Abstract – Convergent rewriting systems on algebraic structures give methods to prove coherence results and compute homological invariants of these structures. These methods are based on higher-dimensional extensions of the critical pair lemma that characterizes local confluence from confluence of critical pairs. The analysis of local confluence of rewriting systems on algebraic structures, such as groups or linear algebras, is complicated because of the underlying algebraic axioms, and local confluence properties require additional termination conditions. This article introduces the structure of algebraic polygraph modulo that formalizes the interaction between the rules of the rewriting system and the inherent algebraic axioms, and we show a critical pair lemma for algebraic polygraphs. We deduce from this result a critical pair lemma for rewriting systems on algebraic structures specified by rewriting systems convergent modulo associativity and commutativity axioms. As an illustration, we explicit our constructions on linear rewriting systems.

Keywords – Term rewriting modulo, algebraic polygraphs, linear rewriting.

1. Introduction

Completion procedures. The critical-pair completion (CPC) is an approach developed in the mid sixties that combines completion procedures and the notion of critical pair \([4, 23]\). It originates from theorem proving \([22]\), polynomial ideal theory \([3]\), and the word problem \([13, 20]\). This approach has found many applications to solve algorithmic problems, see \([4]\) for an historical account. In the mid eighties CPC has found original and deep applications in algebra in order to solve coherence problems for monoids \([8, 25]\), or to compute homological invariants of associative algebras \([1]\), and monoids \([14, 24]\). More recently, higher-dimensional extensions of the critical-pair completion approach were used for the computation of cofibrant replacements of algebraic and categorical structures \([6, 7, 16]\). All these constructions are actually higher-dimensional extensions of the critical-pair completion approach, where the obstructions in each dimension are formulated in terms of critical branchings. While generators and rules are in dimension 1 and 2 respectively, the critical branchings describe 3-dimensional cocycles, and the 4-dimensional cocycles are described by critical 3-branchings, that is the overlapping of a rule on a critical branching. This generalizes in higher-dimensions, where for \(n \geq 4\), the \(n\)-dimensional cocycles are described by overlappings of a rule on a critical \((n-1)\)-branching. These constructions based on critical-pair completion are known for monoids, small categories, and algebras over a field. However, the extension of these methods to a wide range of algebraic structures is made difficult because of the interaction between the rewriting rules and the inherent axioms of the algebraic structure. For this reason, the higher-dimensional extensions of the critical-pair completion approach for a wide range of algebraic structures, including groups, Lie rings, is still an open problem.

Critical branching lemma. One of the main tools to reach confluence in critical-pair completion procedures for algebraic rewriting systems is the critical pair lemma, or critical branching lemma, by Knuth-Bendix, \([13]\), and Nivat, \([20]\). Nivat showed that the local confluence of a string rewriting system is decidable, whether it is terminating or not. The proof of this result is based on classification of the local branchings into orthogonal branchings, that involve two rules that do not overlap, and overlapping branchings. A critical branching is a minimal overlapping application of two rules on the same redex. When the orthogonal branchings are confluent, if all critical branchings are confluent, then local confluence holds. Thus, the main argument to achieve critical branching lemma is to prove that orthogonal and overlapping branchings are confluent. For string and term rewriting systems, orthogonal branchings are always confluent, and confluence of critical branchings implies confluence of overlapping branchings. The situation is more complicated for rewriting systems on a linear structure.

The well known approaches of rewriting in the linear context consist in orienting the rules with respect to an ambiant monomial order, and critical branching lemma is well known in this context. However, some algebras do not admit any higher-dimensional finite convergent presentation on a fixed set of generators with respect to a monomial order, \([6]\). Due to algebraic perspectives, an approach of linear rewriting where the orientation of rules does not depend of a monomial order was introduced in \([6]\). However, in that setting there are two conditions to guarantee a critical branching lemma, namely termination and positivity of reductions. A positive reduction for a linear rewriting system, as defined in \([6]\), is the application of a reduction rule on a monomial that does not appear in the polynomial context. For instance, consider the linear rewriting system on an associative algebra over a field \(K\), given in \([6]\) defined by the following two rules

\[
\alpha : xy \rightarrow xz, \quad \beta : zt \rightarrow 2yt.
\]
It has no critical branching, but it has the following non-confluent additive branching:

\[
\begin{align*}
\alpha t + xzt & \rightarrow 2xzt = xzt + x\beta \\
xyt + xzt & \rightarrow 3xyt = xzt + 2xyt \\
xyt + x\beta & \rightarrow 3xzt = 3x\beta
\end{align*}
\]

The dotted arrows correspond to non positive reductions. This example illustrates that the lack of termination is an obstruction to confluence of orthogonal branchings. Indeed, the critical branching lemma for linear 2-dimensional polygraphs states that a terminating left-monomial linear polygraph is locally confluent if and only if all its critical branchings are confluent, \([6, \text{Theorem 4.2.1}]\)

Rewriting modulo.

Rewriting modulo appears naturally in algebraic rewriting when studied reductions are defined modulo the axioms of an ambient algebraic or categorical structure, e.g., rewriting in commutative, groupoidal, linear, pivotal, weak structures. Furthermore, rewriting modulo facilitates the analysis of confluence. In particular, rewriting modulo a set of relations makes the property of confluence easier to prove. Indeed, the family of critical branchings that should be considered in the analysis of confluence is reduced, and the non-orientation of a part of the relations allows more flexibility when reaching confluence.

The most naive approach of rewriting modulo is to consider the rewriting system \(\mathcal{P}\mathcal{R}_\mathcal{P}\) consisting in rewriting on congruence classes modulo the axioms \(\mathcal{P}\). This approach works for some equational theories, such as associative and commutative theories. However, it appears inefficient in general for the analysis of confluence. Indeed, the reducibility of an equivalence class needs to explore all the class, hence it requires all equivalence classes to be finite. Another approach of rewriting modulo has been considered by Huet in \([9]\), where rewriting sequences involve only oriented rules and no equivalence steps, and the confluence property is formulated modulo equivalence. However, for algebraic rewriting systems such rewriting modulo is too restrictive for computations, see \([12]\). Peterson and Stickel introduced in \([21]\) an extension of Knuth-Bendix’s completion procedure, \([13]\), to reach confluence of a rewriting system modulo an equational theory, for which a finite, complete unification algorithm is known. They applied their procedure to rewriting systems modulo axioms of associativity and commutativity, in order to rewrite in free commutative groups, commutative unitary rings, and distributive lattices. Jouannaud and Kirchner enlarged this approach in \([11]\) with the definition of rewriting properties for any rewriting system modulo \(\mathcal{S}\) such that \(\mathcal{R} \subseteq \mathcal{S} \subseteq \mathcal{P}\mathcal{R}_\mathcal{P}\). They also proved a critical branching lemma and developed a completion procedure for rewriting systems modulo \(\mathcal{P}\mathcal{R}\), whose one-step reductions consist in application of a rule in \(\mathcal{R}\) using \(\mathcal{P}\)-matching. Their completion procedure is based on a finite \(\mathcal{P}\)-unification algorithm. Bachmair and Dershowitz in \([2]\) developed a generalization of Jouannaud-Kirchner’s completion procedure using inference rules. Several other approaches have also been studied for term rewriting systems modulo to deal with various equational theories, see \([18,27]\).

Algebraic polygraphs.

In this article, we introduce a categorical model for rewriting in algebraic structures which formalizes the interaction between the rules of the rewriting system and the inherent axioms of the algebraic structure. In Section 2 we recall the notion of cartesian 2-dimensional polygraph
2. Preliminaries on algebraic theories

introduced in [17], corresponding to rewriting systems that present a Lawvere algebraic theory. A cartesian 2-polygraph defines a categorical interpretation of term rewriting systems. It is defined by an equational signature \((P_0, P_1)\) and a cellular extension of the free algebraic theory \(P_1^\times\) on \((P_0, P_1)\). One defines in Section 3 the structure of algebraic polygraph as a data made of a cartesian 2-polygraph \(P\) and a set \(Q\) of generating ground 1-cells and a cellular extension \(R\) on the ground 1-cells.

An algebraic critical branching lemma. In this work we introduce an algebraic setting for the formulation of the critical branching lemma. We define the structure of algebraic polygraph modulo which formalizes the interaction between the rules of the rewriting system and the inherent axioms of the algebraic structure. Then we prove a formulation of the Newman lemma modulo, [19], for quasi-terminating algebraic polygraphs modulo:

Theorem 4.1.4. Let \(P\) be a quasi-terminating algebraic polygraph modulo, and \(\sigma\) be a positive strategy on \(P\). If \(P\) is locally \(\sigma\)-confluent modulo, then it is \(\sigma\)-confluent modulo.

We show a critical branching lemma for algebraic polygraphs modulo. We deduce from this result a critical branching lemma for rewriting systems on algebraic structures whose axioms are specified by term rewriting systems satisfying appropriate convergence relations modulo associativity and commutativity. Finally, we explicit our results in linear rewriting, and explain why termination is a necessary condition to characterize local confluence in that case.

Theorem 5.1.2. Let \(P = (P, Q, R, S)\) be an algebraic polygraph modulo with a positive strategy \(\sigma\) such that \(P\) is quasi-terminating and positively \(\sigma\)-confluent. An algebraic rewriting system on \(P\) is locally confluent if and only if its critical branchings are confluent.

