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Algebraic polygraphs modulo

and linear rewriting

Cyrille Chenavier - Benjamin Dupont – Philippe Malbos

Abstract – Convergent rewriting systems on algebraic structures give methods to prove coherence

results and compute homological invariants of these structures. These methods are based on higher-

dimensional extensions of the critical pair lemma that characterizes local confluence from confluence

of critical pairs. The analysis of local confluence of rewriting systems on algebraic structures, such

as groups or linear algebras, is complicated because of the underlying algebraic axioms, and local

confluence properties require additional termination conditions. This article introduces the structure

of algebraic polygraph modulo that formalizes the interaction between the rules of the rewriting system

and the inherent algebraic axioms, and we show a critical pair lemma for algebraic polygraphs. We

deduce from this result a critical pair lemma for rewriting systems on algebraic structures specified

by rewriting systems convergent modulo associativity and commutativity axioms. As an illustration,

we explicit our constructions on linear rewriting systems.
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1. Introduction

1. Introduction

Completion procedures. The critical-pair completion (CPC) is an approach developed in the mid sixties

that combines completion procedures and the notion of critical pair [4, 23]. It originates from theorem

proving [22], polynomial ideal theory [3], and the word problem [13, 20]. This approach has found many

applications to solve algorithmic problems, see [4] for an historical account. In the mid eighties CPC has

found original and deep applications in algebra in order to solve coherence problems for monoids [8, 25],

or to compute homological invariants of associative algebras, [1], and monoids, [14, 24]. More recently,

higher-dimensional extensions of the critical-pair completion approach were used for the computation

of cofibrant replacements of algebraic and categorical structures [6, 7, 16]. All these constructions are

actually higher-dimensional extensions of the critical-pair completion approach, where the obstructions

in each dimension are formulated in terms of critical branchings. While generators and rules are in

dimension 1 and 2 respectively, the critical branchings describe 3-dimensional cocycles, and the 4-

dimensional cocycles are described by critical 3-branchings, that is the overlapping of a rule on a critical

branching. This generalizes in higher-dimensions, where for n > 4, the n-dimensional cocycles are

described by overlappings of a rule on a critical (n − 1)-branching. These constructions based on

critical-pair completion are known for monoids, small categories, and algebras over a field. However,

the extension of these methods to a wide range of algebraic structures is made difficult because of the

interaction between the rewriting rules and the inherent axioms of the algebraic structure. For this reason,

the higher-dimensional extensions of the critical-pair completion approach for a wide range of algebraic

structures, including groups, Lie rings, is still an open problem.

Critical branching lemma. One of the main tools to reach confluence in critical-pair completion

procedures for algebraic rewriting systems is the critical pair lemma, or critical branching lemma, by

Knuth-Bendix, [13], and Nivat, [20]. Nivat showed that the local confluence of a string rewriting

system is decidable, whether it is terminating or not. The proof of this result is based on classification

of the local branchings into orthogonal branchings, that involve two rules that do not overlap, and

overlapping branchings. A critical branching is a minimal overlapping application of two rules on the

same redex. When the orthogonal branchings are confluent, if all critical branchings are confluent, then

local confluence holds. Thus, the main argument to achieve critical branching lemma is to prove that

orthogonal and overlapping branchings are confluent. For string and term rewriting systems, orthogonal

branchings are always confluent, and confluence of critical branchings implies confluence of overlapping

branchings. The situation is more complicated for rewriting systems on a linear structure.

The well known approaches of rewriting in the linear context consist in orienting the rules with

respect to an ambiant monomial order, and critical branching lemma is well known in this context.

However, some algebras do not admit any higher-dimensional finite convergent presentation on a fixed

set of generators with respect to a monomial order, [6]. Due to algebraic perspectives, an approach of

linear rewriting where the orientation of rules does not depend of a monomial order was introduced

in [6]. However, in that setting there are two conditions to guarantee a critical branching lemma, namely

termination and positivity of reductions. A positive reduction for a linear rewriting system, as defined

in [6], is the application of a reduction rule on a monomial that does not appear in the polynomial context.

For instance, consider the linear rewriting system on an associative algebra over a field K given in [6]

defined by the following two rules

α : xy → xz, β : zt → 2yt.

2



1. Introduction

It has no critical branching, but it has the following non-confluent additive branching:

4xyt
4αt

// 4xzt
4xβ

// · · ·

2xzt

2xβ
00

xzt+ xβ
++

xyt+ xzt

αt+ xzt
00

xyt+ xβ
..

= xzt+ 2xyt

3xyt αt+ 2xyt

33

3αt
.. 3xzt

3xβ

// 6xyt
6αt

// · · ·

The dotted arrows correspond to non positive reductions. This example illustrates that the lack of

termination is an obstruction to confluence of orthogonal branchings. Indeed, the critical branching

lemma for linear 2-dimensional polygraphs states that a terminating left-monomial linear polygraph is

locally confluent if and only if all its critical branchings are confluent, [6, Theorem 4.2.1]

Rewriting modulo. Rewriting modulo appears naturally in algebraic rewriting when studied reductions

are defined modulo the axioms of an ambiant algebraic or categorical structure, eg. rewriting in commu-

tative, groupoidal, linear, pivotal, weak structures. Furthermore, rewriting modulo facilitates the analysis

of confluence. In particular, rewriting modulo a set of relations makes the property of confluence easier

to prove. Indeed, the family of critical branchings that should be considered in the analysis of conflu-

ence is reduced, and the non-orientation of a part of the relations allows more flexibility when reaching

confluence.

The most naive approach of rewriting modulo is to consider the rewriting system PRP consisting in

rewriting on congruence classes modulo the axioms P. This approach works for some equational theories,

such as associative and commutative theories. However, it appears inefficient in general for the analysis

of confluence. Indeed, the reducibility of an equivalence class needs to explore all the class, hence it

requires all equivalence classes to be finite. Another approach of rewriting modulo has been considered

by Huet in [9], where rewriting sequences involve only oriented rules and no equivalence steps, and the

confluence property is formulated modulo equivalence. However, for algebraic rewriting systems such

rewriting modulo is too restrictive for computations, see [12]. Peterson and Stickel introduced in [21]

an extension of Knuth-Bendix’s completion procedure, [13], to reach confluence of a rewriting system

modulo an equational theory, for which a finite, complete unification algorithm is known. They applied

their procedure to rewriting systems modulo axioms of associativity and commutativity, in order to rewrite

in free commutative groups, commutative unitary rings, and distributive lattices. Jouannaud and Kirchner

enlarged this approach in [11] with the definition of rewriting properties for any rewriting system modulo S

such that R ⊆ S ⊆ PRP. They also proved a critical branching lemma and developed a completion

procedure for rewriting systems modulo PR, whose one-step reductions consist in application of a rule in

R using P-matching. Their completion procedure is based on a finite P-unification algorithm. Bachmair

and Dershowitz in [2] developed a generalization of Jouannaud-Kirchner’s completion procedure using

inference rules. Several other approaches have also been studied for term rewriting systems modulo to

deal with various equational theories, see [18, 27].

Algebraic polygraphs. In this article, we introduce a categorical model for rewriting in algebraic

structures which formalizes the interaction between the rules of the rewriting system and the inherent

axioms of the algebraic structure. In Section 2, we recall the notion of cartesian 2-dimensional polygraph
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2. Preliminaries on algebraic theories

introduced in [17], corresponding to rewriting systems that present a Lawvere algebraic theory. A

cartesian 2-polygraph defines a categorical interpretation of term rewriting systems. It is defined by an

equational signature (P0, P1) and a cellular extension of the free algebraic theory P×

1 on (P0, P1). One

defines in Section 3 the structure of algebraic polygraph as a data made of a cartesian 2-polygraph P and

a set Q of generating ground 1-cells and a cellular extension R on the ground 1-cells.

