 4.5.3 on the branching (f1, e) of S modulo E, there exist n-cells f ′1 and g ′

in S∗, an n-cell e ′ : tn−1(f ′1) → tn−1(g
′) and an (n + 1)-cell A in Γg such that ∂h−,n(A) = f1 ?n−1 f

′
1

and ∂h+,n(A) = g
′. Then, since there is an n-cell (u, u)→ (u1, u1) in Sq with u1 := tn−1(f1), we can

apply double induction on the branching (f2, f
′
1) of S modulo E as in the following diagram:

u
f1 //

=
��

u1
f2 //

=

��

u2
f ′2 // u ′2

��

u

e

��

f1 // u1 f ′1
// u2 f ′′1

//

e ′

��

u ′2

v
g ′

// v ′

Prop. 4.5.3

ih1 (f1) Db Ind.

We finish the proof of this case with a similar argument than in 4.5.3, using repeated double inductions
that can not occur infinitely many times since S is terminating.

Now, assume that m > 0 and fix a decomposition g = g1 ?n−1 g2 of g with g1 in S∗(1) and g2 in
S∗. By Step 1 on the branching (f1, e) of S modulo E, there exist n-cells f ′1 and h1 in S∗, an n-cell
e1 : tn−1(f

′
1) → tn−1(h1) in E> and an (n + 1)-cell A in Γg such that ∂h−,n(A) = f1 ?n−1 f

′
1 and

∂h+,n(A) = h1. We distinguish two cases whether h1 is trivial or not.

If h1 is trivial, the Γ -confluence of the branching (f, e, g) of S modulo E is given by the following
diagram

u

=

��

f1 // u1

=

��

f2 // u2
f ′2 // u ′2

��
u f1 //

e

��

u1 f ′1
// u ′1 f3 //

e ′

��

u3

e1

��

f4 // u4 f5 // u5

��
v

=

��

1v // v

=

��

g1 // v ′1

=

��

g ′1
// v ′′1 g ′′1

// w1

��

g3 // w3

v
1v

// v g1 // v ′1 g2
// v2

g ′2

// w2

Prop. 4.5.3Prop. 4.5.3

ih1 (f1)

ih1 (1v) ih1 (g1)

Db Ind.

Db Ind.

Db Ind.

where the branchings (f1, e) and (g1, e
′) of Smodulo E are Γ -confluent by Proposition 4.5.3, double

induction applies on the branchings (f2, f ′1 ?n−1 f3), (g
′
1, g2) and (f4, e1, g

′′
1 ) since there are n-cells

(u, v)→ (u, u)→ (u1, u1) , (u, v)→ (v, v)→ (v, v ′1)→ (v ′1, v
′
1) and (u, v)→ (u3, v)→ (u3, v

′′
1 )

in Sq and one can check that this process of double induction can be repeated, terminating in a finite
number of steps since S is terminating and yields a Γ -confluence of the branching (f, e, g) modulo E.

If h1 is not trivial, let us fix a decomposition h1 = h11 ?n−1 h
2
1 with h11 in S∗(1) and h21 in S∗. The

Γ -confluence of the branching (f, e, g) of S modulo E is given by the following diagram:

108



u

=

��

f1 // u1

=

��

f2 // u2
f ′2 // u ′2

��
u

e

��

f1 // u1 f ′1
// u ′1

��

f3 // u3 f4 // u4

��

v
=

��

h11
// v1

=
��

h21
// w1 h2 // w2

��

h ′2
// w ′2

v

=

��

h11
// v1 h ′1

// w ′1

��

h3 // w3 h ′3
// w ′3

��

v

=

��

g1 // v ′

=

��

g ′1
// v ′1 g ′2

// v ′2 g ′3
//

��

v ′3

v
g1
// v ′

g2
// v2 g3

// v3

ih1 (f1)

ih1 (g1)

ih1 (h
1
1)

Prop. 4.5.3

Local Γ -conf mod E

Db Ind.

Db Ind.

Db Ind.

Db Ind.

Db Ind.

where the branching (f1, e) modulo E is Γ -confluent by Proposition 4.5.3, the branching (h11, g1) is Γ -
confluent by assumption of local Γ -confluence of S, and one can check that double induction applies on
the branchings (f2, f ′1), (h

2
1, h

′
1), (g

′
1, g2), (f3, h2) and (h3, g

′
2). This process of double induction can be

repeated, terminating in a finite number of steps since S is terminating and yields a Γ -confluence of the
branching (f, e, g) modulo E.

4.5.5. Coherent critical branching lemma modulo. In this subsection, we show how to prove coher-
ent local confluence of an n-polygraph modulo from coherent confluence of some critical branchings. In
particular, we show that we do not need to consider all the local branchings.

4.5.6 Proposition. Let (R, E, S) be an n-polygraph modulo such that ERE is terminating, and Γ be a
square extension of (E>, S∗). Then S is Γ -locally confluent modulo E, if and only if the two following
conditions hold:

a) any local branching (f, g) : u⇒ (v,w) with f in S∗(1) and g in R∗(1) is Γ -confluent modulo E:

u
f //

=

��

v
f ′ // v ′

e ′

��

u
g
// w // w ′

A
��

b) any local branching (f, e) : u ⇒ (v, u ′) modulo E with f in S∗(1) and e in E>(1) is Γ -confluent
modulo E:

u
f //

e
��

v
f ′ // v ′

e ′

��
u ′

g ′
// w

B
��
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Proof. We prove this result using Huet’s double Noetherian induction principle on Sq and the property
P on R∗n−1 × R∗n−1 defined by: for any u, v in R∗n−1,

P(u, v) : any branching (f, e, g) of S modulo E of source (u, v) is Γ -confluent modulo E.

The only part is trivial because properties a) and b) correspond to Γ -confluence of some local branch-
ings of Smodulo E. Conversely, assume that S satisfy properties a) and b) and let us prove that any local
branching is Γ -confluent modulo E. We consider a local branching (f, e, g) of S modulo E, and assume
without loss of generality that f is a non-trivial n-cell in S∗(1). There are two cases: either g is trivial,
and the local branching (f, e) of S modulo E is Γ -confluent by b), or e is trivial. In that case, if g is in
R∗(1), then Γ -confluence of the branching (f, g) is given by a). Otherwise, let us choose a decomposition
g = e1?n−1g

′?n−1e2 with e1,e2 in E> and g ′ in R∗(1). Now, let us prove the confluence of the branching

u
f //

e1
��

v

u ′
g ′e2

// v ′

of S modulo E, where g ′e2 is an n-cell in S∗(1). We will then prove the Γ -confluence of the branching
(f, g) using the biaction of E> on Sqr(E>, S∗). Using Proposition 4.5.3 on the branching (f, e1) of S
modulo E, there exist n-cells f ′ and f1 in S∗, an n-cell e ′ : tn−1(f ′) → tn−1(f1) and an (n + 1)-cell
A in Γg such that ∂h−,n(A) = f ?n−1 f

′ and ∂h+,n(A) = f1. Using property a) on the local branching
(g ′, g ′e2) ∈ R∗(1) × S∗(1) and the trivial confluence given by the right vertical cell e2, there exists an
(n + 1)-cell B in Γg such that ∂h−,n(B) = g ′ and ∂h+,n(B) = g ′e2. Let us choose a decomposition
f1 = f11 ?n−1 f

2
1 with f11 in S∗(1) and f21. By property a) on the local branching (f11, g

′), there exist
n-cells f ′1 and g ′1 in S∗, an n-cell e ′′ : tn−1(f ′1) → tn−1(g

′
1) and an (n + 1)-cell C in Γg such that

∂h−,n(C) = f
1
1 ?n−1 f

′
1 and ∂h+,n(C) = g

′ ?n−1 g
′
1 as depicted on the following diagram:

u

e1

��

f // u ′
f ′ // u ′′

e ′1

��

u1

=

��

f11
// u ′1

=

��

f21
// u ′′1

u1 f11
//

=

��

u ′1 f ′1
// u ′2

e ′2

��
v g ′ //

=

��

v1
g ′2

//

e2

��

v2

v
g ′e2

// v ′

A
��

C
��

B
��

ih1 (f
1
1)

There are n-cells (u, u) → (u ′1, u
′
1) and (u, u) → (v1, v1) in Sq given by the following composi-

tions
(u, u)→ (u1, u1)→ (u1, u

′
1)→ (u ′1, u

′
1)

(u, u)→ (u1, u1)→ (u1, v)→ (v, v)→ (v, v1)→ (v1, v1)

so that we can apply double induction on the branchings (f21, f
′
1) and (g ′2, e2) of Smodulo E, and we finish

the proof of Γ -confluence of the branching (f, e1, g
′e2) using repeated double inductions, terminating in

a finite number of steps since S is terminating.
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Now, we get the Γ -confluence of the branching (f, g) of S by the following diagram:

u

=

��

f // u ′
f ′ // u ′′

e ′1

��

u1

=

��

e1f
1
1
// u ′1

=

��

f21
// u ′′1

u1 e1f
1
1
//

=
��

u ′1 f ′1
// u ′2

e ′2

��
v e1g

′ //
=

��

v1
g ′2

//

e2

��

v2

v
e1g
′e2

// v ′

ih1 (e1f
1
1)

1
e1
A
��

e1

e−
1

C
��

e1

e−
1

B
��

since the top rectangle is by definition tiled by the (n + 1)-cell 1e1A, the bottom rectangle is tiled by the
(n+ 1)-cell e1

e−1
B and the remaining rectangle is tiled by the (n+ 1)-cell e1

e−1
C. The rest of the diagram is

tiled in the same way than above.

4.5.7 Theorem (Coherent critical branching lemma modulo). Let (R, E, S) be an n-polygraph modulo
such that ERE is terminating, and Γ be a square extension of (E>, S∗). Then S is Γ -locally confluent
modulo E, if and only if the two following conditions hold

a0) any critical branching (f, g) : u⇒ (v,w) with f in S∗(1) and g in R∗(1) is Γ -confluent modulo E:

u
f //

=

��

v
f ′ // v ′

e ′

��

u
g
// w // w ′

A��

b0) any critical branching (f, e) : u ⇒ (v, u ′) modulo E with f in S∗(1) and e in E>(1) is Γ -confluent
modulo E:

u
f //

e
��

v
f ′ // v ′

e ′

��
u ′

g ′
// w

B��

Proof. By Proposition 4.5.6, the local Γ -confluence is equivalent to both conditions a) and b). Let us
prove that the condition a) (resp. b)) holds if and only if the condition a0) (resp. b0)) holds. One
implication is trivial. Suppose that condition b0) holds and prove condition b). The proof of the other
implication is similar. We examine all the possible forms of local branchings modulo given in 4.4.6.
Local aspherical branchings modulo and local Peiffer branchings modulo of the forms (4.13) are trivially
confluent modulo:

u ?i v
f?iv //

u?ie
��

u ′ ?i v

u ′?ie
��

u ?i v
′
f?iv

′
// u ′ ?i v

′

w ?i u
w?if //

e ′?iu
��

w ?i u
′

e ′?iu
′

��

w ′ ?i u
w ′?if

// w ′ ?i u
′
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and Γ -confluent modulo by definition of Γ -confluence. The other local branchings modulo are over-
lapping branchings modulo (f, e) : u ⇒ (u ′, v) of the form (4.14), where f is an n-cell of S∗(1)

and e is an n-cell of E>(1). By definition, there exists a whisker C on R∗n−1 and a critical branching
(f ′, e ′) : u0 ⇒ (u ′0, v0) such that f = C[f ′] and e = C[e ′]. Following condition b0) the branching
(f ′, e ′) is Γ -confluent, that is there exists a Γ -confluence modulo E:

u
f ′ //

e ′

��

v
f ′′ // v ′

e ′′

��
u ′

g ′
// w

A��

inducing a Γ -confluence for (f, e):

C[u]
C[f ′]

//

C[e ′]
��

C[v]
C[f ′′]

// v ′

C[e ′′]

��
C[u ′]

C[g ′]
// w

C[A]
��

This proves the condition b).

4.6. COHERENT COMPLETION MODULO

In this section, we show how to construct a double coherent presentation of an (n−1)-category C starting
with a presentation of this (n − 1)-category by an n-polygraph modulo. We explain how the results
presented in this section generalize to n-polygraphs modulo the coherence results from n-polygraphs as
given in [51, 52].

4.6.1. Coherent completion modulo. We recall the notion of coherent completion of a convergent n-
polygraph and introduce the notion of coherent completion modulo for polygraphs modulo, given by
adjunction of a square cell for any confluence diagram of critical branching modulo.

4.6.2. Coherent completion. Recall from Section 2.5.5 that a convergent n-polygraph can be extended
into a coherent globular presentation of the category it presents. Explicitly, given a convergent n-
polygraph E, we consider a family of generating confluences of E as a cellular extension of the free
(n,n− 1)-category E> that contains exactly one globular (n+ 1)-cell

v e1

  
Ee,e ′��u

e 00

e ′
--

w

v ′ e ′1

>>

for every critical branching (e, e ′) of E, where (e1, e ′1) is a chosen confluence. Any (n+1, n)-polygraph
obtained from E by adjunction of a chosen family of generating confluences of E is a globular coherent
presentation of the (n − 1)-category E, [51]. This result was originally proved by Squier in [111]
for n = 2. From such an (n + 1, n)-polygraph we will consider a double (n + 1, n − 1)-polygraph
(E, ∅, ΓE), where ΓE is a square extension of the (n,n − 1)-categories (E>, 1) seen as an n-category
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enriched in double groupoids that contains exactly one square (n+ 1)-cell

u

e

��

= // u

e ′
��

v

e1
��

v ′

e ′1
��

w =
// w

Ee,e ′

��

for every critical branching (e, e ′) of E, where (e1, e
′
1) is a chosen confluence.

4.6.3. Coherent completion modulo. Let (R, E, S) be an n-polygraph modulo. A coherent completion
modulo E of S is a square extension of the pair of (n+1, n)-categories (E>, S>) whose elements are the
square (n+ 1)-cells Af,g and Bf,e of the following form:

u
f //

=

��

u ′
f ′ //

Af,g
��

w

e ′

��

u
g
// v

g ′
// w ′

u
f //

e

��

u ′
f ′ //

Bf,e
��

w

e ′

��

v
g ′

// w ′

(4.16)

for any critical branchings (f, g) and (f, e) of S modulo E, where f, g and e are n-cells of S∗(1), R∗(1)

and E>(1) respectively. Note that such completion is not unique in general and depends on the n-
cells f ′, g ′, e ′ chosen to obtain the confluence of the critical branchings.

4.6.4. Coherence by E-normalization. In this subsection, we show how to obtain an acyclic square ex-
tension of a pair of categories (E>, S>) coming from a polygraph modulo (R, E, S), under an assumption
of confluence modulo E and of normalization of S with respect to E.

4.6.5. Normalization in polygraphs modulo. Let us recall the notion of normalization strategy in an
n-polygraph P. Denote by C the (n− 1)-category presented by P. Consider a section s : C → P∗n of the
canonical projection π : P∗n → C, that sends any (n− 1)-cell u in C on an (n− 1)-cell in P∗n−1 denoted
by û such that π(û) = u. A normalization strategy for P with respect to s is a map

σ : P∗n−1 → P∗n

that sends every (n− 1)-cell u of P∗n−1 to an (n+ 1)-cell

σu : u→ û.

Let (R, E, S) be an n-polygraph modulo. The n-polygraph modulo S is normalizing if any (n − 1)-
cell u admits at least one normal with respect to S, that is NF(S, u) is not empty.

A set X of (n − 1)-cells in R∗n−1 is E-normalizing with respect to S if for any u in X, the set
NF(S, u) ∩ Irr(E) is not empty. The n-polygraph modulo S is E-normalizing if it normalizing and
R∗n−1 is E-normalizing. When S is E-normalizing, a E-normalization strategy σ for S, associates to each
(n − 1)-cell u in R∗n−1 an n-cell σu : u → û in S∗, where û belongs to NF(S, u) ∩ Irr(E). Note that a
normalizing cellular extension modulo ERE is E-normalizing.

4.6.6 Theorem. Let (R, E, S) be an n-polygraph modulo, and Γ be a square extension of the pair of
(n + 1, n)-categories (E>, S>) such that S is Γ -diconvergent. If Irr(E) is E-normalizing with respect to
S, then the square extension Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE is acyclic.
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Proof. Let Γ be a square extension of (E>, S>). We will denote by C the free n-category enriched in
double groupoid (E, S, Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE)

�
generated by the double (n+ 1, n− 1)-polygraph

(E, S, Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE). We will denote by ũ the unique normal form of an (n− 1)-cell u in
R∗n−1 with respect to E and we fix a normalization strategy ρu : u→ ũ for E.

By termination of ERE, the n-polygraph modulo S is normalizing. Let us fix a E-normalization
strategy σu : u→ û for S. Let us consider a square

u
f //

e
��

v

e ′
��

u ′
g
// v ′

(4.17)

in C. By definition the n-cell f in S> can be decomposed (in general in a non unique way) into a zigzag
sequence f0 ?n−1 f−1 ?n−1 · · ·?n−1 f2n ?n−1 f

−
2n+1 with source u and target v where the f2k : u2k → u2k+1

and f2k+1 : u2k+2 → u2k+1, for all 0 ≤ k ≤ n are n-cell of S∗, with u0 = u and u2n+2 = v.
By Γ -confluence modulo E there exist n-cells efi in E> and (n+ 1)-cells σfi in C as in the following

diagrams:

u2k
f2k //

ρu2k

��

u2k+1
σu2k+1 // ^u2k+1

ef2k

��

ũ2k σũ2k

// ̂̃u2k
σf2k

��

u2k+2
f2k+1 //

ρu

��

u2k+1
σu2k+1 // ^u2k+1

ef2k+1

��

ũ2k+2 σũ2k+2

//̂̃u2k+2

σf2k+1

��

for all 0 ≤ k ≤ n. By definition of the normalization strategy σ, for any 0 ≤ i ≤ 2n + 1, the
(n − 1)-cell ̂̃u is a normal form with respect to E, and by convergence of the n-polygraph E it follows
that ̂̃ui = ̂̃ui+1.

Moreover, for any 1 ≤ i ≤ 2n+1, there exists a square (n+1)-cell in C as in the following diagram:

^ui+1
= //

efi
��

^ui+1
efi+1
��̂̃ui =

// ̂̃ui+2
Ei+1
��

We define a square (n+ 1)-cell σf in C as the following �v-composition:

σf0 �
v E1 �v σf1 �

v σf2 �
v . . . �v σf2n �

v E2n+1 �v σf2n+1

For an even integer i ≥ 0

ui

ρui

��

fi // ui+1
σui+1 // ûi+1

= //

efi

��

ûi+1

efi+1

��

ui+1
σui+1oo ui+2

fi+1oo
fi+2 //

ρu2

��

ui+3
σui+3 // ^ui+3

= //

efi+2

��

^ui+3

efi+3

��

. . .

ũi σũi

// ̂̃ui =
// ̂̃ui+2 ũi+2σũi+2

oo
σũi+2

// ̂̃ui+2 =
// ̂̃ui+4 . . .

σfi

��

σfi+1

��

σfi+2

��

Ei+1

��

Ei+3

��

In this way, we have constructed a square (n+ 1)-cell

u
f //

ρu
��

v

ρv
��

ũ
σũσ

−
ṽ

// ṽ

σf��
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Similarly, we construct a square (n+ 1)-cell σg as follows:

ũ
σũσ

−
ṽ // ṽ

u ′
g
//

ρu ′

OO

v ′

ρv ′

OOKS
σg

using that ũ = ũ ′ and ṽ = ṽ ′ by convergence of E. We obtain a square (n+1)-cell Ee�v (σf�hσ−g )�vEe ′
filling the square (4.17), as in the following diagram:

u
= //

e

��

u

ρu

��

f // v

ρv

��

= // v

e ′

��

ũ
σũ // ̂̃u = ̂̃v ṽ

σṽoo

u ′ =
// u ′

g
//

ρu ′

OO

v ′ =
//

ρv ′

OO

v ′

σf
��

σg

KS
Ee

��

Ee ′

��

4.6.7 Corollary. Let (R, E, S) be a diconvergent n-polygraph modulo. If Irr(E) is E-normalizing with
respect to S, then for any coherent completion Γ of S modulo E and any coherent completion ΓE of E, the
square extension Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE is acyclic.

Note that, when E is empty in Corollary 4.6.7, we recover Squier’s coherence theorem [111, Theorem
5.2] for convergent n-polygraphs, [51, Proposition 4.3.4].

4.6.8. Decreasing orders for E-normalization. Let (R, E, S) be an n-polygraph modulo. We describe
a way to prove that the set Irr(E) is E-normalizing, laying on the definition of a termination order for R.

Given an n-polygraph P, one defines a decreasing order operator for P as a family of functions

Φp,q : P∗n−1(p, q)→ Nm(p,q)

indexed by pairs of (n− 2)-cells p and q in P∗n−2 satisfying the following conditions:

i) For any (n − 1)-cells u and v in P∗n−1(p, q) such that there exists an n-cell f : u → v in P∗,
the function Φp,q satisfy Φp,q(u) > Φp,q(v), where > is the lexicographic order on Nm(p,q). We
denote by >lex the partial order on P∗n−1 defined by u >lex v if and only if u and v have same source
p and target q and Φp,q(u) > Φp,q(v).

ii) For any u and v in P∗n−1 and any whisker C on P∗n−1, u >lex v implies that C[u] >lex C[v].

iii) The normal forms in P∗n−1(p, q) with respect to P are sent to the tuple (0, . . . , 0) in Nm(p,q).

Note that if an n-polygraph P admits a decreasing order operator, it is terminating. Actually, such
a decreasing order is a terminating order for P which is similar to a monomial order, but that we do not
require to be total.
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4.6.9. Proving coherence modulo using a decreasing order. Consider ann-polygraph modulo (R, E, S)
such that E is terminating. A decreasing order operator Φ for E is compatible with R if for any n-cell
f : u→ v in R∗, then Φp,q(u) ≥ Φp,q(v).

In that case, the set Irr(E) is E-normalizing with respect to R, since if u in R∗n−1 is a normal form
with respect to E,Φp,q(u) = (0, . . . , 0) inNm(p,q) and by compatibility with R, for any n-cell f : u→ v

in R∗, we get Φp,q(v) = (0, . . . , 0) so v is still a normal form with respect to E. We can also prove that
Irr(E) is E-normalizing with respect to ER using this method, provided for any (n − 1)-cell u in Irr(E)
irreducible by R, any (n − 1)-cell u ′ such that there is an n-cell u→ u ′ in E> is also irreducible by R.
This is for instance the case if R is left-disjoint from E, that is for any (n − 1)-cell u in s(R), we have
GR(u) ∩ En−1 = ∅ where:

• s(R) is the set of (n− 1)-sources in R∗n−1 of generating n-cells in Rn,

• for any u in R∗n−1, GR(u) is the set of generating (n− 1)-cells in Rn−1 contained in u.

With these conditions, we can apply Theorem 4.6.6 to obtain acyclic extensions of R or ER.

4.6.10. Coherence by commutation. In this subsection, we prove that an acyclic extension of a pair
(E>, S>) coming from a polygraph modulo (R, E, S) can be obtained from an assumption of commuting
normalization strategies for the polygraphs S and E. In particular, with further assumptions about this
commutation we show how to prove E-normalization.

4.6.11. Commuting normalization strategies. Let (R, E, S) be an n-polygraph modulo. Let σ (resp.
ρ) a normalization strategy with respect to S (resp. with respect to E). The normalization strategies σ and
ρ are weakly commuting if for any u in R∗n−1, there exists an n-cell ηu in S∗ as in the following diagram:

u
σu //

ρu
��

û

ρû
��

ũ
ηu
// ˜̂u (4.18)

Given weakly commuting normalization strategies σ and ρ, we will denote by N(σ, ρ) the square
extension of the pair (E>, S>) made of squares of the form (4.18), for every (n− 1)-cell u in R∗n−1.

The normalization strategies σ and ρ are said to be commuting if ηu = σũ holds for all (n − 1)-
cell u in R∗n−1. Note that, by definition σ and ρ commute if and only if the equality ̂̃u = ˜̂u hold for all
(n− 1)-cells of R∗n−1.

4.6.12 Theorem. Let (R, E, S) be an n-polygraph modulo, and Γ be a square extension of the pair
of (n + 1, n)-categories (E>, S>) such that S is Γ -diconvergent. If σ and ρ are weakly commuting
normalization strategies for S and E respectively, then the square extension Eo Γ ∪Peiff(E>, S∗)∪ ΓE ∪
N(σ, ρ) is acyclic.

Proof. Denote by C the free n-category enriched in double groupoids (E, S, E o Γ ∪ Peiff(E>, S∗) ∪
ΓE ∪ N(σ, ρ))

�
. For u in R∗n−1, we denote by Nu the square (n + 1)-cell in C corresponding to the

square (4.18).
We prove that for any n-cell f : u → v in S∗, there exists a square (n + 1)-cell σ̃f in C of the

following form

u

ρu
��

u
f //

σuoo v
σv // v

ρv
��

ũ =
// ṽ

σ̃f��

The square (n+ 1)-cell σ̃f is obtained as the following composition:
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u

ρu

��

u
f //

σuoo

ρu

��

v
σv // v

= // v
= //

eηu

��

v

ev̂

��

= // v

ρv

��

ũ ũ
ηu

oo
ηu

// ṽ
σ
ṽ

//
̂̃̂
v =

//
̂̃̂
v ̂̃v

σ̂̃voo

Nu

��

ηf

��
Eeηu ,ev̂

��

γv

��

where the n-cell eηu and the square (n + 1)-cell ηf (resp. the n-cell ev̂ and the square (n + 1)-cell γv)
belong to C by Γ -confluence modulo E of S, and the square (n+ 1)-cell Eeηu ,ev̂ belongs to ΓE.

Now, let consider a square

u
f //

e
��

v

e ′
��

u ′
g
// v ′

(4.19)

in C. By definition the n-cell f in S> can be decomposed (in general in a non unique way) into a zigzag
sequence

f0 ?n−1 f
−
1 ?n−1 · · · ?n−1 f2n ?n−1 f−2n+1

with source u and target v where the f2k : u2k → u2k+1 and f2k+1 : u2k+2 → u2k+1, for all 0 ≤ k ≤ n
are n-cell of S∗, with u0 = u and u2n+2 = v. We define a square (n+1)-cell σf as the following vertical
composition:

Nu �v σ̃f0 �
v σ̃f1 �

v . . . �v σ̃f2n+1 �
v Nv

as depicted on the following diagram

u0
σu0 //

ρu0

��

û0

ρû0

��

u0
σu0oo

f0 // u1
σu1 // û1

ρû1

��

u1
σu1oo u2

f1oo
σu2 // u2

σu2 //

ρu2

��

u2
f2 // u3

σu3 // û3

ρu3

��

· · ·

ũ0 ηu0

// ˜̂u0 =
// ˜̂u1 =

// ˜̂u2 =
// ˜̂u3 · · ·

Nu0

��

σ̃f0

��

σ̃f1

��

σ̃f2

��

In this way, we have constructed a square (n+ 1)-cell

u
f //

ρu
��

v

ρv
��

ũ
ηuη−v

// ṽ

σf��

Similarly, we construct a square (n+ 1)-cell σg as follows:

ũ
ηuη−v // ṽ

u ′
g
//

ρu ′

OO

v ′

ρv ′

OOKS
σg

using that ũ = ũ ′ and ṽ = ṽ ′ by convergence of E. We obtain a square (n + 1)-cell filling the
square (4.19), as in the proof of Theorem 4.6.6.
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4.6.13. Remarks. Note that when σ and ρ are commuting, Irr(E) is E-normalizing with respect to S

since ̂̃u = ˜̂u implies that the normal form ̂̃u with respect to S also is a normal form with respect to E.
Then Theorem 4.6.6 applies, to prove that Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE is acyclic.

One can recover the fact that with the hypothesis of Theorem 4.6.12 and the assumption that the
equality ηu = σũ holds for any u in R∗n−1, we do not need the square (n + 1)-cells Nu in the coherent
extension, using the following lemma on the square (4.18).

4.6.14 Lemma. Let S be an n-polygraph modulo such that ERE is terminating, and Γ be a square
extension of the pair of (n + 1, n)-categories (E>, S>) such that S is Γ -confluent modulo E. Then any
square in Γg of the form

u
f //

e
��

v
f ′ // w

e ′
��

u ′
g
// v ′

g ′
// w ′

(4.20)

such that w and w ′ are normal forms with respect to S is the boundary of a square (n+ 1)-cell in Γg.

Proof. Let us consider a square as in (4.20). By Γ -confluence of S modulo E on the branching (f, e, g),
there exists a Γ -confluence as in the following diagram:

u
f //

e
��

v
f1 // v1

e ′′
��

u ′
g
// v ′

g1
// v ′1

A
��

By Γ -confluence on the branchings (f ′, f1) and (g1, g
′) of S, there exist square (n+ 1)-cells B and B ′ as

follows:

u

=

��

f // v

=

��

f ′ // w

e1

��
u

e

��

f // v f1 // v1

e2

��

f2 // v2

u ′

=

��

g // v ′

=

��

g1 // v ′1 g2 // v ′2

e3

��

u ′ g // v ′ g ′ // w ′

ih1 (f)

ih1 (g)

A

��

B
��

B ′

��

Then, we use Huet’s double induction as in Section 4.5 to prove that the square

v1

e2
��

f2 // v2

e−1 e
′e2

��

v ′1 g2
// v ′2

is the boundary of a square (n+ 1)-cell in Γg.
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4.7. GLOBULAR COHERENCE FROM DOUBLE COHERENCE

In this section we explain how to deduce a globular coherent presentation for ann-category from a double
coherent presentation generated by a polygraph modulo. We apply this construction in the situation of
commutative monoids in Subsection 4.7.5 and to pivotal monoidal categories in Subsection 4.7.7.

4.7.1. Globular coherence by convergence modulo. Let (R, E, S) be an n-polygraph modulo and Γ be
a square extension on (E>, S>). Consider the double (n + 1, n − 1)-polygraph given by (E, S, Eo Γ ∪
Peiff(E>, S∗)∪ΓE), where ΓE is the square extension defined in 4.6.2. Let us denote by ((Pi)0≤i≤n+1, (Qi)1≤i≤n+1)
the associated (n+ 1, n− 1)-dipolygraph V(E, S, Eo Γ ∪Peiff(E>, S∗)∪ ΓE) given by the functor V de-
fined in 4.8. The cellular extension S being defined modulo the cellular extension E in the sense of 4.4.1,
we adapt the construction of the n-functor F in the quotient functor V defined in Section 4.2.15-vi) as
follows.

a) F is the identity functor on the underlying (n− 2)-category R∗n−2, that coincides with E∗n−2,

b) F sends an (n− 1)-cell u in R∗n−1 to its equivalence class [u]v modulo En,

c) F sends an n-cell f : u → v in S> to the n-cell [f]v : [u]v → [v]v in (R∗n−1)En(Pn) defined as in
Section 4.2.15, iv)-c), but by setting

[f]v = [f1]
v ?n−1 [f2]

v ?n−1 . . . ?n−1 [fk]
v,

for any decomposition of f = e1 ?n−1 f1 ?n−1 e2 ?n−1 f2 ?n−1 . . . ?n−1 ek ?n−1 fk in S>, where the
n-cells ei and fi are in E> and R> respectively and may be identity cells.

As a consequence of Proposition 4.2.17 and Corollary 4.6.7, we get the following result:

4.7.2 Proposition. Let (R, E, S) be a diconvergent n-polygraph modulo. If Irr(E) is E-normalizing with
respect to S, then for any coherent completion Γ of Smodulo E, the (n+1, n−1)-dipolygraph V(E, S, Eo
Γ ∪ Peiff(E>, S∗) ∪ ΓE) is a globular coherent presentation of the (n− 1)-category (R∗n−1)E.

4.7.3 Theorem. Let (R, E, S) be a diconvergent n-polygraph modulo such that Irr(E) is E-normalizing
with respect to S. Let Γ be a coherent completion of S modulo E, then the cellular extension

[Γ ]v := {[A]v | A ∈ Γ }

extends the n-category (R∗n−1)En(Rn) into a globular coherent presentation of the (n − 1)-category
(R∗n−1)E.

Proof. The quotient functor V sends the cellular extension EoΓ ∪Peiff(E>, S∗)∪ΓE to [Γ ]v. Indeed, any
square (n+1)-cell Ee,e ′ in ΓE yields an identity (n+1)-cell in the (n+1)-category (R∗n−1)En(Sn)(Pn+1):

u

e

��

= // u

e ′
��

v

e1
��

v ′

e ′1
��

w =
// w

Ee,e ′

��

 [u]v = [w]v

[ih0 (u)]
v

$$

[ih0 (w)]
v

::
[u]v = [w]v

��

Similarly, any (n + 1)-cell in Peiff(E>, S∗) yields an identity (n + 1)-cell in the (n + 1)-category
(R∗n−1)En(Sn)(Pn+1). Finally, two square (n+1)-cells in the same orbit for the biaction of the (n,n−1)-
category E> on Sqr(E>, S∗) are sent on the same globular (n+ 1)-cell in (R∗n−1)En(Sn)(Pn+1).
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4.7.4. Gobular coherent completion procedure for ER. Given a diconvergent n-polygraph mod-
ulo (R, E, S), Corollary 4.6.7 gives a method to construct an acyclic square extension of the pair of
(n,n − 1)-categories (E>, S>). In many applications, this result is applied with S = ER and in situa-
tions where ER is not confluent modulo E. When ER is equipped with a termination order compatible
with R modulo E, one can apply the completion procedure of Subsection 4.4.9 to obtain an n-polygraph
Ř such that EŘ is confluent modulo E. Moreover, following Corollary 4.7.3 the only square cells that we
have to consider in the construction of the globular coherent presentation through the quotient functor V
are the square cellsAf,g and Bf,e of (4.16) of a coherent completion of Smodulo E. In the particular case
of ER, we do not have to consider square cells of the form Bf,e. Indeed, the critical branchings (f, e)
where f is an n-cell in S∗(1) and e is an n-cell in E>(1) are trivially confluent from Section 4.4.9, and the
square (n+ 1)-cell Bf,e obtained by the following choice of a confluence modulo E:

u
f //

e
��

Bf,e
��

v

=

��
u ′

e−·f
// v

yields an identity (n+ 1)-cell

[u]v = [u ′]v

[f]v

%%

[e−·f]v=[f]v

99
[v]vi[f]v

��

in the (n+ 1)-category ((R∗n−1)En(Pn))(Pn+1). As a consequence, one only needs to choose a family of
square (n+ 1)-cells

u
f //

=

��

u ′
f ′ //

Af,g
��

w

e ′

��

u
g
// v

g ′
// w ′

for a choice of confluence modulo E of any critical branching (f, g) of S modulo E, where f is an n-cell
of ER∗(1) and g is an n-cell of R∗(1). Applying the quotient functor V of 4.8 on the set of square (n+1)-
cells Af,g, following Theorem 4.7.2, we obtain an acyclic extension of the n-category (R∗n−1)En(Pn)
given by

{ [Af,g]
v | (f, g) is a critical branching of S modulo E },

where bracket notation [−]v is defined in 4.2.16.