Organisation of the article. In Section 2 we recall the categorical structure of cartesian polygraph introduced in [17], and we define progressive examples of cartesian 2-polygraphs presenting various algebraic theories, until the main cartesian 2-polygraph presenting the theory of modules over a commutative ring. In Section 3.1 we introduce the notion of algebraic polygraph modulo, and their rewriting properties. We define the notion of positive reduction with respect to an algebraic polygraph allowing to define algebraic rewriting systems, whose rules are quotients of the positive reductions. In Section 4 we present confluence property with respect to a positive strategy following [5] and we prove the Newman confluence lemma and the critical branching lemma in this setting. Finally, last section states the algebraic critical branching lemma, that we apply to string rewriting and linear rewriting.

2. **Preliminaries on algebraic theories**

In section we recall the notion of algebraic theory from [15] and of cartesian polygraph introduced in [17].

2.1. **Cartesian polygraphs and theories**
2.1. Cartesian polygraphs and theories

2.1.1. Signature and terms. A signature is defined by a set \(P_0 \) of sorts and a 1-polygraph, i.e. a directed graph,

\[
P_0^* \xrightarrow{\partial^-} P_1 \xrightarrow{\partial^+} P_0^*
\]

on the free monoid \(P_0^* \) over \(P_0 \). Elements of \(P_1 \) are called operations. For an operation \(\alpha \) in \(P_1 \), its source \(\partial^+_0(\alpha) \) is called its arity and its target \(\partial^-_0(\alpha) \) its coarity. For sorts \(s_1, \ldots, s_k \), we denote \(\underline{s} = s_1 \ldots s_k \) their product in the free monoid \(P_0^* \). We denote \(|\underline{s}| = k \) the length of \(\underline{s} \) and the sort \(s_i \) in \(\underline{s} \) will be denoted by \(s_i \).

Recall from [15] that an (multityped Lawvere algebraic) theory for a given set of sorts \(P_0 \) is a category with finite products \(T \) together with a map \(\iota \) from \(P_0 \) and with values in its set of 0-cells \(T_0 \), and such that every 0-cell in \(T_0 \) is isomorphic to a finite product of 0-cells in \(\iota(P_0) \). We denote by \(P_0^\times \) the free theory generated by a signature \((P_0, P_1) \) whose products on 0-cells of \(P_0^\times \) are induced by products of sorts in \(P_0^* \), and the 1-cells of \(P_1^\times \) are terms over \(P_1 \) defined by induction as follows:

i) the canonical projections \(x_i^\#: \underline{s} \rightarrow s_i \), for \(1 \leq i \leq |\underline{s}| \) are terms, called variables,

ii) for any terms \(f : \underline{s} \rightarrow \tau \) and \(f' : \underline{s} \rightarrow \tau' \) in \(P_0^\times \), there exists a unique \(1 \)-cell \(\langle f, f' \rangle : \underline{s} \rightarrow \tau \tau' \), called pairing of terms \(f, f' \), such that \(x_i^\#(f, f') = f \) and \(x_i^\#(f, f') = f' \),

iii) for every operation \(\varphi : \underline{s} \rightarrow s \) in \(P_1 \), \(s \) in \(S_0^\times \) and terms \(f_i : s_i \rightarrow s_i' \) in \(P_1^\times \) for \(1 \leq i \leq |s| \), there is a term \(\varphi(f_1, \ldots, f_{|s|}) : \underline{s} \rightarrow s \).

We define the size of a term \(f \) as the minimal number, denoted by \(|f| \), of operations used to its definition.

For any 0-cells \(\underline{s}, \underline{s}' \) in \(P_0^\times \), we denote by \(1_{\underline{s}} \) the identity 1-cell on a 0-cell \(\underline{s} \), we denote by \(e_{\underline{s}} \) the eraser 1-cell defined as the unique 1-cell from \(\underline{s} \) to the terminal 0-cell \(0 \), and we denote by \(\delta_{\underline{s}} = (1_{\underline{s}}, e_{\underline{s}}) : \underline{s} \rightarrow \underline{s} \times 0 \) the duplicator 1-cell. We denote respectively by \(x_{\underline{s}}^{\underline{s}'} : \underline{s} \underline{s}' \rightarrow \underline{s} \) (resp. \(x_{\underline{s}}^{\underline{s}'} : \underline{s} \underline{s}' \rightarrow \underline{s}' \)) the canonical projections. Finally, we denote by \(\tau_{\underline{s} \underline{s}'} : \underline{s} \underline{s}' \rightarrow \\underline{s} \underline{s}' \underline{s} \) the exchange 1-cell defined by \(\tau_{\underline{s} \underline{s}'} = (x_{\underline{s}}^{\underline{s}'} x_{\underline{s}}^{\underline{s}'}, x_{\underline{s}}^{\underline{s}'} x_{\underline{s}'}^{\underline{s}}) \).

2.1.2. Two-dimensional cartesian polygraph. A cartesian 2-polygraph is a data \((P_0, P_1, P_2) \) made of

i) a signature \((P_0, P_1) \),

ii) a cellular extension of the free theory \(P_1^\times \), that is a set \(P_2 \) equipped with two maps

\[
P_1^\times \xrightarrow{\partial^-} P_2 \xrightarrow{\partial^+} P_1^\times
\]

satisfying the following globular conditions \(\partial_0^\mu \circ \partial_1^- = \partial_0^\mu \circ \partial_1^+ \), for \(\mu \in \{-, +\} \).

An element \(\alpha \) of \(P_2 \) is called a rule with source \(\partial_-(\alpha) \) and target \(\partial_+(\alpha) \) that we denote respectively by \(\alpha_- \) and \(\alpha_+ \) so that such a rule is denoted by \(\alpha : \alpha_- \Rightarrow \alpha_+ \). The globular conditions impose that such a rule \(f \Rightarrow g \) relates terms of same arity \(\underline{s} \) and same coarity \(\tau \), and it will be pictured as follows:

\[
\begin{array}{c}
\underline{s} \\
\alpha \\
\tau \\
\underline{s}
\end{array}
\]
2. Preliminaries on algebraic theories

2.1.3. Two-dimensional theories. Recall that a 2-dimensional theory, or 2-theory for a given set of sorts \(P_0 \) is a 2-category with the additional following cartesian structure:

i) it has a terminal 0-cell, that is for every 0-cell \(s \) there exists a unique 1-cell \(e_s : s \to 1 \), called eraser, and the identity 2-cell is the unique endo-2-cell on an eraser.

ii) it has products, that is for all 0-cells \(r, r' \) there is a product 0-cell \(rr' \) and 1-cells \(\chi_{rr'} : rr' \to r \) and \(\chi_{rr'} : rr' \to r' \) satisfying the two following conditions:

- for any 1-cells \(f_1 : s \to r \) and \(f_2 : s \to r' \), there exists a unique pairing 1-cell \(\langle f_1, f_2 : s \to rr' \rangle = f_1, \) and \(\chi_{rr'}(f_1, f_2) = f_2, \)

- for any 2-cells \(\alpha_1 : f_1 \Rightarrow f_1', \alpha_2 : f_2 \Rightarrow f_2' \), there exists a unique 2-cell \(\langle \alpha_1, \alpha_2 : f_1 \Rightarrow f_2 \rangle \Rightarrow \langle f_1', f_2' \rangle. \)

We refer the reader to [17] for a detailed construction.

2.1.4. Free 2-theories. We denote by \(P_2^X \) the free 2-theory generated by a cartesian 2-polygraph \((P_0, P_1, P_2) \). We briefly recall its construction and refer the reader to [17] for details. The underlying 1-category of \(P_2^X \) is the free theory \(P_1^X \) generated by the signature \((P_0, P_1) \). Its 2-cells are defined inductively as follows:

i) for any 2-cell \(\alpha : u \Rightarrow v \) in \(P_2 \) and 1-cell \(w \) in \(P_1 \), there is a 2-cell \(\alpha w : u \star_0 w \Rightarrow v \star_0 w \) in \(P_2^X \).

ii) for any 2-cells \(\alpha, \beta \) in \(P_2^X \), there is a 2-cell \(\langle \alpha, \beta \rangle : \langle \alpha_-, \beta_+ \rangle \Rightarrow \langle \alpha_+, \beta_- \rangle \) in \(P_2^X \).

iii) for any 2-cell \(\alpha \) in \(P_2^X \), there are 2-cells in \(P_2^X \) of the form \(A[\alpha] : A[\alpha_-] \Rightarrow A[\alpha_+] \) where \(A[\square] \) denotes an algebraic context of the form:

\[
A[\square] := f(\langle \text{id}_{r_1}, \ldots, \square_i, \ldots, \text{id}_{r_k} \rangle : s \to r),
\]

where \(f_1, \ldots, f_k : s \to r_1 \) and \(f : r \to r \) are 1-cells of \(P_1^X \), and \(\square_i \) is the \(i \)-th element of the pairing.

iv) these 2-cells are submitted to the following exchange relations

\[
f(f_1, \ldots, f_1, \beta_1, \ldots, f_k) \ast 1 f(f_1, \alpha_1, \ldots, f_j, \ldots, f_k) = f(f_1, \ldots, \alpha_1, \ldots, f_j, \ldots, f_k) \ast 1 f(f_1, \ldots, f_i, \ldots, \beta_1, \ldots, f_k)
\]

where \(f_1 : s \to r_1 \) and \(f : r \to r \) are 1-cells in \(P_1^X \), \(\alpha \) and \(\beta \) are 2-cells in \(P_2 \). We will denote by \(\langle f_1, \ldots, \alpha_1, \ldots, \beta_1, \ldots, f_k \rangle \) the 2-cell defined above.

v) The \(\ast_1 \)-composition of 2-cells in \(P_2 \) is given by sequential composition.