An algebraic critical branching lemma. In this work we introduce an algebraic setting for the formu-

lation of the critical branching lemma. We define the structure of algebraic polygraph modulo which

formalizes the interaction between the rules of the rewriting system and the inherent axioms of the alge-

braic structure. Then we prove a formulation of the Newman lemma modulo, [19], for quasi-terminating

algebraic polygraphs modulo:

Theorem 4.1.4. Let P be a quasi-terminating algebraic polygraph modulo, and σ be a

positive strategy on P. If P is locally σ-confluent modulo, then it is σ-confluent modulo.

We show a critical branching lemma for algebraic polygraphs modulo. We deduce from this result a

critical branching lemma for rewriting systems on algebraic structures whose axioms are specified by term

rewriting systems satisfying appropriate convergence relations modulo associativity and commutativity.

Finally, we explicit our results in linear rewriting, and explain why termination is a necessary condition

to characterize local confluence in that case.

Theorem 5.1.2. Let P = (P,Q, R, S) be an algebraic polygraph modulo with a positive

strategy σ such that PRP is quasi-terminating and positively σ-confluent. An algebraic

rewriting system on P is locally confluent if and only if its critical branchings are confluent.

Organisation of the article. In Section 2, we recall the categorical structure of cartesian polygraph

introduced in [17], and we define progressive examples of cartesian 2-polygraphs presenting various

algebraic theories, until the main cartesian 2-polygraph presenting the theory of modules over a commu-

tative ring. In Section 3.1, we introduce the notion of algebraic polygraph modulo, and their rewriting

properties. We define the notion of positive reduction with respect to an algebraic polygraph allowing to

define algebraic rewriting systems, whose rules are quotients of the positive reductions. In Section 4, we

present confluence property with respect to a positive strategy following [5] and we prove the Newman

confluence lemma and the critical branching lemma in this setting. Finally, last section states the algebraic

critical branching lemma, that we apply to string rewriting and linear rewriting.

2. Preliminaries on algebraic theories

In section we recall the notion of algebraic theory from [15] and of cartesian polygraph introduced in

[17].

2.1. Cartesian polygraphs and theories

4



2.1. Cartesian polygraphs and theories

2.1.1. Signature and terms. A signature is defined by a set P0 of sorts and a 1-polygraph, i.e. a directed

graph,

P∗
0 P1

∂+0

oo

∂−0
oo

on the free monoid P∗
0 over P0. Elements of P1 are called operations. For an operation α in P1, its source

∂−0 (α) is called its arity and its target ∂+0 (α) its coarity. For sorts s1, . . . , sk, we denote s = s1 . . . sk
their product in the free monoid P∗

0 . We denote |s| = k the length of s and the sort si in s will be denoted

by si.

Recall from [15] that an (multityped Lawvere algebraic) theory for a given set of sorts P0 is a category

with finite products T together with a map ι from P0 and with values in its set of 0-cells T0, and such that

every 0-cell in T0 is isomorphic to a finite product of 0-cells in ι(P0). We denote by P×

1 the free theory

generated by a signature (P0, P1) whose products on 0-cells of P×

1 are induced by products of sorts in P∗
0 ,

and the 1-cells of P×

1 are terms over P1 defined by induction as follows:

i) the canonical projections x
s
i : s → si, for 1 6 i 6 |s| are terms, called variables,

ii) for any terms f : s → r and f ′ : s → r ′ in P×

1 , there exists a unique 1-cell 〈f, f ′〉 : s → rr ′, called

pairing of terms f, f ′, such that xrr
′

1 〈f, f ′〉 = f and xrr
′

2 〈f, f ′〉 = f ′,

iii) for every operation ϕ : r → s in P1, s in S∗0 and terms fi : s → ri in P×

1 for 1 6 i 6 |r|, there is a

term ϕ〈f1, . . . , f|r|〉 : s → s.

We define the size of a term f as the minimal number, denoted by |f|, of operations used to its definition.

For any 0-cells s, s ′ in P×

1 , we denote by 1s the identity 1-cell on a 0-cell s, we denote by εs the eraser

1-cell defined as the unique1-cell from s to the terminal 0-cell 0, and we denote byδs = 〈1s, 1s〉 : s → s×s

the duplicator 1-cell. We denote respectively by x
ss ′

s : ss ′ → s (resp. x
ss ′

s ′ : ss ′ → s ′) the canonical

projections. Finally, we denote by τs,s ′ : ss
′ → s ′s the exchange 1-cell defined by τs,s ′ = 〈x

ss ′

s ′ , x
ss ′

s 〉.

2.1.2. Two-dimensional cartesian polygraph. A cartesian 2-polygraph is a data (P0, P1, P2) made of

i) a signature (P0, P1),

ii) a cellular extension of the free theory P×

1 , that is a set P2 equipped with two maps

P×

1 P2
∂+1

oo

∂−1
oo

satisfying the following globular conditions ∂
µ
0 ◦ ∂

−
1 = ∂

µ
0 ◦ ∂+1 , for µ ∈ {−,+}.

An element α of P2 is called a rule with source ∂−(α) and target ∂+(α) that we denote respectively

by α− and α+ so that such a rule is denoted by α : α− ⇒ α+. The globular conditions impose that such

a rule f ⇒ g relates terms of same arity s and same coarity r, and it will be pictured as follows:

s

f
��

g

@@
α�� r
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2. Preliminaries on algebraic theories

2.1.3. Two-dimensional theories. Recall that a 2-dimensional theory, or 2-theory for a given set of sorts

P0 is a 2-category with the additional following cartesian structure:

i) it has a terminal 0-cell, that is for every 0-cell s there exists a unique 1-cell es : s → 1, called eraser,

and the identity 2-cell is the unique endo-2-cell on an eraser,

ii) it has products, that is for all 0-cells r, r ′ there is a product 0-cell rr ′ and 1-cells x
rr ′

r : rr ′ → r and

x
rr ′

r ′ → r ′ satisfying the two following conditions:

− for any 1-cells f1 : s → r and f2 : s → r ′, there exists a unique pairing 1-cell 〈f1, f2〉 : s → rr ′,

such that x
rr ′

r 〈f1, f2〉 = f1, and x
rr ′

r ′ 〈f1, f2〉 = f2,

− for any 2-cells α1 : f1 ⇒ f ′1, α2 : f2 ⇒ f ′2, there exists a unique 2-cell 〈α1, α2〉 : 〈f1, f2〉 ⇒
〈f ′1, f

′
2〉.

We refer the reader to [17] for a detailed construction.

2.1.4. Free 2-theories. We denote by P×

2 the free 2-theory generated by a cartesian 2-polygraph

(P0, P1, P2). We briefly recall its construction and refer the reader to [17] for details. The underly-

ing 1-category of P×

2 is the free theory P×

1 generated by the signature (P0, P1). Its 2-cells are defined

inductively as follows:

i) for any 2-cell α : u ⇒ v in P2 and 1-cell w in P×

1 , there is a 2-cell αw : u ⋆0 w ⇒ v ⋆0 w in P×

2 ,

ii) for any 2-cells α, β in P×

2 , there is a 2-cell 〈α,β〉 : 〈α−, β−〉 ⇒ 〈α+, β+〉 in P×

2 ,

iii) for any 2-cell α in P×

2 , there are 2-cells in P×

2 of the form A[α] : A[α−] ⇒ A[α+] where A[�]

denotes an algebraic context of the form:

A[�] := f〈idf1 , . . . ,�i, . . . , idfk〉 : s → r,

where f1, . . . , fk : s → ri and f : r → r are 1-cells of P×

1 , and �i is the i-th element of the pairing.

iv) these 2-cells are submitted to the following exchange relations

f〈f1, ..., fi, ..., β, ..., fk〉⋆1f〈f1, α, ..., fj, ..., fk〉 = f〈f1, ..., α, ..., fj, ..., fk〉⋆1f〈f1, ..., fi, ..., β, ..., fk〉

where fi : s → ri and f : r → r are 1-cells in P×

1 , α and β are 2-cells in P2. We will denote by

〈f1, ..., α, ..., β, ..., fk〉 the 2-cell defined above.

v) The ⋆1-composition of 2-cells in P2 is given by sequential composition.

