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REWRITING MODULO ISOTOPIES IN PIVOTAL
LINEAR (2, 2)-CATEGORIES.

BENJAMIN DUPONT

Abstract – In this paper, we study rewriting modulo a set of algebraic axioms in categories en-

riched in linear categories, called linear (2, 2)-categories. We introduce the structure of linear (3, 2)-

polygraph modulo as a presentation of a linear (2, 2)-category by a rewriting system modulo alge-

braic axioms. We introduce a symbolic computation method in order to compute linear bases for the

vector spaces of 2-cells of these categories. In particular, we study the case of pivotal 2-categories

using the isotopy relations given by biadjunctions on 1-cells and cyclicity conditions on 2-cells as

axioms for which we rewrite modulo. By this constructive method, we recover the bases of normally

ordered dotted oriented Brauer diagrams in te affine oriented Brauer linear (2, 2)-category.
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INTRODUCTION

In representation theory, many families of algebras admitting diagrammatic presentations by generators

and relations emerged, as for instance Temperley-Lieb algebras [34], Brauer algebras [4], Birman-Wenzl

algebras [30], Jones’ planar algebras [21], or Khovanov-Lauda-Rouquier algebras [23]. These algebras

can often be interpreted as categories enriched in linear categories, that is with a structure of K-vector

space (for a given field K) on each space of 2-cells between two 1-cells. Such a 2-category will be

called a linear (2, 2)-category, and its 2-cells will be depicted using string diagrammatic representation.

In general, the presentations of these algebras admit a great number of relations, some of them being

given by the algebraic structure, yielding a lack of efficient tools to compute in these structures. In

particular, many of these categories have an additionnal pivotal structure, interpreted by duality on 1-

cells yielding unit and counit 2-cells, diagrammatically represented by caps and cups satisfying isotopy

relations. In this structure, two isotopic diagrams represent the same 2-cell [8], so that the computations

are difficult to implement. Many linear (2, 2)-categories arising in representation theory admit a pivotal

structure, such as for instance the category of gln-webs encoding the representation theory of the Lie

algebra gln [7, 13], the Khovanov-Lauda-Rouquier 2-categorification of a quantum group [24, 29] and

the Heisenberg categories categorifying the Heisenberg algebra [25]. The main objective of this paper is

to present a symbolic computation method to compute in these linear (2, 2)-categories using the theory

of rewriting. We use rewriting modulo the isotopy axioms of the pivotal structure to facilitate the analysis

of confluence, and to compute linear bases for each space of 2-cells using suited notions of termination

and confluence modulo.

Algebraic rewriting and polygraphs. The main idea beyond algebraic rewriting is to orient any al-

gebraic equation, allowing to replace each occurence of the left-hand side by the right hand-side but

not in the other way. The objective is to combine the usual theory of abstract rewriting with the al-

gebraic axioms of the ambient structure to deduce algebraic properties of this latter. In this paper, we

study presentations of higher-dimensional categories presented by generators and relations using rewrit-

ing systems introduced independently by Burroni under the name of polygraphs [6] or by Street under

the name computads [32, 33]. We refer the reader to [18] for more details on polygraphs and their rewrit-

ing properties. Rewriting with polygraphs has for instance been used to compute coherent presentations

of higher-dimensional categories [16], to obtain homological and homotopical properties using Squier’s

theorems [17, 18], to prove Koszulness of algebras [15] or to compute explicit linear bases of vector

spaces or algebras [15] or higher-dimensional linear (2, 2)-categories [1]. The context of linear rewrit-

ing introduced by Guiraud, Hoffbeck and Malbos in [15] for associative algebras has been extended to

the context of linear (2, 2)-categories by Alleaume [1], where those categories were presented by lin-

ear (3, 2)-polygraphs, for which we recall the rewriting properties of termination and confluence that we

will use throughout this paper in 1.1. One of the main objectives of this paper is to extend Alleaume’s

results to linear rewriting modulo a part of the relations or axioms, in order to facilitate the analysis of

confluence of linear (3, 2)-polygraphs, as explained in the sequel.

Linear rewriting modulo. In this work, we use rewriting modulo theory in order to rewrite with a set of

oriented rules Rmodulo the set E of axioms of the inherent algebraic structure. Rewriting modulo makes

the confluence easier to prove for two reasons. First of all, the family of critical branchings that should

be considered in the analysis of confluence is reduced since one should not consider critical branchings

implying a defining rule and an axiomatic rule. Besides, rewriting modulo non-oriented relations allows

more flexibility in computations when reaching confluence. In particular, we use in this paper rewriting

modulo the isotopy axioms of a pivotal linear (2, 2)-category, whose structure is recalled in Section

1.2. These relations create obstructions to prove confluence, as they lead to a huge number of critical

branchings. However, critical branchings implying a relation of the linear (2, 2)-category and an isotopy

relation should not be taken into account. Following [11, Section 3.4], these branchings does not need to
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be considered when rewriting with the suited rewriting modulo system.