4.7.5. Commutative monoids. We illustrate the completion procedure 4.7.4 to show how to compute a
coherent presentation of a commutative monoid presented by a 2-polygraph modulo (R, E, ERE), where
E is the 2-polygraph Com2(X) for a finite set X defined in 4.3.2. The 2-cell of the 2-polygraph Com2(X)
are oriented with respect to a deglex order induced by a total order on X, hence Com2(X) is terminating.
It is also confluent by confluence of any critical branching depicted as follows:

xixkxj
αi,kxj +3 xkxixj xkαi,j

%-
xixjxk

xiαj,k 19

αi,jxk %-

xkxjxi

xjxixk xjαi,k
+3 xjxkxi

αj,kxi

19

for any xi, xj, xk in X such that xi > xj > xk, and the 2-cells α−,− are the generating 2-cell of Com2(X).
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4.7.6. Example. Consider such a 2-polygraph modulo with X = {x1, x2, x3, x4}, and

R2 = {x1x3
β⇒ x2x4, x1x2

γ⇒ x1}.

There is a critical branching of ERE modulo E given by

x1x2x3
α−
2,3·β +3

=

��

x2x4x2

x1x2x3 γ
+3 x1x3

β
+3 x2x4

(4.21)

where α−
2,3 · β is the rewriting step of ERE defined by x1x2x3

α−
2,3 +3 x1x3x2

βx2 +3 x2x4x2 . As any
permutation of the xi in x2x4x2 and x2x4 are irreducible with respect to R2, the 1-cells x2x4x2 and x2x4
are normal forms with respect to ERE, so the branching (4.21) is not confluent modulo E. Following the
completion procedure 4.4.11, we define the following 2-cell

δ : x2x2x4 ⇒ x2x4,

and we set R := R∪ {γ}. The degree lexicographic order induced by x1 > x2 > x3 > x4 is a termination
order compatible with R2 modulo E, so that ERE is terminating and Irr(E) is trivially E-normalizing with
respect to ERE. Moreover, the 2-polygraph modulo ERE is confluent modulo E. Indeed, all its critical
branchings modulo, depicted in (4.22) and (4.23), are confluent modulo.

x1x2x3
α−
2,3·β +3

=

��

x2x4x2
α−
2,4·δ +3 x2x4

=

��
x1x2x3 γ

+3 x1x3
β

+3 x2x4

A


�

x2x2x4x1
α2,4·γ +3

=

��

x2x4x1
α−
1,4α

−
1,2·γ+3 x2x4

=

��
x2x2x4x1

δx1

+3 x2x4x1
α−
1,4α

−
1,2·γ
+3 x2x4

B


�

(4.22)

x2x4x2x4x2
α−
2,4·δ +3

=

��

x2x4x4x2
(α−
2,4)

2·δ
+3 x2x4x4

=

��
x2x4x2x4x2

α−
2,4·δ

+3 x2x4x2x4
α−
2,4·δ

+3 x2x4x4

C


�

(4.23)

Following procedure 4.7.4, one shows that an acyclic extension of the commutative monoid generated by
X and submitted to relations in R2 can be computed from the the square extension {A,B,C} of (E>, ER>E ).
This acyclic extension is made of the following 3-cells.

[x1x2x3]

[β]?1[δ]

�%

[γ]?1[β]

9A
[x2x4][A]


�
[x1x2x2x4]

[δ]?1[γ]

�&

[δ]?1[γ]

8@
[x2x4][B]


�
[x2x2x2x4x4]

[δ]?1[δ]

�'

[δ]?1[δ]

7?
[x2x4x4][C]


�

Note that if we take the commutation 2-cells as rewriting rules, the Knuth-Bendix completion is
infinite, requiring to add a 2-cell εn : x4x

n
3 x2x2 ⇒ x4x

n
3 x2 for any n ≥ 0. This yields acyclic extension

made of an infinite set of 3-cells

x4x
n+1
3 x2x2 εn+1

�'
x4x

n
3 x2x2x3

α22,3 -5

εnx3 *2

x4x
n+1
3 x2

x4x
n
3 x2x3 α2,3

7?
Dn
�

121



4.7.7. Pivotal categories. We present an application of the coherence Theorem 4.6.6 on a toy example
in the context of diagrammatic rewriting. We consider a presentation of a pivotal monoidal category,
seen as a pivotal 2-category with only one 0-cell presented by a 3-polygraph. In general, such isotopy
relations produce many critical branching with primary rules of the presentation. In this example, we
show how to compute a coherent presentation of a monoidal pivotal category using rewriting modulo the
isotopy axioms. We consider the 3-polygraph P defined by the following data:

i) only one generating 0-cell,

ii) two generating 1-cells f and g,

iii) eight generating 2-cells pictured by

• , , • , , , , , , (4.24)

iv) the generating 3-cells of P are given by:

a) the three families of generating isotopy 3-cells:

V , V , V , V (4.25)

• V • , • V • , • V • , • V • , (4.26)

• V • ,
•

V
•
, • V • ,

•
V

• (4.27)

b) the generating 3-cells of the 3-polygraph of permutations for both upward and downward orien-
tations of strands:

α+

V
α−

V
β+

V
β−

V

(4.28)

c) a generating 3-cell
γ

V
(4.29)

Note that the relations (4.25 – 4.27) correspond to the fact that the generating 1-cells g and f are
biadjoints in the 2-category P presented by P, and cups and caps 2-cells are units and counits for these
adjunctions. Relations implying dots also ensure that the dot 2-cell is a cyclic 2-morphism in the sense of
[32] for the biadjunction g ` f ` g, making P into a pivotal 2-category. We consider the 3-polygraph
E defined by the following data

i) E≤1 = P≤1,

ii) it has six 2-cells given in (4.24) minus the two crossing 2-cells,

iii) the isotopy 3-cells (4.25 – 4.27).
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Note that this polygraph E is a non-linear instance of the polygraph EI defined in Section 5.3.1 in the
case where I is a singleton. Let R be a 3-polygraph such that R≤2 = P≤2 and whose 3-cells are given by
(α±, β±, γ) of (4.28 – 4.29), and let us consider the 3-polygraph modulo ER. Following 4.4.8, the only
critical branchings we have to consider are those of the form (f, g) with f in ER

∗(1) and g in R∗(1). The
branching (4.31) is not such a branching because the top 3-cell belongs to E>, and the top-right 2-cell
is not reducible by R. The branchings of the form (f, g) with both f and g in R∗(1) are given by the
critical branchings of the polygraph of permutations in [51, 5.4.4], together with an additional inclusion
branching given by (α+, γ). We also check that there is no other form of critical branchings.

4.7.8. Decreasing order operator for E-normalization. The 3-polygraph R ′ is left-disjoint from E,
since no caps and cups 2-cells appear in the sources of the generating 3-cells of R. Following 4.6.9,
we prove that Irr(E) is E-normalizing with respect to ER using a decreasing order operator Φ for E
compatible with R.

4.7.9 Lemma. Let E and R be the 3-polygraphs defined above. There exists a decreasing operator order
Φ for E compatible with R.

Proof. For any 1-cells p and q in R∗1, we set m(p, q) = 2 and for any 2-cell u of source p and target q
in R∗2,Φp,q(u) = (ldot(u), I(u)) where:

i) ldot(u) counts the number of left-dotted caps and cups, adding for such cap and cup the number of
dots on it. In particular, for any n inN∗, we have

ldot
( •n

)
= ldot

(
•n

)
:= n+ 1

for both orientations of strands.

ii) I(u) counts the number of instances of one of the following 2-cells of R∗2 in u:

For any 3-cell u V v in E, we have Φ(u) > Φ(v) and that Φ(u, u) = (0, 0) for any u in Irr(E).
Moreover, Φ is compatible with R because rewritings with respect to R do not make the dot 2-cell move
around a cup or a cap, or create sources of isotopies.

4.7.10. Acyclic square extension. As a consequence of Theorem 4.6.6, we deduce an acyclic square
extension of the pair of (3, 2)-categories (E>, ER>). This square extension is made of:

i) the 16 elements given by the diagrams of the homotopy basis or the 3-polygraph of pearls in [51,
Section 5.5.3] for both orientations of strands,

ii) the ten elements A± − E± given by the diagrams of the homotopy basis for the 3-polygraph of
permutations from [51, Section 5.4.4] for both upward and downward orientations of strands, as
depicted below,

iii) the square cell Γ corresponding to the choice of confluence modulo for the branching (α, γ), de-
picted below.

α± *4

=


�

=


�

α±
*4

A±
�

=


�

α± *4

=


�

β±
*4

β±
*4

B±

�

α±
*4
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β± *4

=


�

β± *4
α±
*4

=


�

α±
*4

C±

�

β± *4

=


�

α± *4 α± *4

=


�

β±
*4

α±
*4

α±
*4

D±

�

=


�

β± *4 β± *4 β± *4 β± *4

=


�β± *4
β±
*4

β±
*4

β±
*4

E±

�

γ *4

=


�

=


�

α+
*4

Γ


�

4.7.11 Remark. Now let us consider a new linear (3, 2)-polygrah P ′ defined as the same i-cells than P
for 0 ≤ i ≤ 2, and the same 3-cells than P, except that the 3-cell γ is replaced by the following new
3-cell γ:

γ

V
(4.30)

which is relation arising in many presentations of monoidal categories appearing in representation cate-
gory, see for instance Khovanov-Lauda’s 2-category introduced in [67], defined in Section 6.2, the affine
oriented Brauer 2-categoryAOB defined in Section 9.4, or in the Heisenberg categories defined by Kho-
vanov in [70], and extended by Brundan in [21]. Note that with this new relation creating branchings
with the isotopy relations, the 3-polygraph P ′ is not confluent. Indeed, the branching

.8

)3

(4.31)

is not confluent. Moreover, solving this obstruction to confluence using Knuth-Bendix completion may
lead to adding a great number of relations, making analysis of confluence from critical branchings in-
efficient. To tackle this issue, this is convenient to rewrite modulo the isotopy relations. In that case,
there are critical branchings modulo isotopy (of the form (R∗(1), ER

∗(1))) between γ and α (resp. β) with
respective source

∼ , ∼ ,

(4.32)

and to get confluence of these branchings, we have to add a bubble slide relation in R of the form:

s00
V
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As a consequence, following Section 2.6.4, ER is not terminating anymore, but we prove in a similar
fashion than for the linear (2, 2)-category AOB in Section 9.4 that it is quasi-terminating. As a conse-
quence, in order to compute coherent presentations for the various pivotal linear (2, 2)-categories arising
in representation theory, we need to generalize Theorems 4.6.6 and 4.6.12 to the quasi-terminating set-
ting.

As explained in [3], coherent presentations from quasi-convergent presentations are more compli-
cated to compute, since they need to take into account coherence cells in loops created by rewriting
cycles. In any case, we expect to have an homotopy basis in more elements than the square cells given
in Section 4.7.10, i) and ii) and the square cells coming from the confluences modulo of the branchings
described in (4.32).
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CHAPTER 5

Bases in linear categories from confluence modulo

Contents
5.1 Linear critical branching lemma modulo . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Confluence modulo by decreasingness modulo . . . . . . . . . . . . . . . . . . . . 130
5.3 Rewriting modulo isotopies in pivotal linear (2, 2)-categories . . . . . . . . . . . . 134
5.4 Linear bases from confluence modulo . . . . . . . . . . . . . . . . . . . . . . . . . 136

One of the main objectives of this work is to develop effective methods in order to compute linear
bases of higher-dimensional linear categories, and in particular for linear (2, 2)-categories, that are 2-
categories in which for any 1-cells u and v, the set of 2-cells with 1-source u and 1-target v admits the
structure of a K-vector space for some field K. In [2], Alleaume proved that a basis for each space of
2-cells for such a 2-category can be obtained from a convergent presentation of this category, by taking
all the irreducible monomials with respect to the presentation.

However, many structural relations coming from the inherent structure of the diagrammatic algebras
arising in categorification problems may make confluence difficult to check or even create obstructions to
confluence. However, these relations being structural should be considered from another perspective than
the relations defining the category, and thus we want to rewrite modulo these relations. In particular, we
are interested in the case of rewriting in pivotal linear (2, 2)-categories, which are 2-categories satisfying
additional adjunctions and duality properties such that all 2-cells are represented by string diagrams that
can be drawn up to isotopy. We introduce a formalism of rewriting modulo the isotopy relations provided
by this structure.

In this Chapter, we extend Alleaume’s basis result to presentations that are splitted into two parts
R and E, satisfying that E is convergent and additional termination and confluence modulo properties.
In particular, we prove that under the assumptions of Theorem 5.4.4, taking the monomials in normal
form with respect to R, and then taking their E-normal forms (or all the monomials that appear in their
E-normal forms) yields a basis of each space of 2-cells in the category presented by the rules in R and E.

Moreover, we give in this Chapter a first way to reach confluence modulo for presentations such that
the polygraph modulo ERE, as defined in Chapter 4, is not terminating but quasi-terminating. This is
based on the adaptation of the abstract notion of decreasingness introduced by Van Oostrom [119] to the
context of abstract rewriting modulo. In particular, we prove that any decreasing polygraph modulo is
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confluent modulo, and that decreasingness in the quasi-terminating setting can be proved by checking that
all critical branchings modulo of the presentation are decreasingly confluent with respect to the quasi-
normal form labelling. We then extend the basis result to the quasi-terminating setting by considering,
instead of monomials in normal forms with respect to R, fixed monomials in quasi-normal form with
respect to R and applying the same procedure. This result gives all the results of the paper [42].

5.1. LINEAR CRITICAL BRANCHING LEMMA MODULO

5.1.1. Linear polygraphs modulo. A linear (n+ 1, n)-polygraph modulo is a data (R, E, S) made of

i) a linear (n + 1, n)-polygraph R and a linear (n + 1, n)-polygraph E such that E≤(n−1) = R≤(n−1)
and En ⊆ Rn,

ii) a cellular extension S of R`n such that R ⊆ S ⊆ ERE holds, where the cellular extension ERE is
defined in a similar way than in Section 4.4.1, but the pullbacks are made on the set of positive
(n+1)-cells of length 1 in R`n+1. Explicitely, the elements of ERE correspond to n-spheres (u, v) ∈
R`n such that (u, v) is the boundary of an (n + 1)-cell f in R`n[Rn+1, En+1, E

−
n+1]/Inv(E3, E−3 ), the

free linear (n,n)-category generated by R≤n augmented by the cellular extensions R, E and the
formal inverses E− of E modulo the corresponding inverse relations (2.4), with the following shape

u
����

?? IIv

e��

f
��

e ′��

for some (n+ 1)-cells e and e ′ in E`n+1 and a rewriting step f of R.

This data defines a linear (n + 1, n)-polygraph (R≤n, S), that we denote by S when there is no
ambiguity.

5.1.2. Confluence and branchings modulo. A branching of S is a pair (f, g) of positive 3-cells of S`

with the samen-source. A branching modulo E of the linear (3, 2)-polygraph modulo S is a triple (f, e, g)
where f is a positive 3-cell of S`, g is either a positive 3-cell of S` or an identity 3-cell, and e is a 3-cell
of E`. A branching modulo (f, e, g) is local if f is a 3-cell of S`(1), g is either a positive 3-cell of S` or an
identity and e a 3-cell ofE` such that `(g) + `(e) = 1. Local branchings of linear polygraphs modulo are
divided into the four following families:

Aspherical branchings Peiffer Peiffer modulo

u
f //

=

��

v

=

��
u

f
// v

u ?i v+w
f?iv //

=

��

u ′ ?i v+w

u ?i v+w u?ig
// u ?i v

′ +w

u ?i v+w
f?iv //

u?ie
��

u ′ ?i v+w

u ?i v
′ +w

Additive Additive modulo Overlappings

u+ v
f+v //

=

��

u ′ + v

u+ v
u+g
// u+ v ′

u+ v
f+v //

u+e
��

u ′ + v

u+ v ′

. . .

where u, v,w are n-cells in R`n, f ang g are positive (n + 1)-cells in S`n+1, and e is an (n + 1)-cell
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in E`n+1.

5.1.3. Critical branchings. Let v be the order on monomials of the linear (n + 1, n)-polygraph S
defined by u v v if there exists a context C of R∗n such that v = C[u], a critical branching modulo E is
an overlapping local branching modulo that is minimal for the order v.

5.1.4 Theorem (Linear critical branching lemma modulo). Let (R, E, S) be a linear (3, 2)-polygraph
modulo such that ERE is terminating. Then S is locally confluent modulo E if and only if the two following
conditions hold

a0) any critical branching (f, g) with f positive 3-cell in S`(1) and g positive 3-cell in R`(1) is confluent
modulo E:

u
f //

=
��

v
f ′ // v ′

e ′

��

u
g
// w // w ′

b0) any critical branching (f, e) modulo E with f in S`(1) and e in E` of length 1 is confluent modulo
E:

u
f //

e
��

v
f ′ // v ′

e ′

��
u ′

g ′
// w

Proof. By Theorem 4.5.4, the local confluence of S modulo E is equivalent to both conditions a) and
b). Let us prove that the condition a) (resp. b)) holds if and only if the condition a0) (resp. b0)) holds.
One implication is trivial, let us prove the converse implication. To do so, let us proceed by Huet’s
double noetherian induction as introduced in [56] on the polygraph modulo Sq defined in [43] which
is terminating since ERE is assumed terminating. We refer to [43] for further details on this double
induction.

Following the proof of the linear critical pair lemma in [50], we assume that condition a0) holds and
prove condition a). Let us consider a local branching (f, g) of S modulo E of source (u, v) with f and g
positive 3-cells in S`(1) and R`(1) respectively. Let us assume that any local branching of source (u ′, v ′)
such that there is a 3-cell (u, v) → (u ′, v ′) in Sq is confluent modulo E. The local branching (f, g) is
either a local Peiffer branching, an additive branching or an ovelapping branching. We prove that for
each case, (f, g) is confluent modulo E.

i) If (f, g) is a Peiffer branching of the form

u ?i v+w
f?iv //

=

��

u ′ ?i v+w

u ?i v+w u?ig
// u ?i v

′ +w

where 0 ≤ i ≤ n − 2, w is a 2-cell of R`2, f is a positive 3-cell in S`(1) and g is a positive 3-cell in
R`(1), there exist elementary 3-cells in S` as follows:

u ?i v+w
f?iv //

=

��

u ′ ?i v+w
u ′?ig+w// u ′ ?i v

′ +w

=

��

u ?i v+w u?ig
// u ?i v

′ +w
f?iv

′+w
// u ′ ?i v

′ +w
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However, these 3-cells are not necessarily positive, for instance if u ′v ∈ Supp(w) or
uv ′ ∈ Supp(w). By Lemma 2.8.4, there exist positive 3-cells f1, f2, g1, g2 in S` of length at most 1
such that f ?i v ′ +w = f1 ?2 f

−
2 and u ′ ?i g+w = g1 ?2 g

−
2 . Then, the 3-cells f2 and g2 of S` have

the same 2-source and by assumption, the branching (f2, g2) is confluent modulo E, so there exist
positive 3-cells f ′ and g ′ in S` and a 3-cell e in E` as follows:

u ?i v+w
f?iv+w //

=
��

u ′ ?i v+w

=

��

f1 //

=

��

f ′ //

e ′

��

u ?i v+w
f?iv+w //

=

��

u ′ ?i v+w
u ′?ig+w// u ′ ?i v

′ +w

=

��

f2 //

u ?i v+w u?ig+w
//

=

��

u ?i v
′ +w

f?iv
′+w
//

=
��

u ′ ?i v
′ +w

g2
//

=

��u ?i v+w u?ig+w
// u ?i v

′ +w
g1

//
g ′
//

which proves the confluence modulo of the branching (f, g).

ii) If (f, g) is an additive branching of the form

u+ v
f+v //

=

��

u ′ + v

u+ v
u+g
// u+ v ′

where f is positive 3-cells of S`(1) and g is a positive 3-cell of R`(1), there exist elementary 3-cells in
S` as follows:

u+ v
f+v //

=

��

u ′ + v
u ′+g
// u ′ + v ′

=

��

u+ v
u+g
// u+ v ′

f+v ′
// u ′ + v ′

However, these 3-cells are not necessarily positive, for instance if u ∈ Supp(v) or u ∈ Supp(v ′). By
Lemma 2.8.4, there exist positive 3-cells f1, f2, g1, g2 in S` of length at most 1 such that f?iv ′+w =
f1 ?2 f

−
2 and u ′ ?i g + w = g1 ?2 g

−
2 . We then prove the confluence modulo of (f, g) in a same

fashion as for case i).

iii) If (f, g) is an overlapping branching of S with f in S`(1) and g in R`(1) that is not critical, then by
definition there exists a context C = m1 ?1 (m2 ?0� ?0m3) ?1m4 of R∗2 and positive 3-cells f ′ and
g ′ in S` and R` respectively such that f = C[f ′] and g = C[g ′], and the branching (f ′, g ′) is critical.
By property a0), the branching (f ′, g ′) is confluent modulo E, so that there exist positive 3-cells f1
and g1 in S` and a 3-cell e in E` as follows:

u
f ′ //

=

��

u ′
f1 // w

e
��

u
g ′
// v ′

g1
// w ′

inducing a confluence modulo of the branching (f, g):

C[u]
f //

=

��

C[u ′]
C[f1] // C[w]

C[e]
��

C[u]
g
// C[v ′]

C[g1]
// C[w ′]
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Now, suppose that conditions b0) holds and prove condition b). Let us consider a local branching
(f, e) of S modulo E of source (u, v), with f in S`(1) and e in E` of length 1. We still assume that any
local branching of source (u ′, v ′) such that there is a 3-cell (u, v)→ (u ′, v ′) in Sq is confluent modulo
E. The branching (f, e) is either a local Peiffer branching modulo E, an additive branching modulo E or
an ovelapping modulo E. Let us prove that it is confluent modulo E for each case.

i’) If (f, e) is a local Peiffer branching modulo of the form

u ?i v+w
f?iv //

u?ie
��

u ′ ?i v+w

u ?i v
′ +w

withw in R`2, f a positive 3-cell in S`(1) and e a 3-cell in E` (the other form of such branching being
treated similarly), there exist 3-cells f ?i v ′ and u ′ ?i e in S` and E` respectively as in the following
diagram

u ?i v+w
f?iv //

u?ie
��

u ′ ?i v+w

u ′?ie
��

u ?i v
′ +w

f?iv
′
// u ′ ?i v

′ +w

However, the dotted horizontal 3-cell is not necessarily positive, for instance if uv ′ ∈ Supp(w). By
Lemma 2.8.4, there exist positive 3-cells f1, f2 in S` of length at most 1 such that f ?i v ′ = f1 ?2 f−2 .
Then, we have tE2 (u

′ ?i e) = s
S
2(f2) and by assumption the branching (f2, (u

′ ?i e)
−) is confluent

modulo E, so there exists positive 3-cells g and h in S` and a 3-cell e ′ in E` as follows:

u ?i v
f?iv //

u?ie
��

u ′ ?i v

u ′?ie
��

g
// w

e ′

��

u ?i v
′
f?iv

′
//

=

��

u ′ ?i v
′ f2 // u ′′

=

��

u ?i v
′

f1

// u ′′
h
// w ′

which proves the confluence modulo of (f, g).

ii’) If (f, e) is a local additive branching modulo E of the form

u+ v
f+v //

u+e
��

u ′ + v

u+ v ′

where f is a positive 3-cell in S`(1) and e is a 3-cell in E` of length 1 (the other form of such
branching being treated similarly), there exist 3-cells f+ v ′ and u ′ + e in S` and in E` respectively
as in the following diagram

u+ v
f+v //

u+e
��

u ′ + v

u ′+e
��

u+ v ′
f+v ′
// u ′ + v ′

However, the 3-cell f + v ′ in S`(1) is not necessarily positive, for instance if u ∈ Supp(v ′) but by
Lemma 2.8.4, there exist positive 3-cells f1 and f2 in S∗ of length at most 1 such that f + v ′ =
f1 ?2 f

−
2 . We then prove the confluence modulo of the branching (f, e) by a similar argument than

above.
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iii’) If (f, e) is an overlapping modulo, the proof is similar to the proof for property a0).

5.2. CONFLUENCE MODULO BY DECREASINGNESS MODULO

5.2.1. Well-founded labelling modulo. Given a linear (3, 2)-polygraph modulo (R, E, S), a well-founded
labelling modulo of S is a well-founded labelling ψ of R extended to ERE by setting ψ(e) = 1 the trivial
word in X∗ for any e in E. The lexicographic maximum measure defined in Section 2.2.6 then extends to
the rewriting steps of S as follows:

|e1 ?1 f ?1 e2| = |f|

for any 3-cells e1 and e2 in E` and rewriting step f of R. It then extends to the rewriting sequences of S
and ERE, and to the finite branchings (f, e, g) of S modulo E.

5.2.2. Decreasingness modulo. Following [119, Definition 3.3], we introduce a notion of decreasing-
ness for a diagram of confluence modulo. Let (R, E, S) be a linear (3, 2)-polygraph modulo equipped
with a well-founded labelling modulo (X,<,ψ) of S. A local branching (f, g) (resp. (f, e)) of S modulo
E is decreasing modulo E if there exists confluence diagrams of the following form

f //

=

��

f ′ //
g ′′
//

h1 //

e ′

��
g
//

g ′
//

f ′′
//

h2

//

, (resp.

f //

e
��

f ′ //
h1 //

e ′

��

h2

//

)

such that the following properties hold:

i) k < ψ(f) for all k in LX(f ′).

ii) k < ψ(g) for all k in LX(g ′).

iii) f ′′ is an identity or a rewriting step labelled by ψ(f).

iv) g ′′ is an identity or a rewriting step labelled by ψ(g).

v) k < ψ(f) or k < ψ(g) for all k in LX(h1) ∪ LX(h2) (resp. k ≤ ψ(f) for any k in LX(h2) and
k ′ < ψ(f) for any k ′ in LX(h1)).

5.2.3 Remark. Note that the definition of decreasingness for a local branching (f, g) where f and g
are positive 3-cells in S`(1) is the same than decreasigness of a local branching in Section 2.2.7. This
definition is enlarged for a local branching (f, e) where f is a positive 3-cell in S`(1) and E is a 3-cell
in E` of length 1 with the large inequality k ≤ ψ(f) in order to make sure that critical branchings of
the form (f, e) are decreasing with respect to the quasi-normal form labelling ψQNF defined in Section
2.2.3 when rewriting with a linear (3, 2)-polygraph modulo (R, E, S) such that ER ⊆ S. Indeed, recall
from [43, Section 3.1] that in this case these critical branchings are trivially confluent from (4.15). In
that case, h2 := e− · f has the same label than f for ψQNF, but we require that this confluence diagram is
decreasing.

Such a diagram is called a decreasing confluence diagram of the branching modulo (f, e, g). A
linear (3, 2)-polygrah modulo (R, E, S) is decreasing is there exists a well-founded labelling (X,<,ψ)
of R making all the local branchings (f, e, g) of S modulo E decreasing. It was proven in [2, Theorem
4.3.3], following the original proof by Van Oostrom for an abstract rewriting system [119], that any
decreasing left-monomial linear (3, 2)-polygraph P is confluent. We adapt these proofs to establish the
following result:
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5.2.4 Theorem. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo. If (R, E, S) is decreas-
ing, then S is confluent modulo E.

Let us at first prove the following two lemmas:

5.2.5 Lemma. Let (R, E, S, X,<,ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For every
diagram of the following form

f1 //

=

��

f2 //

=

��f1 //

e1
��

f ′1
//

e ′1
��

g1
//

g ′1

//

such that the confluence modulo (f1 ?2 f
′
1, g1 ?2 g

′
1) is decreasing, the inequality

|(f ′1, f2)| 6mult |(g1, f1 ?2 f2)|

holds.

Proof. By Lemma 2.2.5 ix), we get the following inequality:

|(f ′1, f2)| = |(f ′1, f2)| ∩∨|f1| ∪ |(f ′1, f2)|−∨|f1|.

Since ∨|f1| <mult |f1|, we get that

|(f ′1, f2)| <mult |f1| ∪ |((f ′1)
(f1), f

(f1)
2 )| = |f1 ?2 f

′
1| ∪ |f

(f1)
2 |.

Finally, we get from the decreasingness assumption that

|f1 ?2 f
′
1| ∪ |f

(f1)
2 | 6mult |(f1, e1, g1)|| ∪ |f

(f1)
2 | = |(g1, f1 ?2 f2)|.

5.2.6 Lemma. Let (R, E, S, X,<,ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For every
diagram of the following form

f1 //

=

��

f2 //

=

��

h //

e2

��

f1 //

e1
��

f ′1
//

e ′1
��

g1
//

g ′1

//
g2

//

such that the confluence (f ′1, e
′
1, g
′
1) and (f2 ?2 h, e2, g2) are decreasing, i.e. the following inequalities

hold:

a) |g1 ?2 g
′
1| 6mult |(f1, e1, g1)| and |f1 ?2 f

′
1| 6mult |(f1, e1, g1)|,

b) |f ′1 ?2 e
′
1 ?2 g2| 6mult |(f

′
1, f2)| and |f2 ?2 h| 6mult |(f

′
1, f2)|

Then the following inequalities hold:

|g1 ?2 g
′
1 ?2 g2| 6mult |(f1 ?2 f2, e1, g1)| and |f1 ?2 f2 ?2 h| 6mult |(f1 ?2 f2, e1, g1)|
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Proof. To shorten the notations in this proof, we will denote the 2-cell f ?2 g by simply fg. For the
second inequality, we get that

|f1f2h| = |f1f2| ∪ |h(f1f2)| = |f1f2| ∪ |h(f1)(f2)|

6mult |f1f2| ∪ |(f ′1)
(f1)|

since |h(f2)| 6mult |f ′1| and |f1f
′
1| 6mult |f1| ∪ |g1| respectively by properties b) and a). For the first

inequality, we have by Lemma 2.2.5 ix) that

|g1g
′
1g2| = |g1g

′
1| ∪ |g

(g1g
′
1)

2 | = |g1g
′
1| ∪

[(
|g

(g1g
′
1)

2 | ∩∨f1

)
∪
(
|g

(g1g
′
1)

2 |−∨f1

)]
.

We deduce from [119, Claim in Lemma 3.5] the following two inequalities, that we do not detail here:

|g1g
′
1g2| 6mult |g1| ∪ |f1| ∪ |g

(g1g
′
1)(f1)

2 | 6mult |g1| ∪ |f1| ∪ |g
(f ′1)(f1)
2 |.

Since |g
(f ′1)
2 | 6mult |f2| by b), we finally get that

|g1g
′
1g2| 6mult |g1| ∪ |f1| ∪ |f

(f1)
2 | = |g1| ∪ |f1f2| = |(f1f2, e1, g1)|.

Before proving Theorem 5.2.4, let us also establish the following preliminary lemma:

5.2.7 Lemma. Let (R, E, S, X,<,ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For any
branching (f, e, g) of S modulo E with f and g positive 3-cells in S`(1) and e a 3-cell in E` of length 1,
there exist a confluence (f ′, e ′, g ′) of this branching such that

|f ?2 f
′| 6mult |(f, e, g)| and |g ?2 g

′| 6mult |(f, e, g)|

Proof. Let us denote by (X,<,ψ) the well-founded labelling on S making it decreasing. We consider
such a branching (f, e, g) of S modulo E, and we prove this result by well-founded induction, assuming
that it is true for any branching (f ′′, e ′′, g ′′) of S modulo E such that |(f ′′, e ′′, g ′′)| <mult |(f, e, g)|.

The local branching (f, e) of S modulo E being decreasing by assumption, there exist positive 3-
cells f ′, f ′1 and h2 in S` such that k ≤ ψ((f) for any k in LX(h2). Let us fix a decomposition h2 =
h12 ?2 h

2
2 where h2 is a positive 3-cell in S`(1). Then (h11, g1) is a local branching of S modulo E and by

decreasingness, there exist a decreasing confluence of this local branching, as depicted in the following
diagram:

f1 //

e1
��

f ′ //
f ′1 //

e ′1
��

=

��

h12
//

=

��

h22 //

=

��

h12
//

k1 //

e2
��

g1
//

g ′1
//

By decreasingness of (f, e), we have that |h22| 6mult |f1| and by decreasingness of (h12, g), we have that
|k1| <mult [g1| so that |(f, e, g)| <mult |(h22, k1)| and by induction, this branching admits a confluence
(h3, e3, k2) satisfying

|h22 ?2 h3| 6mult |(h
2
2, k1)| and |k1 ?3 k2| 6mult |(h

2
2, k1)|
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We can now repeat the same process on the branchings ((e ′1)
−, h3) and (e2, k2) to obtain a confluence

modulo of these branchings as follows:

f1 //

e1
��

f ′ //
f ′1 //

e ′1
��

f2 //

e ′′1
��

=

��

h12
//

=

��

h22 // h3 // h4 //

e3
��

=

��

h12
//

k1 //

e2
��

k2 // k3 //

e ′2
��

g1
//

g ′1
//

g2
//

One can repeat this process, however it terminates in finitely many steps, otherwise this would lead to
infinite sequences (hn)n∈N and (kn)n∈N satsifying

|f| 6mult |h2| <mult |h3| 6mult |h4| <mult |h5| . . . , |g| <mult |k1| <mult |k2| . . .

yielding two infinite strictly decreasing sequences for <mult, which is impossible since by assumption, <
is well-founded and then so is <mult as explained in section 2.2.4.