The source and target maps ∂±1 extend to P×

2 and we denote a− and a+ for ∂−1 (a) and ∂+1 (a).

2.1.5. Ground terms. Let (P0, P1, P2) be a cartesian 2-polygraph. A ground term in the free theory P×

1

is a term with source 0. A 2-cell a in the free theory P×

2 is called ground when a− is a ground term.

Finally, an algebraic context A[�] = f〈f1, . . . ,�i, . . . f|r|〉 is called ground when the fi are ground terms.

6



2.2. Algebraic examples

2.1.6. Free (2, 1)-theory. A free (2, 1)-theory is a theory T whose any 2-cell is invertible with respect

the ⋆1-composition. That is, any 2-cell α of T2 has an inverse α− : α+ ⇒ α− satisfying the relations

α ⋆1 α
− = 1α−

and α−
⋆1 α = 1α+

.

We denote by P⊤
2 the free (2, 1)-theory generated by a cartesian 2-polygraph (P0, P1, P2). The 2-cells

of the (2, 1)-theory P⊤
2 corresponds to elements of the equivalence relation generated by P2.

2.1.7. Rewriting properties of cartesian polygraphs. Let P be a cartesian 2-polygraph. The algebraic

contexts of the cartesian 2-polygraph P can be composed, and we will denote by AA ′[�] := A[A ′[�]].

In the same way, one defines a multi-context (of arity 2) as

B[�i,�j] := f〈idf1 , . . . ,�i, . . . ,�j, . . . , idfk〉,

where the fk : s → rk and f : r → r are 1-cells in P×

1 (X), and �i (resp. �j) has to be filled by a 1-cell

gi : s → ri (resp. gj : s → rj).

A 2-cell of the form A[αw] where A is an algebraic context, w is a 1-cell in P×

1 and α is a rule in

P2 is called a rewriting step of P. A rewriting path is a non-identity 2-cell of P×

2 . Such a 2-cell can be

decomposed as a ⋆1-composition of rewriting steps:

α = A1[α1] ⋆1 A2[α2] ⋆1 . . . Ak[αk],

The length of a 2-cell α in P×

1 , denoted by ℓ(f), is the minimal number of rewriting steps in any

⋆1-decomposition of α. In particular, a rewriting step is a 2-cell of length 1.

2.1.8. Notations. For the sake of readability, we will denote terms and rewriting rules of cartesian

polygraphs as in term rewriting theory, [26]. The canonical projections x
s
i : s → si, for 1 6 i 6 |s|

are identified to "variables" x1, . . . , x|s|. And a 1-cell f : s → r is denoted by f(x1, . . . , x|s|), and a rule

α : f ⇒ g with f, g : s → r will be denoted by

αx1,...,x|s| : f(x1, . . . , x|s|) ⇒ g(x1, . . . , x|s|).

2.2. Algebraic examples

2.2.1. Associative and commutative magmas. Denote by Mag the cartesian 2-polygraph whose sig-

nature has a unique sort denoted by 1 and an unique generating 1-cell µ : 2 → 1 and an empty set of

generating 2-cells. Denote by Ass the cartesian 2-polygraph such that Ass1 = Mag1 and with an unique

generating 2-cell:

Aµ
x,y,z : µ(µ(x, y), z) ⇒ µ(x, µ(y, z)) (2.2.2)

Denote by AC
µ (or simply AC when there is no ambiguity) the cartesian 2-polygraph such that

AC1 = Mag1, and AC2 = Ass2 ∪ {C} with

Cµ : µ(x, y) ⇒ µ(y, x) (2.2.3)

that correspond to the rule Cµ : µτ ⇒ µ, where τ is the exchanging operator defined in Section 2.1.1.

Note that the cartesian 2-polygraph AC is not terminating, and that the rule C can not be oriented in a

terminating way. As a consequence, in the sequel when P2 is defined by a set of relations together with

relations corresponding to commutativity and associativity axioms for some operation µ, we will chose

to work modulo the polygraphs AC
µ.
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2. Preliminaries on algebraic theories

2.2.4. Monoids. We define the cartesian polygraph Mon whose signature has a unique sort 1, Mon1 =

Ass1 ∪ {e : 0 → 1}, and Mon2 = Mag2 ∪ {E
µ
l , E

µ
r } with

E
µ
l : µ(e, x) ⇒ x Eµ

r : µ(x, e) ⇒ x. (2.2.5)

Then the theory P is the theory of monoids that we will denote by M. We also define the cartesian

polygraph CMon by CMoni = Moni for 0 6 i 6 1 and CMon2 = Mon2 ∪ {Cµ} where Cµ is the

commutativity 2-cell defined in (2.2.3).

2.2.6. Groups. We define the cartesian polygraph Grp whose signature has a unique sort 1, Grp1 =

Mon1 ∪ {ι : 1 → 1}, and Grp2 = Mon2 ∪ {I
µ
l , I

µ
r } with

I
µ,ι
l : µ(ι(x), x) ⇒ e Iµ,ιr : µ(x, ι(x)) ⇒ e (2.2.7)

Note that following [10], the following set of generating 2-cells gives a cartesian polygrah that is

Tietze equivalent to Grp (that is it also presents the theory Grp) and convergent modulo the cartesian

polygraph Ass:

G
µ,ι
1 : ι(e) ⇒ e G

µ,ι
2 : ι(ι(x)) ⇒ x G

µ,ι
3 : ι(µ(x, y)) ⇒ µ(ι(y), ι(x)) (2.2.8)

G
µ,ι
4 : µ(x, µ(ι(x), y)) ⇒ y G

µ,ι
5 : µ(ι(x), µ(x, y)) ⇒ y (2.2.9)

2.2.10. Abelian groups. Consider the cartesian polygraph Ab whose signature has a unique sort 1,

Ab1 = Grp1 and Ab2 = Grp2 ∪ {C} where C is the commutativity generating 2-cell defined in (2.2.3).