In the literature, three different paradigms of rewriting modulo are well-known. The first one is

to consider the rewriting system ERE consisting in rewriting with R on congruence classes modulo E.

However, the analysis of confluence of ERE appears inefficient in general, since the reducibility of an

equivalence class needs to explore all the class. Another approach is using Huet’s definition of conflu-

ence modulo [19], in which rewriting sequences involve only oriented rules and no equivalence steps,

but sources and targets in confluence diagrams are not required to be equal but congruent modulo E.

Jouannaud and Kirchner enlarged this approach in [22] by defining rewriting properties for any rewriting

system modulo S such that R ⊆ S ⊆ ERE. In [11], a categorical and polygraphic model was introduced

to rewrite modulo in higher-dimensional categories, following Huet and Jouannaud and Kirchner’s ap-

proaches. An abstract local confluence criteria and a critical pair lemma were proved in this setting, both

requiring a termination hypothesis for ERE. In Section 2.1, we extend these constructions to the linear

context, in particular we introduce the notion of linear (3, 2)-polygraphs modulo. We precise in Section

2.2 the property of confluence modulo in this context, and give a classification of branchings modulo,

which is bigger than in [11] since some branchings come from the linear structure.

There are two main difficulties when rewriting in linear structures: first of all, we have to specify

allowed rewritings in order to avoid non-termination due to the linear context, [15]. We consider in

this paper a similar notion of rewriting step for the set R of rewriting rules. The second difficulty is

that proving local confluence from confluence of critical branchings require a termination assumption,

see [15, Section 4.2]. Indeed, some branchings that would be trivially confluent if all rewritings were

allowed may become non-confluent because of the restriction on the set of rewritings. In Section 2.2, we

extend the critical pair lemma modulo of [11] for linear (3, 2)-polygraphs modulo to get local confluence

from confluence of critical branchings modulo, under the same termination assumption for ERE.

Confluence modulo by decreasingness. The termination of the polygraph modulo ERE is in general

difficult to prove. In particular, this is the case when considering linear (3, 2)-polygraphs modulo pre-

senting pivotal linear (2, 2)-categories, due to the existence of 2-cells with source and target the same

identity 1-cell, called bubbles. Indeed, Alleaume enlighted the fact that linear (2, 2)-categories with bub-

bles that can go through strands can in general not be enriched with a monomial order, so that they can

not be presented by terminating rewriting systems. Moreover, the cyclicity of a 2-cell with respect to

the biadjunctions of the pivotal structure implies that the dot picturing this 2-cell can be moved around

the cap and cup 2-cells, eventually creating rewriting cycles and making termination fail. However,

even if ERE is not terminating, in many cases it will be quasi-terminating, that is all infinite rewriting

sequences are generated by cycles. Following [12], the termination assumption for ERE can be weak-

ened to a quasi-termination assumption, in order to prove confluence modulo of a linear (3, 2)-polygraph

modulo (R, E, S) from confluence of its critical branchings modulo. We introduce in Section 2.3 a no-

tion of decreasingness modulo for a linear (3, 2)-polygraph modulo following Van Oostrom’s abstract

decreasingness property [35]. We then establish the following result:

Theorem 2.3.8. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo. If

(R, E, S) is decreasing modulo E, then S is confluent modulo E.

The property of decreasingness modulo is defined by the existence of a well-founded labelling on

the rewriting steps of a linear (3, 2)-polygraph modulo (R, E, S), for which we require that all labels on

the cells of E are trivial, and such that labels are strictly decreasing on confluence modulo diagrams as

defined in Section 2.3. When ERE is quasi-terminating, there exists a particular labelling counting the

distance between a 2-cell and a fixed quasi-normal form, that is a 2-cell from which we can only get

rewriting cycles. Proposition 2.4.4, proved in [12], shows that we can prove decreasingness by proving

that all the critical branchings modulo E are decreasing with respect to this quasi-normal form labelling.

Linear bases from confluence modulo. The objective of this paper is to compute a hom-basis of a

linear (2, 2)-category C presented by generators and relations, that is a family of sets (Bp,q) indexed by
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pairs (p, q) of 1-cells such that Bp,q is a linear basis of the vector space C2(p, q) of 2-cells of C with 1-

source p and 1-target q. In [1], Alleaume proved following the constructions of [15] that such a basis may

be obtained from a finite convergent presentation, considering all the monomials in normal form. In the

context of rewriting modulo, there are two different degrees of normal forms. First of all, we require that

the linear (3, 2)-polygraphs modulo (R, E, S) is either normalizing or quasi-terminating so that one can

either speak of normal form or quasi-normal form with respect to S. Then, one can also consider normal

forms with respect to the polygraph E for which we rewrite modulo, that we require to be convergent. We

say that a normal form for (R, E, S) is a 2-cell appearing in the monomial decomposition of the E-normal

form of a monomial in normal form with respect to S. In Section 2.5, we give a method to compute a

hom-basis of a linear (2, 2)-category from an assumption of confluence modulo some relations. Namely,

let C be a pivotal linear (2, 2)-category, P a linear (3, 2)-polygraph modulo presenting C, and (E, R) a

convergent splitting of P, given by a couple (E, R) of linear (3, 2)-polygraphs where E is convergent and

contains all the 3-cells corresponding to the axioms of pivotality and R contains the remaining relations.