The source and target maps \(\partial_{1}^\pm \) extend to \(P_2^X \) and we denote \(\alpha_- \) and \(\alpha_+ \) for \(\partial_1^- (\alpha) \) and \(\partial_1^+ (\alpha) \).

2.1.5. Ground terms. Let \((P_0, P_1, P_2) \) be a cartesian 2-polygraph. A ground term in the free theory \(P_1^X \) is a term with source \(0 \). A 2-cell \(\alpha \) in the free theory \(P_1^X \) is called ground when \(\alpha_- \) is a ground term. Finally, an algebraic context \(A[\square] = f(f_1, \ldots, \square_i, \ldots, f_k) \) is called ground when the \(f_i \) are ground terms.
2.2. Algebraic examples

2.1.6. Free (2, 1)-theory. A free (2, 1)-theory is a theory \(\mathcal{T} \) whose any 2-cell is invertible with respect to the \(\ast_1 \)-composition. That is, any 2-cell \(\alpha \) of \(\mathcal{T}_2 \) has an inverse \(\alpha^- : \alpha_+ \Rightarrow \alpha_- \) satisfying the relations \(\alpha \ast_1 \alpha^- = 1_{\alpha_-} \) and \(\alpha^- \ast_1 \alpha = 1_{\alpha_+} \).

We denote by \(P^\ast_2 \) the free \((2, 1)\)-theory generated by a cartesian 2-polygraph \((P_0, P_1, P_2)\). The 2-cells of the \((2, 1)\)-theory \(P^\ast_2 \) corresponds to elements of the equivalence relation generated by \(P_2 \).

2.1.7. Rewriting properties of cartesian polygraphs. Let \(P \) be a cartesian 2-polygraph. The algebraic contexts of the cartesian 2-polygraph \(P \) can be composed, and we will denote by \(\mathcal{A} \mathcal{A}'[[\square]] := \mathcal{A}[[\mathcal{A}'[\square]]] \). In the same way, one defines a multi-context (of arity 2) as

\[
B[\square_1, \square_2] := f (1_{\square_1}, \ldots, \square_1, \ldots, \square_2, \ldots, 1_{\square_2}),
\]

where the \(f_k : \hat{s} \rightarrow r_k \) and \(f : \hat{s} \rightarrow r \) are 1-cells in \(P_1^\times (X) \), and \(\square_i \) (resp. \(\square_j \)) has to be filled by a 1-cell \(g_i : \hat{s} \rightarrow r_i \) (resp. \(g_j : \hat{s} \rightarrow r_j \)).

A 2-cell of the form \(\mathcal{A}[\hat{x}w] \) where \(\mathcal{A} \) is an algebraic context, \(w \) is a 1-cell in \(P_1^\times \) and \(\alpha \) is a rule in \(P_2 \) is called a rewriting step of \(P \). A rewriting path is a non-identity 2-cell of \(P_2^\ast \). Such a 2-cell can be decomposed as a \(\ast_1 \)-composition of rewriting steps:

\[
\alpha = A_1[\alpha_1] \ast_1 A_2[\alpha_2] \ast_1 \ldots A_k[\alpha_k],
\]

The length of a 2-cell \(\alpha \) in \(P_1^\times \), denoted by \(\ell(\alpha) \), is the minimal number of rewriting steps in any \(\ast_1 \)-decomposition of \(\alpha \). In particular, a rewriting step is a 2-cell of length 1.

2.1.8. Notations. For the sake of readability, we will denote terms and rewriting rules of cartesian polygraphs as in term rewriting theory. \([26]\). The canonical projections \(x_i^\lambda : \hat{s} \rightarrow \hat{s}_i \) for \(1 \leq i \leq |\hat{s}| \) are identified to "variables" \(x_1, \ldots, x_{|\hat{s}|} \). And a 1-cell \(f : \hat{s} \rightarrow r \) is denoted by \(f(\hat{x}_1, \ldots, \hat{x}_{|\hat{s}|}) \), and a rule \(\alpha : f \Rightarrow g \) with \(f, g : \hat{s} \rightarrow r \) will be denoted by

\[
\alpha_{x_1, \ldots, x_{|\hat{s}|}} : f(\hat{x}_1, \ldots, \hat{x}_{|\hat{s}|}) \Rightarrow g(\hat{x}_1, \ldots, \hat{x}_{|\hat{s}|}).
\]

2.2. Algebraic examples

2.2.1. Associative and commutative magmas. Denote by \(\mathcal{M} \mathcal{G} \) the cartesian 2-polygraph whose signature has a unique sort denoted by 1 and an unique generating 1-cell \(\mu : 2 \rightarrow 1 \) and an empty set of generating 2-cells. Denote by \(\mathcal{A} \mathcal{S} \) the cartesian 2-polygraph such that \(\mathcal{A} \mathcal{S}_1 = \mathcal{M} \mathcal{G}_1 \) and with an unique generating 2-cell:

\[
A_{x,y,z}^\mu : \mu(\mu(x, y), z) \Rightarrow \mu(x, \mu(y, z)) \quad (2.2.2)
\]

Denote by \(\mathcal{A} \mathcal{C}^\mu \) (or simply \(\mathcal{A} \mathcal{C} \) when there is no ambiguity) the cartesian 2-polygraph such that \(\mathcal{A} \mathcal{C}_1 = \mathcal{M} \mathcal{G}_1 \), and \(\mathcal{A} \mathcal{C}_2 = \mathcal{A} \mathcal{S}_2 \cup \{C\} \) with

\[
C^\mu : \mu(x, y) \Rightarrow \mu(y, x) \quad (2.2.3)
\]

that correspond to the rule \(C^\mu : \mu \tau \Rightarrow \mu \), where \(\tau \) is the exchanging operator defined in Section 2.1.1. Note that the cartesian 2-polygraph \(\mathcal{A} \mathcal{C} \) is not terminating, and that the rule \(C \) cannot be oriented in a terminating way. As a consequence, in the sequel when \(P_2 \) is defined by a set of relations together with relations corresponding to commutativity and associativity axioms for some operation \(\mu \), we will chose to work modulo the polygraphs \(\mathcal{A} \mathcal{C}^\mu \).
2. Preliminaries on algebraic theories

2.2.4. Monoids. We define the cartesian polygraph Mon whose signature has a unique sort 1, $\text{Mon}_1 = \text{Ass}_1 \cup \{e : 0 \rightarrow 1\}$, and $\text{Mon}_2 = \text{Mag}_2 \cup \{E^1_1, E^2_2\}$ with

$$E^1_1 : \mu(e, x) \Rightarrow x \quad E^2_2 : \mu(x, e) \Rightarrow x.$$ (2.2.5)

Then the theory $\overline{\text{P}}$ is the theory of monoids that we will denote by \mathbb{M}. We also define the cartesian polygraph CMon by $\text{CMon}_i = \text{Mon}_i$ for $0 \leq i \leq 1$ and $\text{CMon}_2 = \text{Mon}_2 \cup \{C^i\}$ where C^i is the commutativity 2-cell defined in (2.2.3).

2.2.6. Groups. We define the cartesian polygraph Grp whose signature has a unique sort 1, $\text{Grp}_1 = \text{Mon}_1 \cup \{1 : 1 \rightarrow 1\}$, and $\text{Grp}_2 = \text{Mon}_2 \cup \{1^2_1, 1^2_2\}$ with

$$L^1_t : \mu(t(x), x) \Rightarrow e \quad L^2_t : \mu(x, t(x)) \Rightarrow e.$$ (2.2.7)

Note that following [10], the following set of generating 2-cells gives a cartesian polygraph that is Tietze equivalent to Grp (that is it also presents the theory Grp) and convergent modulo the cartesian polygraph Ass:

$$G^1_t : t(e) \Rightarrow e \quad G^2_t : t(t(x)) \Rightarrow x \quad G^3_t : t(\mu(x, y)) \Rightarrow \mu(t(y), t(x))$$ (2.2.8)

$$G^4_t : \mu(x, \mu(t(x), y)) \Rightarrow y \quad G^5_t : \mu(t(x), \mu(x, y)) \Rightarrow y.$$ (2.2.9)

2.2.10. Abelian groups. Consider the cartesian polygraph Ab whose signature has a unique sort 1, $\text{Ab}_1 = \text{Grp}_1$ and $\text{Ab}_2 = \text{Grp}_2 \cup \{C\}$ where C is the commutativity generating 2-cell defined in (2.2.3).