Let us now prove Theorem 5.2.4:

Proof. Let us denote by (X,<,ψ) the well-founded labelling on S making it decreasing. We consider a
branching (f, e, g) of S modulo E such that f and g are positive 3-cells of S`. We prove by well-founded
induction on the labels that (f, e, g) can be completed into a confluence modulo diagram with positive
3-cells f ′, g ′ in S` and a 3-cell e ′ in E` such that

|f ?2 f
′| 6mult |(f, e, g)|, and |g ?2 g

′| 6mult |(f, e, g)| (5.1)

We assume that for any branching (f ′′, e ′′, g ′′) of S modulo E such that |(f ′′, e ′′, g ′′)| <mult |(f, e, g)|,
there exists a decreasing confluence modulo of the branching (f ′′, e ′′, g ′′). Let us choose decompositions
f = f1 ?2 f2 and g = g1 ?2 g2 where f1, g1 belong to S`(1) and f2 and g2 are in S`. By Lemma 5.2.7,
the branching (f1, e, g1) admits a confluence modulo (f ′1, e1, g

′
1) satsifying the conditions of (5.1), as

depicted on the following diagram:
f //

=

�� f1 //

e1
��

f ′1
//

e ′1
��

g1
//

=

��

g ′1

//

g
//

Using Lemma 5.2.5, we get that |f2| ∪ |f ′1| <mult |(f, e, g)| and |g2| ∪ |g ′1| <mult |(f, e, g)| so that by
induction on the branchings (f2, f ′1) and (g ′1, g2), there exist positive 3-cells f3, f ′2, g3, g

′
2 in S` satisfying

the conditions of (5.1) and 3-cells e2, e ′2 in E` as in the following diagram:

f1 //

=

��

=

��

f2 //
f3 //

e2
��f1 //

e1
��

f ′1
//

e ′1
��

f ′2
//

g1
//

=

��

g ′1

//

=

��

g ′2
//

e ′2
��

g1
//

g2
//

g3
//
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Now, either there is a 2-cell e ′′′ : t2(e2) → s2(e
′
2) in E`, and the confluence diagram obtained satisfy

the conditions of (5.1) using Lemma 5.2.6 on the top part of the diagram and decreasingness of the
confluence modulo (g ′2, e

′
2, g3). Otherwise, the branching (f ′2, e

′
1, g
′
2) is a branching of S modulo E

whose label is strictly smaller than |(f, e, g)| with respect to <mult by construction. Applying induction
on this branching, there exists a confluence modulo (f ′3, e3, g

′
3) of this branching satisfying the conditions

of (5.1). Then, we may still apply induction on the branchings (e2, f ′3) and (e ′2, g
′
3) of Smodulo E, whose

respective multisets |f ′3| and |g ′3| are strictly smaller than |(f, e, g)| with respect to <mult by construction.
We get the following situation:

f1 //

=
��

=

��

f2 //
f3 //

e2
��

f4 //

e3

��f1 //

e1
��

f ′1
//

e ′1
��

f ′2
// f ′3

//

e3
��

f ′4
//

g1
//

=

��

g ′1

//
=

��

g ′2
//

e ′2
��

g ′3
// g ′4

//

e ′3
��

g1
//

g2
//

g3
//

g4
//

This process can be repeated, however it terminates in finitely many steps to reach a confluence modulo
of the branching (f, e, g), using a similar argument than in the proof of Lemma 5.2.7. This confluence
modulo satisty the properties of (5.1) from successive use of Lemmas 5.2.5 and 5.2.6.

5.3. REWRITING MODULO ISOTOPIES IN PIVOTAL

LINEAR (2, 2)-CATEGORIES

5.3.1. Example: Convergent Linear (3, 2)-polygraphs of isotopies. We define a linear (3, 2)-polygraph
whose 3-cells correspond of the isotopy axioms of a pivotal 2-category, with respect to a set I labelling
the strands of the string diagrams, and cyclic 2-cells. Following Section 4.3.3, this is a prototypical ex-
ample of polygraph for which we will rewrite modulo in order to present pivotal linear (2, 2)-categories.
Let CI be the pivotal linear (2, 2)-category defined by

- a set C0 of 0-cells denoted by x, y, . . .

- two families of 1-cells Ei : xi → yi and Fi : yi → xi indexed by I such that Ei ` Fi ` Ei. Note
that the identity 2-cells on Ei and Fi are respectively diagrammatically depicted by:

1Ei :=

i

yixi 1Fi :=

i

xiyi

- units and counits 2-cells ε+i : Ei?0Fi ⇒ 1, η+i : 1⇒ Ei?0Fi, ε−i : Fi?0Ei ⇒ 1 and η−i : 1⇒ Fi?0Ei
satisfying the biadjunction relations, where the labels of regions are easily deduced and omitted:

ε+i

η−ii

=

i

=

ε−i

η+i

i

ε−i

η+ii

=

i

=

ε−i

η+i

i

- cyclic 2-cells αi : Ei ⇒ Ei and βi : Fi ⇒ Fi with respect to the biadjunction Ei ` Fi ` Ei,
respectively represented by a dot on an upward strand or on a downward strand labelled by i. By
definition, cyclicity yields the following relations:

•
βi

i

=

i

•
αi = •

βi

i

•
αi

i

=

i

• βi = •
αi

i
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Note that we can omit the labels αi and βi on the dots, since the label on a dot is uniquely determined
by the label of the strand and the orientation of the segment of strand on which the dot is placed. We
define the 3-polygraph of isotopies EI presenting the category CI as follows:

- the 0-cells of EI are the 0-cells of C0.

- the generating 1-cells of EI are the Ei and Fi for i ∈ I, and the 1-cells of EI are given by sequences
(E±i , E

±
j , E

±
k , . . . ) with E+ = E and E− = F.

- the generating 2-cells of EI are given by cup and cap 2-cells ε+i , η
+
i , ε

−
i , η

−
i , and cyclic 2-cells αi

depicted by an upward strand decorated by a dot and labelled by i, and its bidual βi represented
by a downward strand decorated by a dot and labelled by i.

- the 3-cells of EI are given by:

i

i01→
i

i04←
i i

i02→
i

i03←
i

•

i

i11→
i

•
i14← •

i

•

i

i12→
i

•
i13← •

i

i

• i24→ •
i i

• i23→ •
i

•
i

i22→ i

• •
i

i21→ i

•

Note that the last family of relations (dot moves on caps and cups) are direct consequences of the first
families of relations. However, without these 3-cells the linear (3, 2)-polygraph would not be convergent.
With these 3-cells, the linear (3, 2)-polygraph EI is confluent, the proof being similar to the proof of
confluence of the 3-polygraph of pearls in [51]. Indeed, the 3-polygraph Pearl of pearls of [51] is actually
an instance of EI where the set I is the singleton. As the critical branchings are considered on diagrams
with the same label on each strand, there is a family of critical branchings given by Pearl for any i ∈ I,
and they are all proved confluent in the same way.

5.3.2. Termination of EI. For instance, following the proof of termination for the 3-polygraphs of
pearls in [51, Section 5.5.1], one proves that the linear (3, 2)-polygraph EI of isotopies defined Section
in 5.3.1 is terminating, in two steps:

i) At first, if we consider the derivation

d(·) = || · ||{ε−i ,ε+i ,η−i ,η+i }

into the trivial module M∗,∗,Z counting the number of oriented caps and cups of a diagram. This
enables to reduce the termination of EI to the termination of the linear (3, 2)-polygraph E

′
I having

for 3-cells the i2k for 1 ≤ k ≤ 4.

ii) The polygraph E
′
I terminates, using the 2-functors X and Y and the derivation d into the (EI)

∗
2-

moduleMX,Y,Z given by:

X

  = N, X

( )
(i, j) = (0, 0), X

 •
 (i) = i+ 1

Y

  = N, Y

( )
(i, j) = (0, 0), Y

 •
 (i) = i+ 1
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d

( )
(i, j) = i, d

( )
(i, j) = i, d

 •
 (i, j) = 0

for any orientation of the strands and any label on it. The required inequalities of Section 2.8.9 are
proved in [51].

5.4. LINEAR BASES FROM CONFLUENCE MODULO

We give a method to compute a hom-basis for a linear (2, 2)-category C from a presentation of C by
a linear (3, 2)-polygraph P admitting a convergent subpolygraph E such that the polygraph with set of
3-cells R3 = P3\E3 is confluent modulo E, and ERE is terminating, or quasi-terminating.

5.4.1. Splitting of a polygraph. Given a linear (3, 2)-polygraph P, recall that a subpolygraph of P is
a linear (3, 2)-polygraph P ′ such that P ′i ⊆ Pi for any 0 ≤ i ≤ 3. A splitting of P is a pair (E, R) of
linear (3, 2)-polygraphs such that:

i) E is a subpolygraph of P such that E≤1 = P≤1,

ii) R is a linear (3, 2)-polygraph such that R≤2 = P≤2 and P3 = R3
∐
E3.

Such a splitting is called convergent if we require that E is convergent. Note that any linear (3, 2)-
polygraph P admits a convergent splitting given by (P0, P1, P2, ∅) and (P0, P1, P2, P3). It is not unique in
general. The data of a convergent splitting of a linear (3, 2)-polygraph P gives two distinct linear (3, 2)-
polygraphs R = (P0, P1, P2, R3) and E = (P0, P1, E2, E3) satisfying R≤1 = E≤1 and E2 ⊆ P2, so that
we can construct a linear (3, 2)-polygraph modulo from R and E. Note that when P is left-monomial, if
(E, R) is a splitting of P, then both E and R are left-monomial.

5.4.2. Normal forms modulo. Let us consider a linear (3, 2)-polygraph P presenting a linear (2, 2)-
category C, (E, R) a convergent splitting of P and (R, E, S) a normalizing linear (3, 2)-polygraph modulo
such that S is confluent modulo E.

S being normalizing, each 2-cell u of R`2 admits at least one normal form with respect to E, and all
these normal forms are congruent with respect to E. We fix such a normal form that we denote by û,
with the convention that if u is already a normal form with respect to E, then û = u. By convergence
of E, any 2-cell u of R`2 admits a unique normal form with respect to E, that we denote by ũ. Note that
when S is confluent modulo E, the element ˜̂u does not depend on the chosen normal form û for u with
respect to S, since two normal forms of u being equivalent with respect to E, they have the same normal
form with respect to E. A normal form for (R, E, S) of a 2-cell u in R`2 is a 2-cell v such that v appears
in the monomial decomposition of w̃ where w is a monomial in the support of û. Given a 2-cell u in
R`2, we denote by NF(R,E,S)(u) the set of all normal forms of u for (R, E, S). Such a set is obtained by
reducing u into its chosen normal form with respect to S, then taking all the monomials appearing in
the E-normal form of each element in Supp(û). Note that when E is also right-monomial, the E-normal
form of a monomial in normal form with respect to S already is a monomial. In particular, this is the
case when E is the polygraph of isotopies described in 5.3.1.

5.4.3 Lemma. Let P be a left-monomial linear (3, 2)-polygraph, (E, R) be a convergent splitting of P
and (R, E, S) be a normalizing left-monomial linear (3, 2)-polygraph modulo such that S is confluent
modulo E, and let C be the category presented by P. Then, for any parallel 1-cells x and y in R∗1, the map
γx,y : R

`
2(x, y)→ C(x, y) sending each 2-cell to its congruence class in C has for kernel the subspace of

R`2 made of 2-cells u such that ˜̂u = 0.
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Proof. Let us denote by N the set {u ∈ R`2 ; ˜̂u = 0}. Then N ⊆ Ker(γ) since if u ∈ N, there exist
positive 3-cells f in E` and e in E` such that

u
f // û

e // ˜̂u = 0

Thus by definition of S there exist a zig-zag sequence of rewriting steps either of R or E between u and 0,
so that u = 0 in C and u belongs to Ker(γ). Conversely, if u belongs to Ker(γ), that is π(u) = 0 where
π : R`2 → C is the canonical projection, there is a zig-zag sequence of rewriting steps (fi) for 0 ≤ i ≤ n
with fi being either a rewriting step of R or a rewriting step of E such that

u
f1 // u1 u2

f2oo . . .
fn−2 // un−1 un

fn //
fn−1oo v

S being confluent modulo E, it is Church-Rosser modulo E from 2.3.12, and then by 2.3.11, we get that
there exist rewriting sequences f : u → û and g : 0 → 0̂ in S` and a 3-cell e : v̂ → 0̂ in E`. As S is
left-monomial, 0 is a normal form with respect to S so that 0̂ = 0. Then û and 0 are equivalent with
respect to E so that, by convergence of the linear (3, 2)-polygraph E, we get that ˜̂u = 0̃, and similarly
0̃ = 0 since E is left-monomial and 0 is a normal form with respect to E. This finishes the proof.

We then obtain the following result:

5.4.4 Theorem. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C, (E, R) a con-
vergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

i) S is normalizing,

ii) S is confluent modulo E,

then the set of all normal forms for (R, E, S) is a hom-basis of C.

Proof. Let us denote by B the set of E-normal forms of all monomials in normal forms with respect to
S, and let BMon be the set of all normal forms for (R, E, S). Note that by definition, BMon is obtained by
considering all the 2-cells in the support of the elements of B. Since S is left-monomial, each normal
form in R`2 can be decomposed into a linear combination of monomials in normal form with respect to
S, and by left-monomiality of E, we get that an element of B is a linear combination of monomials in
BMon, so that BMon is a basis of B. For any 1-cells p and q of C, the map γx,y : R`2(p, q) → C2(p, q) is
surjective by definition, each 2-cell of C2(p, q) having at least one representative in R`2(p, q). Moreover,
the restriction of γp,q to the subvector space B of R`2 has for kernel B ∩ Ker(γp,q), which is reduced to
{0} by confluence modulo E of S, using Lemma 5.4.3. This proves that (γp,q)|B is a bijection between B
and C2(p, q), and so BMon is a linear basis of C2(p, q).

5.4.5. Proving confluence modulo under quasi-termination. Recall from Section 2.9.5 that if P is a
quasi-terminating and exponentiation free linear (3, 2)-polygraph, then it is locally confluent if and only
if all its critical branchings are confluent. This result is extended to the context of rewriting modulo
in [31], where a quasi-terminating Newman lemma modulo and a quasi-terminating critical branching
lemma is proved, see Theorem 7.4.3 and Proposition 7.4.7 in Chapter 7, in the context of algebraic
polygraphs. Moreover, following the proof of [2, Theorem 5.2.5], we can prove the following condition
for decreasingness with respect to a quasi-normal form labelling:

5.4.6 Proposition. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo such that ERE is
quasi-terminating and exponentiation free. If all critical branchings of S modulo E are decreasing with
respect to the quasi-normal form ψQNF, then S is decreasing.
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5.4.7. Linear bases under quasi-termination. Note that both Lemma 5.4.3 and Theorem 5.4.4 have
an adaptation in a non-normalizing but quasi-terminating setting. Indeed, instead of fixing a normal form
û with respect to S for any u in R`2, we fix a choice of a quasi-normal form u for u satisying u = u

if u already is a quasi-normal form with respect to S. By confluence modulo, u and v are 2-cells of R`2
such that there is a 3-cell e : u → v in E`, then the 2-cells u and v are equivalent modulo E. We then
say that a quasi-normal form for (R, E, S) is a monomial appearing in the monomial decomposition of
the E-normal form of a monomial in Supp(u). With a similar proof than above, we obtain the following
result:

5.4.8 Theorem. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C, (E, R) a con-
vergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

i) S is quasi-terminating,

ii) S is confluent modulo E,

Then the set of quasi-normal forms form (R, E, S) is a hom-basis of C.

139



CHAPTER 6

Khovanov and Lauda’s categorification and rewriting modulo

Contents
6.1 A convergent presentation of the simply-laced KLR algebras . . . . . . . . . . . . 140
6.2 Rewriting modulo isotopy in Khovanov-Lauda-Rouquier’s 2-category . . . . . . . 146

Khovanov and Lauda [67], and Rouquier [102] defined a candidate 2-category to be a categorifica-
tion of Lusztig’s idempotented and integral version of a quantum group associated with a symmetriz-
able Kac-Moody algebra. The first authors established [67, Theorems 1.1 & 1.2] that this 2-category,
denoted by U(g), is indeed a categorification of Uq(g) if the diagrammatic calculus they introduce is
non-degenerated, which corresponds to the fact that each vector space of 2-cells admits an explicit linear
basis. They proved in [67] the non-degeneracy of their calculus for symmetrizable Kac-Moody algebras
of type A. The non-degeneracy of this diagrammatic calculus has then been proved for any root datum
of finite type and any field K independently by Kang and Kashiwara [66], and by Webster [121], using
non-degeneracy of cyclotomic quotients of the KLR algebras categorifying highest-weight modules of
Uq(g). In this Chapter, we prove the non-degeneracy of their calculus using rewriting modulo methods,
for any symmetrizable Kac-Moody algebra associated with a root datum of simply-laced type. However,
we expect that this result can be extended to the general case, requiring additional computations due to
the fact that some of the relations become more complicated, and thus checking the confluence modulo
should be more difficult.

In the process of categorifying a quantum group, a family of algebras called KLR algebras (or Quiver
Hecke algebras) appeared, [71, 102]. These algebras act on some endomorphism spaces of the 2-category
U(g), so that the relations of these algebras appear in the 2-category U(g). In the first part of this Chapter,
we study the KLR algebras using the non-modulo rewriting methods developed by Alleaume [2]. In this
way, we recover the Poincaré-Birkhoff-Witt bases given by Khovanov and Lauda [71] and Rouquier
[102].

In the second part of this Chapter, we split the presentation of U(g) into two parts following the ideas
developed in Chapter 5: one containing the isotopy relations coming from the pivotal structure, and one
coming from the remaining relations defining U(g). We then prove that the assumptions of Theorem
5.4.8 are satisfied, so that we are able to deduce, by a choice of quasi-normal forms with respect to
the U(g)-relations, the expected basis of each set of 2-cells in U(g), proving the non-degeneracy of
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Khovanov and Lauda’s diagrammatic calculus in the simply-laced setting. This Chapter gives all the
results of [42].

6.1. A CONVERGENT PRESENTATION OF THE SIMPLY-LACED KLR
ALGEBRAS

6.1.1. The sets Seq(V) and SSeq(V). Let V =
∑
i∈I
Vi.i ∈ N[I] be an element of N[I], the free semi-

group generated by I, and let us fix m := |V | =
∑
Vi. We consider the set Seq(V) which consists of all

sequences of vertices of Γ with length m in which the vertex i appears exactly Vi times. For instance,
Seq(3i + j) = {iiij, iiji, ijii, jiii}. There is an action of the symmetric group Sm on the set Seq(V)
defined by

sk · i1 . . . im = i1 . . . ik+1ik . . . im

for any 1 ≤ k ≤ m − 1, where sk denotes the permutation (k k + 1) of Sm. We will also consider in
Section 6.2 a signed version of this set, with signed sequences of vertices of Γ :

i = (ε1i1, ε2i2, . . . , εmim), where ε1, . . . , εm ∈ {+,−} and i1, . . . , im ∈ I.

We define SSeq(V) to be the set of all such signed sequences. We say that a sequence is positive (resp.
negative) if all signs εi are positive (resp. negative).

6.1.2. The KLR algebras. We recall here Rouquier’s algebraic definition of the KLR algebras [102,
Def 3.2.1] and their diagrammatic interpretation provided by Khovanov and Lauda in [71]. Let Q =
(Qi,j)i,j∈I a matrix with coefficients in K[u, v], where u and v are indeterminates, such that Qi,i = 0

for any i in I. For any V in N[I], we define a (possibly non-unitary) K-algebra HV(Q) by generators
and relations. It is generated by elements 1i, xk,i for k ∈ {1, . . . , n} and τk,i for k ∈ {1, . . . , n − 1} and
i ∈ Seq(V). The relations are:

i) 1i1j = δi,j1i

ii) τk,i = 1sk(i)τk,i1i

iii) xk,i = 1ixk,i1i

iv) xk,ixl,i = xl,ixk,i

v) τk,sk(i)τk,i = Qik,ik+1(xk,i, xk+1,i)

vi) τk,sl(i)τl,i = τl,sk(i)τk,i if |k− l| > 1

vii) τk,ixl,i − xsk(l),sk(i)τk,i =


−1i if l = k and ik = ik+1
1i if l = k+ 1 and ik = ik+1
0 otherwise.

viii) τk+1,sksk+1(i)τk,sk+1(i)τk+1,i − τk,sk+1sk(i)τk+1,sk(i)τk,i ={
(xk+2,i − xk,i)

−1(Qik,ik+1(xk+2,i, xk+1,i) −Qik,ik+1(xk,i, xk+1,i)) if ik = ik+2
0 otherwise

Khovanov and Lauda gave in [71] a definition of a ring associated with an element V ∈ N[I], denoted
in the sequel by R(V), which is a specialization of Rouquier’s algebra HV(Q) in which

Qi,j(u, v) = u
di,j + vdj,i , ∀ i, j ∈ I, where di,j = −2

i · j
i · i

.

In the simply-laced setting, these coefficients are equal to 0 when i and j are not linked by an edge in
Γ , and to 1 when they are. Moreover, they provide a diagrammatic interpretation for these algebras: for
i = i1 . . . im ∈ Seq(V), the generators are pictured by the diagrams

xk,i =

i1 ik im

•. . . . . . and τk,i =

i1 ik ik+1 im

. . . . . .
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The relations above are then diagrammatically depicted by:

i j

=



0 if i = j,

i j if i · j = 0,

i j

•
+

i j

•

if i · j = −1.

(6.1)

i j

•
=

i j

• + δi,j
i i

,
i j

•
=

i j

• − δi,j
i i

(6.2)

i j k

=

i j k

unless i = k and i · j = −1 (6.3)

i j i

−

i j i

=

i j i

if i · j = −1 (6.4)

By convention, we translate an algebraic expression into a diagram by reading the generators from
right to left and the diagrams from bottom to top. Note that the diagrammatic relations correspond, up to
a choice of signs in the right hand-sides, to the relations i) – viii) above. The first relation corresponds
to v), the second relation corresponds to relation vii) and the last one corresponds to relation viii) for
this particular choice of polynomials Qi,j. The other relations are not taken into account since they are
structural relations when the algebra is interpreted as spaces of 2-cells in the linear 2-category CKLR

defined in Section 6.1.4. Namely, the first relation corresponds to the fact that 1i is an identity 2-cell, and
the other relations correspond to exchange relations of the linear 2-category CKLR.

6.1.3 Remark. We study the case of simply-laced Cartan data for simplicity in the proofs of confluence
of critical branchings. In the general case, the KLR relations admit a polynomial right handside, and thus
are more complicated to handle. For instance, the relation reducing a double crossing or the Yang-Baxter
braid become

i j

=
i j

•di,j
+

i j

•dj,i

whenever i · j 6= 0, and

i j k

=

i j k

+

di,j−1∑
a=0 i j k

• •a di,j−1−a

whenever i = k and i · j 6= 0. However, we expect that the proof of confluence in the general setting
works similarly as in the simply-laced setting, but the confluence of critical branchings is more difficult
to ensure due to these relations.
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6.1.4. The KLR algebras in the 2-category CKLR. Following [71], we consider for any i and j in
Seq(V) the set jR(V)i of braid-like Khovanov-Lauda diagrams with source i and target j, given by string
diagrams satisfying the following conditions:

- the strands are labelled by vertices of Γ , and reading the labels on the bottom (resp. the top) of the
diagram gives the sequence i (resp. j),

- a strand does not intersect with itself.

For any i and j in Seq(V), the set jR(V)i is a K-vector space, and we have that R(V) =
⊕

i,j∈Seq(V)
jR(V)i.

Let us consider the linear 2-cateory CKLR defined by:

i) only one 0-cell denoted by ∗,

ii) its generating one cells are the elements of I, and the ?0 composition of 1-cells is formal concatena-
tion of vertices, so that the 1-cells of CKLR correspond to sequences of vertices of I.

iii) its generating 2-cells are given by

i j

: i ?0 j→ j ?0 i, •
i

: i→ i (6.5)

for any i and j in I, so that the 2-cells of CKLR are obtained by all the diagrams one can form by
vertical and horizontal compositions of these generating 2-cells. We require that the 2-cells of CKLR

are subject to relations (6.1), (6.2), (6.3) and (6.4).

Note that it is clear from the definition of CKLR that if i and j are sequences of vertices of I which
does not belong to the same set Seq(V), then we have CKLR

2 (i, j) = ∅. When they belong to the same
Seq(V), we have CKLR

2 (i, j) = jR(V)i. As a consequence, we have an isomorphism of algebras

R(V) '
⊕

i,j∈Seq(V)

CKLR
2 (i, j)

so that for any V inN[I], the KLR algebra CKLR is encoded in the linear 2-category CKLR.

6.1.5. The linear (3, 2)-polygraph KLR. In this section, we will define linear (3, 2)-polygraphs pre-
senting these simply-laced KLR algebras and prove that they are convergent. Let KLR be the lin-
ear (3, 2)-polygraph defined by:

- One 0-cell denoted by ∗,

- Its generating 1-cells are the elements i of I,

- Its generating 2-cells are given by the elements of (6.5),

- Its generating 3-cells are given by the following oriented relations:

i) For any i, j ∈ I,

i j

• αLi,j *4

i j

• and
i j

• αRi,j *4

i j

•

ii) For any i ∈ I,

i i

• αLi *4

i i

• +

i i

and

i i

• αRi *4

i i

• −

i i
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iii) For any i ∈ I,

i i

βi *4 0

iv) For any i, j ∈ I such that i · j = 0,

i j

βi,j *4

i j

v) For any i, j ∈ I such that i · j = −1,

i j

βi,j *4

i j

• +

i j

•

vi) For any i, j, k ∈ I, and unless i = k and i · j 6= −1,

i j k

γi,j,k *4

i j k

vii) For any i, j ∈ I such that i · j = −1,

i j i

γi,j,k *4

i j i

+

i j i

.

We then establish the following result:

6.1.6 Theorem. The linear (3, 2)-polygraph KLR is a convergent presentation of the linear 2-category
CKLR.

The 3-cells of KLR are orientations of the relations of CKLR, so that KLR is a presentation of CKLR.
On the one hand, we show that KLR is terminating using the derivation method to prove termination of
3-polygraphs from [51, Thm 4.2.1], extended in the linear setting in [42]. On the other hand, we prove
that KLR is confluent by proving confluence of all its critical branchings, using [2, Thm 4.2.13].

6.1.7. Termination of KLR. We prove that KLR is terminating using the derivation method given in
Section 2.8.9. We consider the internal abelian group Z in Ord and we set Y to be the trivial 2-functor,
that is the 2-functor sending the generating 1-cell of KLR to the terminal object {0} of Ord. We define
the values of the 2-functor X : KLR∗2 → Ord on generating 1-cells by X(i) = N for any i ∈ I, so that
X(i ?0 j) = N×N, and on generating 2-cells by

X
(
i

)
(n) = n X

(
i

•
)
(n) = n− 1 X

(
i j

)
(n,m) = (m+ 1, n)

for all n,m ∈ N and for any i and j in I, so that we may omit the labels on the strands when computing
values of the functor X. We consider the KLR∗2-moduleMX,∗,Z. The following inequalities hold

X
( )

(n,m) = X
( )

(m+ 1, n) = (n+ 1,m+ 1)

≥ max
(
X
(
•

)
(n,m), X

(
•
)
(n,m), X

( )
(n,m)

)
= max

(
(n+ 1,m), (n,m+ 1), (n,m)

)
,
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X
( • )

(n,m) = (m,n) ≥ (m,n) = max
(
X
(

•
)
(n,m), X

( )
(n,m)

)
,

X
( • )

(n,m) = (m+ 1, n− 1) ≥ (m+ 1, n− 1) = max
(
X
(

•
)
(n,m), X

( )
(n,m)

)
,

X
( )

(n,m, l) = (l+ 2,m+ 1, n) ≥ max
(
X
( )

(n,m, l), X
( )

(n,m, l)
)
.

Let us now define the derivation d of KLR∗2 intoMX,∗,Z on the generating 2-cells of KLR by setting

d
(
i

)
(n) = 0, d

(
i j

)
(n,m) = n , d

(
i

•
)
(n) = n

for any n,m ∈ N and any i, j ∈ I so that we can omit labels on the strands when computing the
derivations on 2-cells of KLR∗2. Following [51], the following inequalities hold:

d
( )

(n,m) = n+m+ 1 > 0 = d
( )

(n,m) = max
(
d
(
•

)
, d
(

•
))
(n,m),

d
( )

(n,m, l) = 2n+m+ 1 > 2n+m = max
(
d
( )

, d
( ))

(n,m, l),

and we check for 3-cells αLi,j (resp. αLi ) that

d
( • )

(n,m) = d
( )

?1 • (n,m) + • ?1 d
(
•

)
=MX,∗,Z

(
� ?1 •

)(
d
( ))

(n,m) +MX,∗,Z
(

?1 �
)(
d
(
•

))
(n,m)

= d
( )

(n,m) + d
(
•

)(
X
( )

(n,m)
)

= n+ d
(
•

)
(m+ 1, n) = n+m+ 1

and similarly,
d
(

•
)
(n,m) = n+m.

As a consequence, the derivation d satisfies the strict inequality

d
( • )

(n,m) = n+m+ 1 > n+m = max
(
d
(

•
)
, d
( ))

(n,m),

In a similar fashion, we show that

d
( • )(n,m) = 2n > 2n− 1 = max

(
d
( • )

, d
( ))

(n,m).

so that the 2-functor X and the derivation d satisfy the conditions i), ii) and iii) of Section 2.8.9, and thus
the linear (3, 2)-polygraph KLR is terminating.
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6.1.8. Critical branchings of KLR. There are four different forms for the sources of 3-cells, that we
denote as follows:

i j

•
! ldoti,j ,

i j

•
! rdoti,j ,

i j

! dcri,j ,
i j k

! ybgi,j,k .

There are six families of regular critical branchings, which we all prove confluent in Appendix A.2.
The exhautive list of critical branchings is given below, listing all the pairs of sources of 3-cells that
overlap:

a) Crossings with two dots of the form (ldoti,j, rdoti,j) for any i and j in I.

b) Triple crossings of the form (dcrj,i, dcri,j) for any i, j in I and any value of the bilinear form i · j.

c) Double crossings with dots of the form (ldotj,i, dcri,j) and (rdotj,i, dcri,j) for any i and j in I and any
value of i · j.

d) Double Yang-Baxters of the form (ybgj,k,i, ybgi,j,k) for any i, j and k in I and any values of i · j, j · k
and i · k.

e) Yang-Baxters and crossings of the form (ybgi,j,k, dcrj,i) and (dcrk,j, ybgi,j,k) for any i, j and k in I and
any values of i · j and j · k.

f) Yang Baxter and dots of the form (ldotk,j, ybgi,j,k) ; (rdotk,j, ybgi,j,k) ; (rdoti,k, ybgi,j,k) for any i, j
and k in I and any values of i · j, i · k and j · k.

There also are right-indexed critical branchings of the form

K

i j k
(6.6)

Following the study of the 3-polygraphs of permutations in [51, Section 5.4], the 2-cells K in normal
form that can be plugged in (6.6) are identities or simple crossings. With the additional dot 2-cells, the
normal forms that we can plug in (6.6) are given by:

i)
i

•n for every n ∈ N, which is an identity if n = 0.

ii)
i l

•n for all n ∈ N and for any l in I.

All the right-indexed critical branchings are confluent, and are drawn in Appendix A.2.

6.1.9. Poincaré-Birkhoff-Witt bases. Let us fix two sequences i and j in Seq(V), with |V | = m.
From [2, Prop. 4.2.15], the set of monomials in normal form with respect to KLR with 1-source i and
1-target j forms a basis of the vector space jR(V)i. In [71], Khovanov and Lauda described a linear
basis for this vector space, given by braid diagrams between i and j defined from a choice of minimal
representatives for the Coxeter presentation of Sm, with an arbitrary number of dots at the bottom of each
strand. Using this rewriting theoretical approach, the set of minimal representatives in Sm is given by
braid diagrams which are normal forms for the 3-cells βi,j and γi,j,k for any i,j and k in I. In [102, Thm
3.7], Rouquier established that these bases are Poincaré-Birkhoff-Witt (PBW for short) bases. Indeed, he
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described a morphism of algebras between HV(Q) and a wreath product algebra, and enounced that the
KLR algebras satisfy a Poincaré-Birkhoff-Witt property if and only if this morphism is an isomorphism,
which is equivalent to the fact that the set

S = {τi1,si2 ...sir (j)
. . . τir,jx

a1
1,j . . . x

am
m,j}(i1,...,ir)∈J,(a1,...,am)∈Nm,j∈Seq(V)

is a linear basis of the algebra HV(Q), where J is a set of finite sequences of elements of {1, . . . ,m− 1}
such that {si1 . . . sir}(i1,...,ir)∈J is a set of minimal length representatives of elements of Sm for its Coxeter
presentation. The multiplication by the xk,i to the right corresponds to adding an arbitrary number of dots
at the bottom of each strand in the diagrams. The products τi1,si2 ...sir (j) . . . τir,j are given in that case by
the choices of braid diagrams which are normal forms for KLR, corresponding to minimal elements in
the Coxeter presentation of Sm for the degree lexicographic order induced by s1 > s2 > · · · > sm−1.

As a consequence, for this choice, the elements of S correspond to the set of monomial normal forms for
KLR, proving the following result:

6.1.10 Corollary. The simply-laced KLR algebras admit PBW bases.

6.2. REWRITING MODULO ISOTOPY IN KHOVANOV-LAUDA-ROUQUIER’S

2-CATEGORY

In this section, we define a linear (3, 2)-polygraph presenting the linear 2-category U(g) and prove that
rewriting modulo the isotopy relations using the remaining defining 3-cells gives a quasi-terminating and
confluent modulo linear (3, 2)-polygraph modulo. As a consequence, we compute linear bases for the
spaces of 2-cells in U(g) and prove non-degeneracy of Khovanov and Lauda’s diagrammatic calculus.

6.2.1. The 2-categories A(g) and U(g). In this subsection, we define the linear 2-categories A(g) and
U(g) defined respectively by Rouquier and Khovanov-Lauda. We recall Brundan’s isomorphism theorem
between these two 2-categories.