This data allows to define polygraphs modulo (R, E, S), and we prove the following result:

Theorem 2.5.4. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C,

(E, R) a convergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

i) S is normalizing,

ii) S is confluent modulo E,

then the set of normal forms for (R, E, S) is a hom-basis of C.

This result is then extented to the case where S is quasi-terminating, where we define a quasi-normal

form for the linear (3, 2)-polygraph modulo (R, E, S) as a monomial appearing in the monomial decom-

position of the E-normal form of a monomial in Supp(u), where u is the fixed quasi-normal form of a

2-cell u.

Theorem 2.5.6. With the same assumptions than in Theorem 2.5.4, if

i) S is quasi-terminating,

ii) S is confluent modulo E,

then the set of quasi-normal forms for (R, E, S) is a hom-basis of C.

The affine oriented Brauer category. As an illustration, we apply Theorem 2.5.6 to compute a hom-

basis for the affine oriented Brauer category, which is a monoidal category (seen as a 2-category with

only one object) obtained from the free symmetric monoidal category generated by a single 1-cell and

one additional dual, and adjoined with a polynomial generator subject to apropriate relations. This cate-

gory is already well-understood, and a hom-basis has already been provided by Brundan, Comes, Nash

and Reynolds [20]. This linear (2, 2)-category has also already been studied by Alleaume using rewrit-

ing methods in [1]. In this paper, we improve Alleaume’s approach using rewriting modulo the isotopy

axioms of the pivotal structure, as there are less critical branchings to consider in the proof of confluence.

With this method, we recover Brundan, Comes, Nash and Reynolds’ basis, that was also obtained by Al-

leaume in the non-modulo setting. More precisely, we define a linear (3, 2)-polygraph AOB presenting

the linear (2, 2)-category AOB, for which we rewrite modulo its convergent subpolygraph of isotopy

relations. We prove the following result:

Theorem 3.1.4. Let (R, E) be the convergent splitting of AOB defined in Section 3.1.3,

then ER is quasi-terminating and ER is confluent modulo E.

We prove that ER is quasi-terminating in Section 3.2, and confluent modulo E in Section 3.3. As a

consequence, we obtain a hom-basis for AOB, which coincides for an apropriate choice of quasi-normal

forms for ER with the basis of normally ordered dotted orienter Brauer diagrams with bubbles of [20].
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Organization of the paper. In the first section of this paper, we recall from [1] notions about lin-

ear (2, 2)-categories and linear (3, 2)-polygraphs. We recall the definition of a pivotal category and the

isotopies of string diagrams coming from this structure. We define a linear (3, 2)-polygraph of isotopies

that we use throughout this paper as a prototypical example to rewrite modulo. In Subsection 1.3, we

recall from [14, 16] a method to prove termination for a 3-dimensional polygraph using a notion of

derivation on a 2-category. This method will be used in all termination and quasi-termination proofs in

this paper. In Section 2, we extend the previous rewriting properties and results in the context of rewrit-

ing modulo. We introduce a notion of linear (3, 2)-polygraph modulo and of rewriting steps taking into

account the restriction of rewritings to positive 3-cells. We introduce following [19, 22, 11] a notion of

confluence modulo for these polygraphs, and we extend the critical pair lemma from [11] in the linear

setting. We introduce a notion of decreasingness modulo from Van Oostrom’s abstract decreasingness

property [35], and we prove that decreasingness modulo implies confluence modulo. In the last part

of this section 2.5, we describe a method to compute a hom-basis of a linear (2, 2)-category from ter-

minating or quasi-terminating linear (3, 2)-polygraphs modulo satisfying an assumption of confluence

modulo. In the last section of this paper, Section 3, we use this procedure to compute a hom-basis for the

linear (2, 2)-category AOB. We explicit a presentation of this category, and fix a linear (3, 2)-polygraph

presenting it. We prove that the linear (3, 2)-polygraph ER obtained by considering in E the convergent

subpolygraph of isotopies and in R the remaining relations is quasi-terminating, and that ER is confluent

modulo E by proving that its critical branchings are decreasing with respect to the quasi-normal form

labelling and Proposition 2.4.4.