2.2.11. Rings. Consider the cartesian polygraph Ring whose signature has a unique sort 1, $\text{Ring}_1 = \text{Ab}_1 \bigcup \text{Mon}_1$ with the following notations:

$\text{Ab}_1 = \{+: 2 \rightarrow 1, 0 : 0 \rightarrow 1, -: 1 \rightarrow 1\}, \quad \text{Mon}_1 = \{.: 2 \rightarrow 1, 1 : 0 \rightarrow 1\},$

and $\text{Ring}_2 = \text{Ab}_2 \cup \text{Mon}_2 \cup \{D_1, D_r\}$, where

$$D_1 : x \cdot (y + z) \Rightarrow x \cdot y + x \cdot z \quad D_r : (y + z) \cdot x \Rightarrow y \cdot x + z \cdot x.$$ (2.2.12)

The cartesian 2-polygraph CRing (commutative rings) is the cartesian 2-polygraph whose signature has a unique sort 1, $\text{CRing}_1 = \text{Ring}_1$ with the same notations as above, and $\text{CRing}_2 = \text{Ring}_2 \cup \{C^r\}$ where C^r is the commutativity generating 2-cell

$$C^r : (x, y) \Rightarrow (y, x).$$ (2.2.13)

Following [21, Example 12.2], the following set of generating 2-cells gives a cartesian polygraph that is Tietze equivalent to CRing, and is convergent modulo AC:

$$E^+_r, I^+_r, G^1, G^2, G^3, D_r, R_1 : x \cdot 0 \Rightarrow 0, R_2 : x \cdot (-y) \Rightarrow -(x \cdot y), E^-_r.$$ (2.2.14)
2.2.15. Modules over a commutative ring. The cartesian 2-polygraph Mod with $\text{Mod}_0 = \{m, r\}$, and $\text{Mod}_1 = \text{CRING}_1 \cup \text{AB}_1 \cup \{\eta : \text{rm} \rightarrow m\}$ with the following notations

i) $\text{CRING}_0 = \{r\}$, $\text{CRING}_1 = \{+ : \text{rr} \rightarrow r, 0 : 0 \rightarrow r, \cdot : \text{rr} \rightarrow r, 1 : 0 \rightarrow r\};$

ii) $\text{AB}_0 = \{m\}$, $\text{AB}_1 = \{\oplus : \text{mm} \rightarrow m, 0^\oplus : 0 \rightarrow m, 1 : m \rightarrow m\};$

iii) If there is no possible confusion, we will denote $\eta(\lambda, x) = \lambda.x$ for λ and x of type r and m respectively.

and $\text{Mod}_2 = \text{CRING}_2 \cup \text{AB}_2 \cup \{M_1, M_2, M_3, M_4\}$ with

$$M_1 : \lambda.(\mu.x) \Rightarrow (\lambda \cdot \mu).x \quad M_2 : 1.x \Rightarrow x$$

(2.2.16)

$$M_3 : \lambda.(x \oplus y) \Rightarrow (\lambda.x) \oplus (\lambda.y) \quad M_4 : \lambda.x \oplus \mu.x \Rightarrow (\lambda + \mu).x$$

(2.2.17)

Following $[10]$, the 2-cells in (2.2.14) together with the following set of 2-cells

$$M_1, M_2, M_3, M_4, N_1 : x \oplus 0^\oplus \Rightarrow x, \quad N_2 : x \oplus (\lambda.x) \Rightarrow (1 + \lambda).x,$$

(2.2.18)

$$N_3 : x \oplus x \Rightarrow (1 + 1).x$$

(2.2.19)

gives a convergent presentation of the theory of modules over a commutative ring modulo $\text{AC} \sqcup \text{AC}^+$, which contains all the associativity and commutativity relations for the operations \cdot and \oplus. This presentation can be summarized with the following set of generating 2-cells:

$$\begin{align*}
x + 0 & \Rightarrow x & (\text{ring}_1) & x + (-x) & \Rightarrow 0 & (\text{ring}_2) \\
- 0 & \Rightarrow 0 & (\text{ring}_3) & - (-x) & \Rightarrow x & (\text{ring}_4) \\
-(x + y) & \Rightarrow (-x) + (-y) & (\text{ring}_5) & x \cdot (y + z) & \Rightarrow x \cdot y + x \cdot z & (\text{ring}_6) \\
x \cdot 0 & \Rightarrow 0 & (\text{ring}_7) & x \cdot (-y) & \Rightarrow -(x \cdot y) & (\text{ring}_8) \\
1 \cdot x & \Rightarrow x & (\text{ring}_9) & a \oplus 0^\oplus & \Rightarrow a & (\text{mod}_1) \\
x.(y.a) & \Rightarrow (x \cdot y).a & (\text{mod}_2) & 1.a & \Rightarrow a & (\text{mod}_3) \\
x.a \oplus y.a & \Rightarrow (x + y).a & (\text{mod}_4) & x.(a \oplus b) & \Rightarrow (x.a) \oplus (y.b) & (\text{mod}_5) \\
a \oplus (r.a) & \Rightarrow (1 + r).a & (\text{mod}_6) & a \oplus a & \Rightarrow (1 + 1).a & (\text{mod}_7) \\
x.0^\oplus & \Rightarrow 0^\oplus & (\text{mod}_8) & 0.a & \Rightarrow 0^\oplus & (\text{mod}_9) \\
I(a) & \Rightarrow (1.a) & (\text{mod}_{10})
\end{align*}$$

Let us denote by Mod_1 the set containing the 2-cells (2.2.14), (2.2.18) and (2.2.19), and denote by Mod_c the cartesian 2-polygraph $(\text{Mod}_0, \text{Mod}_1, \text{Mod}_1 \cup \text{AC} \cup \text{AC}^+)$. It also presents the theory of modules over a commutative ring.

3. Algebraic polygraphs modulo

In this section we introduce the notion of algebraic polygraph as a cellular extension on closed terms. In Subsection 3.2 we introduce the notion of algebraic polygraph modulo and refer the reader to [3] for a categorical interpretation of the constructions given in this section.
3. Algebraic polygraphs modulo

3.1. Algebraic polygraphs

3.1.1. Constants. Let \((P_0, P_1)\) be a signature, and \(Q\) be a set of generating 1-cell (called constants) with source 0 and target a sort in \(P_0\). We denote by \(P_1\langle Q\rangle\) the set of ground terms of the free theory \((P_1 \cup Q)\times\).

3.1.2. Algebraic polygraph. An algebraic polygraph is a data \((P, Q, R)\) where,

i) \(P\) is a cartesian 2-polygraph,

ii) \(Q\) is a family of set of generating constants \((Q_s)_{s \in P_0}\),

iii) \(R\) is a cellular extension of the set of ground terms \(P_1\langle Q\rangle\).

Note that the cellular extension \(R\) is indexed by the sorts of \(P_0\), that is it defines a family \((F_s, R_s)_{s \in P_0}\) of 1-polygraphs, where \(F_s = P_1\langle Q\rangle_s\).

3.1.3. Example. Let \(\text{Mon}_2\) be the cartesian 2-polygraph defined in (2.2.4). One defines an algebraic polygraph by setting:

\[Q = \{s, t : 0 \to 1\}, \quad R = \{ \alpha : (s \cdot t) \cdot s \Rightarrow t \cdot (s \cdot t) \}.\]

(3.1.4)

3.1.5. Rewriting in algebraic polygraphs. Let \(\mathcal{P} = (P, Q, R)\) be an algebraic polygraph, and let \(\alpha : f \Rightarrow g\) be a ground 2-cell in \(R\). A \(R\)-rewriting step is a ground 2-cell in the free 2-theory \(R\times\) on \((P_1 \cup Q, R)\) of the form

\[A[\alpha] : A[f] \Rightarrow A[g],\]

where \(A[\square]\) is a ground context. It can be depicted by the following diagram:

A \(R\)-rewriting path is a finite or infinite sequence \(a = a_1 \ast_1 a_2 \ast_1 \ldots \ast_1 a_k \ast_1 \ldots\) of \(R\)-rewriting steps \(a_i\). The length of 2-cell \(a\) in \(R\times\), denoted by \(\ell(a)\), is the minimal number of \(R\)-rewriting steps needed to write \(a\) as a composition as above.

3.1.6. Example. Consider the rule \(\alpha\) defined in (3.1.4). And the algebraic contexte \(A[\square] = (s \cdot \square) \cdot t\), we have the rewriting step

\[A[\alpha] : (s \cdot ((s \cdot t) \cdot s)) \Rightarrow (s \cdot (t \cdot (s \cdot t))) \cdot t.\]
3.1. Algebraic polygraphs

3.1.7. Algebraic polygraph of axioms. The cellular extension \(P_2 \) defined on \(\mathcal{P}_1 \times \) extends to a cellular extension on the free 1-theory \((\mathcal{P}_1 \cup \mathcal{Q}) \times \) denoted by \(\tilde{\mathcal{P}}_2 \), whose source and target maps are defined in such a way that the following diagram commutes

\[
\begin{array}{ccc}
\mathcal{P}_2(Q) & \xrightarrow{\partial_1^-} & \mathcal{P}_1^\times & \xrightarrow{\partial_1^+} & (\mathcal{P}_1 \cup \mathcal{Q})^\times \\
\end{array}
\]

and denote by \(P_2(Q) \) (resp \(P_2(Q)^\top \)) the set of ground 2-cells in \(\tilde{\mathcal{P}}_2^\times \) (resp. \(\tilde{\mathcal{P}}_2^\top \)). The set \(P_2(Q) \) thus contains the groundified 2-cells of \(P_2 \). The data \((P, Q, P_2(Q)) \) defines an algebraic polygraph, that we call the algebraic polygraph of axioms. We say that two terms \(f \) and \(g \) in \(\mathcal{P}_1(Q) \) are algebraically equivalent with respect to \(P \), denoted by \(f \equiv_{\mathcal{P}_2} g \), if there exists a ground 2-cell in \(P_2(Q)^\top \) from \(f \) to \(g \).