2.2.11. Rings. Consider the cartesian polygraph Ring whose signature has a unique sort 1, Ring1 =

Ab1

∐
Mon1 with the following notations:

Ab1 = {+ : 2 → 1, 0 : 0 → 1, − : 1 → 1}, Mon1 = {· : 2 → 1, 1 : 0 → 1},

and Ring2 = Ab2 ∪ Mon2 ∪ {Dl,Dr}, where

Dl : x · (y+ z) ⇒ x · y+ x · z Dr : (y+ z) · x ⇒ y · x+ z · x (2.2.12)

The cartesian 2-polygraph CRing (commutative rings) is the cartesian 2-polygraph whose signature

has a unique sort 1, CRing = Ring1 with the same notations as above, and CRing2 = Ring2∪ {C·} where

C· is the commutativity generating 2-cell

C· : ·(x, y) ⇒ ·(y, x) (2.2.13)

Following [21, Example 12.2], the following set of generating 2-cells gives a cartesian polygraph that

is Tietze equivalent to CRing, and is convergent modulo AC:

E+
r , I

+,−
r , G+,−

1 , G+,−
2 , G+,−

3 , Dr, R1 : x · 0 ⇒ 0, R2 : x · (−y) ⇒ −(x · y), E·
r (2.2.14)

8



3. Algebraic polygraphs modulo

2.2.15. Modules over a commutative ring. The cartesian 2-polygraph Mod with Mod0 = {m, r}, and

Mod1 = CRing1 ∪ Ab1 ∪ {η : rm → m} with the following notations

i) CRing0 = {r}, CRing1 = {+ : rr → r, 0 : 0 → r, − : r → r, · : rr → r, 1 : 0 → r};

ii) Ab0 = {m}, Ab1 = {⊕ : mm → m, 0⊕ : 0 → m, ι : m → m};

iii) If there is no possible confusion, we will denoteη(λ, x) = λ.x forλ and x of type r and m respectively.

and Mod2 = CRing2 ∪ Ab2 ∪ {M1,M2,M3,M4} with

M1 : λ.(µ.x) ⇒ (λ · µ).x M2 : 1.x ⇒ x (2.2.16)

M3 : λ.(x⊕ y) ⇒ (λ.x)⊕ (λ.y) M4 : λ.x⊕ µ.x ⇒ (λ + µ).x (2.2.17)

Following [10], the 2-cells in (2.2.14) together with the following set of 2-cells

M1, M2, M3, M4, N1 : x⊕ 0⊕ ⇒ x, N2 : x⊕ (λ.x) ⇒ (1+ λ).x, (2.2.18)

N3 : x⊕ x ⇒ (1+ 1).x, N4 : x.0⊕ ⇒ 0⊕, N5 : 0.x ⇒ 0⊕, N6 : ι(x) ⇒ (−1).x (2.2.19)

gives a convergent presentation of the theory of modules over a commutative ring modulo AC
·
∐

AC
+,

which contains all the associativity and commutativity relations for the operations · and +. This presen-

tation can be summarized with the following set of generating 2-cells:

x+ 0 ⇒ x (ring1) x+ (−x) ⇒ 0 (ring2)

− 0 ⇒ 0 (ring3) − (−x) ⇒ x (ring4)

− (x + y) ⇒ (−x) + (−y) (ring5) x · (y + z) ⇒ x · y+ x · z (ring6)

x · 0 ⇒ 0 (ring7) x · (−y) ⇒ −(x · y) (ring8)

1 · x ⇒ x (ring9) a⊕ 0⊕ ⇒ a (mod1)

x.(y.a) ⇒ (x · y).a (mod2) 1.a ⇒ a (mod3)

x.a⊕ y.a ⇒ (x+ y).a (mod4) x.(a⊕ b) ⇒ (x.a)⊕ (y.b) (mod5)

a⊕ (r.a) ⇒ (1+ r).a (mod6) a⊕ a ⇒ (1+ 1).a (mod7)

x.0⊕ ⇒ 0⊕ (mod8) 0.a ⇒ 0⊕ (mod9)

I(a) ⇒ (−1).a (mod10)

Let us denote by Mod
′
2 the set containing the 2-cells (2.2.14), (2.2.18) and (2.2.19), and denote by Mod

c

the cartesian 2-polygraph (Mod0,Mod1,Mod
′
2 ∪ AC

· ∪ AC
+). It also presents the theory of modules

over a commutative ring.

3. Algebraic polygraphs modulo

In this section we introduce the notion of algebraic polygraph as a cellular extension on closed terms. In

Subsection 3.2, we introduce the notion of algebraic polygraph modulo and refer the reader to [5] for a

categorical interpretation of the constructions given in this section.
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3. Algebraic polygraphs modulo

3.1. Algebraic polygraphs

3.1.1. Constants. Let (P0, P1) be a signature, and Q be a set of generating 1-cell (called constants)

with source 0 and target a sort in P0. We denote by P1〈Q〉 the set of ground terms of the free theory

(P1 ∪Q)×.

3.1.2. Algebraic polygraph. An algebraic polygraph is a data (P,Q, R) where,

i) P is a cartesian 2-polygraph,

ii) Q is a family of set of generating constants (Qs)s∈P0 ,

iii) R is a cellular extension of the set of ground terms P1〈Q〉.

Note that the cellular extension R is indexed by the sorts of P0, that is it defines a family (Fs, Rs)s∈P0 of

1-polygraphs, where Fs = P1〈Q〉s.

3.1.3. Example. Let Mon2 be the cartesian 2-polygraph defined in (2.2.4). One defines an algebraic

polygraph by setting:

Q = {s, t : 0 → 1}, R = { α : (s · t) · s ⇒ t · (s · t) }. (3.1.4)

3.1.5. Rewriting in algebraic prolygraphs. Let P = (P,Q, R) be an algebraic polygraph, and let

α : f ⇒ g be a ground 2-cell in R. A R-rewriting step is a ground 2-cell in the free 2-theory R× on

(P1 ∪Q,R) of the form

A[α] : A[f] ⇒ A[g],

where A[�] is a ground context. It can be depicted by the following diagram:

r

0

f

. . . . . .

A

a⇒
r

0

g

. . . . . .

A

A R-rewriting path is a finite or infinite sequence a = a1 ⋆1 a2 ⋆1 . . . ⋆1 ak ⋆1 . . . of R-rewriting steps

ai. The length of 2-cell a in R×, denoted by ℓ(a), is the minimal number of R-rewriting steps needed to

write a as a composition as above

3.1.6. Example. Consider the rule α defined in (3.1.4). And the algebraic contexte A[�] = (s · �) · t,
we have the rewriting step

A[α] : (s · ((s · t) · s)) · t ⇒ (s · (t · (s · t)) · t.
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3.1. Algebraic polygraphs

3.1.7. Algebraic polygraph of axioms. The cellular extension P2 defined on P×

1 extends to a cellular

extension on the free 1-theory (P1 ∪Q)× denoted by P̂2, whose source and target maps are defined in

such a way that the following diagram commutes

P2〈Q〉
� _

��
%%❑

❑❑❑
❑❑❑

❑❑❑
❑❑❑

❑❑❑
❑❑❑

%%❑
❑❑❑

❑❑❑
❑❑❑

❑❑❑
❑❑❑

❑❑❑

P2

∂−1
//

∂+1

// P×

1
� � // (P1 ∪Q)×

and denote by P2〈Q〉 (resp P2〈Q〉⊤) the set of ground 2-cells in P̂×

2 (resp. P̂⊤
2 ). The set P2〈Q〉 thus

contains the groundified 2-cells of P2. The data (P,Q, P2〈Q〉) defines an algebraic polygraph, that we call

the algebraic polygraph of axioms. We say that two terms f and g in P1〈Q〉 are algebraically equivalent

with respect to P, denoted by f ≡P2 g, if there exists a ground 2-cell in P2〈Q〉⊤ from f to g.

We will denote by P〈Q〉 the quotient of the full sub-category P1〈Q〉 of P1 ∪Q× by the congruence

generated by the 2-cells in P2〈Q〉. Namely, two terms f and g that are related by a 2-cell in P2〈Q〉⊤ are

identified in the quotient.

Note that the algebraic polygraph (P,Q, P2〈Q〉) shares the rewriting properties of the cartesian 2-

polygraph P. In particular, if P is terminating (resp. quasi-terminating, confluent, confluent modulo P ′),

then (P,Q, P2〈Q〉) is terminating (resp. quasi-terminating, confluent, confluent modulo (P ′,Q, P ′
2〈Q〉)).

3.1.8. Example. In the example of the algebraic polygraph defined in (3.1.4), the set P2〈Q〉 is defined

by the associativity relations on ground terms on the constants s and t. For instance, P2〈Q〉 contains the

following ground 2-cell:

As,t,s : (s · t) · s ⇒ s · (t · s).