1. PRELIMINARIES

In this section, we fix a field K. If C is an n-category, we denote by Cn the set of n-cells in C. For any

0 ≤ k < n and any k-cells p and q in C, we denote by Ck+1(p, q) the set of (k + 1)-cells in C with

k-souce p and k-target q. If p is a k-cell of C, we denote respectively by si(p) and ti(p) the i-source

and i-target of p for 0 ≤ i ≤ k− 1. The source and target maps satisfy the globular relations

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1

for any 0 ≤ i ≤ n − 2. Two k-cells p and q are i-composable when ti(p) = si(q). In that case, their

i-composition is denoted by p ⋆i q. The compositions of C satisfy the exchange relations:

(p1 ⋆i q1) ⋆j (p2 ⋆i q2) = (p1 ⋆j p2) ⋆i (q1 ⋆j q2)

for any i < j and for all cells p1,p2,q1,q2 such that both sides are defined. If p is a k-cell of C, we denote

by 1p its identity (k + 1)-cell. A k-cell p of C is invertible with respect to ⋆i-composition (i-invertible

for short) when there exists a (necessarily unique) k-cell q in C with i-source ti(p) and i-target si(p)

such that

p ⋆i q = 1si(p) and q ⋆i p = 1ti(p)

Throughout this paper, 2-cells in 2-categories are represented using the classical representation by string

diagrams, see [28, 31] for surveys on the correspondance between 2-cells and diagrams. The ⋆0 com-

position of 2-cells is depicted by placing two diagrams next to each other, the ⋆1-composition is vertical

concatenation of diagrams. In the sequel, the 0-cells will be denoted by x, y, . . . , the 1-cells will be

denoted by p, q, . . . , the 2-cells will be denoted by u, v, . . . and the 3-cell will be denoted either by

α,β,. . . when rewriting in a non modulo setting and f,g, . . . when rewriting modulo.

1.1. Rewriting in linear (2, 2)-categories

Recall from [1] that a linear (n, p)-category (over K) is an n-category such that for any p ≤ i ≤ n, the

set Ci(p, q) is a K-vector space for any (i − 1)-cells p and q in C. A linear (n, p)-category is presented

by a linear (n + 1, p)-polygraph. In this section, we expand on the notions of linear (2, 2)-categories

and linear (3, 2)-polygraphs over K and their rewriting properties.
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1.1.1. Linear (2, 2)-categories. A linear (2, 2)-category is a 2-category C such that:

i) for any p and q in C1, the set C2(p, q) is a K-vector space.

ii) for any p, q, r in C1, the map ⋆1 : C2(p, q)⊗ C2(q, r)→ C2(p, r) is K-linear.

iii) sources and target maps are compatible with the linear structure.

When C admits a presentation by generators and relations, a 2-cell φ obtained from ⋆0 and ⋆1 com-

positions of generating 2-cells is called a monomial in C. Any 2-cell φ in C can be uniquely decomposed

into a sum of monomials φ =
∑
φi, which is called the monomial decomposition of φ. We also set the

support of φ to be the set {φi} of 2-cells that appear in this monomial decomposition. It will be denoted

by Supp(φ). Given a linear (2, 2)-category C, a hom-basis of C is a family of sets (Bp,q)p,q∈C1 indexed

by pairs (p, q) of 1-cells of C such that for any 1-cells p and q, the set Bp,q is a linear basis of C2(p, q).

1.1.2. Contexts. Following [16], a context of a 2-category C is a pair (x,C), where x = (f, g) is a 1-

sphere of C and C is a 2-cell in the 2-category C[x] which is defined as the 2-category with an additional

2-cell filling the 1-sphere x, such that C contains exactly one occurence of x. Seeing the 1-sphere x as a

formal 2-cell denoted by �, such a context in C has the shape

C = m1 ⋆1 (m2 ⋆0 � ⋆0m3) ⋆1m4,

where the mi are 2-cells in C. For any 2-cell u in C2, the above 2-cell where � is replaced by u will be

denoted by C[u].

A context of a linear (2, 2)-category C has the shape

C = λm1 ⋆1 (m2 ⋆0 � ⋆0m3) ⋆1m4 + u,

where the mi are monomials in C, λ is a scalar in K and u is a 2-cell in C. The category of contexts of C

is the category denoted by CC whose objects are the 2-cells of C and the morphisms from f to g are the

contexts (∂(f), C) of C such that C[f] = g.