6.2.2. Rouquier’s Kac-Moody 2-category. Let (I, ·, X, Y) be a root datum. The Kac-Moody 2-category
A(g) defined in [102] is the strict additive K-linear 2-category whose

- 0-cells are given by the elements λ in the weight lattice X of the Kac-Moody algebra;

- generating 1-cells are given by Ei1λ : λ→ λ+ αi and Fi1λ : λ→ λ− αi;

- generating 2-cells are given by xi : Ei1λ → Ei1λ, τi,j : EiEj1λ → EjEi1λ, ηi : 1λ → FiEi1λ and
ε : EiFi1λ → 1λ which are represented respectively by the following diagrams:

•
i

λ

i j

λ i

λ i

λ .

These two morphisms are subject to the following list of relations:

i) The KLR relations for both upward and downward orientations.

ii) Right adjunction relations:

i

λ =

i

λ ,

i

λ =

i

λ , (6.7)

which imply that Fi1λ+αi is the right dual of Ei1λ.
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iii) Some inversion relations: we require the following 2-morphisms to be invertible in A(g):

j

i
λ : EjFi1λ

∼→ FiEj1λ if i 6= j, (6.8)

j

i
λ ⊕

〈hi,λ〉−1⊕
n=0

i

λ
n• : EiFi1λ

∼→ FiEi1λ ⊕ 1
⊕〈hi,λ〉
λ if 〈hi, λ〉 ≥ 0, (6.9)

j

i
λ ⊕

−〈hi,λ〉−1⊕
n=0

i

λ
n• : EiFi1λ ⊕ 1

⊕−〈hi,λ〉
λ

∼→ FiEi1λ if 〈hi, λ〉 ≤ 0. (6.10)

This condition of invertibility in A(g) imposes that we have to define new generating 2-cells as the
formal inverses of each summand in (6.8) – (6.10). Let us denote by Â(g) the linear 2-category obtained
by forgetting the direct sums operations and the grading on 1-cells in A(g). In order to compute linear
bases of A(g), it is sufficient to compute linear bases in the vector spaces of 2-cells in Â(g).

6.2.3. Khovanov-Lauda’s 2-category U(g). The 2-category U(g) has the same 0-cells and 1-cells than
A(g), and have additional generating 2-cells x ′ : Fi1λ → Fi1λ, τ ′ : FiFj1λ → FjFi1λ, η ′ : 1λ → EiFi1λ
and ε ′ : FiEi1λ → 1λ diagrammatically depicted by

x ′ = •
i

λ , τ ′ =
j i

λ , η ′ =
i

λ
, ε ′ =

i

λ
. (6.11)

subject to some relations as the KLR relations for both upward and downard orientations and the local
”sl2” relations which come from Lauda’s categorification of sl2, [82]. We refer to [67, Section 3.1] to
see the complete definition of this 2-category.

6.2.4. Brundan’s isomorphism theorem. In [20, Main Thm], Brundan defined a 2-functor from A(g)
to U(g) that he proved to be an isomorphism. This functor is the identity on 0-cells and 1-cells. On
2-cells, it is the identity on the 4 generating 2-cells of A(g) which are also in U(g). It then remains
to define new 2-cells x ′, τ ′, η ′, ε ′ in A(g) that will be the images of the additionnal generators in U(g)
under the inverse functor. We recall here the definition of these new 2-cells in A(g) and the relations
implied by these definitions. First of all, we define the downward dot and crossing as being the right
mates under adjunction of the upward ones:

x ′i = •
i

λ := •
i

λ , τ ′i,j =
j i

λ :=

ij

.

In [20], Brundan defined an additional generator for the isomorphism 2-cell:

σi,j =

j

i

λ :=

i

j

λ . (6.12)

He then defined a leftward crossing as the formal inverse of this new generator. Using the cyclicity
relations proved by Brundan in [20, Section 5], A(g) admits a pivotal structure and thus its 2-cells are
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represented up to isotopy. As a consequence, we set

σ ′i,j =
j

i

λ =

j

i

λ

: FiEj1λ → EjFi1λ, (6.13)

Let us now define the new generators from [20]. Note that these definitions slightly differ depending
on the value of 〈hi, λ〉. First of all, let us assume that 〈hi, λ〉 ≥ 0. The 2-cells σ ′ and η ′ are defined so
that

−

j

i

λ

⊕ · · · ⊕
i

λ
:=

(
i

i
λ ⊕ · · · ⊕

i

λ〈hi,λ〉−1•
)−1

, (6.14)

assuming that σ ′ is just the inverse of σ if 〈hi, λ〉 = 0. We also define

i

λ

:= −
λ

•〈hi,λ〉
.

Now, let assume that 〈hi, λ〉 ≤ 0. The 2-cells σ ′ and ε ′ are defined so that

−

j

i

λ

⊕ · · · ⊕
i

λ

:=

(
i

i
λ ⊕ · · · ⊕ i

λ
−〈hi,λ〉−1•

)−1

, (6.15)

assuming again that σ ′ is the inverse of σ if 〈hi, λ〉 = 0. We set

i

λ

:=
λ

•−〈hi,λ〉

.

Using these definitions, Brundan also proved that Fi1λ+αi also is the right dual of E11λ, yielding
adjunction relations of the form

i

λ =

i

λ ,

i

λ =

i

λ . (6.16)

where the 2-cells η ′ and ε ′ are units and counits of this left adjunction Fi1λ+αi ` Ei1λ. Brundan also
proved in [20] that the dot 2-cells are cyclic under this biadjunction, yielding relations of the form:

•
i

λ
=

i

λ
• ,

i

λ• = •
i

λ

, •
i

λ
=

i

λ
• ,

i

λ• = •
i

λ

.

6.2.5. Z-grading. Following the definitions of Rouquier and Khovanov-Lauda, we define a Z-grading
on the 2-morphisms in A(g), by setting for all i ∈ I:

deg(xi) = i · i, deg(τi) = −i · j, deg(εi) =
i · i
2

(1− 〈hi, λ〉), deg(ηi) =
i · i
2

(1+ 〈hi, λ〉).

With the previous definitions of x ′i, τ
′
i, η
′
i and ε ′i , we can prove that

deg(x ′i) = i · i, deg(τ ′i) = −i · j, deg(ε ′i) =
i · i
2

(1− 〈hi, λ〉), deg(η ′i) =
i · i
2

(1+ 〈hi, λ〉).

and that
deg(σi,j) = 0, deg(σ ′i,j) = 0

for all values of 〈hi, λ〉, so that this grading exactly to the Z-grading in U(g) defined by Khovanov and
Lauda. In order to compute the degree of a string diagram 2-cell, it suffices to sum up all the degrees of
the generating 2-cells that appear in that diagram. For coherence, we set deg(0) = −∞.

149



6.2.6. Bubbles. For each λ ∈ X, we can define 2-cells in END(11λ) by putting a cap over a cup when-
ever the directions and labels are compatible. Thus, there is two kinds of bubble morphisms, namely
clockwise bubbles and counter clockwise bubbles, and we can decorate them by placing an arbitrary
number of dots on each:

i

λ•n
i

λ • n .

If we compute the degree of such a bubble, we have:

deg
(

i

λ•n
)

= i · i(1− 〈hi, λ〉+ n) ; deg
(

i

λ • n
)

= i · i(1+ 〈hi, λ〉+ n).

Following [82, 67], we have to impose conditions on these bubbles, namely bubbles with a negative
degree are zero, and bubbles of degree zero are identities. This corresponds to the following relations:

i

λ•n =

{
11λ if n = 〈hi, λ〉− 1
0 if n < 〈hi, λ〉− 1

(6.17)

i

λ • n =

{
11λ if n = −〈hi, λ〉− 1
0 if n < −〈hi, λ〉− 1

(6.18)

As in [82, Section 3.6], we introduce fake bubbles. These bubbles are formal symbols which corre-
spond to bubbles decorated with a negative number of dots. It is explained in [82] that these new symbols
are added in order to have an interpretation only with diagrams of the relations obtained by lifting the
relations in sl2. They are defined in terms of linear combinations of products of positively dotted bubbles.
Following [20], we set for r, s < 0:

i

λ•n :=


−
∑
k≥0 i

•−n−k−1

i

λ •k−〈hi,λ〉 if n > 〈hi, λ〉− 1,

11λ if n = 〈hi, λ〉− 1,
0 if n < 〈hi, λ〉− 1,

i

λ • n :=


−
∑
k≥0 i

•〈hi,λ〉+k

i

λ •−n−k−1 if n > −〈hi, λ〉− 1,

11λ if n = −〈hi, λ〉− 1,
0 if n < −〈hi, λ〉− 1.

The first condition for both orientations corresponds to Lauda’s inductive definition of fake bubbles
coming from the infinite Grassmaniann relation, see [82, Section 3.6.2]. The second two other definitions
impose the same condition that fake bubbles of negative degree are zero, and that fake bubbles of degree
zero are identities. With this definition, Brundan proved that the Infinite Grassmaniann relation hold in
A(g), that is:

6.2.7 Theorem ([20], Thm 3.2). For t > 0, the following relation hold in A(g):∑
r,s∈Z

r+s=t−2
i
•r

i
λ • s = 0.

Using the conditions on degrees, we can restrict this relation to the following one:

α∑
k=0 i

•〈hi,λ〉−1+α−l

i λ
•−〈hi,λ〉−1+l = 0 for all α > 0. (6.19)

150



6.2.8. The relations in A(g). In this section, we recall some of the important defining relations that

arise from the invertibility condition. In [20], Brundan introduced new generators

(
i

λ

k
♠

)
0≤k≤〈hi,λ〉−1

and


i

λ
k
♣


0≤k≤−〈hi,λ〉−1

as follows:

• For 〈hi, λ〉 ≥ 0,
i

λ

k
♠ is the (n + 1)-th entry of the inverse vector of the invertible 2-cell when

〈hi, λ〉 ≥ 0, that is:

−

i

i

λ

⊕
〈hi,λ〉−1⊕
n=0

i

λ

n
♠ :=

(
i

i
λ ⊕

〈hi,λ〉−1⊕
n=0

i

λ
n•

)−1

. (6.20)

• Similarly,
i

λ
k
♣

is defined for 〈hi, λ〉 ≤ 0 by:

−

j

i

λ

⊕
−〈hi,λ〉−1⊕
n=0

i

λ
n
♣

:=

(
i

i
λ ⊕

−〈hi,λ〉−1⊕
n=0

i

λ

n•
)−1

. (6.21)

To establish the isomorphism between A(g) and U(g), Brundan proved that the following relation
have to hold in A(g): for all 0 ≤ n ≤ 〈hi, λ〉− 1,

i
λ

n
♠ =

∑
r≥0

i λ

i

•−n−r−2
•r if 0 ≤ n < 〈hi, λ〉, (6.22)

i

λ
n
♣

=
∑
r≥0

i
•r

i

λ
•−n−r−2 if 0 ≤ n < −〈hi, λ〉. (6.23)

As a consequence, we do not have to consider these inverse 2-cells as generators in the presentation,
since we will replace them by their expression in term of the other generators whenever they appear. The
invertibility conditions (6.8) and (6.9) can then be expressed diagrammatically by:

λ

i i

=

〈hi,λ〉−1∑
n=0

∑
r≥0

i

λ

i •−n−r−2
• r

i

• n
−

i

i

λ , (6.24)

λ

i i

=

−〈hi,λ〉−1∑
n=0

∑
r≥0

i

• r
i
λ
•−n−r−2
•n

i

−
i

i

λ . (6.25)

Besides, some other relations directly follow from this isomorphism:
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i) For 〈hi, λ〉 > 0 and 0 ≤ n < 〈hi, λ〉, we have

λ

i

= 0,

i

λ

• n
= 0. (6.26)

ii) For 〈hi, λ〉 < 0 and 0 ≤ n < −〈hi, λ〉, we have

λ

i

= 0,
λ

i• n

= 0. (6.27)

The following relations also hold, and correspond to the sl2-relations of U(g), see [20, Corollary
3.5]:

λ

i

=

〈hi,λ〉∑
n=0

i
•n

i
λ
•−n−1 , λ

i

= −

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ

• n . (6.28)

6.2.9. Further relations. We prove some further relations that we will use in the last section to prove

that the linear (3, 2)-polygraph presenting Â(g) is convergent.

6.2.10 Lemma. The following relations hold in A(g):

λ

i

= −

−〈hi,λ〉∑
n=0

i
• n

i

λ

•−n−1 , λ
i

=

〈hi,λ〉∑
n=0

i
•−n−1

i

λ

•n .

Proof. Using the symmetry in A(g) coming from the anti-involution T defined by Brundan in [20, Thm
2.3], it suffices to prove the first relation. For 〈hi, λ〉 > 0, it follows directly from the relations (6.26).

For 〈hi, λ〉 = 0, the left handside is equal to −
i

λ

using the definition of εi when 〈hi, λ〉 ≥ 0. The

right handside also reduces to −
i

λ

because the bubble that remains is an identity, using the degree

conditions. Let us prove it for 〈hi, λ〉 < 0. On the one hand, using the relation of invertibility, we have

•

i

i
λ

=

−〈hi,λ〉−1∑
n=0

∑
r≥0

i

• r

i
λ•−n−r−2

•n+1
i

−
i

•
i

λ =
(6.17)

−〈hi,λ〉−1∑
n=0

−〈hi,λ〉−1∑
r=0

i

• r

i
λ•−n−r−2

•n+1
i

−
i

•
i

λ

=

−〈hi,λ〉∑
n=1

−〈hi,λ〉−1∑
r=0

i

• r

i
λ•−n−r−1

• n
i

−
i

•
i

λ =

−〈hi,λ〉∑
n=1

−〈hi,λ〉∑
r=0

i

• r

i
λ•−n−r−1

• n
i

−
i

•
i

λ

The last equality above is due to the fact that
−〈hi,λ〉∑
n=1

i

•−〈hi,λ〉

i
λ•−n+〈hi,λ〉−1

• n
i

= 0 since n > 0, using
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(6.17). On the other hand, we can make the dot go down using the upward KLR relations:

•

i

i
λ

=

•

λ

i

i

−

λ

i

+

i

λ =
(6.25)

−〈hi,λ〉−1∑
n=0

∑
r≥0

i

•r+1

i
λ•−n−r−2

• n
i

−
i

•
i

λ −

λ

i

+

i

λ

=
(6.28)

−〈hi,λ〉−1∑
n=0

∑
r≥0

i

•r+1

i
λ•−n−r−2

• n
i

+

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ

•n
i

+

i

λ −
i

•
i

λ

=
(6.17)

−〈hi,λ〉−1∑
n=0

−〈hi,λ〉−1∑
r=0

i

•r+1

i
λ•−n−r−2

• n
i

+

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ

•n
i

+

i

λ −
i

•
i

λ

=
(∗)

−〈hi,λ〉∑
n=0

−〈hi,λ〉−1∑
r=0

i

•r+1

i
λ•−n−r−2

• n
i

+

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ

•n
i

+

i

λ −
i

•
i

λ

=

−〈hi,λ〉∑
n=0

−〈hi,λ〉∑
r=0

i

• r

i
λ•−n−r−1

• n
i

+

i

λ −
i

•
i

λ ,

where the equality (∗) is due to the fact the term in −〈hi, λ〉 in the first summand is zero by the degree
conditions. Thus, the two expressions obtained have to be equal, and so we must have

−〈hi,λ〉∑
r=0

i
•r

i

λ
•−n−r−1

i

+

i

λ = 0.

Using the bilinearity of the vertical composition in the linear 2-category A(g),we obtain the result.

6.2.11. The linear (3, 2)-polygraph KLR. Let us now provide a presentation of the linear 2-category

Â(g) by a linear (3, 2)-polygraph, which we will prove quasi-terminating and confluent modulo its sub-
polygraph of isotopies.

6.2.12 Definition. Let KLR be the linear (3, 2)-polygraph defined by:

i) the elements of KLR0 are the weights λ ∈ X of the Kac-Moody algebra;

ii) the elements of KLR1 are given by

1λ ′Eε1i1 . . . Eεmim1λ
for any signed sequence of vertices (ε1i1, . . . , εmim) in SSeq :=

∐
V∈N[I]

SSeq(V), and λ,λ ′ in X.

Such a 1-cell has for 0-source λ and 0-target λ ′, and

1λ ′′Eε ′1j1 . . . Eεljl1λ ′ ?0 1λ ′Eε1i1 . . . Eεmim1λ = 1λ ′′Eε ′1j1 . . . Eεmim1λ
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iii) the elements of KLR2 are the following generating 2-cells: for any i in I and λ ′ in X,

•
i

λ

i j

λ •
i
λ

i j

λ
i

λ i

λ
i

λ i

λ

iv) KLR3 consists of the following 3-cells:

1) The 3-cells of the linear (3, 2)-polygraph KLR for both upward and downward orientations
of all strands. For any 3-cell δ in KLR3, we denote by δλ,+ (resp. δλ,−) the corresponding
3-cell in KLR with upward (resp. downward) oriented strands and the rightmost region of the
diagram being labelled by λ.

2) The isotopy 3-cells: for any i ∈ I and λ ∈ X

i

λ

i01
V

i

λ ,

i

λ

i03
V

i

λ ,

i

λ

i04
V

i

λ ,

i

λ

i02
V

i

λ , (6.29)

•
i

λ

i12
V •

i

λ , •

i

λ

i11
V •

i

λ , •
i

λ

i13
V •

i

λ , •
i

λ

i14
V •

i

λ , (6.30)

•
i

λ

i21
V

i

λ
• ,

i

λ• i23
V •

i

λ

, •
i

λ

i22
V

i

λ
• ,

i

λ• i24
V •

i

λ

(6.31)

3) The 3-cells coming from the new generators in A(g): for any i, j ∈ I, λ ∈ X

λ

•−〈hi,λ〉

D−
i,λ

V
i

λ
for 〈hi, λ〉 ≤ 0,

λ

•〈hi,λ〉 B+i,λ
V −

i

λ

for 〈hi, λ〉 ≥ 0

(6.32)

4) The 3-cells for the degree conditions on bubbles: for every i ∈ I, λ ∈ X

i

λ•n b1i,λ
V
b0,ni,λ

{
11λ if n = 〈hi, λ〉− 1
0 if n < 〈hi, λ〉− 1

(6.33)

i

λ • n c1i,λ
V
c0,ni,λ

{
11λ if n = −〈hi, λ〉− 1
0 if n < −〈hi, λ〉− 1

(6.34)

5) The Infinite-Grassmannian 3-cells: for any i ∈ I, λ ∈ X and α > 0,

i

λ•〈hi,λ〉−1+α
igα
V −

α∑
l=1

i

•〈hi,λ〉−1+α−l

i λ
•−〈hi,λ〉−1+l
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6) Bubble-slide 3-cells: for any i, j in I and any α ≥ 0,

i

•〈hi,λ+αj〉−1+α

j

λ

s+i,j,λ,α
V



α∑
f=0

(α+ 1− f)

i

•α−f
i λ

• 〈hi,λ〉−1+f if i = j,

j
i λ

• 〈hi,λ〉−1+α if i · j = 0,

j

•
i λ

•−〈hi,λ〉+α−2 +

j
i λ

• 〈hi,λ〉−1+α if i · j = −1.

and for any i, j in I and any α ≥ 0,

i

•−〈hi,λ+αj〉−1+α
j

λ

s−i,j,λ,α
V



i

• 2
i

λ • −〈hi,λ〉+α−3 − 2

i

•
i

λ • −〈hi,λ〉+α−2 +

i

i

λ • −〈hi,λ〉−1+α if i = j,

i

i

λ • −〈hi,λ〉−1+α if i · j = 0.

α∑
f=0

(−1)f

j

• f
i

λ •−〈hi,λ〉−1+α−f if i · j = −1.

so as their reflections r+i,j,λ,α and r−i,j,λ,α through a horizontal axis, allowing to make a bubble go
through a downward strand. These reflexions correspond to the images of these relations via
the symmetry ψ̃ defined by Khovanov and Lauda in [67, Section 3.3]. Note that these relations
were originally proved by Khovanov and Lauda in [67, Props 3.3 & 3.4], and are added to this
presentation to reach confluence modulo as it will be explained later.

7) The invertibility 3-cells: for any i, j ∈ I and λ ∈ X

λ

i j

Fi,j,λ
V

i

j

λ ,
λ

i j

Ei,j,λ
V

i

j

λ

λ

i i

Fi,λ
V −

i

i

λ +

〈hi,λ〉−1∑
n=0

∑
r≥0

i

λ

i •−n−r−2
• r

i
•n

,

λ

i i

Ei,λ
V −

i

i

λ +

−〈hi,λ〉−1∑
n=0

∑
r≥0

i

• r

i
λ•−n−r−2

• n
i

.
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8) The 3-cells corresponding to the sl2 relations: for any i ∈ I and λ ∈ X

λ

i

Ci,λ
V
〈hi,λ〉∑
n=0

i
•n

i λ
•−n−1 ; λ

i

Ai,λ
V −

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n ;

λ

i

Bi,λ
V −

−〈hi,λ〉∑
n=0

i
•n

i

λ
•−n−1 ;

λ
i Di,λ

V
〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n .

6.2.13 Remark. The 3-cells defining the new caps and cups generators in 3) are redundant in this presen-
tation since they can be recovered using the sl2 relations of 8), the degree condition relations on bubbles
of 4) and the KLR relations of 1): for instance, we have the following rewriting sequence in KLR: for
〈hi, λ〉 > 0,

λ

•〈hi,λ〉
V

λ
•〈hi,λ〉

V
λ

•
〈hi,λ〉

−
∑

a+b=〈hi,λ〉−1 i
•a

i

λ
•b V 0−

i

λ

Similarly, one proves that the relations (6.26) - (6.27) can be recovered with this presentation, so the
corresponding 3-cells can be removed from the presentation. We still denote by KLR the linear (3, 2)-
polygraph defined as above but with the 3-cells of 3) removed.

Following [67, 20], the 3-cells in KLR are sufficient to recover all the relations in A(g), so that we
have the following result:

6.2.14 Proposition. The linear (3, 2)-polygraph KLR presents the linear 2-category Â(g).

6.2.15. Convergent splitting of KLR. We define a convergent splitting (E, R) of the linear (3, 2)-
polygraph KLR as follows: the linear (3, 2)-polygraph E has the same 0-cells and 1-cells than KLR, its
generating 2-cells are given by the six following 2-cells

•
i

λ
•
i
λ

i

λ i

λ
i

λ i

λ

and the 3-cells of E are the isotopy 3-cells of KLR given in (9.4) – (6.31). Note that following [42], the
linear (3, 2)-polygraph E is convergent. The linear (3, 2)-polygraph R is then defined by Ri = KLRi
for 0 ≤ i ≤ 2 and R3 = KLR3\E3. In the sequel, we will consider rewriting with respect to the
linear (3, 2)-polygraph S := ER, and we will prove the following result:

6.2.16 Theorem. The linear (3, 2)-polygraph modulo (R, E, ER) is quasi-terminating and confluent
modulo E.

6.2.17. Quasi-reduced monomials. Following 2.6.4, linear 2-categories admitting relations making
bubbles go through strands cannot be equiped with a monomial order, and thus cannot be presented by
terminating but rather quasi-terminating rewriting systems. This is the case in this setting because of the
bubble slide relations creating rewriting cycles, as for instance:

j
i

•〈hi,λ+αj〉−1 s+i,j,λ,0*4

j
i

•〈hi,λ〉−1 r−i,j,λ−αj,0*4

j
i

•〈hi,λ+αj〉−1
=

j
i

•〈hi,λ+αj〉−1
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for any i and j such that i · j = 0, and where the last equality is due to the exchange relation of 2-category
A(g). Note that there are the same kind of cyclic rewriting sequences in KLR for different labels i and
j, different orientations of bubbles and different number of dots decorating them. There also are the same
kind of relations with caps replaced by cups, these relations are not drawn here.

However, following [2], we say that a monomial in A(g) is quasi-reduced if we can only apply to it
one of the rewriting sequences given above.

6.2.18 Remark. Note that rewriting with respect to the linear (3, 2)-polygraph modulo ER brings addi-
tional loops coming from indexed diagrams of the form

i

λ

...

...

k ,

i

λ

...

...

k . (6.35)

using the dot move 3-cells i2j for 1 ≤ j ≤ 4, where k is a 2-cell in R∗2. Note that when k is a 2-cell built of
a ?0 and ?1 composite of dots, cups and caps 2-cells, the diagram in (6.35) is irreducible by R, and thus
by ERE. When k is built with crossings, one checks that there there are cycles of the following form:

λ

•

ij

V

λ

•
ij

−δi,j
λ

i

≡E

λ•

ij

−δi,j
λ

i

V

λ

•

ij

−δi,j
λ

i

+ δi,j
λ

i

(6.36)
and from the same diagram closed on its right by a rightward cap and a leftward cup. Similarly, if for
k ≥ 0 we denote by

λ

ij

. . . k

the diagram obtained as the superposition of 2k composable crossings, closed on the left using a cap and
a cup, there are cycles in ER given by:

λ

ij

•. . . k V
λ

ij

•. . . k

and similarly for a superposition of 2k upward oriented crossings closed on its right by a rightward cap
and a leftward cup, and for downward oriented crossings. However, one can always leave the cycles of
the form (6.36) using the 3-cells β+

i,j or β−
i,j when the dot is not inside a double crossing, so that we do

not take these cycles into account when considering quasi-reduced monomials.

6.2.19. Termination without bubble slide 3-cells. Before proving that ER is quasi-terminating, let us
at first prove the following result stating that, without the bubble slide 3-cells, the linear (3, 2)-polygraph
R defined in Section 6.2.15 is terminating.

6.2.20 Lemma. The linear (3, 2)-polygraph R ′ =
(
R0, R1, R2, R3 \{s

+
i,j,λ, s

−
i,j,λ}

)
is terminating.

Proof. We proceed into three steps.
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i) At first, let us extend the derivation d defined in Section 6.1.7 by keeping the same value on crossings
and dots, no matter the orientation of strands, and by setting the value on caps and cups 2-cells as 0.
Using this derivation, we get that d(s2(δ)) > d(t2(δ)) for any 3-cell δ coming from the linear (3, 2)-
polygraph KLR. As a consequence, one gets that if the linear (3, 2)-polygraph R ′′ defined as R ′

minus every KLR 3-cell terminates, then so does R ′. Indeed, otherwise there would be an infinite
reduction sequence (fn)n∈N in R ′ and thus, an infinite decreasing sequence (d(fn))n∈N of natural
numbers. Moreover, this sequence would be strictly decreasing at each step that is generated by
any KLR 3-cell. Thus, after some natural number p, this sequence would be generated by the other
3-cells only. This would yield an infinite reduction sequence (fn)n≥p in R ′′, which is impossible by
assumption.

ii) Let us prove that R ′′ is terminating in the two remaining steps. First of all, let us consider the
derivation || · ||{τ+i,j,τ−i,j}i,j∈I into the trivial moduloM∗,∗,Z, counting the number of crossing generators
in a given 2-cell. Then for any 3-cell δ belonging to {Ai,λ, Bi,λ, Ci,λ, Di,λ, Ei,j,λ, Fi,j,λ}, we get that
d(s2(δ)) > d(t2(δ)), and we prove in a same way that if the linear (3, 2)-polygraph R ′′′ defined as
R with only all 3-cells implying bubbles as 3-cells is terminating, then so is R ′.

iii) To prove that R ′′′ is terminating, we consider the derivation d ′ into the trivial moduleM∗,∗,Z defined
for any 2-cell u in KLR2 by

d ′(u) =


#{bubbles in u}+

∑
π clockwise oriented bubble in u

deg(π) if u contains bubbles,

0 if u has no bubbles,
−∞ if u = 0.

One then easily checks that

d ′(s2(b
1
i,λ)) = d

′(s2(b
0,n
i,λ )) = 1+ 2(1− 〈hi, λ〉+ n) > 0 = max

(
d ′(t2(b

1
i,λ)), d

′(t2(b
0,n
i,λ ))

)
d ′(s2(c

1
i,λ)) = d

′(s2(c
0,n
i,λ )) = 1 > 0 = max

(
d ′(t2(c

1
i,λ)), d

′(t2(c
0,n
i,λ ))

)
d ′(s2(igα)) = d

′
(

λ•〈hi,λ〉−1+α
)

= 1+ α i · i > 2+ (α− l)i · i

= d ′

(
•〈hi,λ〉−1+α−l

λ
•−〈hi,λ〉−1+l

)
since l ≥ 1 and i · i = 2.

6.2.21. Quasi-orderings. Following [40], a quasi-ordered set is a set A equipped with a transitive and
reflexive binary relation & on elements of A. For example, for any abstract rewriting system (A,→R),
the derivability relation→∗R is a quasi-ordering on the set A. Given a quasi-ordering & on a set A, we
define the associated equivalence relation ≈ as both & and . and the strict partial ordering > as & but
not .. Such a quasi-ordering is said total if for any a,b in A, we have either a & b or b & a. The
strict part > of a quasi-ordering is well-founded if and only if all infinite quasi-descending sequences
a1 & a2 & . . . of elements of A contains a pair sj . sk for j < k. A quasi-ordering defined on a set of
2-cells of a linear (2, 2)-category C is said monotonic if

(u & v) ⇒ (C[u] & C[v])

for any context C of C. From [40], if & is monotonic then ≈ is a congruence. Many termination
and quasi-termination proofs in the literature are made using well-founded quasi-orderings defined by
monotonic polynomial interpretations, [80]. In the case of linear (2, 2)-categories, these polynomial
interpretations will be given by weight functions.
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6.2.22. Weight functions. Let C a linear 2-category. Recall from [2] that a weight function on C is a
function τ from C2 toN such that

i) τ(u ?i v) = τ(u) + τ(v) for i = 0, 1 for any i-composable 2-cells u and v,

ii) for each 2-cell u in C2, τ(u) = max{τ(ui) | ui ∈ Supp(u)}.

Note that when C is presented by a linear (3, 2)-polygraph P, such a weight function is uniquely and
entirely determined by its values on the generating 2-cells of P2. This enables to define a quasi-ordering
& on KLR`2 by u & v if τ(u) ≥ τ(v), where τ is an apropriate weight function on KLR`2. We define
such a weight function on KLR`2 by its following values on generating 2-cells:

τ( ) = τ( ) = τ( ) = τ( ) = 0, τ( • ) = τ( • ) = 0, τ( ) = τ( ) = 3.

Note that for any 3-cell α in E3, we have τ(s2(α)) = τ(t2(α)) so that the isotopy 3-cells preserve this
weight function. Then, starting with a monomial u of KLR`2:

- While u can be rewritten with respect to ER into a 2-cell u ′ such that τ(u ′) < τ(u), then assign
u to u ′.

- While u can be rewritten with respect to ER into a 2-cell u ′ without any of the 3-cells depicted in
Section 6.2.17, then assign u to u ′.

From Lemma 6.2.20 and well-foundedness of the quasi-ordering &, this procedure terminates and
returns a linear combination of monomials in KLR`2 which are quasi-reduced, proving that ER is quasi-
terminating.

6.2.23. Confluence modulo. We prove that ER is confluent modulo E by proving that it is decreasing
modulo E. To prove that it is decreasing, we prove that all critical branchings of the form (f, g), where
f is a positive 3-cell in S`(1) and g is a positive 3-cell in R`(1) are decreasingly confluent with respect
to the quasi-normal form labelling ψQNF. First of all, let us provide an exhaustive list of such critical
branchings. Note that the branchings implying 3-cells bk,ni,λ , bk,ni,λ and Iα for k = 0, 1 and α > 0 are
trivially confluent by definition of bubbles with a negative number of dots and the Infinite Grassmanian
relation. Notice also that the bubble slide 3-cells does not overlap with the degree condition 3-cells since
their sources are bubbles with positive degrees by definition. Let us now study the remaining critical
branchings, that we split into two sets: those implying the KLR 3-cells and the remaining branchings
between 3-cells Ai,λ-Fi,λ.

6.2.24. Critical branchings from KLR relations. First of all, we have to consider all the the critical
branchings of the linear (3, 2)-polygraph KLR presenting the KLR algebra for both downward and up-
ward orientation of strands. These are all confluent from 6.1.8 and Appendix A.2. The 3-cells coming
from KLR also provide the following critical branchings of ER modulo E:

(Ai,λ, α
L,+
i,λ ), (Bi,λ, i

2
4 · αL,+i,λ ), (Ci,λ, i

2
3, α

R,+
i,λ ), (Di,λ, α

R,+
i,λ ), (Ei,λ, α

L,+
i,λ ), (Fi,λ, α

R,+
i,λ ).

for any value of 〈hi, λ〉, of respective sources

λ• λ• λ•
λ•

i i

λ• λ

i i

•

There are also critical branchings coming from isotopy given by

(βλ,+i,j , (i
0
1 ?2 i

0
4)

− · Fi,j,λ), (αR,+i,λ , (i
0
1 ?2 i

0
4)

− ?2 i
2
3 ?2 i

2
1 · Fi,j,λ), (γλ,+j,i,j, (i

0
1 ?2 i

0
4)

− · Fi,j,λ)
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of respective sources

λ

ij

≡E>
λ

ij

, λ

•

ij

≡E>
λ

i

•

j

, λ

iji

≡E>
λ

ij

i

Similarly, there are critical branchings of the form

(βλ,+i,j , (i
0
1 ?2 i

0
4)

− · Ei,j,λ), (αL,+i,λ , (i
0
1 ?2 i

0
4)

− ?2 (i
2
2 ?2 i

2
4)

− · Ei,j,λ).

All these branchings are proved confluent modulo E with respect to ER in Appendix A.3.1. Besides, it is
clear that each rewriting step drawn in the confluence diagrams in Appendix A.3.1 make the distance to
a quasi-normal form decrease by 1, proving decreasing confluence of these critical branchings for ψQNF.

6.2.25. Critical branchings between 3-cells A − F. Let us now classify critical branchings between
the 3-cells Ai,λ, Bi,λ, Ci,λ. We denote at first that if i, j ∈ I with i 6= j, there are two critical branchings
given by (Ei,j,λ, Fi,j,λ) and (Fi,j,λ, Ei,j,λ) which are trivially confluent. When both strands are labelled by
the same vertex i, the 3-cells Ei,λ and Fi,λ overlap with the sl2 3-cells, and we describe below a way to
list these overlappings, depending on the notion of type of a 2-cell.

6.2.26 Definition. For any 2-cell u in KLR2, we define the type of u as follows:

i) If u has a 1-source (resp. 1-target) E and an identity 1-cell as target (resp. source), that is if u is
represented by a closed diagram at its top (resp. at its bottom), we set the type of D to be

sgn(E)d (resp. sgn(E)u),

where sgn(E) depicts the sequence of signs appearing in E .

ii) If u is a 2-cell in KLR2 between two non-identity 1-cells, then the type of u is given by two
elements sgn(E)d and sgn(F)u

For instance, the following diagrams have respectively for type (+,−)d and (−,+)d, (−,+)u := (−,+)u,d:

λ

i

,

λ

i i

.