3.1.9. Positivity. Denote π : P1〈Q〉 → P〈Q〉 the canonical projection, and let σ : P〈Q〉 → Set be a

map such that for any f ∈ P〈Q〉, σ(f) is a chosen non-empty subset of π−1(f). Such a map is called a

positive strategy with respect to (P,Q). A rewriting step a in R× is called σ-positive if a− belongs to

σ(a−). A rewriting path a1 ⋆1 . . . ⋆1 ak in R× is called σ-positive if any of its rewriting steps is positive.

3.1.10. Strategies to define positivity. We introduce positivity strategies that depend on the inherent

cartesian 2-polygraph P. Suppose that P is such that P2 = P ′
2 ∪ P ′′

2 , with P ′
2 confluent modulo P ′′

2 . For

every 1-cell f in P〈Q〉, we set σ(f) = NF(f, P ′
2 mod P ′′

2 ), where f ∈ π−1(f), the set of normal forms of

f for P ′
2 modulo P ′′

2 . Note that this is well-defined following [9, Lemma 2.6], since if f, f ′ ∈ π−1(f), then

NF(f, P ′
2 mod P"2) ≡P"2 NF(f ′, P ′

2 mod P"2).

In many algebraic situations, we will set Ass ⊆ P ′′
2 . In particular, in the case of SRS, P ′

2 will be

empty and P ′′
2 = Ass. In that case, any term in P1〈Q〉 is a normal form for the empty polygraph modulo

Ass, and thus the positive strategy consists in taking all the fiber. In the case of LRS, P ′′
2 will be AC, the

algebraic polygraph corresponding to associativity and commutativity relations of the operations, and P ′
2

will be the convergent presentation of RMod modulo AC given in Section 2.2.15.
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3. Algebraic polygraphs modulo

3.2. Algebraic polygraphs modulo

3.2.1. Algebraic polygraph modulo. Given an algebraic polygraphP = (P,Q, R) and a positive strategy

σ on P, one denotes by PRP the cellular extension

P1〈Q〉 PRPoo
oo

made of triple (e, a, e ′), where e and e ′ are ground 2-cells in P2〈Q〉⊤ and a is a R-rewriting step. Such

a triple will be denoted by e ⋆ a ⋆ e ′, called a PRP-rule, and pictured by

0

e−

��

e+
&&

e ′
−

88

e ′
+

FF
s

e�� ✣✣
✣
✣✣
✣

a
��

e ′
��
✤ ✤
✤
✤✤
✤

We refer the reader to [5] for a detailed construction of the cellular extension PRP. Such a rule is called

σ-positive if a is a σ-positive R-rewriting step. An algebraic polygraph modulo is a data (P,Q, R, S)

made of

i) an algebraic polygraph (P,Q, R),

ii) a cellular extension S of P1〈Q〉 such that R ⊆ S ⊆ PRP.

Note that the data (P,Q, S) defines an algebraic polygraph modulo.

3.2.2. Example. Let us consider the algebraic polygraph (P,Q, R) defined in (3.1.4), then the following

composition gives a rewriting step in PRP:

(s · (s · (t · s))) · t ≡P2 (s · ((s · t) · s)) · t
A[α]
⇒ (s · (t · (s · t)) · t ≡P2 ((s · t) · (s · t)) · t.

3.2.3. Termination properties. An algebraic polygraph P = (P,Q, R) is called

i) terminating if there is no infinite rewriting sequence for P, that is there is no sequence (fn)∈N of

1-cells of P1〈Q〉 such that for each n ∈ N, there is a rewriting step fn → fn+1,

ii) quasi-terminating if for each sequence (fn)∈N of 1-cells of P1〈Q〉 such that for each n ∈ N, there

is a rewriting step fn → fn+1, the sequence (fn)∈N contains an infinite number of occurrences of

same 1-cell,

iii) algebraically terminating if for each sequence (fn)∈N of 1-cells of P1〈Q〉 such that for each n ∈ N,

there is a rewriting step fn → fn+1, the sequence (fn)∈N contains an infinite number of occurrences

of same 1-cell in context, that is, there exist k, l ∈ N, such that fk+l = A[fk] where A is a possibly

empty ground context of P,

12



3.3. Algebraic rewriting systems

iv) exponentiation free if there is no rewriting path with source a 1-cell f of P1〈Q〉 and target C[f],

where A is a nontrivial ground context of P.

Any quasi-terminating polygraph is algebraically terminating. But the converse implication is false

in general, indeed the rewriting system a → a · a is algebraically terminating, but not quasi-terminating.

In fact, it is not exponentiation free either. One proves that both properties algebraically terminating and

exponentiation free implies the quasi-terminating property.

An algebraic polygraph modulo (P,Q, R, S) is called terminating (resp. quasi-terminating) if the

algebraic polygraph (P,Q, S) is terminating (resp. quasi-terminating). Note that an algebraic polygraph

is a special case of algebraic polygraph modulo when S = R. In the sequel we will consider only

polygraphs modulo.

3.2.4. Quasi-normal forms. Let P = (P,Q, R, S) be an algebraic polygraph modulo. A 1-cell f of

P1〈Q〉 is called a quasi-irreducible if for any S-rewriting step f → g, there exists a S-rewriting sequence

from g to f. A quasi-normal form (with respect to P) of a 1-cell f in P1〈Q〉 is a quasi-irreducible 1-cell f̃

of P1〈Q〉 such that there exists a S-rewriting sequence from f to f̃.

When the algebraic polygraph modulo P is quasi-terminating, any 1-cell f of P1〈Q〉 admits at least a

quasi-normal. Such a quasi-normal is neither S-irreducible nor unique in general. A quasi-normal form

strategy is a map

s : P1〈Q〉 → P1〈Q〉

sending a 1-cell f on a chosen quasi-normal f̃. We define a map

d : P1〈Q〉 → N

sending a 1-cell f to

d(f) = min{ l(a) | a is a PRP-rewriting path from f to f̃ },

counting the distance from f to f̃.

3.3. Algebraic rewriting systems

3.3.1. Algebraic rewriting system. Note that the cellular extension S defined on P1〈Q〉 extends to a

cellular extension of P〈Q〉, with source and target maps defined respectively by ∂
−
1 := π ◦ ∂−1 and

∂
+
1 := π ◦ ∂+1 . An algebraic rewriting system on an algebraic polygraph modulo (P,Q, R, S) with a

positive strategy σ is a cellular extension S of P〈Q〉 defined in such a way that the following diagram

commutes

S

∂
−
1

��✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂

∂
+
1

��✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂

π ′

��

P〈Q〉 Soo
oo
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4. Confluence in algebraic polygraphs modulo

where the map π ′ assigns to a S-rule e⋆a⋆e ′ an element a in S with source a− and target a+. Explicitly,

S = {a : a− ⇒ a+ | e ⋆ a ⋆ e ′ ∈ S}.

Note that S = R for any R ⊆ S ⊆ PRP. Let us consider the subset S
σ

of S defined by S
σ

= {a : a− ⇒
a+ | a is a σ-positive S-rule}.

A S-rewriting step (resp. a S
σ
-rewriting step) is the quotient of a S-rewriting step (resp. σ-positive

rewriting step) by the canonical projection π, that is a 2-cell of the form C[a] : C[a−] ⇒ C[a+], where

C is a ground context of P1〈Q〉 and C[a] is a S-rewriting step (resp. σ-positive S-rewriting step). A

S-rewriting path is a sequence of S-rewriting steps.