We will denote by \(\overline{\mathcal{P}(Q)} \) the quotient of the full sub-category \(\mathcal{P}_1(Q) \) of \(\mathcal{P}_1 \cup Q^\times \) by the congruence generated by the 2-cells in \(P_2(Q) \). Namely, two terms \(f \) and \(g \) that are related by a 2-cell in \(P_2(Q)^\top \) are identified in the quotient.

Note that the algebraic polygraph \((P, Q, P_2(Q)) \) shares the rewriting properties of the cartesian 2-polygraph \(P \). In particular, if \(P \) is terminating (resp. quasi-terminating, confluent, confluent modulo \(P' \)), then \((P, Q, P_2(Q)) \) is terminating (resp. quasi-terminating, confluent, confluent modulo \((P', Q, P_2'(Q)) \)).

3.1.8. Example. In the example of the algebraic polygraph defined in (3.1.4), the set \(P_2(Q) \) is defined by the associativity relations on ground terms on the constants \(s \) and \(t \). For instance, \(P_2(Q) \) contains the following ground 2-cell:

\[
A_{s,t,s} : (s \cdot t) \cdot s \Rightarrow s \cdot (t \cdot s).
\]

3.1.9. Positivity. Denote \(\pi : \mathcal{P}_1(Q) \rightarrow \overline{\mathcal{P}(Q)} \) the canonical projection, and let \(\sigma : \overline{\mathcal{P}(Q)} \rightarrow \text{Set} \) be a map such that for any \(\overline{f} \in \overline{\mathcal{P}(Q)} \), \(\sigma(\overline{f}) \) is a chosen non-empty subset of \(\pi^{-1}(\overline{f}) \). Such a map is called a positive strategy with respect to \((P, Q) \). A rewriting step \(\alpha \) in \(R^\times \) is called \(\alpha \)-positive if \(\alpha \) belongs to \(\sigma(\alpha^-) \). A rewriting path \(\alpha_1 \ast_1 \ldots \ast_1 \alpha_k \) in \(R^\times \) is called \(\alpha \)-positive if any of its rewriting steps is positive.

3.1.10. Strategies to define positivity. We introduce positivity strategies that depend on the inherent cartesian 2-polygraph \(P \). Suppose that \(P \) is such that \(P_2 = P'_2 \cup P''_2 \), with \(P'_2 \) confluent modulo \(P''_2 \). For every 1-cell \(\overline{f} \) in \(\overline{\mathcal{P}(Q)} \), we set \(\sigma(\overline{f}) = \text{NF}(f, P'_2 \text{ mod } P''_2) \), where \(f \in \pi^{-1}(\overline{f}) \), the set of normal forms of \(f \) for \(P'_2 \) modulo \(P''_2 \). Note that this is well-defined following [9, Lemma 2.6], since if \(f, f' \in \pi^{-1}(\overline{f}) \), then \(\text{NF}(f, P'_2 \text{ mod } P''_2) = \text{NF}(f', P'_2 \text{ mod } P''_2) \).

In many algebraic situations, we will set \(\text{Ass} \subseteq P''_2 \). In particular, in the case of SRS, \(P'_2 \) will be empty and \(P''_2 = \text{Ass} \). In that case, any term in \(\mathcal{P}_1(Q) \) is a normal form for the empty polygraph modulo \(\text{Ass} \), and thus the positive strategy consists in taking all the fiber. In the case of LRS, \(P''_2 \) will be \(\text{AC} \), the algebraic polygraph corresponding to associativity and commutativity relations of the operations, and \(P'_2 \) will be the convergent presentation of \(\text{RMod} \) modulo \(\text{AC} \) given in Section 2.2.15.
3. Algebraic polygraphs modulo

3.2. Algebraic polygraphs modulo

3.2.1. Algebraic polygraph modulo. Given an algebraic polygraph \(\mathcal{P} = (P, Q, R) \) and a positive strategy \(\sigma \) on \(\mathcal{P} \), one denotes by \(\mathcal{P} R \) the cellular extension \(\mathcal{P} = (P, Q, R) \) made of triple \((e, a, e') \), where \(e \) and \(e' \) are ground \(2 \)-cells in \(P \) and \(a \) is a \(\mathcal{P} \)-rewriting step. Such a triple will be denoted by \(e \bullet a \bullet e' \), called a \(\mathcal{P} \)-rule, and pictured by

We refer the reader to [5] for a detailed construction of the cellular extension \(\mathcal{P} R \). Such a rule is called \(\sigma \)-positive if \(a \) is a \(\sigma \)-positive \(\mathcal{P} \)-rewriting step. An algebraic polygraph modulo is a data \((\mathcal{P}, Q, R, S) \) made of

i) an algebraic polygraph \((\mathcal{P}, Q, R) \),

ii) a cellular extension \(S \) of \(\mathcal{P} \) such that \(R \subseteq S \subseteq \mathcal{P} R \).

Note that the data \((\mathcal{P}, Q, S) \) defines an algebraic polygraph modulo.

3.2.2. Example. Let us consider the algebraic polygraph \((\mathcal{P}, Q, R) \) defined in (3.1.4), then the following composition gives a rewriting step in \(\mathcal{P} R \):

\[
(s \cdot (s \cdot (t \cdot s))) \cdot t \equiv (\alpha) \quad (s \cdot (t \cdot (s \cdot t))) \cdot t = (s \cdot (t \cdot (s \cdot t))) \cdot t.
\]

3.2.3. Termination properties. An algebraic polygraph \(\mathcal{P} = (\mathcal{P}, Q, R) \) is called

i) terminating if there is no infinite rewriting sequence for \(\mathcal{P} \), that is there is no sequence \((f_n)_{n \in \mathbb{N}} \) of \(1 \)-cells of \(\mathcal{P} \) such that for each \(n \in \mathbb{N} \), there is a rewriting step \(f_n \rightarrow f_{n+1} \),

ii) quasi-terminating if for each sequence \((f_n)_{n \in \mathbb{N}} \) of \(1 \)-cells of \(\mathcal{P} \) such that for each \(n \in \mathbb{N} \), there is a rewriting step \(f_n \rightarrow f_{n+1} \), the sequence \((f_n)_{n \in \mathbb{N}} \) contains an infinite number of occurrences of same 1-cell,

iii) algebraically terminating if for each sequence \((f_n)_{n \in \mathbb{N}} \) of \(1 \)-cells of \(\mathcal{P} \) such that for each \(n \in \mathbb{N} \), there is a rewriting step \(f_n \rightarrow f_{n+1} \), the sequence \((f_n)_{n \in \mathbb{N}} \) contains an infinite number of occurrences of same 1-cell in context, that is, there exist \(k, l \in \mathbb{N} \), such that \(f_{k+1} = A[f_k] \) where \(A \) is a possibly empty ground context of \(\mathcal{P} \).
3.3. Algebraic rewriting systems

iv) exponentiation free if there is no rewriting path with source a 1-cell f of $P_1\langle Q \rangle$ and target $C[f]$, where Λ is a nontrivial ground context of P.

Any quasi-terminating polygraph is algebraically terminating. But the converse implication is false in general, indeed the rewriting system $\alpha \to \alpha \cdot \alpha$ is algebraically terminating, but not quasi-terminating. In fact, it is not exponentiation free either. One proves that both properties algebraically terminating and exponentiation free implies the quasi-terminating property.

An algebraic polygraph modulo (P, Q, R, S) is called terminating (resp. quasi-terminating) if the algebraic polygraph (P, Q, S) is terminating (resp. quasi-terminating). Note that an algebraic polygraph is a special case of algebraic polygraph modulo when $S = R$. In the sequel we will consider only polygraphs modulo.

3.2.4. Quasi-normal forms. Let $\mathcal{P} = (P, Q, R, S)$ be an algebraic polygraph modulo. A 1-cell f of $P_1\langle Q \rangle$ is called a quasi-irreducible if for any S-rewriting step $f \to g$, there exists a S-rewriting sequence from g to f. A quasi-normal form (with respect to \mathcal{P}) of a 1-cell f in $P_1\langle Q \rangle$ is a quasi-irreducible 1-cell \tilde{f} of $P_1\langle Q \rangle$ such that there exists a S-rewriting sequence from f to \tilde{f}.

When the algebraic polygraph modulo \mathcal{P} is quasi-terminating, any 1-cell f of $P_1\langle Q \rangle$ admits at least a quasi-normal. Such a quasi-normal is neither S-irreducible nor unique in general. A quasi-normal form strategy is a map

$$s : P_1\langle Q \rangle \to P_1\langle Q \rangle$$

sending a 1-cell f on a chosen quasi-normal \tilde{f}. We define a map

$$d : P_1\langle Q \rangle \to \mathbb{N}$$

sending a 1-cell f to

$$d(f) = \min \{ l(a) \mid a \text{ is a } P_1\langle Q \rangle\text{-rewriting path from } f \text{ to } \tilde{f} \},$$

counting the distance from f to \tilde{f}.