Moreover, all the 3-cells named by a letter A have the same type (−,+)u, we thus call it type A. We
do the same thing for the other 3-cells and we recover the different types for our 3-cells in an array:

Type of the 3-cell Type of the diagram
A (−,+)u

B (−,+)d

C (+,−)d

D (+,−)u

E (−,+)d,u

F (+,−)d,u
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There is a critical branching between two such relations if and only if they overlap on an element

λ

or λ . Thus, we can notice that there is a branching only between 3-cells of opposed

type, that is in which we reverse all the signs and we change the orientation. For instance, there is a
branching between A and C whose source is:

λ
i

Following this observation, the pairs of 3-cells that lead to a critical branching are:

(Ci,λ, Ai,λ), (Fi,λ, Ai,λ), (Bi,λ, Di,λ), (Bi,λ, Fi,λ), (Ci,λ, Ei,λ), (Ei,λ, Di,λ), (Ei,λ, Fi,λ), (Fi,λ, Ei,λ)

for any i in I, any λ in X and any possible value of 〈hi, λ〉. We check that all these critical branchings
are confluent modulo E, all the drawings are given in Appendix A.3.

6.2.27. Categorification of quantum groups. In this section, we prove using rewriting that the gener-
ating set that Khovanov and Lauda conjectured to be a linear basis indeed is a basis, by proving that this
generating set corresponds to a set of quasi-normal forms for the linear (3, 2)-polygraph ER defined from
KLR. As an immediate consequence of the results of [67], we obtain that the linear 2-category U(g)
is a categorification of the quantum group U̇q(g) associated with a symmetrizable Kac-Moody algebra g
whose Dynkin diagram Γ is a simply-laced graph.

6.2.28. Khovanov-Lauda’s generating set. In [67], Khovanov and Lauda described a general gener-
ating set for the vector space U(g)(Ei1λ, Ej1λ), for any i and j in SSeq(V), and λ in X. To define this
set, consider m points (resp. n points) on the lower (resp. upper) boundary R × {0} (resp. R × {1})
of the planar strip R × [0, 1], with m + n even, and choose an immersion of n+m2 strands into the strip
R× [0, 1] having these points as endpoints. We say that a strand is a through strand if it links an endpoint
of R × {0} to an endpoint of R × {1}. We fix and orientation and a label for each of this strands, so that
any endpoint inherit a label from the strand he is linked to, and a sign which is + if the strand is upward
oriented when reaching the endpoint, − otherwise. These orientations and labels on the upper (resp. the
lower) endpoints then define signed sequences i and j in SSeq(V). These immersions between i and j are
defined modulo boundary-preserving homotopies, and are called (i, j)-pairings. We will consider mini-
mal (i, j)-pairings, that is such pairings in which strands have no self-intersections and any two strands
intersect at most once.

Any (i, j)-pairing has a minimal diagram, as defined in [67], and we denote by p(i, j) a set of fixed
minimal (i, j)-pairing ũ for any (i, j)-pairing u. Let us also denote by Πλ the set of 2-cells U(g)(1λ, 1λ)
containing all products of clockwise and counterclockwise oriented bubbles with exterior region labelled
by λ, having an arbitrary number of dots on it and such that the degree of each bubble is positive.
Following [67], let us consider the set Bi,j,λ consisting of the union, over all u in p(i, j), of diagrams
built out of u by fixing a choice of an interval on each strand, away from the intersections, and placing
an arbitrary number of dots on each of this intervals, and placing any diagram representing a monomial
in Πλ to the right of this new diagram. Khovanov and Lauda proved that this space spans the K-vector
space U(g)(Ei1λ, Ej1λ).

6.2.29. Monomials in quasi-normal form. In this section, we will fix a particular set of monomials
in quasi-normal form for the linear (3, 2)-polygraph ER. Before defining this set, let us expand a few
remarks on reductions of 2-cells using rewriting modulo with respect to ER, allowing to change a diagram
up to isotopy to apply 3-cells of KLR.
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a) Note that a 2-cell u can be reduced into a linear combination of diagrams in which all 2-cells have
positive degree, using the infinite Grassmannian 3-cell and the degree condition 3-cells.

b) A 2-cell u containing bubbles can be reduced into a linear combination of 2-cells u ′ in which all the
bubbles moved to the rightmost region using the bubble slide relations.

c) If a 2-cell u contains a strand that intersect twice with another strand, one can use isotopies and 3-
cells Ei,λ, Fi,λ or β±i,j,λ to remove these intersections. As a consequence, two different strands can
intersect at most once.

d) If a 2-cell contains a non through strand that intersect with itself, one can use isotopies and 3-cells
Ai,λ (or Bi,λ, Ci,λ, Di,λ) on the part of the diagram next to the intersection to remove this intersection.

e) If a 2-cell contains a through strand with dots on it, the dots can be moved to the bottom of the strand
using the KLR 3-cells αL,±i,λ .

f) If a 2-cell contains a non through strand with a dot on it, and this strand does not intersect with another
strand, the dot can be placed anywhere. Taking the normal form will respect to E will then make the
dot move to the right.

g) If this non-through strand intersect with another strand, we are in one of the following situations:

or the mirror image of it through the anti-involution T defined in [20], for any orientation and labels
on strands. In the first case, if the dot is placed on the left of the cup, it can be moved to the right
using isotopy and the 3-cell αL,±i,j,λ. In the second situation, if the dot is placed on the leftmost cup
(resp. on the rightmost cup), it can be reduced with the KLR 3-cell αL,±i,j (or just an identity if the dot
is already in the good position) in

• , (resp. • ) .

As a consequence, one can choose a set of E-normal forms of quasi-normal forms with respect to
ER containing 2-cells in KLR2 having: all bubbles placed in the rightmost region and all dots placed
to the right of a bubble, a minimal number of crossings and crossings moved as far as possible to the
right using the Yang-Baxter 3-cells γ±i,j,λ, no strands with self-intersection and no double intersections
between two different strands, dots placed on the bottom on every through strand and on the rightmost
part of every non-through strand. This choice of set of quasi-normal forms correspond to a particular set
Bi,j,λ of Khovanov and Lauda. As a consequence of [42, Thm 2.5.6], we get the following result:

6.2.30 Theorem. The set Bi,j,λ defined above is a linear basis of U(g)(Ei1λ, Ej1λ).

6.2.31. Categorification of quantum groups. In [67], Khovanov and Lauda defined a map γ between
Lusztig’s idempotented and integral form U̇(g) defined in [85] of the quantum group Uq(g) associated
with a symmetrizable Kac-Moody algebra and the Grothendieck group of the (additive) linear 2-category
U(g). They established that this map is surjective for any Kac-Moody algebra g and any field K. How-
ever, the injectivity of γ holds if and only if the graphical calculus they introduce is non-degenerate,
which is equivalent to the fact that the generating set Bi,j,λ is a linear basis of the K-vector space of
2-cells U(g)(Ei1λ, Ej1λ) for any i and j in SSeq(V). From Theorem 6.2.30, this is true for any Kac-
Moody algebra g defined from a simply-laced Cartan datum, namely for any Kac-Moody algebra having
a simply-laced Dynkin Diagram, so we obtain as a corollary the following result:

6.2.32 Corollary. For a Kac-Moody algebra g defined by a simply-laced Cartan datum, the linear 2-
category U(g) is a categorification of U̇(g).
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CHAPTER 7

Algebraic Polygraphs
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Many rewriting results given above are based on the notion of confluent (resp. confluent modulo)
presentations. We have seen that one the the main tools to prove confluence of a polygraph is by the
critical branching lemma, giving a way to deduce confluence from a finite checking of confluence of
local minimal overlappings of two reductions. However, the extension of these methods to a wide range
of algebraic structures is made difficult because of the interaction between the rewriting rules and the
inherent axioms of the algebraic structure. For instance, in the case of string rewriting systems, Nivat
proved [97] that it suffices to check confluence of critical branchings to obtain local confluence. However,
this is wrong in the linear setting, and it requires an additional termination assumption, see Remark 2.9.3
for a counter-example. For this reason, extensions of this approach to a wide range of algebraic structures,
including groups, Lie algebras, is still an open problem.

In this Chapter, we introduce a categorical model for rewriting in algebraic structures which formal-
izes the interaction between the rules of the rewriting system and the inherent axioms of the algebraic
structure. We recall the notion of cartesian 2-dimensional polygraph introduced in [87], corresponding
to rewriting systems that present a Lawvere algebraic theory. We introduce an algebraic setting for the
formulation on the critical branching lemma, by defining the structure of algebraic polygraph modulo
which consists in rewriting with respect to the rules of a structure modulo the ambient algebraic axioms.
We introduce rewriting strategies based on a restriction on rewriting steps, depending on whether their
source is a normal form or not with respect to the inherent algebraic theory. We then introduce rewriting
properties with respect to these strategies, and prove an extension of the terminating Newman lemma
modulo for quasi-terminating algebraic polygraphs modulo, and a critical branching lemma for rewriting
systems on algebraic structures whose axioms are specified by term rewriting systems satisfying appro-
priate convergence relations modulo associativity and commutativity. Finally, we explicit our results in
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linear rewriting, and explain why termination is a necessary condition to characterize local confluence in
that case. We expect that these constructions can be adapted to rewriting in various algebraic structures,
such as groups, differential algebras, Weyl algebras, Ore extensions, and higher-dimensional structures.

7.1. CARTESIAN POLYGRAPHS AND THEORIES

In section we recall the notion of algebraic theory from [83] and of cartesian polygraph introduced in
[87].

7.1.1. Signature and terms. A signature is defined by a set P0 of sorts and a 1-polygraph, i.e. a directed
graph,

P∗0 P1
∂+0

oo

∂−0oo

on the free monoid P∗0 over P0. Elements of P1 are called operations. For an operation α in P1, its source
∂−0 (α) is called its arity and its target ∂+0 (α) its coarity. For sorts s1, . . . , sk, we denote s = s1 . . . sk
their product in the free monoid P∗0 . We denote |s| = k the length of s and the sort si in s will be denoted
by si.

Recall from [83] that an (multityped Lawvere algebraic) theory for a given set of sorts P0 is a category
with finite products T together with a map ι from P0 and with values in its set of 0-cells T0, and such that
every 0-cell in T0 is isomorphic to a finite product of 0-cells in ι(P0). We denote by P×1 the free theory
generated by a signature (P0, P1) whose products on 0-cells of P×1 are induced by products of sorts in
P∗0 , and the 1-cells of P×1 are terms over P1 defined by induction as follows:

i) the canonical projections xsi : s→ si, for 1 ≤ i ≤ |s| are terms, called variables,

ii) for any terms f : s → r and f ′ : s → r ′ in P×1 , there exists a unique 1-cell 〈f, f ′〉 : s → rr ′, called
pairing of terms f, f ′, such that xrr

′
1 〈f, f ′〉 = f and xrr

′
2 〈f, f ′〉 = f ′,

iii) for every operation ϕ : r → s in P1, s in S∗0 and terms fi : s → ri in P×1 for 1 ≤ i ≤ |r|, there is a
term ϕ〈f1, . . . , f|r|〉 : s→ s.

We define the size of a term f as the minimal number, denoted by |f|, of operations used to its definition.
For any 0-cells s, s ′ in P×1 , we denote by 1s the identity 1-cell on a 0-cell s, we denote by εs the eraser

1-cell defined as the unique 1-cell from s to the terminal 0-cell 0, and we denote by δs = 〈1s, 1s〉 : s →
s×s the duplicator 1-cell. We denote respectively by xss

′
s : ss ′ → s (resp. xss

′

s ′ : ss ′ → s ′) the canonical

projections. Finally, we denote by τs,s ′ : ss ′ → s ′s the exchange 1-cell defined by τs,s ′ = 〈xss
′

s ′ , x
ss ′
s 〉.

7.1.2. Two-dimensional cartesian polygraph. A cartesian 2-polygraph is a data (P0, P1, P2) made of

i) a signature (P0, P1),

ii) a cellular extension of the free theory P×1 , that is a set P2 equipped with two maps

P×1 P2
∂+1

oo

∂−1oo

satisfying the following globular conditions ∂µ0 ◦ ∂
−
1 = ∂µ0 ◦ ∂

+
1 , for µ ∈ {−,+}.
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An element α of P2 is called a rule with source ∂−(α) and target ∂+(α) that we denote respectively
by α− and α+ so that such a rule is denoted by α : α− ⇒ α+. The globular conditions impose that such
a rule f⇒ g relates terms of same arity s and same coarity r, and it will be pictured as follows:

s

f

��

g

@@
α�� r

7.1.3. Two-dimensional theories. Recall that a 2-dimensional theory, or 2-theory for a given set of
sorts P0 is a 2-category with the additional following cartesian structure:

i) it has a terminal 0-cell, that is for every 0-cell s there exists a unique 1-cell es : s→ 1, called eraser,
and the identity 2-cell is the unique endo-2-cell on an eraser,

ii) it has products, that is for all 0-cells r, r ′ there is a product 0-cell rr ′ and 1-cells xrr
′

r : rr ′ → r and
x
rr ′

r ′ → r ′ satisfying the two following conditions:

• for any 1-cells f1 : s→ r and f2 : s→ r ′, there exists a unique pairing 1-cell 〈f1, f2〉 : s→ rr ′,
such that xrr

′
r 〈f1, f2〉 = f1, and xrr

′

r ′ 〈f1, f2〉 = f2,

• for any 2-cells α1 : f1 ⇒ f ′1, α2 : f2 ⇒ f ′2, there exists a unique 2-cell 〈α1, α2〉 : 〈f1, f2〉 ⇒
〈f ′1, f ′2〉.

We refer the reader to [87] for a detailed construction.

7.1.4. Free 2-theories. We denote by P×2 the free 2-theory generated by a cartesian 2-polygraph (P0, P1, P2).
We briefly recall its construction and refer the reader to [87] for details. The underlying 1-category of P×2
is the free theory P×1 generated by the signature (P0, P1). Its 2-cells are defined inductively as follows:

i) for any 2-cell α : u⇒ v in P2 and 1-cell w in P×1 , there is a 2-cell αw : u ?0 w⇒ v ?0 w in P×2 ,

ii) for any 2-cells α, β in P×2 , there is a 2-cell 〈α,β〉 : 〈α−, β−〉⇒ 〈α+, β+〉 in P×2 ,

iii) for any 2-cell α in P×2 , there are 2-cells in P×2 of the form A[α] : A[α−] ⇒ A[α+] where A[�]
denotes an algebraic context of the form:

A[�] := f〈idf1 , . . . ,�i, . . . , idfk〉 : s→ r,

where f1, . . . , fk : s→ ri and f : r→ r are 1-cells of P×1 , and �i is the i-th element of the pairing.

iv) these 2-cells are submitted to the following exchange relations

f〈f1, ..., fi, ..., β, ..., fk〉?1f〈f1, α, ..., fj, ..., fk〉 = f〈f1, ..., α, ..., fj, ..., fk〉?1f〈f1, ..., fi, ..., β, ..., fk〉

where fi : s → ri and f : r → r are 1-cells in P×1 , α and β are 2-cells in P2. We will denote by
〈f1, ..., α, ..., β, ..., fk〉 the 2-cell defined above.

v) The ?1-composition of 2-cells in P2 is given by sequential composition.

The source and target maps ∂±1 extend to P×2 and we denote a− and a+ for ∂−1 (a) and ∂+1 (a).

7.1.5. Ground terms. Let (P0, P1, P2) be a cartesian 2-polygraph. A ground term in the free theory P×1
is a term with source 0. A 2-cell a in the free theory P×2 is called ground when a− is a ground term.
Finally, an algebraic contextA[�] = f〈f1, . . . ,�i, . . . f|r|〉 is called ground when the fi are ground terms.
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7.1.6. Free (2, 1)-theory. A free (2, 1)-theory is a theory T whose any 2-cell is invertible with respect
the ?1-composition. That is, any 2-cell α of T2 has an inverse α− : α+ ⇒ α− satisfying the relations
α ?1 α

− = 1α− and α− ?1 α = 1α+ .
We denote by P>2 the free (2, 1)-theory generated by a cartesian 2-polygraph (P0, P1, P2). The 2-cells

of the (2, 1)-theory P>2 corresponds to elements of the equivalence relation generated by P2.

7.1.7. Rewriting properties of cartesian polygraphs. Let P be a cartesian 2-polygraph. The algebraic
contexts of the cartesian 2-polygraph P can be composed, and we will denote by AA ′[�] := A[A ′[�]].
In the same way, one defines a multi-context (of arity 2) as

B[�i,�j] := f〈idf1 , . . . ,�i, . . . ,�j, . . . , idfk〉,

where the fk : s → rk and f : r → r are 1-cells in P×1 (X), and �i (resp. �j) has to be filled by a 1-cell
gi : s→ ri (resp. gj : s→ rj).

A 2-cell of the form A[αw] where A is an algebraic context, w is a 1-cell in P×1 and α is a rule in
P2 is called a rewriting step of P. A rewriting path is a non-identity 2-cell of P×2 . Such a 2-cell can be
decomposed as a ?1-composition of rewriting steps:

α = A1[α1] ?1 A2[α2] ?1 . . . Ak[αk].

The length of a 2-cell α in P×1 , denoted by `(f), is the minimal number of rewriting steps in any ?1-
decomposition of α. In particular, a rewriting step is a 2-cell of length 1.

7.1.8. Notations. For the sake of readability, we will denote terms and rewriting rules of cartesian
polygraphs as in term rewriting theory, [117]. The canonical projections xsi : s → si, for 1 ≤ i ≤ |s|

are identified to ”variables” x1, . . . , x|s|. And a 1-cell f : s → r is denoted by f(x1, . . . , x|s|), and a rule
α : f⇒ g with f, g : s→ r will be denoted by

αx1,...,x|s| : f(x1, . . . , x|s|)⇒ g(x1, . . . , x|s|).

7.2. ALGEBRAIC EXAMPLES

7.2.1. Associative and commutative magmas. Denote by MAG the cartesian 2-polygraph whose sig-
nature has a unique sort denoted by 1 and an unique generating 1-cell µ : 2 → 1 and an empty set
of generating 2-cells. Denote by ASS the cartesian 2-polygraph such that ASS1 = MAG1 and with an
unique generating 2-cell:

Aµx,y,z : µ(µ(x, y), z)⇒ µ(x, µ(y, z)) (7.1)

Denote by ACµ (or simply AC when there is no ambiguity) the cartesian 2-polygraph such that
AC1 = MAG1, and AC2 = ASS2 ∪ {C} with

Cµ : µ(x, y)⇒ µ(y, x) (7.2)

that correspond to the rule Cµ : µτ ⇒ µ, where τ is the exchanging operator defined in Section 7.1.1.
Note that the cartesian 2-polygraph AC is not terminating, and that the rule C can not be oriented in a
terminating way. As a consequence, in the sequel when P2 is defined by a set of relations together with
relations corresponding to commutativity and associativity axioms for some operation µ, we will chose
to work modulo the polygraphs ACµ.
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7.2.2. Monoids. We define the cartesian polygraph MON whose signature has a unique sort 1, MON1 =
ASS1 ∪ {e : 0→ 1}, and MON2 = MAG2 ∪ {E

µ
l , E

µ
r } with

E
µ
l : µ(e, x)⇒ x Eµr : µ(x, e)⇒ x. (7.3)

Then the theory P is the theory of monoids that we will denote by M. We also define the cartesian
polygraph CMON by CMONi = MONi for 0 ≤ i ≤ 1 and CMON2 = MON2 ∪ {Cµ} where Cµ is the
commutativity 2-cell defined in (7.2).

7.2.3. Groups. We define the cartesian polygraph GRP whose signature has a unique sort 1, GRP1 =
MON1 ∪ {ι : 1→ 1}, and GRP2 = MON2 ∪ {I

µ
l , I

µ
r } with

I
µ,ι
l : µ(ι(x), x)⇒ e Iµ,ιr : µ(x, ι(x))⇒ e (7.4)

Note that following [57], the following set of generating 2-cells gives a cartesian polygrah that is
Tietze equivalent to GRP (that is it also presents the theory GRP) and convergent modulo the cartesian
polygraph ASS:

G
µ,ι
1 : ι(e)⇒ e G

µ,ι
2 : ι(ι(x))⇒ x G

µ,ι
3 : ι(µ(x, y))⇒ µ(ι(y), ι(x)) (7.5)

G
µ,ι
4 : µ(x, µ(ι(x), y))⇒ y G

µ,ι
5 : µ(ι(x), µ(x, y))⇒ y (7.6)

7.2.4. Abelian groups. Consider the cartesian polygraph AB whose signature has a unique sort 1,
AB1 = GRP1 and AB2 = GRP2 ∪ {C} where C is the commutativity generating 2-cell defined in (7.2).

7.2.5. Rings. Consider the cartesian polygraph RING whose signature has a unique sort 1, RING1 =
AB1
∐

MON1 with the following notations:

AB1 = {+ : 2→ 1, 0 : 0→ 1, − : 1→ 1}, MON1 = {· : 2→ 1, 1 : 0→ 1},

and RING2 = AB2 ∪MON2 ∪ {Dl, Dr}, where

Dl : x · (y+ z)⇒ x · y+ x · z Dr : (y+ z) · x⇒ y · x+ z · x (7.7)

The cartesian 2-polygraph CRING (commutative rings) is the cartesian 2-polygraph whose signature
has a unique sort 1, CRING = RING1 with the same notations as above, and CRING2 = RING2 ∪ {C·}
where C· is the commutativity generating 2-cell

C· : ·(x, y)⇒ ·(y, x) (7.8)

Following [99, Example 12.2], the following set of generating 2-cells gives a cartesian polygraph
that is Tietze equivalent to CRING, and is convergent modulo AC:

E+r , I
+,−
r , G+,−

1 , G+,−
2 , G+,−

3 , Dr, R1 : x · 0⇒ 0, R2 : x · (−y)⇒ −(x · y), E·r (7.9)

7.2.6. Modules over a commutative ring. The cartesian 2-polygraph MOD with MOD0 = {m, r}, and
MOD1 = CRING1 ∪ AB1 ∪ {η : rm→ m} with the following notations

i) CRING0 = {r}, CRING1 = {+ : rr→ r, 0 : 0→ r, − : r→ r, · : rr→ r, 1 : 0→ r};

ii) AB0 = {m}, AB1 = {⊕ : mm→ m, 0⊕ : 0→ m, ι : m→ m};

iii) If there is no possible confusion, we will denote η(λ, x) = λ.x for λ and x of type r and m respec-
tively.
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and MOD2 = CRING2 ∪ AB2 ∪ {M1,M2,M3,M4} with

M1 : λ.(µ.x)⇒ (λ · µ).x M2 : 1.x⇒ x (7.10)

M3 : λ.(x⊕ y)⇒ (λ.x)⊕ (λ.y) M4 : λ.x⊕ µ.x⇒ (λ+ µ).x (7.11)

Following [57], the 2-cells in (7.9) together with the following set of 2-cells

M1, M2, M3, M4, N1 : x⊕ 0⊕ ⇒ x, N2 : x⊕ (λ.x)⇒ (1+ λ).x, (7.12)

N3 : x⊕ x⇒ (1+ 1).x, N4 : x.0⊕ ⇒ 0⊕, N5 : 0.x⇒ 0⊕, N6 : ι(x)⇒ (−1).x (7.13)

gives a convergent presentation of the theory of modules over a commutative ring modulo AC·
∐

AC+,
which contains all the associativity and commutativity relations for the operations · and +. This presen-
tation can be summarized with the following set of generating 2-cells:

x+ 0⇒ x (ring1) x+ (−x)⇒ 0 (ring2)

− 0⇒ 0 (ring3) − (−x)⇒ x (ring4)

− (x+ y)⇒ (−x) + (−y) (ring5) x · (y+ z)⇒ x · y+ x · z (ring6)

x · 0⇒ 0 (ring7) x · (−y)⇒ −(x · y) (ring8)

1 · x⇒ x (ring9) a⊕ 0⊕ ⇒ a (mod1)

x.(y.a)⇒ (x · y).a (mod2) 1.a⇒ a (mod3)

x.a⊕ y.a⇒ (x+ y).a (mod4) x.(a⊕ b)⇒ (x.a)⊕ (y.b) (mod5)

a⊕ (r.a)⇒ (1+ r).a (mod6) a⊕ a⇒ (1+ 1).a (mod7)

x.0⊕ ⇒ 0⊕ (mod8) 0.a⇒ 0⊕ (mod9)

I(a)⇒ (−1).a (mod10)

Let us denote by MOD ′2 the set containing the 2-cells (7.9), (7.12) and (7.13), and denote by MODc the
cartesian 2-polygraph (MOD0,MOD1,MOD ′2 ∪AC· ∪AC+). It also presents the theory of modules over
a commutative ring.

7.3. ALGEBRAIC POLYGRAPHS MODULO

In this section we introduce the notion of algebraic polygraph as a cellular extension on closed terms. In
Subsection 7.3.10, we introduce the notion of algebraic polygraph modulo following the constructions
of Chapter 4.

7.3.1. Constants. Let (P0, P1) be a signature, and Q be a set of generating 1-cell (called constants)
with source 0 and target a sort in P0. We denote by P1〈Q〉 the set of ground terms of the free theory
(P1 ∪Q)×.

7.3.2. Algebraic polygraph. An algebraic polygraph is a data (P,Q, R) where,

i) P is a cartesian 2-polygraph,

ii) Q is a family of set of generating constants (Qs)s∈P0 ,

iii) R is a cellular extension of the set of ground terms P1〈Q〉.

Note that the cellular extension R is indexed by the sorts of P0, that is it defines a family (Fs, Rs)s∈P0 of
1-polygraphs, where Fs = P1〈Q〉s.
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7.3.3. Example. Let MON2 be the cartesian 2-polygraph defined in (7.2.2). One defines an algebraic
polygraph by setting:

Q = {s, t : 0→ 1}, R = { α : (s · t) · s⇒ t · (s · t) }. (7.14)

7.3.4. Rewriting in algebraic prolygraphs. Let P = (P,Q, R) be an algebraic polygraph, and let
α : f ⇒ g be a ground 2-cell in R. A R-rewriting step is a ground 2-cell in the free 2-theory R× on
(P1 ∪Q,R) of the form

A[α] : A[f]⇒ A[g],

where A[�] is a ground context. It can be depicted by the following diagram:

r

0

f

. . . . . .

A

a⇒
r

0
g

. . . . . .

A

A R-rewriting path is a finite or infinite sequence a = a1 ?1 a2 ?1 . . . ?1 ak ?1 . . . of R-rewriting steps
ai. The length of 2-cell a in R×, denoted by `(a), is the minimal number of R-rewriting steps needed to
write a as a composition as above

7.3.5. Example. Consider the rule α defined in (7.14). And the algebraic contexte A[�] = (s · �) · t,
we have the rewriting step

A[α] : (s · ((s · t) · s)) · t⇒ (s · (t · (s · t)) · t.

7.3.6. Algebraic polygraph of axioms. The cellular extension P2 defined on P×1 extends to a cellular
extension on the free 1-theory (P1 ∪Q)× denoted by P̂2, whose source and target maps are defined in
such a way that the following diagram commutes

P2〈Q〉� _

��
%%
%%

P2

∂−1 //

∂+1

// P×1
� � // (P1 ∪Q)×

and denote by P2〈Q〉 (resp P2〈Q〉>) the set of ground 2-cells in P̂×2 (resp. P̂>2 ). The set P2〈Q〉 thus
contains the groundified 2-cells of P2. The data (P,Q, P2〈Q〉) defines an algebraic polygraph, that we
call the algebraic polygraph of axioms. We say that two terms f and g in P1〈Q〉 are algebraically
equivalent with respect to P, denoted by f ≡P2 g, if there exists a ground 2-cell in P2〈Q〉> from f to g.

We will denote by P〈Q〉 the quotient of the full sub-category P1〈Q〉 of P1 ∪Q× by the congruence
generated by the 2-cells in P2〈Q〉. Namely, two terms f and g that are related by a 2-cell in P2〈Q〉> are
identified in the quotient.

Note that the algebraic polygraph (P,Q, P2〈Q〉) shares the rewriting properties of the cartesian 2-
polygraph P. In particular, if P is terminating (resp. quasi-terminating, confluent, confluent modulo P ′),
then (P,Q, P2〈Q〉) is terminating (resp. quasi-terminating, confluent, confluent modulo (P ′, Q, P ′2〈Q〉)).
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7.3.7. Example. In the example of the algebraic polygraph defined in (7.14), the set P2〈Q〉 is defined
by the associativity relations on ground terms on the constants s and t. For instance, P2〈Q〉 contains the
following ground 2-cell:

As,t,s : (s · t) · s⇒ s · (t · s).

7.3.8. Positivity. Denote π : P1〈Q〉 → P〈Q〉 the canonical projection, and let σ : P〈Q〉 → Set be a
map such that for any f ∈ P〈Q〉, σ(f) is a chosen non-empty subset of π−1(f). Such a map is called a
positive strategy with respect to (P,Q). A rewriting step a in R× is called σ-positive if a− belongs to
σ(a−). A rewriting path a1 ?1 . . . ?1 ak in R× is called σ-positive if any of its rewriting steps is positive.

7.3.9. Strategies to define positivity. We introduce positivity strategies that depend on the inherent
cartesian 2-polygraph P. Suppose that P is such that P2 = P ′2 ∪ P ′′2 , with P ′2 confluent modulo P ′′2 . For
every 1-cell f in P〈Q〉, we set σ(f) = NF(f, P ′2 mod P

′′
2 ), where f ∈ π−1(f), the set of normal forms

of f for P ′2 modulo P ′′2 . Note that this is well-defined following [56, Lemma 2.6], since if f, f ′ ∈ π−1(f),
then NF(f, P ′2 mod P"2) ≡P"2 NF(f ′, P ′2 mod P"2).

In many algebraic situations, we will set ASS ⊆ P ′′2 . In particular, in the case of SRS, P ′2 will be
empty and P ′′2 = ASS. In that case, any term in P1〈Q〉 is a normal form for the empty polygraph modulo
ASS, and thus the positive strategy consists in taking all the fiber. In the case of LRS, P ′′2 will be AC, the
algebraic polygraph corresponding to associativity and commutativity relations of the operations, and P ′2
will be the convergent presentation of RMOD modulo AC given in Section 7.2.6.

7.3.10. Algebraic polygraphs modulo. Given an algebraic polygraph P = (P,Q, R) and a positive
strategy σ on P , one denotes by PRP the cellular extension

P1〈Q〉 PRPoo
oo

defined as in 4.4.1, and made of triple (e, a, e ′), where e and e ′ are ground 2-cells in P2〈Q〉> and a is
a R-rewriting step. Such a triple will be denoted by e ? a ? e ′, called a PRP-rule. Such a rule is called
σ-positive if a is a σ-positive R-rewriting step. An algebraic polygraph modulo is a data (P,Q, R, S)
made of

i) an algebraic polygraph (P,Q, R),

ii) a cellular extension S of P1〈Q〉 such that R ⊆ S ⊆ PRP.

Note that the data (P,Q, S) defines an algebraic polygraph modulo.

7.3.11. Example. Let us consider the algebraic polygraph (P,Q, R) defined in (7.14), then the following
composition gives a rewriting step in PRP:

(s · (s · (t · s))) · t ≡P2 (s · ((s · t) · s)) · t
A[α]⇒ (s · (t · (s · t)) · t ≡P2 ((s · t) · (s · t)) · t.

7.3.12. Termination properties. An algebraic polygraph P = (P,Q, R) is called

i) algebraically terminating if for each sequence (fn)∈N of 1-cells of P1〈Q〉 such that for each n ∈ N,
there is a rewriting step fn → fn+1, the sequence (fn)∈N contains an infinite number of occurrences
of same 1-cell in context, that is, there exist k, l ∈ N, such that fk+l = A[fk] where A is a possibly
empty ground context of P ,

ii) exponentiation free if there is no rewriting path with source a 1-cell f of P1〈Q〉 and target C[f],
where A is a nontrivial ground context of P .
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Any quasi-terminating polygraph is algebraically terminating. But the converse implication is false
in general, indeed the rewriting system a→ a ·a is algebraically terminating, but not quasi-terminating.
In fact, it is not exponentiation free either. One proves that both properties algebraically terminating and
exponentiation free implies the quasi-terminating property.

An algebraic polygraph modulo (P,Q, R, S) is called terminating (resp. quasi-terminating) if the
algebraic polygraph (P,Q, S) is terminating (resp. quasi-terminating). Note that an algebraic polygraph
is a special case of algebraic polygraph modulo when S = R. In the sequel we will consider only
polygraphs modulo.

7.3.13. Quasi-normal forms. When the algebraic polygraph modulo P is quasi-terminating, any 1-cell
f of P1〈Q〉 admits at least a quasi-normal form. Such a quasi-normal form is neither S-irreducible nor
unique in general. A quasi-normal form strategy is a map s : P1〈Q〉 → P1〈Q〉 sending a 1-cell f on a
chosen quasi-normal form f̃. We define a map

d : P1〈Q〉→ N

sending a 1-cell f to the integer d(f) counting the minimal number of PRP-rewriting steps needed to
reach f̃ from f.

7.3.14. Algebraic rewriting system. Note that the cellular extension S defined on P1〈Q〉 extends to
a cellular extension of P〈Q〉, with source and target maps defined respectively by ∂−1 := π ◦ ∂−1 and
∂
+
1 := π ◦ ∂+1 . An algebraic rewriting system on an algebraic polygraph modulo (P,Q, R, S) with a

positive strategy σ is a cellular extension S of P〈Q〉 defined in such a way that the following diagram
commutes

S

∂
−
1

��

∂
+
1

��

π ′

��

P〈Q〉 Soo
oo

where the map π ′ assigns to a S-rule e?a?e ′ an element a in Swith source a− and target a+. Explicitly,

S = {a : a− ⇒ a+ | e ? a ? e ′ ∈ S}.

Note that S = R for any R ⊆ S ⊆ PRP. Let us consider the subset Sσ of S defined by Sσ = {a : a− ⇒
a+ | a is a σ-positive S-rule}.