3.3.2. Example: string rewriting systems. A SRS can be deduced as a quotient algebraic polygraph

as follows. We consider an algebraic polygraph (Mon,Q, R, S), where Mon is the cartesian polygraph

defined in 2.2.4. The set of constants Q is the set of generating 1-cells of the SRS, and R corresponds to

fibrations of rules of the SRS on the fibers modulo associativity.

For instance, consider the algebraic polygraph defined in (3.1.4). Then by quotient, we obtain the

string rewriting system

〈s, t | sts ⇒ tst 〉

that presents the monoid B+
3 of braids on 3 strands.

3.3.3. Example: linear rewriting systems. A linear rewriting system (LRS) is an algebraic rewriting

system on an algebraic polygraph modulo (P,Q, R, S) such that Mod
c ⊆ P, where Mod

c is the cartesian

2-polygraph presenting the theory of modules over a commutative ring defined in Section 2.2.15.

4. Confluence in algebraic polygraphs modulo

In this section we present confluence properties of algebraic polygraphs modulo with fixed positive

strategies.

4.1. Confluence modulo with respect to a positive strategy

4.1.1. Branchings in algebraic polygraphs modulo. Let P = (P,Q, R, S) be an algebraic polygraph

modulo and σ a positive strategy on P. A σ-branching of (P,Q, R, S) is a triple (a, e, b) where f and

g are σ-positive 2-cells of S× and e is a 1-cell of P2〈Q〉⊤ such that e− = a− and e+ = b−. Such a

σ-branching is depicted as follows

u
a

//

e
��

u ′

v
b

// v ′
.

Note that the 2-cells are represented by simple arrows in confluence diagrams for better readability in

the diagrams in the sequel. The 2-cell b (resp. a) can be an identity 2-cell of S×, and in that case

the σ-branching is of the form (a, e) (resp. (e, b)). The source of such a σ-branching is the pair (f, f)

where f = a− = e− (resp. f = b− = e+). The 2-cell e in P2〈Q〉⊤ can also be trivial, and in that
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4.1. Confluence modulo with respect to a positive strategy

case the σ-branching modulo is a regular σ-branching (a, b). We denote by (u,u) its source, where

u = a− = b−.

Such a σ-branching is σ-confluent modulo if there exist σ-positive 2-cells a ′ and b ′ in S× and a 2-cell

e ′ of P2〈Q〉⊤ as follows:

f
a

//

e
��

f ′
a ′

// h

e ′
��

g
b

// g ′

b ′
// h ′

We say that the triple (a ′, e ′, b ′) is a σ-confluence modulo of the σ-branching modulo (a, e, b), and

that the pair of terms (f, g) is the source of the σ-branching (a, e, b). Such a σ-branching is local if a is

a rewriting step of S, b is ℓ(e) + ℓ(b) = 1. Namely, it is either of the form (a, e) or (a, b).

We say that the algebraic polygraph modulo (P,Q, R, S) is confluent modulo (resp. locally confluent

modulo) if any σ-branching modulo (resp. local σ-branching modulo) is confluent modulo.

4.1.2. Remark. As noted in [2, Section 2], the algebraic polygraph R is the polygraph for which is the

most difficult to reach σ-confluence modulo. Indeed, if R is confluent modulo P, then any algebraic

polygraph modulo (P,Q, R, S) is confluent modulo P. For this reason, in many situation we relax by

proving σ-confluence of PR or PRP modulo P. They also noticed that when PRP is terminating, RP is

confluent modulo P if and only if PRP is confluent modulo P, and in that case RP defines the same set

of normal forms than PRP. As a consequence, we will either prove σ-confluence of RP and PRP in the

sequel, leading to the same quotient algebraic rewriting system. Note finally that when PR ⊆ S ⊆ PRP,

any local σ-branching modulo of the form (a, e) is trivially confluent modulo P via the σ-confluence

modulo (1a−
, e− ⋆1 a, 1a+

).

4.1.3. Double induction on the distance to the quasi-normal form. Consider the distance map d :

P1〈Q〉 → N defined in Section 3.2.4. We extend this distance on 1-cells of P1〈Q〉 to a distance on

σ-branchings modulo (a, e, b) by defining

d(a, e, b) := d(a−) + d(a+).

We then define a well-founded order ≺ on the set of σ-branchings of S modulo P by:

(a, e, b) ≺ (a ′, e ′, b ′) if d(a, e, b) < d(a ′, e ′, b ′).

The confluence proofs in the sequel will be made using induction on this order. Note that this corresponds

to a process of induction on sources of σ-branchings modulo, that is pairs of 1-cells in P1〈Q〉, with respect

to distance of the quasi-normal form with respect to PRP. This follows Huet’s double induction principle

in the terminating setting, based on induction on an auxiliary rewriting system constructed on pairs of

terms.

In this way, one proves for quasi-terminating algebraic polygraphs modulo the Newman lemma,

following Huet’s proof in the terminating setting.

4.1.4. Theorem (Newman lemma modulo for algebraic polygraphs modulo). Let P be a quasi-

terminating algebraic polygraph modulo, and σ be a positive strategy on P. If P is locally σ-confluent

modulo, then it is σ-confluent modulo.
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4. Confluence in algebraic polygraphs modulo

Proof. Assume that P is locally σ-confluent modulo P. We prove this result by induction on the well-

founded order ≺ on σ-branchings modulo defined in 4.1.3. Let us pick a σ-branching modulo (a, e, b)

of P, and assume that for any σ-branching modulo (a ′, e ′, b ′) such that (a, e, b) ≺ (a ′, e ′, b ′), the

σ-branching modulo (a ′, e ′, b ′) is confluent modulo P. Let us prove this results in two steps.

Step 1: We prove that any σ-branching modulo (a, e), where a is a S-rewriting step and e is a 2-cell in

P2〈Q〉⊤ is σ-confluent modulo. Let us denote by u the 1-cell a−, so that (a, e) is a σ-branching modulo

of source (f, f). If f is S-irreducible, then a is an identity 2-cell, and the σ-branching is trivially confluent.

We then suppose that a is not an identity, and proceed by induction on ℓ(e) > 1. If ℓ(e) = 1, (a, e) is a

local σ-branching of S modulo P and it is confluent modulo by local σ-confluence. Now, let us assume

that for k > 1, any σ-branching (a ′′, e ′′) of S modulo P such that ℓ(e ′′) = k is confluent modulo E, and

let us consider a σ-branching (a, e) of S modulo P such that ℓ(e) = k + 1. We choose a decomposition

e = e1 ⋆ e2 with e1 of length 1. Using local σ-confluence on the σ-branching (a, e1), there exists

a σ-confluence modulo (a ′, e ′
1, a1) modulo P of this σ-branching. Then, we choose a decomposition

a1 = a1
1 ⋆ a

2
1 with a1

1 of length 1. By induction hypothesis on the σ-branching modulo (a1
1, e2), there

exists a σ-confluence modulo (a ′
1, e

′
2, b) of this σ-branching, as in the following diagram:

f

e1

��

a
// f ′

a ′
// f ′′

e ′
1

��

f1

=

��

a1
1

// f ′1

=

��

a2
1

// f ′′1

f1 a1
1

//

e2

��

f ′1 a ′
1

// f ′2

e ′
2

��

g
b

// g ′

Local conf mod E

Induction on ℓ(e)

=

Now, since f ≡ f1
a1

1⇒ f ′1, we have d(f ′1) = d(f) − 1, and thus (a2
1, a

′
1) ≺ (a, e) so that we can use

induction on the σ-branching (a2
1, a

′
1) of S modulo P of source (f ′1, f

′
1) to prove that there exists a

σ-confluence modulo (a2, e3, a
′
2) of this σ-branching. By a similar argument, we have d(f ′′1 ) < d(f)

and d(f ′2) < d(f) and we can apply induction on the σ-branchings modulo (a2, (e
′
1)

−) and (a ′
2, e

′
2)

respectively. Therefore, there exist 2-cells a ′′,a3, a
′
3 and b ′ in S× and 2-cells e ′′

1 and e ′′
2 in P2〈Q〉⊤ as in
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4.1. Confluence modulo with respect to a positive strategy

the following diagram:

f

e1

��

a
// f ′

a ′
// f ′′

e ′
1

��

a ′′
// f ′′′

e ′′
1

��

f1

=

��

a1
1

// f ′1

=
��

a2
1

// f ′′1 a2 // h1 a3 //

e3

��

h ′
1

f1 a1
1

//

e2

��

f ′1 a ′
1

// f ′2

e ′
2

��

a ′
2

// h2 a ′
3

// h ′
2

e ′′
2

��

g
b

// g ′

b ′
// g ′′

Local conf mod E

Induction on ℓ(e)

= Ind.