3.3. Algebraic rewriting systems

3.3.1. Algebraic rewriting system. Note that the cellular extension S defined on $P_1\langle Q \rangle$ extends to a cellular extension of $\overline{P}(Q)$, with source and target maps defined respectively by $\overline{\partial}_1 := \pi \circ \partial_1$ and $\overline{\partial}_1^+ := \pi \circ \partial_1^+$. An algebraic rewriting system on an algebraic polygraph modulo (P, Q, R, S) with a positive strategy σ is a cellular extension \overline{S} of $\overline{P}(Q)$ defined in such a way that the following diagram commutes

$$\begin{array}{c}
\overline{P}(Q) \\
\overline{\partial}_1 \downarrow \quad \quad \uparrow \overline{\partial}_1^+ \\
\overline{S} \\
\pi' \downarrow \\
\end{array}$$
where the map π' assigns to a S-rule $e \ast \alpha \ast e'$ an element α' in S with source α' and target α'. Explicitly,

$$S = \{ \alpha : \alpha' \Rightarrow \alpha'' | e \ast \alpha \ast e' \in S \}.$$

Note that $S = R$ for any $R \subseteq S \subseteq \mathcal{P}_{R}$. Let us consider the subset S_{σ} of S defined by

$$S_{\sigma} = \{ a : a' \Rightarrow a'' | a \text{ is a } \sigma\text{-positive } S\text{-rule} \}.$$

A S-rewriting step (resp. a S_{σ}-rewriting step) is the quotient of a S-rewriting step (resp. σ-positive rewriting step) by the canonical projection π, that is a 2-cell of the form $C[\alpha] : C[\alpha'] \Rightarrow C[\alpha'']$, where C is a ground context of $P_{1}(\langle Q \rangle)$ and $C[\alpha]$ is a S-rewriting step (resp. σ-positive S-rewriting step). A S-rewriting path is a sequence of S-rewriting steps.

3.3.2. Example: string rewriting systems.

A SRS can be deduced as a quotient algebraic polygraph as follows. We consider an algebraic polygraph $(M/o.sc/n.sc, Q, R, S)$, where $M/o.sc/n.sc$ is the cartesian polygraph defined in 2.2.4. The set of constants Q is the set of generating 1-cells of the SRS, and R corresponds to fibrations of rules of the SRS on the fibers modulo associativity.

For instance, consider the algebraic polygraph defined in (3.1.4). Then by quotient, we obtain the string rewriting system

$$\langle s, t | sts \Rightarrow tst \rangle$$

that presents the monoid B_{3}^{+} of braids on 3 strands.

3.3.3. Example: linear rewriting systems.

A linear rewriting system (LRS) is an algebraic rewriting system on an algebraic polygraph modulo (P, Q, R, S) such that $M/o.sc/d.sc_{c} \subseteq P$, where $M/o.sc/d.sc_{c}$ is the cartesian 2-polygraph presenting the theory of modules over a commutative ring defined in Section 2.2.15.

4. Confluence in Algebraic Polygraphs Modulo

In this section we present confluence properties of algebraic polygraphs modulo with fixed positive strategies.

4.1. Confluence modulo with respect to a positive strategy

4.1.1. Branchings in algebraic polygraphs modulo.

Let $P = (P, Q, R, S)$ be an algebraic polygraph modulo and σ a positive strategy on P. A σ-branching of (P, Q, R, S) is a triple (a, e, b) where f and g are σ-positive 2-cells of S^{x} and e is a 1-cell of $P_{2}(\langle Q \rangle)^{T}$ such that $e_{-} = a_{-}$ and $e_{+} = b_{-}$. Such a σ-branching is depicted as follows

$$u \xrightarrow{a} u' \\
\begin{array}{c}
\vphantom{u}
\end{array} \\
e \xrightarrow{b} v'$$

Note that the 2-cells are represented by simple arrows in confluence diagrams for better readability in the diagrams in the sequel. The 2-cell b (resp. a) can be an identity 2-cell of S^{x}, and in that case the σ-branching is of the form (a, e) (resp. (e, b)). The source of such a σ-branching is the pair (f, f) where $f = a_{-} = e_{-}$ (resp. $f = b_{-} = e_{+}$). The 2-cell e in $P_{2}(\langle Q \rangle)^{T}$ can also be trivial, and in that
4.1. Confluence modulo with respect to a positive strategy

In this section, we consider a process of induction on sources of the confluence proofs in the sequel will be made using induction on this order. Note that this corresponds to a process of induction on sources of σ-confluent modulo, that is pairs of 1-cells in \(P_1(Q) \), with respect to distance of the quasi-normal form with respect to \(P \). This follows Huet’s double induction principle in the terminating setting, based on induction on an auxiliary rewriting system constructed on pairs of terms.

In this way, one proves for quasi-terminating algebraic polygraphs modulo the Newman lemma, following Huet’s proof in the terminating setting.

We say that the algebraic polygraph modulo \(P, Q, R, S \) is confluent modulo (resp. locally confluent modulo) if any σ-branching modulo (resp. local σ-branching modulo) is confluent modulo.

4.1.2. Remark. As noted in [2, Section 2], the algebraic polygraph \(P \) is the polygraph for which is the most difficult to reach \(\sigma \)-confluence modulo. Indeed, if \(P \) is confluent modulo \(P \), then any algebraic polygraph modulo \((P, Q, R, S) \) is confluent modulo \(P \). For this reason, in many situation we relax by proving \(\sigma \)-confluence of \(pR \) or \(pRp \) modulo \(P \). They also noticed that when \(pR \) is confluent modulo \(P \) if and only if \(pRp \) is confluent modulo \(P \), and in that case \(R \) defines the same set of normal forms than \(pR \). As a consequence, we will either prove \(\sigma \)-confluence of \(R \) and \(pR \) in the sequel, leading to the same quotient algebraic rewriting system. Note finally that when \(pR \subseteq S \subseteq pRp \), any local σ-branching modulo of the form \((a, e)\) is trivially confluent modulo \(P \) via the \(\sigma \)-confluence modulo \((1_{a-}, e^- * 1_{a+}, 1_{a+}) \).

4.1.3. Double induction on the distance to the quasi-normal form. Consider the distance map \(d : P_1(Q) \rightarrow \mathbb{N} \) defined in Section 3.2.4. We extend this distance on 1-cells of \(P_1(Q) \) to a distance on \(\sigma \)-branchings modulo \((a, e, b)\) by defining

\[
d(a, e, b) := d(a_-) + d(a_+).
\]

We then define a well-founded order \(\prec \) on the set of \(\sigma \)-branchings of \(S \) modulo \(P \) by:

\[
(a, e, b) \prec (a', e', b') \text{ if } d(a, e, b) < d(a', e', b').
\]

The confluence proofs in the sequel will be made using induction on this order. Note that this corresponds to a process of induction on sources of \(\sigma \)-branchings modulo, that is pairs of 1-cells in \(P_1(Q) \), with respect to distance of the quasi-normal form with respect to \(pR \). This follows Huet’s double induction principle in the terminating setting, based on induction on an auxiliary rewriting system constructed on pairs of terms.

In this way, one proves for quasi-terminating algebraic polygraphs modulo the Newman lemma, following Huet’s proof in the terminating setting.

4.1.4. Theorem (Newman lemma modulo for algebraic polygraphs modulo). Let \(\mathcal{P} \) be a quasi-terminating algebraic polygraph modulo, and \(\sigma \) be a positive strategy on \(\mathcal{P} \). If \(\mathcal{P} \) is locally \(\sigma \)-confluent modulo, then it is \(\sigma \)-confluent modulo.
4. Confluence in algebraic polygraphs modulo

Proof. Assume that \(\mathcal{P} \) is locally \(\sigma \)-confluent modulo \(P \). We prove this result by induction on the well-founded order \(\prec \) on \(\sigma \)-branchings modulo defined in [4.1.3]. Let us pick a \(\sigma \)-branching modulo \((a, e, b)\) of \(\mathcal{P} \), and assume that for any \(\sigma \)-branching modulo \((a', e', b')\) such that \((a, e, b) \prec (a', e', b')\), the \(\sigma \)-branching modulo \((a', e', b')\) is confluent modulo \(P \). Let us prove this results in two steps.