A S-rewriting step (resp. a Sσ-rewriting step) is the quotient of a S-rewriting step (resp. σ-positive
rewriting step) by the canonical projection π, that is a 2-cell of the form C[a] : C[a−] ⇒ C[a+], where
C is a ground context of P1〈Q〉 and C[a] is a S-rewriting step (resp. σ-positive S-rewriting step). A
S-rewriting path is a sequence of S-rewriting steps.

7.3.15. Example: string rewriting systems. A SRS can be deduced as a quotient algebraic polygraph
as follows. We consider an algebraic polygraph (MON, Q, R, S), where MON is the cartesian polygraph
defined in 7.2.2. The set of constants Q is the set of generating 1-cells of the SRS, and R corresponds to
fibrations of rules of the SRS on the fibers modulo associativity.

For instance, consider the algebraic polygraph defined in (7.14). Then by quotient, we obtain the
string rewriting system

〈s, t | sts⇒ tst 〉

that presents the monoid B+
3 of braids on 3 strands.
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7.3.16. Example: linear rewriting systems. A linear rewriting system (LRS) is an algebraic rewriting
system on an algebraic polygraph modulo (P,Q, R, S) such that MODc ⊆ P, where MODc is the cartesian
2-polygraph presenting the theory of modules over a commutative ring defined in Section 7.2.6.

7.4. POSITIVE CONFLUENCE IN ALGEBRAIC POLYGRAPHS MODULO

In this section we present confluence properties of algebraic polygraphs modulo with fixed positive
strategies.

7.4.1. Branchings in algebraic polygraphs modulo. Let P = (P,Q, R, S) be an algebraic polygraph
modulo and σ a positive strategy on P . A σ-branching of (P,Q, R, S) is a triple (a, e, b) where f and
g are σ-positive 2-cells of S× and e is a 1-cell of P2〈Q〉> such that e− = a− and e+ = b−. Such a
σ-branching is depicted as follows

u
a //

e
��

u ′

v
b
// v ′

.

Note that the 2-cells are represented by simple arrows in confluence diagrams for better readability in
the diagrams in the sequel. The 2-cell b (resp. a) can be an identity 2-cell of S×, and in that case the
σ-branching is of the form (a, e) (resp. (e, b)). The source of such a σ-branching is the pair (f, f)
where f = a− = e− (resp. f = b− = e+). The 2-cell e in P2〈Q〉> can also be trivial, and in that
case the σ-branching modulo is a regular σ-branching (a, b). We denote by (u, u) its source, where
u = a− = b−.

Such a σ-branching is σ-confluent modulo if there exist σ-positive 2-cells a ′ and b ′ in S× and a
2-cell e ′ of P2〈Q〉> as follows:

f
a //

e
��

f ′
a ′ // h

e ′
��

g
b
// g ′

b ′
// h ′

We say that the triple (a ′, e ′, b ′) is a σ-confluence modulo of the σ-branching modulo (a, e, b), and
that the pair of terms (f, g) is the source of the σ-branching (a, e, b). Such a σ-branching is local if a is
a rewriting step of S, b is `(e) + `(b) = 1. Namely, it is either of the form (a, e) or (a, b).

We say that the algebraic polygraph modulo (P,Q, R, S) is confluent modulo (resp. locally confluent
modulo) if any σ-branching modulo (resp. local σ-branching modulo) is confluent modulo.

7.4.2. Double induction on the distance to the quasi-normal form. Consider the distance map d :
P1〈Q〉 → N defined in Section 7.3.13. We extend this distance on 1-cells of P1〈Q〉 to a distance on
σ-branchings modulo (a, e, b) by defining

d(a, e, b) := d(a−) + d(a+).

We then define a well-founded order ≺ on the set of σ-branchings of S modulo P by:

(a, e, b) ≺ (a ′, e ′, b ′) if d(a, e, b) < d(a ′, e ′, b ′).

The confluence proofs in the sequel will be made using induction on this order. Note that this corresponds
to a process of induction on sources of σ-branchings modulo, that is pairs of 1-cells in P1〈Q〉, with
respect to distance of the quasi-normal form with respect to PRP. This follows Huet’s double induction
principle in the terminating setting, based on induction on an auxiliary rewriting system constructed on
pairs of terms.
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7.4.3 Theorem (Newman lemma modulo for algebraic polygraphs modulo). LetP be a quasi-terminating
algebraic polygraph modulo, and σ be a positive strategy on P . If P is locally σ-confluent modulo, then
it is σ-confluent modulo.

Proof. The proof of this result follows the scheme of the proof of Theorem 2.3.15 in the terminating
setting, by replacing each use of Huet’s double induction principle by induction on the well-founded
order ≺ on branchings modulo defined above.

7.4.4. Classification of local σ-branchings. The local σ-branchings modulo of P can be classified in
the following families:

i) trivial σ-branchings of the form

A[a−]

=
��

A[a]
// A[a+]

A[a−]
A[a]

// A[a+]

for some ground context context A and σ-positive S-rewriting step a.

ii) inclusion independant σ-branchings modulo of the form

A[a−]

= ��

A[a]
// A[a+]

A[A ′[b−]]
A[A ′[b]]

// A[A ′[b+]]

for some ground contexts context A and A ′, and σ-positive S-rewriting steps a and b.

iii) orthogonal σ-branchings modulo of the form

B[a−, b−]

=

��

B[a,b−]
// B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

B[a−, e−]

B[a−,e]
��

B[a,e−]
// B[a+, e−]

B[a−, e+]

B[e ′−, b−]

B ′[e ′,b−]
��

B ′[e ′−,b] // B ′[e ′−, b+]

B ′[e ′+, b−]

for some ground multi-contexts B and B ′ of arity 2, S-rewriting steps a,b and c of S, and 2-cells e
and e ′ in P2〈Q〉>.

iv) non orthogonal σ-branchings are the remaining local σ-branchings, that is nor inclusion independant
nor orthogonal.

7.4.5. Critical σ-branchings. We define an order relation on σ-branchings modulo of an algebraic
polygraph modulo (P,Q, R, S) by setting (a, e, b) v (a ′, e ′, b ′) if there exists a ground context A of
P1〈Q〉 such that a ′ = A[a], e ′ = A[e] and b ′ = A[b]. A critical σ-branching modulo is a local
σ-branching modulo P which is non trivial, non orthogonal and minimal for the order relation v.
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7.4.6. Positively confluence. An algebraic polygraph modulo (P,Q, R, S) with a positive strategy σ is
called positively σ-confluent if, for any S-rewriting step f, there exists a representing ã− ∈ σ(a−) of a−
and two σ-positive S-reductions a ′ and b ′ of length at most 1 as in the following diagram

ã−
a ′ //

e

��

e ′′

��a− a
//

e ′
//

b ′
//

7.4.7 Proposition (Terminating critical branching theorem modulo). Let (P,Q, R, S) be a quasi-terminating
and positively σ-confluent algebraic polygraph modulo with a positive strategy σ. Then it is locally σ-
confluent modulo if and only if the two following properties hold:

a0) any critical σ-branching modulo (a, b), where a and b are S-rewriting steps, is σ-confluent modulo.

b0) any critical σ-branching modulo (a, e), where a is an S-rewriting step and e is a 2-cell in P2〈Q〉>
of length 1, is σ-confluent modulo.

Proof. The left to right implication is trivial. Let us prove the converse. Suppose that condition a0)
holds and prove condition a). The proof of the other implication is similar. We prove this by examine all
the possible cases of local σ-branchings modulo given in Section ??. Local aspherical σ-branchings are
always σ-confluent modulo. Let us consider a local orthogonal σ-branching modulo of the form

B[a−, b−]

=

��

B[a,b−]
// B[a+, b−]

B[a−, b−]
B[a−,b]

// B[a−, b+]

where B[a, b−] and B[a−, b] are σ-positive S-reductions. There are natural 2-cells in S× that give a
σ-confluence modulo of this diagram:

B[a−, b−]

=

��

B[a,b−]
// B[a+, b−]

B[a+,b]
// B[a+, b+]

=

��

B[a−, b−]
B[a−,b]

// B[a−, b+]
B[a,b+]

// B[a+, b+]

However, it may happen that these reductions are not σ-positive. Without loss of generality, let us assume
that they are both not σ-positive. By positive σ-confluence assumption, there exists a representative
˜B[a+, b−] (resp. ˜B[a−, b+]) of B[a+, b−] (resp. B[a−, b+]) in P1〈Q〉, σ-positive S-rewriting sequences

h1 and h2, and 2-cells e1,e2 in P2〈Q〉> as in the following diagram:

˜B[a+, b−]

��

//

��f1

e1
��

c1 //

B[a−, b−]

=

��

B[a,b−]
// B[a+, b−]

B[a+,b]
// B[a+, b+]

=

��

B[a−, b−]
B[a−,b]

// B[a−, b+]
B[a,b+]

//

��

B[a+, b+]

e2
��

f2 c2 //

��//
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Then, we have d(f1) < d(B[a−, b−]) and d(f2) < d(B[a−, b−]) so that we can use induction of the σ-
branching modulo (c1, e1 ?e2, c2) of source (f1, f2). As a consequence, there exists a σ-confluence mod-
ulo (c ′1, e, c

′
2) of this σ-branching modulo, and we then construct a σ-confluence modulo of (B[a, b−], B[a−, b])

by successive applications of induction as in the proof of Theorem 2.3.15. This process terminates since
PRP is quasi-terminating, and thus the order ≺ on σ-branchings modulo defined in Section 7.4.2 is well-
founded. Let us now consider an overlapping σ-branching modulo of the form (a, b) where a and b
are σ-positive S-rewriting steps. By definition, there exists a ground context A of P1〈Q〉 and a critical
σ-branching modulo (a ′, b ′) such that (a, b) = (A[a ′], A[b ′]). Following condition a0), the critical
σ-branching (a ′, b ′) is σ-confluent modulo, and there exists a σ-confluence modulo (a ′′, e ′, b ′′) of this
σ-branching. However, the reductions A[a ′′] and A[b ′′] that would give a confluence modulo of (a, b)
are not necessarily σ-positive:

u

=
��

a //
A[a ′′]

//

A[e ′]

��u
b
//
A[b ′′]

//

However, using positive σ-confluence of S, we are able to construct a σ-confluence modulo of the σ-
branching modulo (a, b) as in the previous case.

7.4.8. Full positive strategy. When all reductions are positive, that is when σ(f) = π−1(f) for any
1-cell f, we say that σ is a full positive strategy. In that case, the quasi-termination assumption in
Proposition ?? is not needed, since the natural confluences represented by dotted arrows are σ-positive.
Moreover, the positive σ-confluence is always satisfied, by considering a ′ = a and b ′ = 1t1(a).

7.5. ALGEBRAIC CRITICAL BRANCHING LEMMA

By taking the quotient of the S-rewriting paths in Proposition ??, in this section we obtain an algebraic
critical branching lemma, that we apply to string rewriting systems and linear rewriting systems.

7.5.1. Algebraic critical branchings. Let P = (P,Q, R, S) be an algebraic polygraph modulo with
a positive strategy σ and let A be an algebraic rewriting system on P . The critical branchings of A
are the projections of the critical σ-branchings modulo of P of the form a0), that is pairs (a, b) of Sσ-
rewriting steps such that there is a σ-branching modulo in P with source (ã−, b̃−). As a consequence of
Proposition ??, we deduce the following result.

7.5.2 Theorem. Let P = (P,Q, R, S) be an algebraic polygraph modulo with a positive strategy σ such
that PRP is quasi-terminating and positively σ-confluent. An algebraic rewriting system on P is locally
confluent if and only if its critical branchings are confluent.

As an immediate consequence, we deduce the following usual critical branching lemma.

7.5.3 Corollary. Let P be an algebraic polygraph modulo with a full positive strategy. Any algebraic
rewriting system on P is locally confluent if and only if all its critical branchings are confluent.

7.5.4. Critical branching lemma for string rewriting systems. When MON is the cartesian 2-polygraph
presenting the theory M of monoids given in (7.2.2), Theorem 7.5.2 corresponds to critical branching
lemma for string rewriting systems as proved by Nivat, [97]. In that case, the choice of positive strategy
σ making all the 2-cells in S× be σ-positive implies that we do not need the additional quasi-termination
and positive σ-confluence property, as explained in Remark 7.4.8.
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7.5.5. Critical branching lemma for linear rewriting systems. Suppose that P contains the cartesian
2-polygraph MODc presenting the theory of modules over a commutative ring defined in Section 7.2.6.
If P ′′2 is the 2-polygraph AC+ ∪ AC·, and P ′2 is MODc, then Theorem 7.5.2 corresponds to the critical
branching lemma for linear rewriting systems proved in [50, Theorem 4.3.2]. Indeed, given an algebraic
polygraph modulo (P,Q, R, S) with the σ-strategy of normal forms modulo AC defined in 7.3.9, the
positivity confluence of S with respect to σ implies the factorization property given in Lemma 2.8.4,
stating that any rewriting step a of S can be decomposed as a = b ? c−1 where b and c are either
rewriting steps of Sσ or identities, as pictured in the following diagram:

h

f
a

19

b
2:

g

c
dl

Note that if a is already a rewriting step of Sσ, this factorization is trivial. When a is in S but not in Sσ,
that is a is a quotient of a non-σ-positive S-rewriting sequence, it states that a can be factorized using
positive reductions.

Note that in that case, PRP can never be terminating: indeed, because of the linear context, for any
R-rule a : f⇒ g, we have a PRP-rewriting step given by

g ≡P −f+ (g+ f)
−a+(g+f) +3 −g+ (g+ f) ≡P f (7.15)

However, the quasi-termination assumption of PRP is equivalent to the termination assumption of Sσ

given in [50, Theorem 4.3.2]. Indeed, by definition an infinite rewriting path in Sσ comes from an
infinite PRP-rewriting path that is not created by a cycle of the form (7.15), since the rule −α+ (g+ f)
above is not σ-positive.
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CHAPTER 8

Work in progress and perspectives

Contents
8.1 Categorifying Mackey’s induction restriction theorem for Brauer algebras . . . . 176

8.2 Polygraphic resolutions from rewriting modulo . . . . . . . . . . . . . . . . . . . . 184

In this Chapter, we introduce the current works in progress and perspectives that are suggested by
the previous works. The first work in progress aims at defining a categorification of the Mackey in-
duction/restriction theorem for the Brauer algebras, following the constructions of Khovanov [70] for
the algebras of the symmetric groups and of Mackaay and Savage for the degenerate cyclotomic Hecke
algebras [86]. The first Section of this chapter provides preliminary results towards this objective, with
the study of structures of modules for the tower of Brauer algebras.

The second work in progress consists in extending the coherence modulo constructions of [43] in
higher dimensions. Chapter 4 suggests that these constructions would take place in higher-dimensional
globular strict categories enriched in p-fold groupoids, in which the higher-dimensional cubical cells
would be constructed from cubes built from confluence diagrams of critical branchings modulo.

8.1. CATEGORIFYING MACKEY’S INDUCTION RESTRICTION THEOREM

FOR BRAUER ALGEBRAS

8.1.1. Brauer algebras. The Brauer algebras were introduced by Brauer in 1937 [15] to study the
representation theory of the orthogonal group On, and plays the same role than the symmetric group for
the representation theory of GLn in Schur-Weyl duality. Let R be a noetherian integral domain, and δ
be an element of R. The Brauer algebra Bn(δ) of degree n over R is the unital R-algebra with basis the
set of Brauer diagrams with 2n points. A Brauer diagram with 2n points is a graph with 2n vertices
arranged in two rows each containing each point, and in which every vertex has degree 1, that is each
vertex admits exactly one incident edge. In each row, vertices are numbered from 1 to n from right to
left. The top (resp. bottom) row of a Brauer diagram b will be denoted by Top(b) (resp. Bot(b).) For
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example, here is a Brauer diagram with 14 points:

7 6 5 4 3 2 1

7 6 5 4 3 2 1

In the sequel, when this is not necessary, we omit to label the vertices of the graph. To define the
multiplication in Bn(δ), it is enough to define a multiplication rule on two Brauer diagrams on n points
b1 and b2. The product b1b2 is defined as follows: place the diagram of b1 on top of the diagram of
b2, and identify Bot(b1) with Top(b2), remove the inside cycles consisting of paths that start and finish
in this middle row of vertices, and multiply the resulting diagram by δγ(b1,b2), where γ(b1, b2) is the
number of cycles removed.

For instance, if

b1 =

5 4 3 2 1

5 4 3 2 1

and b2 =

5 4 3 2 1

5 4 3 2 1

,

then

b1b2 = δ

5 4 3 2 1

5 4 3 2 1

The algebra Bn(δ) admits a unit 1n given by the Brauer diagram on 2n points in which the vertex i in
top is joined to vertex i in the bottom by a vertical strand:

1n :=

n
. . . . . .

n . . . . . . 1

An edge in a Brauer diagram b linking an element of the top row to an element of the bottom row
will be called a through strand, and an edge linking two elements of the same row will be called an arc.
A permutation σ ∈ Sn can be realized as a Brauer diagram on 2n points with only through strands, so
that we have an inclusion kSn ⊂ Bn. An Brauer diagram on 2n2 strands that belongs to kSn will be
called a permutation.The algebra Bn(δ) admits a presentation by generators and relations as follows: it
has generators s1, . . . , sn−1, e1, . . . , en−1 subject to relations

e2i = δei, s2i = si, eisi = ei = siei, (8.1)

eiejei = ei, sisjsi = sjsisj, sisjei = ejei, for any i, j such that |i− j| = 1 (8.2)

eisjsi = eiej, eisjei = ei for any i, j such that |i− j| = 1 (8.3)

eiej = ejei, sisj = sjsi, siej = ejsi for any i, j such that |i− j| > 1 (8.4)

The generator ei (resp. si) corresponds to the following Brauer diagram on 2n points:

n
. . .

i
. . .

1

n . . . i . . . 1

(resp.

n
. . .

i
. . .

1

n . . . i . . . 1

)
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8.1.2. Induction and restriction functors. Throughout this section, fix a parameter δ ∈ R and for
simplicity, denote Bn := Bn(δ). For any n ∈ N, there is a canonical inclusion Bn ↪→ Bn+1 defined as
follows:

1n

b 7→ 1n

b (8.5)

The induction functor Indn+1n : Bn − Mod→ Bn+1 − Mod is defined for any Bn-moduleM by

Indn+1n (M) = Bn+1 ⊗Bn M.

The restriction functor Resnn+1 : Bn − Mod → Bn+1 − Mod is defined for any Bn+1-module M as the
set M with a left action of Bn. For unital inclusion of rings A ⊂ B, the induction functor A − Mod →
B − Mod is always left adjoint to the restriction functor B − Mod → A − Mod. It is also right adjoint
precisely when B is a Frobenius extension of A, see [94].

8.1.3. Brauer algebras are Frobenius algebras. Recall that an algebra A over a field k is a Frobenius
algebra if and only if, equivalently:

i) There exists a non-degenerate associative k-bilinear form

(·, ·) : A×A→ k

ii) There exists a k-linear form φ : A→ k such that Ker(φ) does not contain a non-zero right (or left)
ideal.

iii) There exists an isomorphism ψ : A→ Homk(A, k) of right (or left) A-modules.

A Frobenius algebra A over k is said to be symmetric if the non-degenerate associative k-bilinear form
(·, ·) is further symmetric, that is for any a and a ′ in A, we get (a, a ′) = (a ′, a).

Similarly, recall from [95] that for a unital inclusion of algebras A ⊂ B over k, B is a Frobenius
extension of A if and only if, equivalently:

i) There exists a non-degenerate associative k-bilinear form B× B→ A.

ii) There exists an isomorphism of (A,A)-bimodules B → A, called the trace map of the Frobenius
extension.

8.1.4. The trace map. If the parameter δ is not an integer, Wenzl proved in [123, Prop. 2.2 & Cor. 3.3]
admits a non-degenerate k-linear form τn : Bn → k, making Bn into a Frobenius algebra over k. The
map τn is defined inductively as follows:

a) First of all, for any b ∈ Bn, there exists a unique εn−1(b) ∈ Bn−1 such that enben = δεn−1(b)en,
and εn−1(b) = b for b ∈ Bn−1.

b) Then, consider the linear map τn : Bn → k defined inductively by τn(1) = 1 and τn(b) =
τn(εn−1(b)) for b ∈ Bn. It is proved in [123] that τn is uniquely determined inductively by

τn(b1χb2) = δ
−1τn(b1b2) for χ ∈ {en−1, sn−1} and b1, b2 ∈ Bn−1.

and satisfies the property that τn(b ′εn−1(b)) = τn(b ′b) for any b ∈ Bn and b ′ ∈ Bn−1.
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This definition also emphasizes the fact that there exists a non-degenerate map εn : Bn → Bn−1.
Following [123], this map is defined as follows: if b ∈ Bn admits a through strand joining n ∈ Top(b)
to n ∈ Bot(b), then b is in Bn−1 and εn(b) = b. Otherwise, if b ∈ Bn\Bn−1, consider the element
enben ∈ Bn+1. It is clear from the definition of the generator en that the vertex n in Top(enben) is
joined to vertex n+1 in Bot(enben). As a consequence, the remaining Brauer diagram on the remaining
2(n− 1) points gives an element b ′ in Bn−1, and define εn(b) := b ′.

8.1.5 Example.

b = , e5be5 = , ε5(b) = .

Diagrammatically, the map εn corresponds to the usual Markov trace construction [60, 12] of taking
a Brauer diagram on 2n points and closing off the leftmost strand to the left as follows:

b ∈ Bn 7→ 1

δ b ∈ Bn−1

Note that this trace map is normalized by the parameter 1
δ so that the identity 1n of Bn is sent to the

identity 1n−1 of Bn−1.

8.1.6 Example.

b = 7→ = .

As a consequence, from the inductive definition of the linear map τn : Bn → K, this map corresponds
to the operation of closing off all the n strands on the left:

b ∈ Bn 7→ b. . . ∈ k

Note that this element is in K because it is given by the following composite in the linear 2-category
B:

D 7→


 ?1 (1
?0n ?0 D) ?1

( )
∈ End(1∗) ' k.

8.1.7. Units and counits of biadjunctions Ind - Res. Given a unital inclusion of rings A ⊂ B, the unit
and counit for the left adjunction IndBA ` ResAB are defined by:

B

A :
B⊗A B → B

b⊗ b ′ 7→ bb ′
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A

B :
A → ABA
a 7→ a

When B is a Frobenius extension of A with trace map τ : B → A which is an homomorphism of
(A,A)-bimodules, the unit and counit for the right adjunction ResAB ` IndBA are defined by:

A

B : ABA
τ→ A

B

A :
B → B⊗A B
1 7→ ∑

b∈B
b⊗ b̌

where B is a basis of B as a left (or right) A-module, and {b̌ | b ∈ B} is a dual basis of B for the
non-degenerate k-bilinear form 〈·, ·〉 : B× B→ A defined by

〈b, b ′〉 = τ(bb ′),

that is for any b and b ′ in B, we have τ(bb ′) = δb,b ′ .

8.1.8 Lemma. The set {1n, en−1, sn−1} is a basis of Bn as a (Bn−1, Bn−1)-bimodule.

Proof. Let us fix b ∈ Bn. If n ∈ Top(b) is linked to n ∈ Bot(b), then b is in Bn−1 for the inclusion
(8.5). If b ∈ Bn\Bn−1, consider three cases, depending on whether the vertices labeled n in Top(b) and
Bot(b) belong to one, two or no arcs.

i) If they do not belong to any arc, then n ∈ Top(b) is sent to some l ∈ Bot(b), and n ∈ Bot(b) is sent
to some k ∈ Top(b) with 1 ≤ l, k ≤ n− 1. Then, there exist permutations b1, b2 in kSn−1 ⊂ Bn−1
and an element b ′ ∈ Bn−2 such that

b1bb2 = b ′

Indeed, consider for instance for p1 the transposition (n − 1,m) and for p2 the transposition (n −
1, l). Then, we get that b = (b1)

−1b ′sn−1(b2)
−1.

ii) If they both belong to an arc, we prove in the same way than in Case i) that there exist permutations
b1, b2 in kSn−1 ⊂ Bn−1 and an element b ′ ∈ Bn−2 such that

b1bb2 = b ′

In that case, we get that b = (b1)
−1b ′en−1(b2)

−1.

iii) Suppose now that only one vertex n belongs to an arc, for instance n ∈ Bot(b) is sent to l ∈ Bot(b)
without loss of generality. Similarly, there exist permutations b1, b2 in Bn−1 and b ′ ∈ Bn−3 such
that

b1bb2 = b ′

In this case, we check that b1bb2 = b ′en−1en−2, and thus

b = ((b1)
−1b ′)en−1(en−2(b2)

−1).
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As a consequence, any element of Bn is either in Bn−1, or can be written as b1χb2, with b1, b2 ∈ Bn−1
and χ ∈ {en−1, sn−1}, proving the result.

The next step to define the counit of the adjunction Resnn+1 ` Indn+1n is to find a basis of Bn as a
right Bn−1-module, and to find a basis that is left dual for the bilinear form 〈·, ·〉n : Bn → Bn−1 defined
by 〈b, b ′〉 := τn(bb ′).

Let us define some elements in Bn of key importance in the sequel: for 1 ≤ i ≤ n, consider the
elements

Xi,n :=

n i
. . .

1

n i . . . 1

. . .

. . .

Xi,j =

jn i
. . .

1

jn i . . . 1

. . .

. . .

. . .

. . .

8.1.9 Remark. It is a well-known fact that the set {sn . . . si | 1 ≤ i ≤ n} forms a basis of Sn as a right
Sn−1-module.

8.1.10. Projective bases. Let R be a ring and M be a left R-module. M is said free if it is a direct
summand of copies of R. It is said to be projective if it isomorphic to a direct summand of a free R-
module FR. Following [65], a left R-module M is finite projective if it admits a left projective basis, that
is a family of elements (xi)i∈I of M indexed by a finite set I, together with a family of left R-module
homomorphisms (ψi :M→ R)i∈I such that for any x ∈M, the following equality holds:

x =
∑
i∈I
ψi(x)xi. (8.6)

Note that the same definition and characterization also holds for right R-modules. In our case, let us
prove that Bn is projective as a left Bn−1-module by providing a finite left projective basis for Bn. Let
us consider the following subsets of Bn:

i) Bn−1 via the embedding (8.5),

ii) Xln consisting of all the Brauer diagrams b on 2n points such that n ∈ Top(b) is linked to l ∈
Bot(b), with l ≤ n− 1, via a through strand. We also denote by Xn =

⋃
1≤l≤n−1

Xln. For example,

b =

belongs to X35.

iii) Yn consisting of all the Brauer diagrams b on 2n points such that n ∈ Top(b) is linked to some
m ∈ Top(b), withm ≤ n− 1 via an arc. For example,

belongs to Y5.

It is easy to check that if b is a Brauer diagram on 2n points, then b is either in Bn−1, in Xn or in Yn.

8.1.11 Proposition. i) For b ∈ Sn, the following equality holds:

b = εn−1(b)(n l),

where l is the integer such that b ∈ Xln.
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ii) For b ∈ Yn, the following equality holds for any arc (i, j) in Bot(b):

b = δεn−1(bXj,n)Xj,nXi,j.

iii) For b ∈ Xln, the following equality holds for any arc (i, j) in Bot(b):

b = εn−1(bXj,n)(n l)Xj,nXi,j,

where (n l) is the permutation of n and l in Sn.

Proof. i) In the Brauer diagram on 2n dots corresponding to the transposition (n l), any element
k /∈ {l, n} in the bottom row is linked to k in the top row, and l ∈ Bot((n l)) (resp. l ∈ Top((n l)))
is linked to n ∈ Top((n l)) (resp. n ∈ Bot((n l))). Therefore, on the one hand b = b ′ (n l) where
b ′ ∈ Bn−1 corresponds to the Brauer diagram such that:

a) Any vertex k 6= l in the bottom row of b ′ is linked to k ′ in b ′, where k ′ is the vertex linked to
k ∈ Bot(b) in b.

b) l ∈ Bot(b ′) is linked to n ′ in b ′, where n ′ is the vertex linked to n ∈ Bot(b) in b.

On the other hand, taking the trace εn−1 of b ′ gives 1δ times the Brauer diagram on 2(n− 1) dots in
which the strand linking n in the top row and l in the bottom row of b is removed, and replaced by
a strand linking l in the bottom row to n ′. So it is clear that b ′ = δεn−1(b), hence the equality.

ii) Let us consider an arc linking i ∈ Bot(b) to j ∈ Bot(b), with 1 ≤ i < j ≤ n − 1. In the
Brauer diagram corresponding to Xj,nXi,j, any k /∈ {i, j, n} in the bottom is sent to k in the top via
a vertical strand, there is one arc (i, j) (resp. (n, j)) in Bot(Xj,nXi,j) (resp. in Top(Xj,nXi,j)), and
n ∈ Bot(Xj,nXi,j) is sent to i ∈ Top(Xj,nXi,j) via a through strand. Now, as b ∈ Zn, suppose that b
has an arc (n, l) in its top row, and a through strand linking n ∈ Bot(b) to m ∈ Top(b). Then, we
check that b = b ′Xj,nXi,j where b ′ is the Brauer diagram on 2n points uniquely determined by:

a) n ∈ Bot(b ′) is sent to n ∈ Top(b ′) via a vertical strands, that is b ′ ∈ Bn−1.
b) Any k /∈ {i, j, n} in Bot(b ′) is linked to k ′, where k ′ is the unique vertex linked to k ∈ Bot(b).

c) i ∈ Bot(b ′) is sent tom ∈ Top(b ′).

d) j ∈ Bot(b ′) is sent to l ∈ Top(b ′).

It thus remains to prove that b ′ = δεn−1(bXj,n). The Brauer diagram bXj,n contains the following
strands:

i) It has an arc (n, j) in its bottom row, and and arc (n, l) in its top row.

ii) It has a through strand linking i ∈ Bot(bXj,n) tom ∈ Top(bXj,n).

iii) Any k /∈ {i, j, n} in Bot(bXj,n) is linked to k ′, where k ′ is the vertex linked to k ∈ Bot(b) in b.

By taking the trace map εn−1 of this diagram, the through strands (i,m) and the strands (k, k ′) of
ii) and iii) are still in the resulting diagram, and the arcs (n, j) and (n, l) of i) disappear, giving a
through strand linking l ∈ Top(εn−1(bXj,n)) to j ∈ Bot(εn−1(bXj,n)). Moreover, as εn−1(bXj,n) ∈
Bn−1, when embedded in Bn it has a vertical strand from n in bottom to n in top, so that we get that
b ′ = δεn−1(bXj,n).

iii) Let us consider an arc (i, j) in Bot(b), with 1 ≤ i < j ≤ n. In the Brauer diagram (n l)Xj,nXi,j,
there is an arc (i, j) in the bottom row and an arc (l, j) in the top row, any k /∈ {i, j, l, n} is sent to
k in the top, l in the bottom row is sent to n in the top row and n in the bottom row is sent to i in
the top row. As a consequence, we prove that b = 1

δb
′(n l)Xj,nXi,j where b ′ ∈ Bn−1 is the Brauer

diagram defined by:

183



a) The arcs in the top row of b are also arcs in the top row of b ′.

b) Any k /∈ {i, j, l, n} in Bot(b ′) is linked to k ′, which is the vertex linked to k ∈ Bot(b) in b.

c) i ∈ Bot(b ′) is sent to n ′ ∈ Top(b ′), where n ′ is the vertex linked to n ∈ Bot(b) in b.

d) There is an arc (l, j) in Bot(b ′), creating a loop in b ′(n l)Xj,nXi,j imposing to add a factor δ to
the resulting diagram, which is erased by the multiplication by 1

δ .

Now, it remains to prove that b ′ = δεn−1(bXj,n). The Brauer diagram corresponding to bXj,n
contains:

i) An arc (n, j) in its bottom row,

ii) A strand linking any k /∈ {i, j, n} to k ′, which is the vertex linked to k ∈ Bot(b) in b,

iii) A through strand linking l ∈ Bot(bXj,n) to n ∈ Top(Xj,n),

iv) A strand linking i ∈ Bot(bXj,n) to n ′, which is the vertex linked to n ∈ Bot(b) in b.

Therefore, εn−1(bXj,n) is 1δ times the Brauer diagram on 2(n− 1) points in which the strands given
by ii) and iii) above remain unchanged, and the strands given by i) and iv) disappear to give an arc
(l, j) in Bot(εn−1(bXj,n)). Hence it is clear that b ′ = δεn−1(bXj,n).

Let us now consider the set

{(n l)Xj,nXi,j | 1 ≤ l ≤ n, 1 ≤ i, j ≤ n}

with the convention that (n n) = δ1n and Xj,j = δ1n for any 1 ≤ j ≤ n, and the following maps:

ψi,j,l : Bn → Bn−1

b 7→

0 ifb /∈ Xln
0 if(i, j) is not an arc in Bot(b)
1

A(b)εn−1(bXj,n) otherwise

(8.7)

for any 1 ≤ l ≤ n− 1, 1 ≤ i ≤ j ≤ n and the maps

ψi,j,n : Bn → Bn−1

b 7→ {
0 if(i, j) is not an arc in Bot(b)
1

A(b)εn−1(bXj,n) otherwise
(8.8)

for any 1 ≤ i ≤ j ≤ n, where the number A(b) stands for the number of arcs in the bottom or top row
of b.

Note that for any 1 ≤ l ≤ n − 1 and any 1 ≤ i ≤ j ≤ n, the map ψi,j,l is the following composite
of maps:

ψi,j,l =
1

A(b)
ε(·Xj,n) ◦ ΠXli,j ,

whereΠXni,j : Bn → Bn is the projection on the subsetXli,j ofBn corresponding to Brauer diagram with an
arc between vertices i and j in the bottom row, and in which n in the top row is sent to l in the bottom row.
As this set is stable by left-multplication by Bn−1, since the arcs in the bottom row and the vertex to which
n in the top row is linked are preserved, it is clear that the map ΠXli,j is a left-module homomoprhism,
and finally so are the maps ψi,j,l as composites of left Bn−1-module homomorphisms. Similarly, we can
prove that the maps ψi,j,n for any 1 ≤ i ≤ j ≤ n are left Bn−1-module homomorphisms.