Ind.

Ind.

We can then use once again induction on the σ-branching (a3, e3, a
′
3) of S modulo P of source (h1, h2),

and so on. Since the order ≺ is well-founded, this process terminates in finitely many steps until we reach

the quasi-normal form f̃. This yields the σ-confluence of the σ-branching (a, e).

Step 2: Now, let us prove that any σ-branching modulo (a, e, b) is confluent modulo P. Let us choose

such a σ-branching and denote by (f, g) its source. We assume that any σ-branching (a ′, e ′, b ′) of S

modulo P with (a ′, e ′, b ′) ≺ (a, e, b) is confluent modulo P. We follow the proof scheme used by Huet

in [9, Lemma 2.7]. Let us denote by n := ℓ(a) and m := ℓ(b). We assume without loss of generality

that n > 0 and we fix a decomposition a = a1 ⋆1 a2 with a1 of length 1. If m = 0, by Step 1 on the

σ-branching (a1, e) of S modulo P, there exists a σ-confluence modulo (a ′
1, e

′, b ′) of this σ-branching.

Then, since d(f1) = d(f) − 1, we have (a2, a
′
1) ≺ (a, e) and we can apply double induction on the

σ-branching modulo (a2, a
′
1), as pictured in the following diagram:

f
a1

//

=

��

f1
a2

//

=

��

f2
a ′
2

// f ′2

��

f

e

��

a1 // f1 a ′
1

// f2 a ′′
1

//

e ′

��

f ′2

g
b ′

// g ′

Step 1

= Ind.

We finish the proof of this case with a similar argument as in Step 1, using repeated inductions that

terminate after a finite number of steps because the order ≺ is well-founded.

Now, assume that m > 0 and fix a decomposition b = b1 ⋆1 b2 of b with b1 of length 1. Using Step 1

on the σ-branching modulo (a1, e), there exists a σ-confluence modulo (a ′
1, e1, c1) of this σ-branching.

We distinguish two cases whether c1 is trivial or not.
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4. Confluence in algebraic polygraphs modulo

If c1 is trivial, the σ-confluence of the σ-branching modulo (a, e, b) is given by the following diagram

f

=

��

a1
// f1

=
��

a2
// f2

a ′
2

// f ′2

��

f a1 //

e

��

f1 a ′
1

// f ′1 a3 //

e ′

��

f3

e1

��

a4
// f4 a5 // f5

��

g

=

��

1g // g

=

��

b1
// g ′

1

=
��

b ′
1

// g ′′
1 b ′′

1
// h1

��

b3
// h3

g
1g

// g b1
// g ′

1
b2

// g2
b ′
2

// h2

Step 1Step 1

=

= =

Ind.

Ind.

Ind.

where the σ-branchings modulo (a1, e) and (b1, e
′) are confluent modulo P by Step 1, and induction

applies on the σ-branchings (a2, a
′
1 ⋆1 a3), (b

′
1, b2) and (a4, e1, b

′′
1 ) since d(f1) < d(f), d(f1) < d(g),

d(g ′
1) < d(g), d(g ′

1) < d(f) and d(f3) < d(f) respectively. We then reach a σ-confluence modulo of

the σ-branching modulo (a, e, b) similarly.

If c1 is not trivial, let us fix a decomposition c1 = c11 ⋆1 c
2
1 with c11 of length 1. The σ-confluence of

the σ-branching modulo (a, e, b) is given by the following diagram:

f

=

��

a1
// f1

=

��

a2
// f2

a ′
2

// f ′2

��

f

e

��

a1 // f1 a ′
1

// f ′1

��

a3 // f3 a4 // f4

��

g

=

��

c11
// g1

=

��

c21
// h1 c2 // h2

��

c ′2
// h ′

2

g

=

��

c11
// g1 c ′1

// h ′
1

��

c3 // h3 c ′3
// h ′

3

��

g

=

��

b1
// g ′

=

��

b ′
1

// g ′
1 b ′

2
// g ′

2 b ′
3

//

��

g ′
3

g
b1

// g ′

b2

// g2
b3

// g3

=

=

=

Step 1

Local conf mod E

Ind.

Ind.

Ind.

Ind.

Ind.
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4.2. Critical σ-branchings modulo

where the σ-branching modulo (a1, e) is confluent modulo by Step 1, the σ-branching modulo (c11, b1)

is σ-confluent by local σ-confluence modulo, and one checks that induction applies on the σ-branchings

(a2, a
′
1), (c

2
1, c

′
1), (b

′
1, b2), (a3, c2) and (c3, b

′
2). Similarly, we can repeat inductions to reach a σ-

confluence modulo of (a, e, b).

4.2. Critical σ-branchings modulo

4.2.1. Classification of local σ-branchings. The local σ-branchings modulo of P can be classified in

the following families:

i) trivial σ-branchings of the form

A[a−]

=

��

A[a]
// A[a+]

A[a−]
A[a]

// A[a+]

for some ground context context A and σ-positive S-rewriting step a.

ii) inclusion independant σ-branchings modulo of the form

A[a−]

=

��

A[a]
// A[a+]

A[A ′[b−]]
A[A ′[b]]

// A[A ′[b+]]

for some ground contexts context A and A ′, and σ-positive S-rewriting steps a and b.

iii) orthogonal σ-branchings modulo of the form

B[a−, b−]

=

��

B[a, b−]
// B[a+, b−]

B[a−, b−]
B[a−, b]

// B[a−, b+]

B[a−, e−]

B[a−, e]
��

B[a, e−]
// B[a+, e−]

B[a−, e+]

B[e ′
−, b−]

B ′[e ′, b−]
��

B ′[e ′
−, b]

// B ′[e ′
−, b+]

B ′[e ′
+, b−]

for some ground multi-contexts B and B ′ of arity 2, S-rewriting steps a,b and c of S, and 2-cells e

and e ′ in P2〈Q〉⊤.

iv) non orthogonal σ-branchings are the remaining local σ-branchings, that is nor inclusion independant

nor orthogonal.
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4. Confluence in algebraic polygraphs modulo

4.2.2. Critical σ-branchings. We define an order relation on σ-branchings modulo of an algebraic

polygraph modulo (P,Q, R, S) by setting (a, e, b) ⊑ (a ′, e ′, b ′) if there exists a ground context A of

P1〈Q〉 such that a ′ = A[a], e ′ = A[e] and b ′ = A[b]. A critical σ-branching modulo is a local

σ-branching modulo P which is non trivial, non orthogonal and minimal for the order relation ⊑.