Step 1: We prove that any \(\sigma \)-branching modulo \((a, e)\), where \(a \) is a S-rewriting step and \(e \) is a 2-cell in \(P_2(Q)^\perp \) is \(\sigma \)-confluent modulo. Let us denote by \(u \) the 1-cell \(a_\perp \), so that \((a, e)\) is a \(\sigma \)-branching modulo of source \((f, f)\). If \(f \) is \(S \)-irreducible, then \(a \) is an identity 2-cell, and the \(\sigma \)-branching is trivially confluent. We then suppose that \(a \) is not an identity, and proceed by induction on \(\ell(e) \geq 1 \). If \(\ell(e) = 1 \), \((a, e)\) is a local \(\sigma \)-branching of \(S \) modulo \(P \) and it is confluent modulo by local \(\sigma \)-confluence. Now, let us assume that for \(k \geq 1 \), any \(\sigma \)-branching \((a'', e'')\) of \(S \) modulo \(P \) such that \(\ell(e'') = k \) is confluent modulo \(E \), and let us consider a \(\sigma \)-branching \((a, e)\) of \(S \) modulo \(P \) such that \(\ell(e) = k + 1 \). We choose a decomposition \(e = e_1 \cdot e_2 \) with \(e_1 \) of length 1. Using local \(\sigma \)-confluence on the \(\sigma \)-branching \((a, e_1)\), there exists a \(\sigma \)-confluence modulo \((a', e'_1, a_1)\) modulo \(P \) of this \(\sigma \)-branching. Then, we choose a decomposition \(a_1 = a_1^1 \cdot a_1^2 \) with \(a_1^1 \) of length 1. By induction hypothesis on the \(\sigma \)-branching modulo \((a_1^1, e_2')\), there exists an \(\sigma \)-confluence modulo \((a_1^1, e_2', b)\) of this \(\sigma \)-branching, as in the following diagram:

Now, since \(f \equiv f_1 \Rightarrow f_1' \), we have \(d(f_1') = d(f) - 1 \), and thus \((a_1^1, a_1^2) \prec (a, e)\) so that we can use induction on the \(\sigma \)-branching \((a_1^1, a_1^2)\) of \(S \) modulo \(P \) of source \((f_1', f_2')\) to prove that there exists an \(\sigma \)-confluence modulo \((a_2, e_3, a_2')\) of this \(\sigma \)-branching. By a similar argument, we have \(d(f_2') < d(f) \) and \(d(f_1') < d(f) \) and we can apply induction on the \(\sigma \)-branchings modulo \((a_2, e_3)\) and \((a_3', e_4')\) respectively. Therefore, there exist 2-cells \(a'' \), \(a_3 \), \(a_2' \) and \(b' \) in \(S \) and 2-cells \(e_1' \) and \(e_2' \) in \(P_2(Q)^\perp \) as in

16
We distinguish two cases whether \(c \preceq \) the following diagram:

\[
\begin{array}{cccccccccccc}
\vdots & \vdots \\
\cdots & \cdots \\
\end{array}
\]

We can then use once again induction on the \(\sigma \)-branching \((a_3, e_3, a'_3)\) of \(S\) modulo \(P\) of source \((h_1, h_2)\), and so on. Since the order \(\prec\) is well-founded, this process terminates in finitely many steps until we reach the quasi-normal form \(\tilde{f}\). This yields the \(\sigma\)-confluence of the \(\sigma\)-branching \((a, e)\).

Step 2: Now, let us prove that any \(\sigma\)-branching modulo \((a, e, b)\) is confluent modulo \(P\). Let us choose such a \(\sigma\)-branching and denote by \((f, g)\) its source. We assume that any \(\sigma\)-branching \((a', e', b')\) of \(S\) modulo \(P\) with \((a', e', b') \prec (a, e, b)\) is confluent modulo \(P\). We follow the proof scheme used by Huet in [9, Lemma 2.7]. Let us denote by \(n := \ell(a)\) and \(m := \ell(b)\). We assume without loss of generality that \(n > 0\) and we fix a decomposition \(a = a_1 \otimes a_2\) with \(a_1\) of length 1. If \(m = 0\), by Step 1 on the \(\sigma\)-branching \((a_1, e)\) of \(S\) modulo \(P\), there exists a \(\sigma\)-confluence modulo \((a'_1, e', b')\) of this \(\sigma\)-branching. Then, since \(d(f_1) = d(f) - 1\), we have \((a_2, a'_2) \prec (a, e)\) and we can apply double induction on the \(\sigma\)-branching modulo \((a_2, a'_2)\), as pictured in the following diagram:

\[
\begin{array}{cccccccccccc}
\vdots & \vdots \\
\cdots & \cdots \\
\end{array}
\]

We finish the proof of this case with a similar argument as in Step 1, using repeated inductions that terminate after a finite number of steps because the order \(\prec\) is well-founded.

Now, assume that \(m > 0\) and fix a decomposition \(b = b_1 \otimes b_2\) of \(b\) with \(b_1\) of length 1. Using Step 1 on the \(\sigma\)-branching modulo \((a_1, e)\), there exists a \(\sigma\)-confluence modulo \((a'_1, e_1, c_1)\) of this \(\sigma\)-branching. We distinguish two cases whether \(c_1\) is trivial or not.
4. Confluence in algebraic polygraphs modulo

If \(c_1 \) is trivial, the \(\sigma \)-confluence of the \(\sigma \)-branching modulo \((a, e, b) \) is given by the following diagram

\[
\begin{array}{c}
\begin{array}{ccc}
f & \xrightarrow{a_1} & a_2 \xrightarrow{f_2} f_2' \\
\text{Ind.} & = & \text{Ind.}
\end{array} \\
\begin{array}{ccc}
f & \xrightarrow{a_1} & a_1' \xrightarrow{f_1'} a_3 \xrightarrow{f_3} f_4 \xrightarrow{a_5} f_5
\end{array}
\end{array}
\]

where the \(\sigma \)-branchings modulo \((a_1, e) \) and \((b_1, e') \) are confluent modulo \(P \) by Step 1, and induction applies on the \(\sigma \)-branchings \((a_2, a_1' \ast a_3), (b_1', b_2) \) and \((a_4, e_1, b_1'') \) since \(d(f_1) < d(f), d(f_1) < d(g), d(g_1') < d(g), d(g_1') < d(f) \) and \(d(f_3) < d(f) \) respectively. We then reach a \(\sigma \)-confluence modulo of the \(\sigma \)-branching modulo \((a, e, b) \) similarly.

If \(c_1 \) is not trivial, let us fix a decomposition \(c_1 = c_1^1 \ast c_1^2 \) with \(c_1^1 \) of length 1. The \(\sigma \)-confluence of the \(\sigma \)-branching modulo \((a, e, b) \) is given by the following diagram:

\[
\begin{array}{c}
\begin{array}{ccc}
f & \xrightarrow{a_1} & a_2 \xrightarrow{f_2} f_2' \\
\text{Ind.} & = & \text{Ind.}
\end{array} \\
\begin{array}{ccc}
f & \xrightarrow{a_1} & a_1' \xrightarrow{f_1'} a_3 \xrightarrow{f_3} f_4
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{ccc}
g & \xrightarrow{c_1} & g_1 \xrightarrow{c_1^2} h_1 \xrightarrow{c_2} h_2 \xrightarrow{c_2'} h_2' \\
\text{Ind.} & = & \text{Ind.}
\end{array} \\
\begin{array}{ccc}
g & \xrightarrow{c_1} & g_1 \xrightarrow{c_1'} h_1' \xrightarrow{c_3} h_3 \xrightarrow{c_3'} h_3'
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{ccc}
g & \xrightarrow{b_1} & g' \xrightarrow{b_1'} g_1' \xrightarrow{b_2'} g_2' \xrightarrow{b_2'} g_3'
\end{array} \\
\text{Local conf mod } E
\end{array}
\]

The diagrams illustrate the \(\sigma \)-confluence of the \(\sigma \)-branchings modulo \((a, e, b) \) and \((a_1, e) \) respectively. We then reach a \(\sigma \)-confluence modulo of the \(\sigma \)-branching modulo \((a, e, b) \).
where the σ-branching modulo (a_1, e) is confluent modulo by Step 1, the σ-branching modulo (c_1', b_1) is σ-confluent by local σ-confluence modulo, and one checks that induction applies on the σ-branchings $(a_2, a_1'), (c_1', c_1'), (b_1', b_2), (a_3, c_2)$ and (c_3, b_2'). Similarly, we can repeat inductions to reach a σ-confluence modulo of (a, e, b).

4.2. Critical σ-branchings modulo

4.2.1. Classification of local σ-branchings. The local σ-branchings modulo of P can be classified in the following families:

i) trivial σ-branchings of the form

$$
\begin{array}{c}
A[a_-] \xrightarrow{A[a]} A[a_+] \\
\downarrow \hspace{1cm} \downarrow \\
A[a_-] \xrightarrow{A[a]} A[a_+]
\end{array}
$$

for some ground context context A and σ-positive S-rewriting step a.

ii) inclusion independant σ-branchings modulo of the form

$$
\begin{array}{c}
A[a_-] \xrightarrow{A[a]} A[a_+] \\
\downarrow \hspace{1cm} \downarrow \\
A[A'[b_-]] \xrightarrow{A[A'[b]]} A[A'[b_+]]
\end{array}
$$

for some ground contexts context A and A', and σ-positive S-rewriting steps a and b.

iii) orthogonal σ-branchings modulo of the form

$$
\begin{array}{c}
B[a_-, b_-] \xrightarrow{B[a, b_-]} B[a_+, b_-] \\
\downarrow \hspace{1cm} \downarrow \\
B[a_-, b_-] \xrightarrow{B[a_-, b_]} B[a_-, b_+]
\end{array}
$$

$$
\begin{array}{c}
B[a_-, e_-] \xrightarrow{B[a, e_-]} B[a_+, e_-] \\
\downarrow \hspace{1cm} \downarrow \\
B[a_-, e_-] \xrightarrow{B[a_-, e_+]} B[a_-, e_+]
\end{array}
$$

$$
\begin{array}{c}
B[e_-, b_-] \xrightarrow{B'[e_-, b]} B'[e_-, b_+] \\
\downarrow \hspace{1cm} \downarrow \\
B'[e_-, b_-] \xrightarrow{B'[e_+, b_]} B'[e_+, b_+]
\end{array}
$$

for some ground multi-contexts B and B' of arity 2, S-rewriting steps a, b and c of S, and 2-cells e and e' in $P_2(Q)^\top$.

iv) non orthogonal σ-branchings are the remaining local σ-branchings, that is nor inclusion independant nor orthogonal.
4. Confluence in algebraic polygraphs modulo

4.2.2. Critical \(\sigma\)-branchings. We define an order relation on \(\sigma\)-branchings modulo of an algebraic polygraph modulo \((P, Q, R, S)\) by setting \((a, e, b) \lessdot (a', e', b')\) if there exists a ground context \(A\) of \(P_1(Q)\) such that \(a' = A[a]\), \(e' = A[e]\) and \(b' = A[b]\). A critical \(\sigma\)-branching modulo is a local \(\sigma\)-branching modulo \(P\) which is non trivial, non orthogonal and minimal for the order relation \(\lessdot\).