Moreover, following Proposition 8.1.11, the following equality holds for any b ∈ Bn:

b =
∑

1≤i≤j≤n,1≤l≤n
ψi,j,l(b)(n l)Xj,nXi,j. (8.9)

Indeed, consider a Brauer diagram b in Bn, then:
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i) ψi,j,l(b) is 0 if b /∈ Xln. In particular, if n ∈ Top(b) belongs to an arc, then all the ψi,j,l(b) for
1 ≤ l ≤ n− 1 are 0.

ii) ψi,j,l(b) is 0 if (i, j) is not an arc in Bot(b), so that the only terms giving non-zero elements corre-
spond to the bottom arcs of b.

Moreover, by Proposition 8.1.11, we get that for any b ∈ Bn, we have that

ψi,j,l(b)(n l)Xj,nXi,j =
1

A(b)
b,

hence the equality (8.9). As a consequence, we proved the following statement:

8.1.12 Proposition. The set

{(n l)Xj,nXi,j | 1 ≤ l ≤ n, 1 ≤ i, j ≤ n}

together with the maps ψi,j,l defined above is a left projective basis of Bn as a left Bn−1-module.

The next step to be able to define the left cup for the biadjunction Indn+1n ` Resnn+1 is to find a
dual basis for the projective basis given in Proposition 8.1.12 with respect to the bilinear form 〈·, ·〉 on
Bn × Bn defined by

〈b, b ′〉 = εn−1(bb ′).

Once this is done, all the unit and counit maps for the biadjunction Ind-Res are defined, and it remains
to define the remaining generating 2-cells in the spirit of Khovanov [70], as in Section 9.5. We then have
to find relations that are satisfied by the 2-cells made on this generators, part of them giving the Mackey
decomposition theorem for the Brauer algebra, which is unknown in these terms. Once the 2-category
is completely defined with all the relations, we would like to use rewriting modulo the pivotal axioms to
compute an hom-basis, in order to be able to compute the Grothendieck group of it and identify which
algebra it categorifies.

8.2. POLYGRAPHIC RESOLUTIONS FROM REWRITING MODULO

8.2.1. Triple categories. A triple category is an internal category in the category DbCat of double
categories and their morphisms. Explictely, it is given by a diagram

( C1
sC //

tC
// C0 )⇒ ( D1

sD //

tD
// D0 )

where C1,C0,D1 and D0 are 1-categories whose 0-cells and 1-cells respectively have the following
shapes:

i) 0-cells of D0 = {•},

ii) 1-cells of D0 = { • // • }

iii) 0-cells of D1 =


•

��
•



iv) 1-cells of D1 =


•
sD(A)

//

��

•

��
•
tD(A)

// •

A +3



v) 0-cells of C0 =


t(f)

s(f)

f
==


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vi) 1-cells of C0 =


t(f)

t(A)
// t(g)

s(f)

f
<<

s(A)
// s(g)

g

<<
A +3



vii) 0-cells of C1 =



•

t(A)

��

•
sC(A) 99

s(A)

��

•

• tC(A)

99

A
��



viii) 1-cells of C1 =



• b //

f

��

•

h

��

• c //

e

��

a
??

•

g

��

d
??

• j // •

•
i

??

l
// •

k
??

A

��

B

��

γ *4



with A = sC(γ), B = tC(γ), a = sC(A), i = tC(A), d = sC(B) and k = tC(B). The square in
front is s(γ) and the square behind is t(γ).

8.2.2. Cubical coherence from triple critical branchings modulo. To mimick the constructions of
Section 4.6, we could like to generate an n-category enriched in 3-fold categories from an n-polygraph
modulo (R, E, S) in which:

i) the horizontal category is given the free n-category S∗n generated by S,

ii) the vertical category is given by the free (n,n− 1)-category E>n ,

iii) the diagonal category is given by the free (n,n− 1)-category E>n .

Given a triple of categories (Ch, Cv, Cd), together with three square extensions Γh,d, Γh,v and Γ v,d

respectively on the pairs of categories (Cv, Cd), (Ch, Cv) and (Cv, Cf), we define a 3-fold extension as a
set Γ equipped with maps ∂µ,ν−,n+1, ∂

µ,ν
+,n+1 : Γ → Γµ,ν for any µ, ν ∈ {v, h, d} satisfying relations such

that the elements of Γ are 3-cubical sets. We would like to extend the notion of polygraphic resolution
from [53] recalled in Section Namely, given a triple of categories (Ch, Cv, Cd), together with three square
extensions Γh,d, Γh,v and Γ v,d respectively on the pairs of categories (Cv, Cd), (Ch, Cv) and (Cv, Cf), we
define a 3-fold square extension as a set Γ equipped with maps ∂µ,ν−,n+1, ∂

µ,ν
+,n+1 : Γ → Γµ,ν for any

µ, ν ∈ {v, h, d} satisfying relations such that the elements of Γ are 3-cubical sets. to this context of
rewriting modulo by constructing an ”acyclic” 3-fold extension on (S∗, E>, E>), that is a set of cubical
(n+2)-cells whose compositions would tile every cube made with horizontal arrows in S∗, and vertical or
diagonal arrows in E>. We expect to be able to define such a 3-fold extension on the triple of categories
(S∗, E>, E> from triple critical branchings as follows. Let (R, E, S) be an n-polygraph modulo. A
triple critical branching of S modulo E is a quintuple (f, e1, g, e2, h) such that (f, e1, g), (g, e2, h) and
(f, e1?n−1e2h) are local branchings of Smodulo E and (f, e1, g, e2, h) is minimal for the orderv defined
in Section 4.4.7. Such a data is depicted on the following diagram:

f //

e1

??

e2

��

g
//

h
//

Following [53], we construct the candidate 3-fold extension using normalization strategies for the
polygraph modulo S. Let us fix a normalization strategy σv : v→ v̂ with respect to S, and for any n-cell
k in S∗, denote by k̂ the n-cell k ?n−1 σtn−1(k). By confluence of S modulo E assumption, there exist
n-cells e ′1 and e ′2 in E> as in the first diagram below. Now, let us fix a choice Cd(E) of a square extension
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given by a family of generating confluences for the convergent n-polygraph E. By convergence of E,
there exist n-cells e3 and e4 in E> as in the second diagram below. Now, by confluence modulo on the
branching (e3, ĥ), there exists a confluence modulo (h ′, e ′3) of this branching, and using the confluence
modulo assumption, we can assume that h ′ = ĥ ′. We then construct the n-cell e ′4 in E> closing the cube
by convergence of the n-polygraph E. This process is summarized in the following steps:

f̂ //

e1

??

e2

��

ĝ
//

e ′1

??

e ′2

��

ĥ

//

f̂ //

e4

��

e1

??

e2

��

ĝ
//

??

��

ĥ

//

e3

??

f̂ //

e4

��

e1

??

e2

��

ĝ
//

??

��

ĥ ′ //

ĥ

//

e3

??

e ′3

??

f̂ //

e4

��

e ′4

��

e1

??

e2

��

ĝ
//

??

��

ĥ ′ //

ĥ

//

e3

??

e ′3

??

The left and right faces of the cube thus constructed are tiled by square cells in ΓE, and the top,
bottom, front and behind faces are tiled by square cells in the square extension provided by Theorem
4.6.6. We consider the set Γ (3) of cubical (n+2)-cells tiling the set of all cubes thus constructed, for any
choice of generating confluence ΓE of E and of Squier completion Γ of S modulo E.

8.2.3 Conjecture. The set Γ (3) is an acyclic 3-fold extension on the triple of categories (S∗, E>, E>).

Adapting this construction in the above dimensions, we expect to construct k-fold extensions on the
k-uples of categories (S∗, E>, . . . , E>) made of k-cubical cells constructed from k-critical branchings of
S modulo E, and a normalization strategy with respect to S as in [53].
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In this Chapter, we give a catalogue of the various families of diagrammatic algebras and cate-
gories that have been studied using various rewriting (resp. rewriting modulo) methods: the Hecke type
algebras, introduced in [46], including the nil Hecke algebras and the KLR algebras, the Brauer and
Temperley-Lieb categories (encoding the Brauer and Temperley-Lieb algebras), the partition category,
the affine oriented Brauer category and Khovanov’s categorification of the Heisenberg category.

9.1. HECKE TYPE ALGEBRAS

9.1.1. Hecke type presentations. Elias introduced in [46] a family of algebras including the KLR al-
gebras which he called Hecke type presentations. These are presentations of monoidal categories or their
endomorphism rings with only two kind of generators: crossings and dots with possible colours/labels
satisfying the symmetric group relations

= , = (9.1)

and ”commutation” relations of the form

•
= • + . (9.2)
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In [46], it is proved that one can compute a linear basis for such a presentation using the Bergman
diamond lemma. This lemma states that, if there exist an orientation of the relations of the presentation
with respect to a monomial order, and if all minimal overlappings between reductions are confluent, then
the monomials in normal form gives a hom-basis of the presentation. This is analogous to Section 2.9.7.

In that setting, there always are indexed critical branchings of the form 6.6), that we have to prove
confluent for all cases of colours/labels of the strands as in Appendix A.2. The critical branchings
implying the symmetric group relations on one colour/label of the strands are always confluent, and the
proof of their confluence is given in the proof of confluence of the 3-polygraph of permutations in [51].

9.1.2 Remark. In [46, Thm 5.12], Elias gives an exhaustive list of the critical branchings that need to be
checked in order to prove confluence for these algebras using the Manin-Schechtman theory. Manin and
Schechtman [88] made an analysis of reduced expressions in the Coxeter presentation of the symmetric
group, and of orientations in the corresponding reduction graph. These orientations were extended in [46]
to non-reduced expressions using the idea of rewriting modulo the commutation relations sisj = sjsi for
|j − i| > 1 of this presentation, by identifying two words in the reduction graph if they only differ by
these relations.

9.1.3. The nil Hecke algebras. Given a ground ring K, the nil Hecke algebra NHn of degree n is the
K-algebra presented by generators ξj for 1 ≤ j ≤ n and ∂i for 1 ≤ j ≤ n − 1 submitted to relations
relations

i) ξiξj = ξjξi,

ii) ∂iξj = ξj∂i if |i− j| > 1,

iii) ∂i∂j = ∂j∂i if |i− j| > 1,

iv) ∂2i = 0,

v) ∂i∂i+1∂i = ∂i+1∂i∂i+1,

vi) ξi∂i − ∂iξi+1 = 1,

vii) ∂iξi − ξi+1∂i = 1.

As in Section 6.1.4, the algebra NHn is isomorphic to EndNHC (n), where CNH is the 2-category with
only one 0-cell, one generating 1-cell ∗, so that (CNH)∗1 ∼ N, two generating 2-cells crossing and dot,
and the following four relations

= , = ,
•

= • + ,
•

= • − .

The algebraNHn is an instance of the KLR algebra R(V) associated to a Dynkin graph with only one
vertex. Therefore, this algebra appears in the process of categorification of the quantum group associated
with sl2. The proof of convergence for the KLR algebras adapt to this situation, and thus orienting the
above relations from left to right gives a convergent presentation of the nil Hecke algebras.

9.2. TEMPERLEY LIEB AND BRAUER CATEGORIES

9.2.1. The Temperley-Lieb category. The Temperley-Lieb algebras were at first introduced in 1971
by Temperley and Lieb in [116]. It plays an important role in mathematics and physics, for instance it
underlies the study of Potts models, ice-type models and Andrews-Baxter-Forrester models. It can also
be connected to categorical quantum mechanics and even to logic and computation. Let R be a noetherian
integral domain, and δ be an element of R. The Temperley-Lieb algebra TLn(δ) of degree n over R is the
unital R-algebra with basis the set of diagrams corresponding to graphs on 2n vertices arranged in two
rows each containing n points, and in which:
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1. every vertex has degree 1, that is each vertex admits exactly one incident edge, and two vertices of
the same row can be linked.

2. two different edges does not intersect.

As in the case of Brauer algebras in Section 8.1.1, the vertices are numerated from 1 to n from right
to left in each row. The multiplication in Tln(δ) is defined as in Bn(δ): we place the first diagram
on top of the second one by identifying the middle row of points, remove all the loops and multiply
by δ everytime a loop is removed. The Temperley-Lieb algebra TLn(δ) is the R-algebras presented by
generators e1, . . . , en−1 which are diagrammatically represented as the generators ei in Section 8.1.1
submitted to relations

e2i = δei, eiei±1ei = ei, eiej = ejei if |i− j| > 1.

Let us define a category T L(δ) encoding the Temperley-Lieb algebras in every degree as in Section
6.1.4 as follows: let T L(δ) be the linear (2, 2)-category defined by:

i) only one 0-cell,

ii) its 1-cells are given by the elements {0, . . . ,m} for any m in N∗ and the tensor product (or ?0-
composition is defined by

{1, . . . ,m} ?0 {1, . . . , n} := {1, . . . ,m,m+ 1, . . . ,m+ n}

iii) its generating 2-cells are caps and cups 2-cells:

iv) the 2-cells of T L(δ) are subject to the following relations:

= δ , = =

9.2.2. The Brauer category. Similarly, we define a linear (2, 2)-category B(δ), called the Brauer cat-
egory encoding the Brauer algebras Bn(δ) for any n ∈ N as follows:

i) B(δ)≤1 = T L(δ)≤1 and B(δ)2 = T L(δ)2 ∪ { },

ii) The 2-cells of B(δ) are subject to the relations of T L(δ) and the following relations implying
crossings:

= , = ,
= , =
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9.3. THE PARTITION CATEGORY

9.3.1. Partition diagrams and the partition category. For m, ` ∈ N, a partition of type
(
`
m

)
is a

partition of the set {1, . . . ,m, 1 ′, . . . , ` ′}. The elements of the partition will be called blocks. We will
depict such a partition as a simple graph with ` vertices in the top row labelled 1 ′, . . . , ` ′ from right to left,
and m vertices in the bottom row, labelled 1, . . . ,m from right to left. We draw edges joining elements
of each block of the partition. For example, the partition

{
{1, 5}, {2}, {3, 1 ′}, {4, 4 ′, 7 ′}, {2 ′, 3 ′}, {5 ′}, {6 ′}

}
of type

(
7
5

)
is depicted as follows:

5 4 3 2 1

7 ′ 6 ′ 5 ′ 4 ′ 3 ′ 2 ′ 1 ′

As the labels of vertices are clear according to the number of dots in each row, we may omit them. If D
is a partition of type

(
`
m

)
, we write thatD : m→ `. There are unique partitions of types

(
1
0

)
and

(
0
1

)
that

are respectively denoted by
: 0→ 1 and : 1→ 0.

Given two partitions D ′ : m → `, D : ` → k, one can stack D on top of D ′ to obtain a diagram D ′′

with three rows of vertices. The number of connected components in the middle row of this new diagram
is denoted by α(D,D ′). Let D ? D ′ be the partition of type

(
k
m

)
with the following property: vertices

are in the same block of D ?D ′ if and only if the corresponding vertices in the top and bottom rows of
D ′′ are in the same block.

The partition category Par(δ) is the strict K-linear monoidal category whose 0-cells are elements
n ∈ N and, given two objects m, ` in Par(δ), the 1-cells from m to ` are K-linear combinations of
partitions of type

(
`
m

)
. The vertical composition is given by

D ◦D ′ = δα(D,D ′)D ?D ′

for composable partition diagramsD,D ′, and extended by linearity. The bifunctor ⊗ is given on objects
by

⊗ : Par(δ)× Par(δ)→ Par(δ), (m,n) 7→ m+ n.

The tensor product on 1-cells is given by horizontal juxtaposition of diagrams, extended by linearity.
For example, if

D ′ = and D =

then

D

D ′
= , D ?D ′ = , and D ◦D ′ = t2 .

9.3.2. Confluent presentation. Following [33, 84], this category admits a presentation by a linear (3, 2)-
polygraph as follows:

9.3.3 Proposition. The linear (3, 2)-polygraph Par(δ) defined by:

1. Par(δ)0 = {∗},

2. Par(δ)1 = {1} so that the 1-cells in Par(δ)
∗

are non-negative integers n ∈ N,
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3. Par(δ)2 =
{

: 2→ 1, : 1→ 2, : 2→ 2, : 0→ 1, : 1→ 0
}

4. Par(δ)3 is the set of following 3-cells:

V W , V W , V W ,

V , V ,

V , V , V , V ,

V , V , V δ10.

is a presentation of Par(δ).

It is easy to see that the linear (3, 2)-polygraph Par(δ) is not confluent. Checking the first critical
branchings, we notice that we have to add new relations in Par(δ) so that our set of 3-cells is stable
under some symmetries through horizontal and vertical axis. Moreover, checking the confluence with
this new stable-by-symmetry set of 3-cells still requires to add new 3-cells.

9.3.4 Definition. Let us consider the linear (3, 2)-polygraph CPar defined by: CPari = Par(δ)i for
0 ≤ i ≤ 2, and CPar3 contains the following 3-cells:

A
V

A ′

W ,
Ã
V

Ã ′

W ,
B
V

B ′

W ,

C
V ,

D
V ,

E
V ,

E ′

V ,
Ẽ
V ,

Ẽ ′

V

F
V ,

F̃
V ,

F̃ ′

V ,
F ′

V

G
V ,

G ′

V ,
G̃
V ,

G̃ ′

V

H
V ,

H̃
V ,

I
V ,

J
V δ10.

K
V

K ′

W ,
L
V ,

L
V

M
V ,

M̃
V .

Note that we adopted some notations such that, for any 3-cell γ in CPar3:

i) γ ′, if it exists, has for source ι(s2(γ)) and for target ι(t2(γ)) where ι : Par(δ) → Par(δ)op is the
involution of Par(δ) sending a diagram to its image through a reflexion by a vertical axis.
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ii) γ̃, if it exists, has for source τ(s2(γ)) and for target τ(t2(γ)) where τ : Par(δ) → Par(δ)op is the
involution of Par(δ) sending a diagram to its image through a reflexion by an horizontal axis.

As a consequence, if a critical branching of the form (γ, δ) is confluent, then by applying ι (resp. τ)
on all the 2-cells in the confluence diagram yields a confluence for the critical branching (γ ′, δ ′) (resp.
(γ̃, δ̃)). Therefore, this reduces the number of critical branchings that we have to take into account when
proving confluence. Note that some of these 3-cells are symmetric by the˜and ′-involutions, for instance
the following inequalities hold:

C̃ = C, C ′ = C, D̃ = D, H ′ = H, H̃ ′ = H̃.

The list of critical branchings for CPar that we need to prove confluent is given by:

(C,C), (C,D), (D,C), (C, E), (C, F), (C,G), (G,C), (C,H), (D,E), (D,E ′), (D, F ′),

(D,H), (E, F̃), (E, F̃ ′), (E,G), (E,G ′), (E, G̃), (E, G̃ ′), (E,H), (E ′, F̃), (E ′, F̃ ′), (F,G),

(F,H), (G,H), (G, H̃), (H, H̃), (L,C), (L,D), (L, E), (L, E ′), (L, F ′), (L, F̃, (L, G̃ ′),

(L, H̃), (M,C), (M,D), (M, Ẽ), (M, Ẽ ′), (M, F̃ ′), (M,G ′), (M,H).

9.3.5 Proposition. All the critical branchings enumerated above are confluent.

Proof. The proof of confluence of all these critical branchings is given in Appendix A.1.

In order to obtain a convergent presentation, we also conjecture that the following result holds:

9.3.6 Conjecture. The linear (3, 2)-polygraph CPar is terminating.

We conjecture that this can be proved using the derivation method of Section 2.6.4, but after fixing
an apropriate value for the derivation on each generating 2-cell, there are a lot of inequalities to check to
ensure conditions i)-iii).

Note that the following inclusions of linear (2, 2)-categories hold:

T L(δ) ⊆ B(δ) ⊆ Par(δ)

so that computing a convergent presentation, and thus a hom-basis using Section 2.9.7 of the (2, 2)-
category Par(δ) yields a convergent presentation, and thus hom-bases, for the linear (2, 2)-categories
T L(δ) and B(δ).

9.4. THE AFFINE ORIENTED BRAUER CATEGORY

In this section, we illustrate the previous results by computing a hom-basis for the affine Oriented Brauer
linear (2, 2)-category AOB. We describe a linear (3, 2)-polygraph (E, R, ER) for which we prove that
ER is quasi-terminating and ER is confluent modulo. As a consequence, we prove that a choice of quasi-
normal forms yields to the well-known basis obtained in [22, 2].

9.4.1. A presentation of AOB. We recall from [105] the natural presentation of the affine oriented
Brauer category from the degenerate affine Hecke monoidal category.

9.4.2. The degenerate affine Hecke category. Let AHdeg be the linear (2, 2)-category with only one

0-cell, one generating 1-cell , two generating 2-cells

: ?0 → ?0 and • : →
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and three relations

=
,

=
,

• = • +
.

Following [105], EndAHdeg

(
⊗n
)

is isomorphic to the degenerate affine Hecke algebra of degree
n.

9.4.3. The linear (2, 2)-category AOB. To define the affine oriented Brauer linear (2, 2)-category

AOB, we add to this data an additional generating 1-cell that we require to be right dual to . Fol-

lowing Section 4.3.3, this requires the existence of unit and counit 2-cells

: 1→ ?0 , and : ?0 → 1.

where 1 denoted the identity 1-cell on the only 0-cell ofAHdeg. These 2-cells have to satisfy the adjunc-
tion relations

=
,

=
.

We also add an additional 2-cell defined by a right-crossing as follows:

:=

that we require to be invertible, namely there exists a two-sided inverse to this 2-cell, that we will denote
by . The resulting category AOB is called the affine oriented Brauer category. It was proved to

be a pivotal linear (2, 2)-category in [21], with also being the left dual of and the unit and counit

2-cells being defined as follows:

= =

The left crossing 2-cell is then proved to be equal to

The inverse condition is then given by the following two relations:

= =

9.4.4. The linear (3, 2)-polygraph AOB. Let AOB be the linear (3, 2)-polygraph having:

i) one 0-cell,

ii) two biadjoint generating 1-cells and ,
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iii) 8 generating 2-cells:

• • (9.3)

iv) the following families of 3-cells:

a) Isotopy 3-cells:

•α
iα1
V •α , •α

iα3
V •α , •α

iα4
V •α , •α

iα2
V •α , for any α ∈ {0, 1}

(9.4)

•
i21
V • • i23

V
• •

i22
V • • i24

V
• (9.5)

b) degenerate affine Hecke 3-cells:

α+

V
,

β+

V
,
•

γl,+
V • +

,
•

γr,+
V • −

.

and the corresponding 3-cells with downward orientations respectively denoted by α−,β−, γl,−
and γr,−.

c) Invertibility 3-cells:

E
V

F
V

d) 3-cells defining the caps and cups:

A
V ,

B
V ,

C
V ,

D
V

e) sliding 3-cells s0n and s1n and ordering 3-cells on defined by induction in [22], and oriented in the
same way than in [2].

We easily prove following [105] that this linear (3, 2)-polygraph is a presentation of AOB. To study
this linear (3, 2)-polygraph modulo, we consider its convergent subpolygraph E defined by Ei = AOBi
for i = 0, 1, E2 contains the last six generating 2-cells in 9.3 and E3 contains exactly the isotopy 3-cells
(9.4). Following 5.3.1, E is convergent. We denote by R the linear (3, 2)-polygraph having the same
i-cells than AOB for i = 0, 1, 2 and such that R3 = AOB3\E3. From the data of E and R, we can then
consider the linear (3, 2)-polygraph (R, E, ER), and prove the following result:

9.4.5 Theorem. Let (R, E) be the splitting of AOB defined above, then ER is quasi-terminating and R
is confluent modulo E.
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9.4.6. Quasi termination of ER. To prove quasi-termination of the linear (3, 2)-polygraph ER is quasi-
terminating, we will proceed in two steps: at first we will prove that the linear (3, 2)-polygraph R minus
the sliding 3-cells is terminating using derivations as in 2.6.4. Then, using a notion of quasi-ordering
and a suited notion of polynomial interpretation on AOB`2, we will describe in the same fashion than
in [2] a procedure proving that every 2-cell in AOB can be rewritten in a finite number of steps into a
monomial on which the only 3-cells that can be applied are the cells creating cycles. Let us at first state
the following lemma:

9.4.7 Lemma. The linear (3, 2)-polygraph R ′ = R \{s0n, s
1
n}n∈N is terminating.

Proof. Let us proceed in three steps, using the derivation method given in 2.6.4. We at first consider
a derivation d defined by d(u) = ||u||{ , } into the trivial modulo M∗,∗,Z, counting the num-

ber of crossing generators in a given 2-cell. We have that d(s2(ω)) > d(ωi) for any 3-cell ω in
{A,B,C,D, E, F, α} and any ωi in Supp(t(ω)). As a consequence, one gets that if the linear (3, 2)-
polygraph R ′′ defined as R ′ minus each of these 3-cell terminates, then so does R ′. Indeed, otherwise
there would exist an infinite reduction sequence (fn)n∈N in R ′ and thus, an infinite decreasing sequence
(d(fn))n∈N of natural numbers. Moreover, this sequence would be strictly decreasing at each step that
is generated by any of these 3-cells and thus, after some natural number p, this sequence would be gen-
erated by the other 3-cells only. This would yield an infinite reduction sequence (fn)n≥p in R ′′, which is
impossible by assumption.

It remains to prove that the linear (3, 2)-polygraph (R0, R1, R2, {β±, γl,±, γr,±, on}n∈N) terminates.
We can still reduce this problem to the termination of the rules β±, γl,± and γr,± by considering a
derivation d ′ with values in the trivial moduloM∗,∗,Z counting the number of clockwise oriented bubbles.
Let us consider X the 2-functor X : AOB∗2 → Ord on generating 2-cells by:

X( )(n) = n X( • )(n) = in− 1 X( )(n,m) = (m+ 1, n) ∀n,m ∈ N

for both orientations of strands, and we consider the AOB∗2-module MX,∗,Z and define the derivation
d : AOB∗2 →MX,∗,Z on the generating 2-cells by

d( )(n) = 0, d( )(n,m) = n, d( • )(n) = n.

With these assignments, we obtain the same inequalities than in Section 6.1.7, so that the 2-functor X
and the derivation d satisfy the conditions i), ii) and iii) of Section 2.8.9, and thus the corresponding
linear (3, 2)-polygraph is terminating.

However, as explained in [2], the addition of the sliding 3-cells create rewriting cycles, so that R is
not terminating. Nethertheless, we will prove that it is quasi-terminating. Following [2], we say that a
monomial inAOB is quasi-reduced if it can be rewritten by only one of the 3-cells derived from ordering
and sliding 3-cells in ER on the following subdiagrams:

•n •n
•n •n

for any n inN. We call a 2-cell ofAOB`2 quasi-reduced if all monomials in its monomial decomposition
are quasi-reduced.

We then define as in Section 6.2.22 a weight function onAOB`2 by its following values on generating
2-cells:

τ( ) = τ( ) = τ( ) = τ( ) = 0, τ( • ) = τ( • ) = 0, τ( ) = τ( ) = 3.

Note that for any 3-cell α in E3, we have τ(s2(α)) = τ(t2(α)) so that the isotopy 3-cells preserve this
weight function. Then, starting with a monomial u of AOB`2:
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- While u can be rewritten with respect to ER into a 2-cell u ′ such that τ(u ′) < τ(u), then assign
u to u ′.

- While u can be rewritten with respect to ER into a 2-cell u ′ without any of the 3-cells depicted
above, then assign u to u ′.

From Lemma 9.4.7 and well-foundedness of the quasi-ordering & defined as in Section 6.2.22, this
procedure terminates and returns a linear combination of monomials in AOB`2 which are quasi-reduced.

9.4.8. Confluence modulo. We prove that the linear (3, 2)-polygraph modulo ER is confluent modulo
E using Theorem 5.2.4 and Proposition 5.4.6. Let us at first enumerate the list of all critical branchings
modulo that we have to prove decreasing with respect to ψQNF. First of all, there are 6 regular critical
branchings implying the degenerate affine Hecke 3-cells:

(α±, α±), (α±, β±), (β±, α±), (α±, γη,±)η∈{l,r}, (β±γη,±)η∈{l,r}, (γl,±, γr,±).

The first three families are proved confluent modulo in the same way that the polygraph of per-
mutations is proved confluent in [51]. The remaining critical branchings are decreasingly confluent as
follows:

• •
//

=

��

•
•

−
• // • • −

•
+
•

=

��

• •
// •

•
+

• // • • +
•

−
•

•
//

= ��

•
+ // • // •

=

��•
// •

•

//

=

��

•
+ // • + +

=

''•

//

•
// • + //

• + +

for both orientations of strands. In the last two cases, we proceed similarly if the dot is placed on another
strand. Following the study of the 3-polygraphs of permutations in [51], there also are right-indexed
critical branchings of the form (6.6), forgetting the labels on the strands. We have two families of
normal forms that we can plug in this indexation, as in Section 6.1.8. These indexed critical branchings
are confluent modulo E, and the proof of their confluence is similar to the confluence of indexed critical
branchings for the KLR algebras, see Appendix A.2. The critical branchings modulo implying the sliding
and ordering 3-cells are proved confluent modulo E in a similar fashion than in [2]. We then give the
exhaustive list of all critical branchings modulo implying the 3-cells A,B,C,D,E and F. First of all,
these branchings overlap with degenerate affine Hecke relations to give the following sources of critical
branchings modulo:

(A,C), (B,D), (B, F), (E,D), (C, E), (E, F), (F, E), (A,γl,+), (B, i
2
4, γl,+), (D,γr,+), (E, γl,+),

(γr,+, i
2
3, C), (F, γr,+), (α+, i

0
1 ?2 i

0
4, F), (γr,+, i

0
1 ?2 i

0
4 ?2 (i

2
3 ?2 i

2
1)

−, F),
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(β+, i
0
1 ?2 i

0
4, F), (α+, i

0
1 ?2 i

0
4, E), (γl,+, i

0
1 ?2 i

0
4 ?2 (i

2
2 ?2 i

2
4)

−, E).

Some of these branchings are proved decreasingly confluent with respect to ψQNF by the confluence
modulo diagrams below. The remaining one are obtained by symmetries of the diagrams and are thus
not drawn.

=

��

C //
o10 //

=

��

A
//

F //

=

��

=

��

λ

A
//

D
//

λ B //

=

��

C //

=

��
λ

F
//

B //

=

��

o10 //

=

��

D
//

λ E //

=

��

=

��

λ

D
//

A
//

C //

=

��

B //

=

��

E
//

F //

=

��

=

��

E
//

• Ai,λ //

=

��

•

=
��

•
γl,+

//

•
+

i22?2(i
2
3)

−·γr,+
//

λ

• (i21)
−·A

// •

• B //

=

��

•

(i24)
−

��

• i24·γl,+ //

• +
i22?2(i

2
3)

−·γr,+
//

• B
// •
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• E //

=

��

•

=

��

•
γl,+?2γr,+

//

•

− +
E−A+B

// •

α //

i01?2i
0
4

��

s00 //

=

��

F
//

•

i01?2i
0
4

��

γr,+ //

•

−
α+−(i01)

−·C
// • −

s01 // •

=

��

•
F

// •

(i01)
−?2(i

0
4)

−

��

β+
// ≡E

C //
(i01)

−?2(i
0
4)

−·α+

//

(i01)
−

��

F
//

(i01)
−·C

//

9.4.9. Normally ordered Brauer diagrams. A dotted oriented Brauer diagram is a planar string dia-
gram built from ?0 and ?1-compositions of the above generating 2-cells in which every edge is oriented
and is either a bubble or have a boundary point as source and target, each edge is decorated with an arbi-
trary number of dots not allowed to pass through the crossings. Such a diagram is said normally ordered
if all its bubbles are clockwise oriented and located in the leftmost region, and if all dots are either on a
bubble or a segment pointing toward a boundary (or in the opposite direction). In a similar fashion than
[2, Lemma 5.2.6], we prove that each 2-cell of AOB`2 can be rewritten with respect to ER into a linear
combination of diagrams whose normal forms with respect to E are normally ordered dotted oriented
Brauer diagrams. As a consequence, we get from 5.4.8 that the set of such diagrams with 1-source u and
1-target v form a basis of the K-vector space AOB2(u, v), and we recover the result from [22, 2].
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9.5. KHOVANOV’S HEISENBERG CATEGORIFICATION

9.5.1. The Heisenberg algebra. Let K be some ground commutative ring. The Heisenberg algebra H
is the K-algebra presented by generators pn, qn for n ∈ Z and relations

pnqm = qmpn + δn,m1, pnpm = pmpn, qnqm = qmqn. (9.6)

Let us consider a strict K-linear monoidal category H ′, seen as a 2-category with only one 0-cell,
admitting two generating 1-cells Q+ and Q− whose identities are respectively diagrammatically repre-
sented by

and as generating 2-cells:

(9.7)

submitted to relations

= = (9.8)

= = − = 1 = 0. (9.9)

Any 1-cell Q in H ′ can then be decomosed as a linear combination of elements Qε1 ?0 · · · ?0 Qεm ,
denoted by Qε, where ε = (ε1, . . . , εm) is a finite sequence of signs. We denote by Qnε the element
Qε ?0 · · · ?0 Qε made of ?0-compositions of n-copies of Qε, for ε ∈ {−,+}. The space of 2-cells
with 1-source Qε and 1-target Qε ′ is then given by diagrams constructed from horizontal and vertical
compositions (whenever it is well-defined) of the generating 2-cells above, modulo the relations. In
Khovanov’s original paper, it is expressed that all these diagrams are oriented compact one-manifolds
into the plane strip R × [0, 1], modulo boundary isotopies, which in fact makes H ′ into a pivotal 2-
category.

The relations (9.9) correspond to the fact there there is an isomorphismQ−+ ' Q+−⊕1 inH, given
by the following maps:

Q−+

Q+−

==

1

^^

Q−+

aa @@

Note that we have K[Sn] ⊆ H ′(Qnε , Qnε ), and the symmetrization and antisymmetrization idempo-
tents in K[Sn] produce 1-cells in H := Kar(H ′), that can be seen as symmetric and exterior powers of
the generating 1-cells Q+ and Q−, that we denote as follows

Snε := Sn(Qε), Λnε = Λn(Qε) for any ε ∈ {−,+}.

It is conjectured in [70] that H is a strong categorification of the Heisenberg algebra, with the isomor-
phism K0(H)→ H being given by:

[Sn+] 7→ pn, [Λn−] 7→ qn.