1.1.3. Linear (3, 2)-polygraphs. We define the notion of linear (3, 2)-polygraph inductively:

i) A 1-polygraph P is a graph (with possible loops and multi-edges) with a set of vertices P0 and a set

of edges P1 equipped with two applications sP0 , tP0 : P1 → P0 (source and target). We denote by P∗1
the free 1-category generated by P.

ii) A 2-polygraph is a triple (P0, P1, P2) where:

a) (P0, P1) is a 1-polygraph,

b) P2 is a globular extension of P∗1 , that is a set P2 of 2-cells equipped with two maps

sP1 , t
P
1 : P2 → P∗1

called respectively 1-source and 1-target such that the globular relations sP0 ◦ s
P
1 = sP0 ◦ t

P
1 and

tP0 ◦ s
P
1 = tP0 ◦ t

P
1 hold.

iii) We construct Pℓ2 the free linear (2, 2)-category generated by P = (P0, P1, P2) as the 2-category

whose 0-cells are P0, whose 1-cells are elements of P∗1 and for any p, q in P∗1 , Pℓ2(p, q) is the free

vector space on P∗2(p, q), where P∗2 if the free 2-category generated by (P0, P1, P2).
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iv) A linear (3, 2)-polygraph is the data of P = (P0, P1, P2, P3) where (P0, P1, P2) is a 2-polygraph and

P3 is a globular extension of Pℓ2, that is a set equipped with two maps

sP2 , t
P
2 : P3 → Pℓ2

respectively called 2-source and 2-target such that the globular relations hold: sP0 ◦ s
P
1 = sP0 ◦ t

P
1 ,

tP0 ◦ s
P
1 = tP0 ◦ t

P
1 , sP1 ◦ s

P
2 = sP1 ◦ t

P
2 and tP1 ◦ s

P
2 = tP1 ◦ t

P
2 . Source and target maps are compatible

with the linear structure. In particular, sP2 and tP2 are K-linear.

Note that, when there is no ambiguity, the source and target maps will be simply denoted by si, ti
for 0 ≤ i ≤ 2. Let P be a linear (3, 2)-polygraph, we denote by P≤k the underlying k-polygraph of P,

for k = 1, 2. We denote by Pℓ the free linear (3, 2)-category generated by P, as defined in [2, Section

3.1]. Recall from [15, Proposition 1.2.3] that every 3-cell α in Pℓ is 2-invertible, its inverse being given

by 1s2(α) − α+ 1t2(α). The congruence generated by P is the equivalence relation ≡ on Pℓ2 defined by

u ≡ v if there is a 3-cell α in Pℓ such that s2(α) = u and t2(α) = v,

We say that a linear (2, 2)-category C is presented by P if C is isomorphic to the quotient category Pℓ2/ ≡.

A 3-cell in Pℓ is said elementary if it is of the form λm1 ⋆1 (m2 ⋆0 α ⋆0 m3) ⋆1 m4 + h where λ is a

non zero scalar, α is a generating 3-cell in P3, the mi are monomials of Pℓ2 and h is a 2-cell in Pℓ2. For a

cellular extension Γ of P∗1 , we will denote by ||f||Γ the number of occurences of 2-cells of Γ in the 2-cell

f in P∗2 .

1.1.4. Rewriting steps. A rewriting step of a linear (3, 2)-polygraph P is a 3-cell of the following form:

C[α] : C[s2(α)]→ C[t2(α)]

where α is a generating 3-cell in P3, C = λm1 ⋆1 (m2 ⋆0 � ⋆0 m3) ⋆1 m4 + h is a context of the free

linear (2, 2)-category Pℓ2 generated by P such that the monomial m1 ⋆1 (m2 ⋆0 s2(α) ⋆0m3) ⋆1m4 does

not appear in the monomial decomposition of h. Given a linear (3, 2)-polygraph P, we denote by Pstp the

set of rewriting steps of P. A rewriting sequence of P is a finite or infinite sequence of rewriting steps of

P. We say that a 2-cell is a normal form if it can not be reduced by any rewriting step.

A 3-cell α of Pℓ is called positive if it is a ⋆2-composition α = α1 ⋆2 · · · ⋆2 αn of rewriting steps of

P. The length of a positive 3-cell α in Pℓ is the number of rewriting steps of P needed to write α as a

⋆2-composition of these rewriting steps. We denote by Pℓ(1) the set of positive 3-cells of P of length 1. A

proof similar to [15, Lemma 3.1.3] yields the following result, that we will use in the proof of the critical

pair lemma modulo in the sequel:

1.1.5 Lemma. Let α be an elementary 3-cell in Pℓ, then there exist two rewriting sequences β and γ of

P of length at most 1 such that α = β ⋆2 γ
−.

1.1.6. Rewriting properties. A branching (resp. local branching) of a linear (3, 2)-polygraph P is a

pair of rewriting sequences (resp. rewriting steps) of P which have the same 2-cell as 2-source. Such a

branching is confluent if it can be completed by rewriting sequences f ′ and g ′ of P as follows:

v f ′

��

u

f 11

g --

u ′

w g ′

DD

A linear (3, 2)-polygraph P is said:
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i) terminating if there is no infinite rewriting sequences in P.

ii) confluent if all the branchings of P are confluent.

iii) convergent if it is both terminating and confluent.

iv) left (resp. right) monomial if every source (resp. target) of a 3-cell is a monomial. In the sequel, we

will only consider left-monomial linear (3, 2)-polygraphs.