4.2.3. Positively confluence. An algebraic polygraph modulo (P,Q, R, S) with a positive strategy σ is

called positively σ-confluent if, for any S-rewriting step f, there exists a representing ã− ∈ σ(a−) of a−

and two σ-positive Sreductions a ′ and b ′ of length at most 1 as in the following diagram

ã−
a ′

//

e
��

e ′′

��a− a
//

e ′
//

b ′
//

4.2.4. Proposition (Terminating critical branching theorem modulo). Let (P,Q, R, S) be a quasi-

terminating and positively σ-confluent algebraic polygraph modulo with a positive strategy σ. Then it is

locally σ-confluent modulo if and only if the two following properties hold:

a0) any critical σ-branching modulo (a, b), where a and b are S-rewriting steps, is σ-confluent modulo.

b0) any critical σ-branching modulo (a, e), where a is an S-rewriting step and e is a 2-cell in P2〈Q〉⊤

of length 1, is σ-confluent modulo.

Proof. The left to right implication is trivial. Let us prove the converse. Suppose that condition a0)

holds and prove condition a). The proof of the other implication is similar. We prove this by examine all

the possible cases of local σ-branchings modulo given in Section ??. Local aspherical σ-branchings are

always σ-confluent modulo. Let us consider a local orthogonal σ-branching modulo of the form

B[a−, b−]

=

��

B[a, b−]
// B[a+, b−]

B[a−, b−]
B[a−, b]

// B[a−, b+]

where B[a, b−] and B[a−, b] are σ-positive S-reductions. There are natural 2-cells in S× that give a

σ-confluence modulo of this diagram:

B[a−, b−]

=

��

B[a, b−]
// B[a+, b−]

B[a+, b]
// B[a+, b+]

=

��

B[a−, b−]
B[a−, b]

// B[a−, b+]
B[a, b+]

// B[a+, b+]

However, it may happen that these reductions are not σ-positive. Without loss of generality, let us assume

that they are both not σ-positive. By positive σ-confluence assumption, there exists a representative
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4.2. Critical σ-branchings modulo

˜B[a+, b−] (resp. ˜B[a−, b+]) of B[a+, b−] (resp. B[a−, b+]) in P1〈Q〉, σ-positive S-rewriting sequences

h1 and h2, and 2-cells e1,e2 in P2〈Q〉⊤ as in the following diagram:

˜B[a+, b−]

��

//

��f1

e1
��

c1 //

B[a−, b−]

=

��

B[a, b−]
// B[a+, b−]

B[a+, b]
// B[a+, b+]

=

��

B[a−, b−]
B[a−, b]

// B[a−, b+]
B[a, b+]

//

��

B[a+, b+]

e2
��

f2 c2 //

��//

Then, we have d(f1) < d(B[a−, b−]) and d(f2) < d(B[a−, b−]) so that we can use induction of the σ-

branching modulo (c1, e1 ⋆ e2, c2) of source (f1, f2). As a consequence, there exists a σ-confluence

modulo (c ′1, e, c
′
2) of this σ-branching modulo, and we then construct a σ-confluence modulo of

(B[a, b−], B[a−, b]) by successive applications of induction as in the proof of Theorem 4.1.4. This

process terminates since PRP is quasi-terminating, and thus the order ≺ on σ-branchings modulo defined

in Section 4.1.3 is well-founded. Let us now consider an overlapping σ-branching modulo of the form

(a, b) where a and b are σ-positive S-rewriting steps. By definition, there exists a ground context

A of P1〈Q〉 and a critical σ-branching modulo (a ′, b ′) such that (a, b) = (A[a ′], A[b ′]). Following

condition a0), the critical σ-branching (a ′, b ′) is σ-confluent modulo, and there exists a σ-confluence

modulo (a ′′, e ′, b ′′) of this σ-branching. However, the reductions A[a ′′] and A[b ′′] that would give a

confluence modulo of (a, b) are not necessarily σ-positive:

u

=

��

a
//
A[a ′′]

//

A[e ′]
��u

b
//

A[b ′′]
//

However, using positive σ-confluence of S, we are able to construct a σ-confluence modulo of the

σ-branching modulo (a, b) as in the previous case.

4.2.5. Full positive strategy. When all reductions are positive, that is when σ(f) = π−1(f) for any

1-cell f, we say that σ is a full positive strategy. In that case, the quasi-termination assumption in

Proposition 4.2.4 is not needed, since the natural confluences represented by dotted arrows are σ-positive.

Moreover, the positive σ-confluence is always satisfied, by considering a ′ = a and b ′ = 1t1(a).
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5. Algebraic critical branching lemma

5. Algebraic critical branching lemma

By taking the quotient of the S-rewriting paths in Proposition 4.2.4, in this section we obtain an algebraic

critical branching lemma, that we apply to string rewriting systems and linear rewriting systems.

5.1. Algebraic critical branchings

5.1.1. Critical branchings of algebraic polygraph. Let P = (P,Q, R, S) be an algebraic polygraph

modulo with a positive strategy σ and let A be an algebraic rewriting system on P. The critical

branchings of A are the projections of the critical σ-branchings modulo of P of the form a0), that is pairs

(a, b) of S
σ
-rewriting steps such that there is a σ-branching modulo in P with source (ã−, b̃−). As a

consequence of Proposition 4.2.4, we deduce the following result.

5.1.2. Theorem. Let P = (P,Q, R, S) be an algebraic polygraph modulo with a positive strategy σ such

that PRP is quasi-terminating and positively σ-confluent. An algebraic rewriting system on P is locally

confluent if and only if its critical branchings are confluent.

As an immediate consequence, we deduce the following usual critical branching lemma.

5.1.3. Corollary. Let P be an algebraic polygraph modulo with a full positive strategy. Any algebraic

rewriting system on P is locally confluent if and only if all its critical branchings are confluent.

5.2. Examples

5.2.1. Critical branching lemma for string rewriting systems. When Mon is the cartesian 2-polygraph

presenting the theory M of monoids given in (2.2.4), Theorem 5.1.2 corresponds to critical branching

lemma for string rewriting systems as proved by Nivat, [20]. In that case, the choice of positive strategy

σ making all the 2-cells in S× be σ-positive implies that we do not need the additional quasi-termination

and positive σ-confluence property, as explained in Remark 4.2.5.

5.2.2. Critical branching lemma for linear rewriting systems. Suppose that P contains the cartesian

2-polygraph Mod
c presenting the theory of modules over a commutative ring defined in Section 2.2.15.

If P ′′
2 is the 2-polygraph AC

+ ∪ AC
·, and P ′

2 is Mod
c, then Theorem 5.1.2 corresponds to the critical

branching lemma for linear rewriting systems proved in [6, Theorem 4.3.2]. Indeed, given an algebraic

polygraph modulo (P,Q, R, S) with the σ-strategy of normal forms modulo AC defined in 3.1.10, the

positivity confluence of S with respect to σ implies the factorization property of [6, Lemma 3.1.3], stating

that any rewriting step a of S can be decomposed as a = b ⋆ c−1 where b and c are either rewriting steps

of S
σ

or identities, as pictured in the following diagram:

h

f

a

+?

b
,@

g

c
^r
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Note that if a is already a rewriting step of S
σ
, this factorization is trivial. When a is in S but not in S

σ
,

that is a is a quotient of a non-σ-positive S-rewriting sequence, it states that a can be factorized using

positive reductions.

Note that in that case, PRP can never be terminating: indeed, because of the linear context, for any

R-rule a : f ⇒ g, we have a PRP-rewriting step given by

g ≡P −f + (g + f)
−a + (g+ f)

%9 −g+ (g+ f) ≡P f (5.2.3)

However, the quasi-termination assumption of PRP is equivalent to the termination assumption of S
σ

given in [6, Theorem 4.3.2]. Indeed, by definition an infinite rewriting path in S
σ

comes from an infinite

PRP-rewriting path that is not created by a cycle of the form (5.2.3), since the rule −α+ (g+ f) above is

not σ-positive.
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