It is proved in [70] that this map is injective, and this conjecture was finally proved in a more general
setting for degenerate Heisenberg categories in [23].
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9.5.2. Induction and Restriction for the symmetric groups. The monoidal category H ′ was discov-
ered by considering compositions of induction and restriction functors for the inclusions of symmetric
group algebras K[Sn] ⊆ K[Sn+1] as defined in Section 8.1.2. Following [70], we adopt simple notations
for modules and by modules over the symmetric group algebras. For instance n(n + 1) stands for Sn+1
viewed as a left Sn-module, and n(n + 1)n−1 stands for Sn+1 viewed as a (Sn, Sn−1)-bimodule for the
standard inclusions Sn ⊂ Sn+1 ⊃ Sn ⊃ Sn−1. This notation is also suited for tensor products of modules
as follows: n(n+ 1)n(n+ 2) stands for Sn+1 ⊗Bn Sn+2 viewed as a (Sn, Sn+2)-bimodule.

Let us represent the identity endomorphism of the induction functor Indn+1n : Sn − Mod → Sn+1 −
Mod (resp. of the restriction functor) as an upward (resp. downward) oriented arrow as follows:

nn+ 1 n+ 1n

This functor corresponds to tensoring with the bimodule (n + 1)n (resp. n(n + 1)). It is proved in [70]
that the functors Indn+1n and Resnn+1 are biadjoint with unit and counit morphisms given by

n :
(n+ 1)n(n+ 1) → (n+ 1)

g⊗ h 7→ gh n
:

(n) → n(n+ 1)n
g 7→ g

n

: n(n+ 1)n → (n)⊗n (n+ 1)
g 7→ ρn(g)

n
:

(n+ 1) → (n+ 1)⊗n (n+ 1)

g 7→ n+1∑
i=1

gsisi+1 . . . sn ⊗ sn . . . si+1si

where ρg(n) is the map defined by ρn(g) = g if g ∈ Sn and 0 otherwise. Khovanov also defined the
following four generating morphisms

n :
(n+ 2)n → (n+ 2)n

g 7→ gsn+1
n : n(n+ 2) → n(n+ 2)

g 7→ sn+1g

n :
(n)n−1(n) → n(n+ 1)n
g⊗ h 7→ gsnh

n :
n(n+ 1)n → (n)n−1(n)
g ∈ Sn 7→ δg,

gsnh 7→ g⊗ h

Following [?, Prop. 7], with these definitions of generating 2-cells, the relations (9.8)-(9.9) are satisfied
for every diagram with rightmost region labeled by n. The relations (9.8) follow from the definition of
the bimodule map defined by the upward crossing, and come from relations s2n = 1 and sn+1sn+2sn+1 =
sn+2sn+1sn+2 in the symmetric groups. The relations of (9.9) encode the bimodule decomposition n(n+
1)n ' (n)n−1(n)⊕ (n), giving an isomorphism

Resnn+1 ◦ Indn+1n ' Indnn−1 ◦ Resn−1n ⊕ 1Sn−Mod (9.10)

of endofunctors in K[Sn] − mod, giving the Mackey decomposition theorem for the algebras of the
symmetric groups.

9.5.3 Remark. We can prove that orienting the relations (9.8)-(9.9) and rewriting modulo the isotopy
axioms of pivotality gives a confluent modulo presentation of the category H ′ in a similar fashion than
for AOB in Section 9.4. We thus find an hom-basis of H ′. Actually, a family Heisk of degenerate
Heisenberg categories with central charge k ∈ Z were introduced in [21] and admit as special case H ′
for k = −1 and AOB for k = 0. These categories admit a presentation given in [21, Theorem 1.2]
for general k ∈ Z, and we expect that these methods of rewriting modulo can be adapted to compute
hom-bases of these categories. In [106], these constructions were extended by considering a family of
monoidal supercategories HeisF,k associated to a graded Frobenius superalgebra F and integer k. One
expects that the methods of Chapter 5 can be extended to linear (2, 2)-supercategories, in which the
exchange law is up to a sign, and that we could also compute hom-bases of these categories for any
algebra F.
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APPENDIX A

Appendix: Proofs of confluence of critical branchings

A.1. CRITICAL BRANCHINGS FOR THE PARTITION CATEGORY

We prove that all the critical branchings of the linear (3, 2)-polygraph CPar defined in Section 9.3.2 are
confluent. The branchings between relations C and D and the associated indexed critical branchings are
proved confluent as in the proof of confluence of the 3-polygraph of permutations in [51]. The remaining
ones are respectively confluent as follows:
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A.2. CRITICAL BRANCHINGS FOR THE KLR ALGEBRAS

In this section, we will draw all the diagram corresponding to the given list of critical branchings for the
linear (3, 2)-polygraph KLR.
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i j

• •

�&

i j

•
•

8H

�&

i j

••

i j

•
•

8H

i i

•
•

−
i i

• *4

i i

•• −
i i

•
+

i i

•

i i

• •

5D

�)

i i

••

i i

•
•

+
i i

• *4

i i

•• +
i i

•
−

i i

•

Triple crossings:

i j

i j

;J

�#

i j

i j

•
+

i j

•

�+

i j

6E

�(

i j

• +
i j

•

i j

• +
i j

•

0

i i

:I

�$
0

respectively when i · j = 0, i · j = −1 and i 6= j.
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when i 6= j and i · j = 0 or i · j = −1 respectively. When i = j, we have the following situation:
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Double braid relation: The form of this critical branching depends on the labels on the three strands
and the value of the bilinear form · between them.

i) First of all, we consider the case where two consecutive vertices are equal: for instance i = j 6= k.
The other cases would provide the same discussion.
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when i · k = 0 and i · k = −1 respectively.

ii) When three vertices are distinct: we have to distinguish 6 cases according the values of i · j, j · k
and i · k. We focus on the case i · j = i · k = j · k = −1, the other forms are proved confluent
similarly.
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iii) Let us consider the case i = k:
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when i · j = 0 and i · j = −1 respectively.

Braid relation and crossings:

i) We treat at first the case when two consecutive vertices are equal. For instance if i = j or i = k,
we have respectively:
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when i · j = −1.

ii) We check the case where all the vertices are different: one can check that the critical branching
only depends on the value of i · k:
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when i · k = 0 and i · k = −1 respectively.

iii) When the bottom sequence is iji, we focus on the case i · j = −1 and the other case would be
similar:
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We study the confluence diagrams of all the forms of the branching in the same way.

Braid relation + dots :

i) When the three vertices are disctinct, the diagrams do not depend on the values of the bilinear
pairing.
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ii) When two consecutive vertices are equal, for instance if i = j 6= k, if a dot is placed on the left
strand, then it will go down in the diagram without creating any additive term because there will
be no crossing with two strands with the same label, so that the branching is trivially confluent.
For the other cases, the same process applies. Let us prove the confluence when there is a dot on
the rightmost strand:
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One may apply the same process for the case i 6= j = k with a dot placed on the up of the leftmost (or
middle) strand.

iii) When the bottom sequence is iji, the way to make a dot go down is the same no matter where the
dot is placed at the beginning, we only check confluence for a dot placed on the leftmost strand. It
would provide the same diagram for the other cases.
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when i · j = 0 and i · j = −1 respectively.

Indexed critical branchings : Let us prove that the indexed critical branchings of the form (6.6)
given in Section 6.1.8 are confluent, in the following two cases: plug in (6.6) is given by the following
2-cells:

i)
i

•n for every n ∈ N,

ii)
i l

•n for all n ∈ N and for any l in I.

For the first case, the instance for n = 0 was already checked in the Double Yang-Baxter family of
critical branchings. Let us prove the confluence of this indexed critical branchings in the particular case
when i = k and i · j = −1. This is the ”most complicated” case in the sense that it is the one that creates
the most additive terms.

Let us denote by αL,ni,j and αR,ni,j the 3-cells
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L
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R
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)

depicted by

i j

•n αL,ni,j *4

i j

•n ,
i i

•n αL,ni,i *4

i i

•n +
∑

a+b=n−1 i i

•a •b ,

i j

•n αR,ni,j *4

i j

•n ,
i i

•n αR,ni,i*4

i i

•n −
∑

a+b=n−1 i i

•a •b .

216



Thus, we have:
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For the second indexation, one remarks that the fourth vertex of the sequences does not matter in the
reductions. We consider the case where the bottom sequence is ijik with i · j = 0. Let us at first consider
this indexation for n = 0:
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This diagram was given in [51] for the indexation of in the double Yang-Baxter diagram. When

i · j = −1, it is the same branching except that it creates an extra term

i j i k
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in both reducing paths. For n > 0, the bottom line of (A.1) defines a 3-cell

γijik :

i j i k

V

i j i k

.

As we started reducing only the bottom part on the diagram, we can apply the same reductions on the
diagram
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since the dot 2-cell never appears in the source of any reduction. This enables us to define, for any
n ∈ N, a 3-cell
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A.3. CRITICAL BRANCHINGS MODULO FOR THE KLR 2-CATEGORY

A.3.1. Further 3-cells in KLR. In this subsection, we define some additional 3-cells in KLR3, which
we will use to prove the confluence modulo of the linear (3, 2)-polygraph modulo ER. First of all, using
the degree conditions on bubbles on the terms

∑
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• r

i
λ•n−r−2

• n
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∑
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λ
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• r
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when r > −〈hi, λ〉−1 (resp. r ≤ 〈hi, λ〉−1), then n−r−2 < −〈hi, λ〉−1 (resp. n−r−2 < 〈hi, λ〉−1
and then the bubble reduces to 0. We then denote by b ′i,λ and c ′i,λ the following 3-cells in KLR obtained
by application of the 3-cells b0i,λ and c0i,λ:
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We also define the 3-cell A ′i,λ for 〈hi, λ〉 ≥ 0 having as 2-source

λ
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and as 2-target either 0 if n < 〈hi, λ〉 or −
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λ
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− · αR,+i,λ is the rewriting step of ER given by

λ

•n

=

λ

• n
∼

λ

•n αR,+i,λ
V

λ

•
n

−
∑

a+b=n−1
i
•b

i

λ
•a
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i

λ •〈hi,λ〉−1 reduces to 11λ by

b
1,〈hi,λ〉−1
i,λ .

We define in a similar fashion 3-cells

i

λ

• n B ′i,λ
V

−
i

λ

if n = 〈hi, λ〉

0 if n < 〈hi, λ〉
;

λ

i

•
n

C ′i,λ
V

 i

λ
if n = −〈hi, λ〉

0 if n < −〈hi, λ〉
;

λ

i• n

D ′i,λ
V


i

λ
if n = −〈hi, λ〉

0 if n < −〈hi, λ〉

for 〈hi, λ〉 ≥ 0 for B ′i,λ and 〈hi, λ〉 ≤ 0 for C ′i,λ and D ′i,λ.
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Branchings from KLR relations

A.3.2. Critical branchings (Ai,λ, αL,+i,λ ). For any i in I and λ in X the weight lattice, and for any value
of 〈hi, λ〉, the critical branchings (Ai,λ, αL,+i,λ ) are confluent modulo E as follows:

λ• Ai,λ *4

=


�

−
−〈hi,λ〉∑
n=0

i
•−n−1

i

λ
• n+1

(i21)
−


�

λ•
αL,+i,λ

*4 λ

•
+

i

i

λ
i22?2(i

2
3)

−·αR,+i,λ
*4 λ

• (i21)
−·Ai,λ

*4 −
−〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n•

A.3.3. Critical branchings (Bi,λ, i24 · α
L,+
i,λ ).

λ• Bi,λ *4

=


�

−
−〈hi,λ〉∑
n=0

i
• n•

i

λ
•−n−1

i24


�

λ• i24·α
L,+
i,λ *4 λ

• +

i

i

λ
i22?2(i

2
3)

−·αR,+i,λ
*4 λ

• Bi,λ

*4 −
−〈hi,λ〉∑
n=0

i
•n+1

i

λ
•−n−1

A.3.4. Critical branchings (i23 · Ci,λ, α
R,+
i,λ ).

λ• i23·Ci,λ *4

=


�

〈hi,λ〉∑
n=0

i
n+1•

i

λ
•−n−1

(i23)
−


�

λ• αR,+i,λ *4 λ

• −

i

i

λ
(i21)

−?2i
2
4·α

L,+
i,λ

*4 λ

• Ci,λ

*4
〈hi,λ〉∑
n=0

i
• n•

i

λ
•−n−1

A.3.5. Critical branchings (Di,λ, αR,+i,λ ).

λ• Di,λ *4

=


�

〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n+1

(i22)
−


�

λ• αR,+i,λ *4 λ

•
−

i

i

λ
(i21)

−?2i
2
4·α

L,+
i,λ

*4 λ

• Di,λ

*4
〈hi,λ〉∑
n=0

i
•−n−1

i

λ
• •n
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A.3.6. Critical branchings (Ei,λ, αL,+i,λ ) and (Fi,λ, α
R,+
i,λ ). Let us prove that for any i in I and λ in X, and

for any value of 〈hi, λ〉, the critical branching (Ei,λ, α
L,+
i,λ ) is confluent modulo E. The proof of confluence

modulo of this branching follows the proof scheme of Lemma 6.2.10, and we prove the confluence of
the critical branching (Fi,λ, α

L,+
i,λ ) similarly. Let us denote by αi the following composition of 3-cells of

ER:

•

i

i
λ αL,+i,λ *4

•
λ

i

i

+

i

λ

αR,+i,λ *4

•

λ

i

i

−

i

λ
+

λ

i

i) For 〈hi, λ〉 > 0,

•

i

i
λ Ei,λ *4

=


�

−
i

•
i

λ

=


�

•

i

i
λ

αi
*4

•

λ

i

i

−

i

λ
+

λ

i

Ei,λ−Ai,λ+Bi,λ
*4 −

i

•
i

λ

using that for 〈hi, λ〉 > 0, Ai,λ and Bi,λ admit 0 as 2-target, and where the 3-cell Ei,λ −Ai,λ + Bi,λ
is actually a composite of three rewriting steps of ER.

ii) For 〈hi, λ〉 = 0, the 2-cells

i

λ and
λ

i

both rewrites with respect to ER into

−

i

i
λ•−1

i

so that the 2-target of the 3-cell Ei,λ −Ai,λ + Bi,λ is unchanged, which proves the confluence of the
branching.
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iii) For 〈hi, λ〉 < 0,

•

i

i
λ Ei,λ *4

=


�

−
i

• λ +
−〈hi,λ〉−1∑
n=0

∑
r≥0

i

• r

i
λ•−n−r−2

•n+1
i

b ′i,λ *4 −
i

• λ +
−〈hi,λ〉−1∑
n=0

−〈hi,λ〉∑
r=0

i

• r

i
λ•−n−r−2

•n+1
i

=


�

•

i

i
λ

αi
*4

•

λ

i

i

−

i

λ
+

λ

i

γ
*4 −

i

•
i

λ +
−〈hi,λ〉∑
n=1

−〈hi,λ〉∑
r=0

i

• r

i
λ•−n−r−1

• n
i

where the 3-cell γ is defined as the following composite of 3-cells of ( ER)`3:

•

λ

i

i

−

i

λ
+

λ

i Ei,λ−Ai,λ+Bi,λ
V

−〈hi,λ〉−1∑
n=0

∑
r≥0

i

•r+1

i
λ•−n−r−2

• n
i

−

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n

i
+

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ

•n
i

b ′i,λ
V

−〈hi,λ〉−1∑
n=0

−〈hi,λ〉−1∑
r=0

i

•r+1

i
λ•−n−r−2

• n
i

−

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n

i
+

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ

•n
i

=

−〈hi,λ〉−1∑
n=0

−〈hi,λ〉−1∑
r=−1

i

•r+1

i
λ•−n−r−2

• n
i

−

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n

i
+

i
•〈hi,λ〉−1

i

λ
•〈hi,λ〉

=

−〈hi,λ〉∑
n=1

−〈hi,λ〉∑
r=0

i

• r

i
λ•−n−r−1

• n
i

where the equalities are obtained from the linear structure using reindexations of sums.

A.3.7. Critical branchings (βλ,+i,j , (i
0
1 ?2 i

0
4)

− · Fi,j,λ).

i) First of all, let us consider the case where i = j, and thus the source of this branching rewrites to 0
using βi,λ+ . The other side of this critical branching is given by the following scheme of rewritings
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with respect to ER:

λ

ii

Fi,λ
V −

i

λ

i

+

〈hi,λ〉−1∑
n=0

∑
r≥0

i

•n

i
λ•−n−r−2

• r
i

b ′i,λ
V −

i

λ

i

+

〈hi,λ〉−1∑
n=0

〈hi,λ〉−1∑
r=0

i

•n

i
λ•−n−r−2

• r
i

≡E −

i

λ

i

+

〈hi,λ〉−1∑
n=0

〈hi,λ〉−1∑
r=0

i

•−n−r−2

i

•
λ
n+r

Each summand in the above sum rewrites using the bubble slide 3-cells as follows:

i

•−n−r−2

i

•
λ
n+r

s−i,λ
V

i

•n+r+2
i

λ •−n−r−2 − 2

i

•n+r+1
i

λ •−n−r−1 +

1

•n+r
i

λ •−n−r

and we easily check that the above sums are telescopic, so that it remains the 2-cell

〈hi,λ〉−1∑
r=0


i

• r
i

λ •−r −

i

• r+1
i

λ •−r−1 +

i

•〈hi,λ〉+r+1
i

λ •−〈hi,λ〉−r−1 −

i

• 〈hi,λ〉+r
i

λ • −〈hi,λ〉−r


After simplification, it only remains

i

λ

i

and thus the starting diagram reduces to 0, and this critical branching is confluent modulo E.

ii) Now, let us consider the case where i 6= j and i · j = 0. Let us at first notice that in that case, we
have the following rewriting step given by a bubble slide 3-cell:

i j

λ =
i

•−<hi,λ+jx>−1+α

j

λ
s−i,λ
V

j

λ

i

where α =< hi, λ + αj > +1. Hence, the decreasing confluence of this critical branching is given
by the following diagram:

λ

ji

β+
i,j,λ *4


�

i
j

λ
s−i,λ *4

j

λ

i

=


�

λ

ji

Fi,j,λ

*4

j

λ

i
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iii) Let us now consider the last case where i 6= j and i · j = −1. In that case, we have the following
rewriting step in ER:

λ

ji

β+
i,j,λ

V
i

•
j

λ +
i j

λ•

Using the bubble slide 3-cells, the first summand (resp. the second summand) rewrites into

〈hi,λ〉+1∑
f=0

(−1)f

j

• f
i

λ •−f

 resp.
〈hi,λ〉+1∑
f=0

(−1)f

j

• f+1
i

λ •−f−1


so that the sum is equal to

j

λ

i

,

and this critical branching is confluent modulo E.

A.3.8. Critical branchings (αR,+i,λ , (i
0
1 ?2 i

0
4)

− ?2 i
2
3 ?2 i

2
1 · Fi,j,λ). When i 6= j and i · j = 0:

λ

•

ij

i01?2i
0
4


�

γr,+ *4

•
ij

λ
αR,+i,j *4 •

j i

λ

s−
i,j,λ,−〈hi,λ+αj〉+2 *4

i

•
j

λ

=

�

i

•

j

Fi,λ

*4

i

•
j

When i · j = −1, we have

λ

•

ij

i01?2i
0
4


�

γr,+ *4

•
ij

λ
αR,+i,j *4 •

j i

λ• + •2
j i

λ

i

•

j

Fi,λ

*4

i

•
j

Using the bubble slide 3-cells s−
i,j,λ,〈hi,λ〉+1 and s−

i,j,λ,〈hi,λ〉+2 respectively, we get that

•
j i

λ• V
〈hi,λ〉+1∑
f=0

(−1)f

j

• f+1
i

λ •−f and •2
j i

λ V
〈hi,λ〉+2∑
f=0

(−1)f

j

• f
i

λ •1−f

and one then proves the confluence of this critical branchings modulo using reindexations of the sums.

224



In the case i = j, we get the following situation:

•

ii

i01?2i
0
4


�

γr,+ *4

•
ii

−

i

β+
i −(i01)

−·Ci,λ *4
〈hi,λ〉∑
n=0

i
•n

i λ
•−n−1 ≡E

〈hi,λ〉∑
n=0 i

•−n−1

i

•
λ
n

•
Fi,λ

*4 − • +
〈hi,λ〉−1∑
n=0

〈hi,λ〉−1∑
r=0

λ

i•−n−r−2

i

•n+r+1

Because of the degree conditions on bubbles 3-cells, the last summand in the last term of the bottom
line of this critical branching modulo is equal to 0 whenever n + r > 〈hi, λ〉 − 1. As a consequence, it
reduces to

〈hi,λ〉−1∑
n+r=0

i

•−n−r−2

i

•
λ

n+r+1

and one then proves the confluence modulo of this branchings using a reindexation of this sum and the
bubble slide 3-cells as in the previous proof of confluence of critical branching.

A.3.9. Critical branchings (γλ,+j,i,j, (i
0
1 ?2 i

0
4)

− · Fi,j,λ).

λ

ij

(i01)
−?2(i

0
4)

−


�

β+
*4

λ

ij

+ δi·j=−1

i j i

λ ≡E
λ

ij

+ δi·j=−1

i j i

λ

ij

Fi,λ

*4

j i
(i01)

−·Ci,λ
*4
〈hi,λ〉∑
n=0

j i
•n

i λ
•−n−1

Using the 3-cell Ci,λ, the term in the top line reduces to

〈hi,λ〉∑
n=0 λ

•−n−1i

•n

i i

≡E
〈hi,λ〉∑
n=0

λ•−n−1
i

i j

•n
αL,n,+i,j

V
〈hi,λ〉∑
n=0

λ•−n−1
i

i j

•n
(A.1)

When i · j = 0, this rewrites using β+
i,j to

〈hi,λ〉∑
n=0

•−n−1
•n
λ

so that this branching is confluent modulo E. In the case i · j = 1, this rewrites to

〈hi,λ〉∑
n=0

•−n−1
• •n

λ
+

〈hi,λ〉∑
n=0

•−n−1
•n+1
λ
.
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Then note that
〈hi,λ〉∑
n=0

•−n−1
• n+1
λ

+
i j i

λ =

〈hi,λ〉−1∑
n=0

• −n
•n
λ

so that the top line of this branching rewrites to

〈hi,λ〉∑
n=0

•−n−1
• •n

λ
+

〈hi,λ〉−1∑
n=0

• −n
•n
λ

and we check the confluence modulo of this branching using the bubble slide 3-cells, the dots on the
leftmost strand being cancelled by the 3-cells s−i,j,λ,α for i · j = −1.

Branchings between isomorphism and sl2 relations

A.3.10. Critical branchings between types A and C. We prove that for any i ∈ I and λ ∈ X, and for
any value of 〈hi, λ〉, the critical branchings (Ai,λ, Ci,λ) are confluent modulo E.

i) For 〈hi, λ〉 < 0,

λ
i

Ci,λ *4

=


�

0

=


�λ
i

Ai,λ

*4 −
−〈hi,λ〉∑
n=0

i

λ
•n

i

•−n−1 b0,ni,λ

*4

i

λ
• −〈hi,λ〉

i

•〈hi,λ〉−1
+

i

λ
• 〈hi,λ〉

i

•−〈hi,λ〉−1
*4

i

λ •−〈hi,λ〉 +
i

λ •〈hi,λ〉
I1

*4 0

ii) For 〈hi, λ〉 = 0,

λ
i

Ci,λ *4

=


�

i

λ
•−1

i

c
1,−〈hi,λ〉−1
i,λ *4

i
λ

I1 *4 −
i

λ

=


�
λ
i

Ai,λ

*4 −

i

λ

i

•−1 b
1,〈hi,λ〉−1
i,λ

*4 −
i

λ

iii) For 〈hi, λ〉 > 0, the computation is similar to the case 〈hi, λ〉 < 0, except that the source 2-cell
reduces to 0 by Ai,λ instead of Ci,λ.

A.3.11. Critical branchings between types A and F.

226



i) For 〈hi, λ〉 < 0,

i
λ Fi,λ *4

=


�

−
i

λ

=


�

i
λ

Ai,λ

*4 −
−〈hi,λ〉∑
n=0

λ

• n

i

λ
•−n−1

(i21)
−?2i

2
4·D
′
i,λ

*4 −

i
•−〈hi,λ〉−1

i

λ
c1i,λ

*4 −
i

λ

whereD ′i,λ is a composite ofn positive 3-cells of ( ER)`3, which represents the sumD ′i,λ,1+. . . D
′
i,λ,−〈hi,λ〉,

where the 3-cell D ′i,λ,k is defined for any 1 ≤ k ≤ −〈hi, λ〉 in Appendix A.3.1.

ii) For 〈hi, λ〉 = 0,

i
λ Fi,λ *4

=


�

−
i

λ

=


�

i
λ

Ai,λ

*4 −

λ

i

λ
•−1

b1i,λ

*4 −
λ

i

Di,λ

*4 −

i
•−1

i

λ
c1i,λ

*4 −
i

λ

iii) For 〈hi, λ〉 > 0,

i
λ

=


�

Fi,λ *4 −
i

λ
+
〈hi,λ〉−1∑
n=0

∑
r≥0

i

λ

i •−n−r−2
• r

i
•n

b0,ni,λ *4 −
i

λ
+
∑
r≥0

i

λ

i •−〈hi,λ〉−r−1
• r

i
•〈hi,λ〉−1

=


�

i
λ Ai,λ *4 0 −

i

λ
+
∑
r≥0

i
•−〈hi,λ〉−r−1

i

λ
•r

ci,λ
jt −

i

λ
+
∑
r≥0

i

λ

i •−〈hi,λ〉−r−1
• r

i
•〈hi,λ〉−1

b1i,λ

jt

where the cell ci,λ is defined as the composite of rewriting steps of ER given by c1,−〈hi,λ〉−1i,λ +

c
0,−〈hi,λ〉−2
i,λ + . . . , using degree condition 3-cells on bubbles to prove that the only term remaining

is for r = 0, and is
i

λ
.
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A.3.12. Critical branchings between types B and D.

i) For 〈hi, λ〉 < 0,

λ

i

Bi,λ *4

=


�

−
−〈hi,λ〉∑
n=0

i

λ
•−n−1

i

•n
c0,ni,λ *4

i

λ
•〈hi,λ〉−1

i

• −〈hi,λ〉
+

i

λ
• 〈hi,λ〉

i

•−〈hi,λ〉−1
b1i,λ+c

1
i,λ*4

i

λ •−〈hi,λ〉 +
i

λ •〈hi,λ〉 I1 *4 0

=


�λ

i
Di,λ

*4 0

ii) For 〈hi, λ〉 = 0,

λ

i

Bi,λ *4

=


�

−

i

λ
•−1

i

b1i,λ *4 −
i

λ •

=

�

λ

i
Di,λ

*4

i

λ
•−1

i

c1i,λ

*4
i
λ•

I1

*4 −
i

λ •

iii) For 〈hi, λ〉 > 0,

λ

i

Bi,λ *4

=


�

0

=


�λ

i
Ci,λ

*4
〈hi,λ〉∑
n=0

i

λ
•−n−1

i

•n b0,ni,λ

*4

i

λ
•−〈hi,λ〉−1

i

• 〈hi,λ〉
+

i

λ
• −〈hi,λ〉

i

•〈hi,λ〉−1c1i,λ+b1i,λ
*4

i

λ •〈hi,λ〉 +
i

λ •−〈hi,λ〉
I1

*4 0

A.3.13. Critical branchings between types B and F.

i) For 〈hi, λ〉 < 0,

i

λ Bi,λ *4

=


�

−
−〈hi,λ〉∑
n=0

i

•−n−1

λ
•n

B ′i,λ *4

i

i

λ
•−〈hi,λ〉−1 b1i,λ *4 −

i

λ

=


�

i

λ

Fi,λ

*4 −
i

λ
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where B ′i,λ is the positive 3-cell of ( ER)`3 corresponding to B ′i,λ,0 + · · · + B ′i,λ,−〈hi,λ〉 where each
3-cell B ′i,λ,k for 0 ≤ k ≤ −〈hi, λ〉 is defined in Appendix A.3.1.

ii) For 〈hi, λ〉 = 0,

i

λ Bi,λ *4

=


�

−

i

•−1

λ

b1i,λ *4 −
λ

i

Ci,λ *4 −

i

i

λ
•−1 c1i,λ *4 −

i

λ

=


�

i

λ

Fi,λ

*4 −
i

λ

iii) For 〈hi, λ〉 > 0,

i

λ Bi,λ *4

=


�

0 −
i

λ
+
〈hi,λ〉−1∑
n=0

i
•n

i

λ
•−n−〈hi,λ〉−1bi,λjt

〈hi,λ〉−1∑
n=0

〈hi,λ〉−1∑
r=0

i

λ

i •−n−r−2
• r

i
•n

=


�

b0,ri,λjt

i

λ

Fi,λ

*4 −
i

λ
+
〈hi,λ〉−1∑
n=0

∑
r≥0

i

λ

i •−n−r−2
• r

i
•n

b ′i,λ

*4
〈hi,λ〉−1∑
n=0

〈hi,λ〉−1∑
r=0

i

λ

i •−n−r−2
• r

i
•n

where bi,λ is the 3-cell of ( ER)`3 reducing each bubble by b0,−n−〈hi,λ〉−1i,λ into 0 when n 6= 0 and by
b1i,λ into 11λ when n = 0.

A.3.14. Critical branchings between types E and D.

i) For 〈hi, λ〉 < 0,

λ
i

Ei,λ*4

=


�

−
i

λ
+

−〈hi,λ〉−1∑
n=0

∑
r≥0

i
• r

i
λ •−n−r−2
• n

i

b ′i,λ *4 −
i

λ
+

−〈hi,λ〉−1∑
n=0

−〈hi,λ〉−1∑
r=0

i
• r

i
λ •−n−r−2
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where bi,λ is the 3-cell of ( ER)`3 reducing each bubble by b0,−n−〈hi,λ〉−1i,λ into 0 when n 6= 0 and by
b1i,λ into 11λ when n = 0.
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ii) For 〈hi, λ〉 = 0,
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iii) For 〈hi, λ〉 > 0,
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where the 3-cell A ′i,λ is defined as the 3-cell A ′i,λ,0 + · · · + A ′i,λ,〈hi,λ〉, where each 3-cell A ′i,λ,k for

0 ≤ k ≤ 〈hi, λ〉 is defined in Appendix A.3.1 and has for 2-target 0 if n < 〈hi, λ〉 and −
i

λ
if

n = 〈hi, λ〉.

A.3.15. Critical branchings between types C and E.

i) For 〈hi, λ〉 < 0,
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ii) For 〈hi, λ〉 = 0,
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iii) For 〈hi, λ〉 > 0,
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where the 3-cell B ′i,λ is defined as the 3-cell B ′i,λ,0 + · · · + B ′i,λ,〈hi,λ〉, where each 3-cell B ′i,λ,k for

0 ≤ k ≤ 〈hi, λ〉 is defined in A.3.1, and has for 2-target 0 if n < 〈hi, λ〉 and −
i

λ

if n = 〈hi, λ〉.

A.3.16. Critical branchings between types E and F. For any i in I and λ in X, there are two types of
critical branchings implying 3-cells Ei,λ and Fi,λ, depending on if the source 2-cell of Ei,λ is vertically
composed below or above the source 2-cell of Fi,λ. Following 6.2.25, we denote by (Ei,λ, Fi,λ) (resp.
(Fi,λ, Ei,λ)) these two families of critical branchings. We will prove that for any i and λ, the critical
branchings (Ei,λ, Fi,λ) are confluent modulo E, the other family of branchings would be proved confluent
modulo E similarly.

i) For 〈hi, λ〉 < 0,
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where D ′i,λ is the 3-cell of ( ER)`3 defined as the composite of 3-cells D ′i,λ,0 + · · · + D ′i,λ,−〈hi,λ〉−1,
where these cells are defined for 0 ≤ k ≤ −〈hi, λ〉−1 in Appendix A.3.1, and have all 0 as 2-target.

ii) For 〈hi, λ〉 = 0,
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iii) For 〈hi, λ〉 > 0,
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where B ′i,λ is the 3-cell of ( ER)`3 defined as the composite of 3-cells B ′i,λ,0+ · · ·+B ′i,λ,〈hi,λ〉−1, where
these cells are defined for 0 ≤ k ≤ 〈hi, λ〉− 1 in Appendix A.3.1, and have all 0 as 2-target.



Réécriture modulo dans les catégories diagrammatiques

Résumé. En théorie des représentations, de nombreuses familles de catégories sont définies
par générateurs et relations diagrammatiques. Une des questions principales dans létude de ces
catégories est le calcul de bases linéaires des espaces de morphismes. Ces calculs de bases
sont en général très difficiles en raison de la complexité combinatoire des relations. Cette thèse
introduit une approche constructive permettant de calculer ces bases avec des méthodes issues
de la théorie de la réécriture.

Nous introduisons un cadre catégorique de réécriture modulo, qui décrit le calcul dans une
structure algébrique par application de relations orientées modulo les axiomes de la structure.
Ce cadre nous permet de développer des outils pour réécrire dans des algèbres et catégories
diagrammatiques admettant une structure inhérente complexe, telles que la structure de catégorie
pivotale dans laquelle les diagrammes sont représentés à isotopie planaire près.

Nous définissons la notion de système de réécriture de dimension supérieure modulo, ap-
pelés polygraphes modulo, dans un contexte ensembliste et linéaire. Ces structures poly-
graphiques fournissent un cadre pour les preuves de cohérence modulo ainsi que le calcul de
bases linéaires. En particulier, nous démontrons que des bases linéaires pour les espaces de
2-cellules de 2-catégories pivotales peuvent être obtenues à partir de présentations dont les re-
lations forment un système de réécriture terminant, ou quasi-terminant, et confluent modulo les
relations disotopie planaire. Nous étudions via ces méthodes la catégorie définie par Khovanov,
Lauda et Rouquier pour catégorifier le groupe quantique associé à une algèbre de Kac-Moody
symétrisable simplement lacée. Nous calculons des bases explicites des espaces de 2-cellules de
cette catégorie, et montrons ainsi la non-dégénérescence du calcul diagrammatique introduit par
Khovanov et Lauda, prouvant dans ce cas le théorème de catégorification du groupe quantique
associé. Enfin, nous étendons la structure de polygraphe modulo au contexte de la réécriture
modulo les axiomes décrits par une théorie algébrique de Lawvere. Nous démontrons un lemme
des paires critiques algébrique basé sur une notion de stratégie de réécriture adaptée au contexte
algébrique.

Mots-clés: Réécriture modulo, polygraphes modulo, algèbres diagrammatiques,
catégorification, groupes quantiques.
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