The local branchings of linear (3, 2)-polygraphs can be classified in four different forms, see [1,

Section 4.2]. An aspherical branching of P is a branching of the form

t(α)← s(α)→ t(α).

A Peiffer branching is a branching formed with two rules which does not overlap:

t2(α ⋆1 s2(β) + h← s2(α) ⋆1 s2(β) + h→ s2(α) ⋆1 t2(β) + h.

An additive branching is a branching of the form

t2(α) + s2(β)← s2(α) + s2(β)→ s2(α) + t2(β).

Overlapping branchings are all the remaining local branchings. We define an order on monomials

of Pℓ2 by f ⊑ g if there exists a context C of P∗2 such that g = C[f]. A critical branching of P is an

overlapping branching of P which is minimal for ⊑. In [16, Section 5.1], Guiraud and Malbos classified

all the different forms of critical branchings on such diagrams, in a non linear case. In this paper, we

only study left-monomial linear (3, 2)-polygraphs so that the classification of overlapping branchings is

the same. There are regular critical branchings corresponding to the overlapping of two reductions on a

common part of a diagram, inclusion critical branchings corresponding to the inclusion of a source of a

rule in the source of another rule, and right, left, multi-indexed critical branchings obtained by plugging

an aditionnal 2-cell in a diagram where 2 reductions already overlap, see [16] for more details. Recall

from [26, 16] that it suffices to check the confluence of indexed branchings for the instances of 2-cells in

normal form with respect to P.

There exists an adaptation of the linear critical pair lemma of [15] to linear (3, 2)-polygraphs, al-

lowing to prove confluence from confluence of the critical branchings: namely if P is a left-monomial

and terminating linear (3, 2)-polygraph, it is confluent if and only if its critical branchings are confluent,

[1, Theorem 4.2.13]. Given a convergent presentation of a linear (2, 2)-category C by a linear (3, 2)-

polygraph P, [1, Proposition 4.2.15] states that for any 1-cells p and q in C1, the set of monomial 2-cells

with source p and target q in normal form with respect to P form a linear basis of the space C2(p, q) . In

the sequel, we will extend this basis result to a context of rewriting modulo.

1.2. Pivotal linear (2, 2)-categories

In this subsection, we recall the structure of pivotal linear (2, 2)-category, which is a linear (2, 2)-category

in which all the diagrammatic 2-cells are drawn up to isotopy.

1.2.1. Adjunctions in a 2-categories. Let C be a 2-category with sets of 0-cells, 1-cells and 2-cells

respectively denoted by C0, C1 and C2. For any 1-cell p in C1, a right adjoint of p is a 1-cell p̂ : y → x

equipped with two 2-cells ε and η in C defined as follows:

yxy
p

oo
p̂

oo

1y

�� ε

KS

xyx
p̂

oo

1x

\\

η

KS p
oo

,
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called the counit and unit of the adjunction, such that the equalities

xyxy
p̂

oo
p

oo
p

oo

1x

\\

1y

��

η

KS

ε

KS

= xy

p

ZZ

p

��

1p

KS

and yxyx
p

oo
p̂

oo
p̂

oo

1y

\\

1x

��

η

KS

ε

KS

= yx

p̂

ZZ

p̂

��
1p̂

KS

hold. We denote the fact that p is a left adjoint of p̂ by p ⊣ p̂. In a string diagrammatic notation, these

units and counits are represented by caps and cups as follows:

η :

p p̂

x

y

, ε :

p̂ p

y

x

The axioms of an adjunction require that the following equalities hold:

x

yp

=

p

yx ,

y

x

p̂

=

p̂

xy (1)

are satisfied. When we are in the situation where p̂ is also a left-adjoint of p, that is p and p̂ are biadjoint,

that we denote by p ⊣ p̂ ⊣ p, there are other unit and counit 2-cells η ′ and ε ′ for this adjunction and the

symmetric zig-zag relations for these 2-cells hold similarly.

1.2.2. Cyclic 2-cells and pivotality. Given a pair of 1-cells p, q : x → y with chosen biadjoints

(p̂, ηp, η̂p, εp, ε̂p) and (q̂, ηq, η̂q, εq, ε̂q), then any 2-cell α : p ⇒ q has two duals ∗α,α∗ : q̂ ⇒ p̂, one

constructed using the left adjoint structure, the other using the right adjoint structure. Diagrammatically

the two duals are given by

∗α :=

εq

ηp

•α

p̂

q̂

α∗ := •α

p̂

ε̂p

η̂q

q̂

We will call α∗ the right dual of α because it is obtained from α as its mate using the right adjoints of p

and q. Similarly, ∗α is called the left dual of α because it is obtained from α as its mate using the left

adjoints of p and q.