4.2.3. Positively confluence. An algebraic polygraph modulo \((P, Q, R, S)\) with a positive strategy \(\sigma\) is called positively \(\sigma\)-confluent if, for any \(S\)-rewriting step \(f\), there exists a representing \(\tilde{a} \in \sigma(\tilde{a})\) of \(\tilde{a}\) and two \(\sigma\)-positive \(S\)-reductions \(\tilde{a}'\) and \(\tilde{b}'\) of length at most 1 as in the following diagram

\[
\begin{array}{c}
\tilde{a} \\
\downarrow \\
\tilde{e} \\
\tilde{a}' \\
\downarrow \\
\tilde{e}' \\
\tilde{b}' \\
\end{array}
\]

4.2.4. Proposition (Terminating critical branching theorem modulo). Let \((P, Q, R, S)\) be a quasi-terminating and positively \(\sigma\)-confluent algebraic polygraph modulo with a positive strategy \(\sigma\). Then it is locally \(\sigma\)-confluent modulo if and only if the following properties hold:

\(a\) any critical \(\sigma\)-branching modulo \((a, b)\), where \(a\) and \(b\) are \(S\)-rewriting steps, is \(\sigma\)-confluent modulo.

\(b\) any critical \(\sigma\)-branching modulo \((a, e)\), where \(a\) is an \(S\)-rewriting step and \(e\) is a 2-cell in \(P_2(Q)^\top\) of length 1, is \(\sigma\)-confluent modulo.

Proof. The left to right implication is trivial. Let us prove the converse. Suppose that condition \(a\) holds and prove condition \(a\). The proof of the other implication is similar. We prove this by examine all the possible cases of local \(\sigma\)-branchings modulo given in Section ?? . Local aspherical \(\sigma\)-branchings are always \(\sigma\)-confluent modulo. Let us consider a local orthogonal \(\sigma\)-branching modulo of the form

\[
\begin{array}{c}
B[a, b_-] \\
\downarrow \\
B[a, b_-] \\
\end{array}
\]

where \(B[a, b_-]\) and \(B[a_-, b]\) are \(\sigma\)-positive \(S\)-reductions. There are natural 2-cells in \(S^\times\) that give a \(\sigma\)-confluence modulo of this diagram:

\[
\begin{array}{c}
B[a, b_-] \\
\downarrow \\
B[a, b_-] \\
\end{array}
\]

However, it may happen that these reductions are not \(\sigma\)-positive. Without loss of generality, let us assume that they are both not \(\sigma\)-positive. By positive \(\sigma\)-confluence assumption, there exists a representative
4.2. Critical σ-branchings modulo

$B[_]$ (resp. $B[_]$) of $B[_]$ (resp. $B[_]$) in $P_1(Q)$, σ-positive S-rewriting sequences h_1 and h_2, and 2-cells e_1, e_2 in $P_2(Q)^\top$ as in the following diagram:

Then, we have $d(f_1) < d(B[_])$ and $d(f_2) < d(B[_])$ so that we can use induction of the σ-branching modulo $(c_1, e_1 * e_2, c_2)$ of source (f_1, f_2). As a consequence, there exists a σ-confluence modulo (c'_1, e, c'_2) of this σ-branching modulo, and we then construct a σ-confluence modulo of $(B[_], B[_])$ by successive applications of induction as in the proof of Theorem 4.1.4. This process terminates since ρP is quasi-terminating, and thus the order \prec on σ-branchings modulo defined in Section 4.1.3 is well-founded. Let us now consider an overlapping σ-branching modulo of the form (a, b) where a and b are σ-positive S-rewriting steps. By definition, there exists a ground context A of $P_1(Q)$ and a critical σ-branching modulo (a', b') such that $(a, b) = (A[a'], A[b'])$. Following condition a_0, the critical σ-branching (a', b') is σ-confluent modulo, and there exists a σ-confluence modulo (a''', e', b''') of this σ-branching. However, the reductions $A[a''']$ and $A[b''']$ that would give a confluence modulo of (a, b) are not necessarily σ-positive:

However, using positive σ-confluence of S, we are able to construct a σ-confluence modulo of the σ-branching modulo (a, b) as in the previous case.

4.2.5. Full positive strategy. When all reductions are positive, that is when $\sigma(_1) = \pi^{-1}(_1)$ for any 1-cell $_1$, we say that σ is a full positive strategy. In that case, the quasi-termination assumption in Proposition 4.2.4 is not needed, since the natural confluences represented by dotted arrows are σ-positive. Moreover, the positive σ-confluence is always satisfied, by considering $a' = a$ and $b' = 1_{1(a)}$.

5. **ALGEBRAIC CRITICAL BRANCHING LEMMA**

By taking the quotient of the S-rewriting paths in Proposition 4.2.4 in this section we obtain an algebraic critical branching lemma, that we apply to string rewriting systems and linear rewriting systems.

5.1. **Algebraic critical branchings**

5.1.1. **Critical branchings of algebraic polygraph.** Let $\mathcal{P} = (P, Q, R, S)$ be an algebraic polygraph modulo with a positive strategy σ and let A be an algebraic rewriting system on \mathcal{P}. The critical branchings of A are the projections of the critical σ-branchings modulo of \mathcal{P} of the form (a_0), that is pairs $(\overline{a}, \overline{b})$ of S^{σ}-rewriting steps such that there is a σ-branching modulo in \mathcal{P} with source $(\overline{a} \sigma^{-}, \overline{b} \sigma^{-})$. As a consequence of Proposition 4.2.4 we deduce the following result.

5.1.2. **Theorem.** Let $\mathcal{P} = (P, Q, R, S)$ be an algebraic polygraph modulo with a positive strategy σ such that $P R P$ is quasi-terminating and positively σ-confluent. An algebraic rewriting system on \mathcal{P} is locally confluent if and only if its critical branchings are confluent.

As an immediate consequence, we deduce the following usual critical branching lemma.

5.1.3. **Corollary.** Let \mathcal{P} be an algebraic polygraph modulo with a full positive strategy. Any algebraic rewriting system on \mathcal{P} is locally confluent if and only if all its critical branchings are confluent.

5.2. **Examples**

5.2.1. **Critical branching lemma for string rewriting systems.** When Mon is the cartesian 2-polygraph presenting the theory \mathbb{M} of monoids given in (2.2.4), Theorem 5.1.2 corresponds to critical branching lemma for string rewriting systems as proved by Nivat, [20]. In that case, the choice of positive strategy σ making all the 2-cells in S^X be σ-positive implies that we do not need the additional quasi-termination and positive σ-confluence property, as explained in Remark 4.2.5

5.2.2. **Critical branching lemma for linear rewriting systems.** Suppose that P contains the cartesian 2-polygraph Mod^c presenting the theory of modules over a commutative ring defined in Section 2.2.15. If P'_2 is the 2-polygraph $AC^+ \cup AC$, and P'_1 is Mod^c, then Theorem 5.1.2 corresponds to the critical branching lemma for linear rewriting systems proved in [6, Theorem 4.3.2]. Indeed, given an algebraic polygraph modulo (P, Q, R, S) with the σ-strategy of normal forms modulo AC defined in 3.1.10, the positivity confluence of S with respect to σ implies the factorization property of $[6, \text{Lemma 3.1.3}]$, stating that any rewriting step τ of S can be decomposed as $\tau = \overline{b} \tau^{-1}$ where \overline{b} and τ^{-1} are either rewriting steps of S^σ or identities, as pictured in the following diagram:
Note that if π is already a rewriting step of S^σ, this factorization is trivial. When π is in S but not in S^σ, that is π is a quotient of a non-σ-positive S-rewriting sequence, it states that π can be factorized using positive reductions.

Note that in that case, pR_p can never be terminating: indeed, because of the linear context, for any R-rule $\alpha: f \Rightarrow g$, we have a pR_p-rewriting step given by

$$g \equiv_p -f + (g + f) \frac{\longrightarrow}{-g + (g + f) \equiv_p f}$$

(5.2.3)

However, the quasi-termination assumption of pR_p is equivalent to the termination assumption of S^σ given in [6, Theorem 4.3.2]. Indeed, by definition an infinite rewriting path in S^σ comes from an infinite pR_p-rewriting path that is not created by a cycle of the form (5.2.3), since the rule $-\alpha + (g + f)$ above is not σ-positive.

References

REFERENCES

Cyrille Chenavier

Johannes Kepler University
Altenberger Straße 69
A-4040 Linz, Austria

cyrielle.chenavier@jku.at

24