In general there is no reason why ∗α should be equal to α∗, see [28] for a simple counterexample.

1.2.3 Definition ([8]). Given biadjoints (p, p̂, ηp, η̂p, εp, ε̂p) and (q, q̂, ηq, η̂q, εq, ε̂q) and a 2-cell α : p⇒
q define α∗ := p̂η̂q ⋆1 ε̂pq̂ and ∗α := εGp̂ ⋆1 η̂q as above. Then a 2-cell α is called a cyclic 2-cell if the

equation ∗α = α∗ is satisfied, or either of the equivalent conditions ∗∗α = α or α∗∗ = α are satisfied.

A 2-category in which all the 2-cells are cyclic with respect to some biadjunction is called a pivotal

2-category. In this structure, the following theorem states that 2-cells are represented up to isotopy:

1.2.4 Theorem ([8]). Given a string diagram representing a cyclic 2-cell, between 1-cells with chosen

biadjoints, then any isotopy of the diagram represents the same 2-cell.
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1.2.5 Example. We consider a 2-category with only one 0-cell, two 1-cells E and F whose identites are

respectively represented by upward and downward arrows and such that E ⊣ F ⊣ E, that is E and F

are biadjoint. We denote respectively by , , , the units and counits for these

adjunctions. Assume that this category has 2-morphisms given by • , • , , Then,

requiring that the 2-morphisms are cyclic in this 2-category are made by the following equalities:

• = • = • ,
OOOO

= =
OO OO

.

and their mirror image through a reflection by a vertical axis.

1.2.6. Linear (3, 2)-polygraphs of isotopies. We define a 3-polygraphs whose 3-cells correspond of

the isotopy axioms of a pivotal 2-category, with respect to a set I labelling the strands of the string

diagrams and cyclic 2-morphisms. Let CI be the pivotal 2-category defined by

- a set C0 of 0-cells denoted by x, y, . . .

- two families of 1-cells Ei : xi → yi and Fi : yi → xi indexed by I such that Ei ⊢ Fi ⊢ Ei. Note

that the identity 2-cells on Ei and Fi are respectively diagrammatically depicted by:

1Ei :=

i

yixi 1Fi :=

i

xiyi

- units and counits 2-cells ε+i : Ei⋆0Fi ⇒ 1, η+i : 1⇒ Ei⋆0Fi, ε
−
i : Fi⋆0Ei ⇒ 1 and η−i : 1⇒ Fi⋆0Ei

satisfying the biadjunction relations, where the labels of regions are easily deduced and omitted:

ε+i

η−ii

=

i

=

ε−i

η+i

i

ε−i

η+ii

=

i

=

ε−i

η+i

i

- cyclic 2-morphisms αi : Ei ⇒ Ei and βi : Fi ⇒ Fi with respect to the biadjunction Ei ⊢ Fi ⊢ Ei,

respectively represented by a dot on an upward strand or on a downward strand labelled by i. By

definition, cyclicity yields the following relations:

•
βi

i

=

i

•
αi = •

βi

i

•
αi

i

=

i

•
βi = •

αi

i

We define the 3-polygraph of isotopies EI presenting the category CI as follows:

- the 0-cells of EI are the 0-cells of C0.

- the generating 1-cells of EI are the Ei and Fi for i ∈ I, and the 1-cells of EI are given by sequences

(E±i , E
±
j , E

±
k , . . . ) with E+ = E and E− = F.

- the generating 2-cells of EI are given by cup and cap 2-cells ε+i , η
+
i , ε

−
i , η

−
i , and cyclic 2-cells αi

depicted by an upward strand decorated by a dot and labelled by i, and its bidual βi represented

by a downward strand decorated by a dot and labelled by i.

10



- the 3-cells of EI are given by:

i

i01→

i

i04←

i i

i02→

i

i03←

i

•

i

i11→

i

•
i14← •

i

•

i

i12→

i

•
i13← •

i

i

• i24→ •

i i

• i23→ •

i

•
i

i22→
i

• •
i

i21→
i

•

Note that the last family of relations (dot moves on caps and cups) are direct consequences of the first

families of relations. However, without these 3-cells the linear (3, 2)-polygraph would not be convergent.

With these 3-cells, the linear (3, 2)-polygraph EI is confluent, the proof being similar to the proof of

confluence of the 3-polygraph of pearls in [16].

1.3. Termination of linear (3, 2)-polygraphs by derivation

In this subsection, we recall from [14, 16] a method to prove termination for a 3-polygraph using the

notion of derivation of a 2-category. This method is extended to the linear setting.

1.3.1. Modules of 2-categories. Let C be a linear (2, 2)-category. A C-module is a functor from the

category of contexts CC to the category Ab of abelian groups. Hence, a C-module is specified by an

abelian group M(f) for every 2-cell f in C, and a morphism of groups M(C) :M(f)→M(g) for every

context C : f→ g in C.

1.3.2. Example. Recall from [16] a prototypical example of module over a 2-category, that we will use

to prove termination of linear (3, 2)-polygraphs using derivations. Let Ord be the category of partially

ordered sets and monotone maps, viewed as a 2-category with one 0-cell, ordered sets as 1-cells and

monotone maps as 2-cells. We recall that an internal abelian group in Ord is a partially ordered set

equipped with a structure of abelian group whose addition is monotone in both arguments. Let us fix

such an internal abelian group G, a 2-category C and 2-functors X : C → Ord and Y : Cop → Ord. We

consider the C-module MX,Y,G as follows:

i) Every 2-cell f : u⇒ v in C is sent to the abelian group of morphisms

MX,Y,G(f) = HomOrd(X(u)× Y(v), G)

ii) If w and w ′ are 1-cells of C and C = w ⋆0 x ⋆0 w
′ is a context from f : u⇒ v to w ⋆0 f ⋆0 w

′, then

MX,Y,G(C) sends a morphism a : X(u)× Y(v)→ G in Ord to:

X(w)× X(u)× X(w ′)× Y(w)× Y(v)× Y(w ′) −→ G

(x ′, x, x ′′, y ′, y, y ′′) 7−→ a(x, y).

iii) If g : u ′ ⇒ u and h : v ⇒ v ′ are 2-cells of C and C = g ⋆1 x ⋆1 h is a context from f : u ⇒ v to

g ⋆1 f ⋆1 h, then MX,Y,G(C) sends a morphism a : X(u× Y(v))→ G in Ord to

X(u ′) −→ G

x 7−→ a (X(g)(x), Y(h)(y)) .

By construction, when C = P∗2 is freely generated by a 2-polygraph P, such a C-module is uniquely and

entirely determined by the values X(u) and Y(u) for every generating 1-cell u ∈ Σ1 and the morphisms

X(f) : X(u)→ X(v) for every generating 2-cell f : u⇒ v in P2.
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1.3.3. Derivations of linear (2, 2)-categories. Let C be a linear (2, 2)-category, and let M be a U(C)-

module. A derivation of C into M is a map sending every 2-cell f of C to an element d(f) ∈M(f) such

that the following relation holds, for every i-composable pair (f, g) of 2-cells of C:

d(f ⋆i g) = f ⋆i d(g) + d(f) ⋆i g.

where f ⋆i d(g) (resp. d(f) ⋆i g) denotes the valueM(C)(d(g)) (resp. M(C ′)(d(f))) where C = f ⋆i �

(resp. C ′ = � ⋆i g) for any 0 ≤ i ≤ 1. Following [16, Theorem 4.2.1], we obtain that if P is a

linear (3, 2)-polygraph such that there exist:

i) Two 2-functors X : P∗2 → Ord and Y : (P∗2)
co → Ord defined on monomials of Pℓ2 such that, for

every 1-cell a in P1, the sets X(a) and Y(a) are non-empty and, for every generating 3-cell α in P3,

the inequalities X(s(α)) ≥ X(h) and Y(s(α)) ≥ Y(h) hold for any h in Supp(t(α)).

ii) An abelian group G in Ord whose addition is strictly monotone in both arguments and such that

every decreasing sequence of non-negative elements of G is stationary.

iii) A derivation d of Pℓ2 into the moduleMX,Y,G such that, for every monomial f in Pℓ2, we have d(f) ≥ 0

and, for every 3-cell α in P3, the strict inequality d(s(α)) > d(h) holds for any h in Supp(t(α)).

Then the linear (3, 2)-polygraph P terminates.

1.3.4 Example. For instance, following the proof of termination for the 3-polygraphs of pearls in [16,

Section 5.5.1], one proves that the linear (3, 2)-polygraph EI of isotopies defined in 1.2.6 is terminating,

in two steps:

i) At first, if we consider the derivation

d(·) = || · ||{ε−
i
,ε+

i
,η−

i
,η+

i
}

into the trivial module M∗,∗,Z counting the number of oriented caps and cups of a diagram. This

enables to reduce the termination of EI to the termination of the linear (3, 2)-polygraph E
′

I having

for 3-cells the i2k for 1 ≤ k ≤ 4.

ii) The polygraph E
′

I terminates, using the 2-functors X and Y and the derivation d into the (EI)
∗
2-

module MX,Y,Z given by:

X





 = N, X

( )
(i, j) = (0, 0), X


 •


 (i) = i+ 1

Y





 = N, Y

( )
(i, j) = (0, 0), Y


 •


 (i) = i+ 1

d

( )
(i, j) = i, d

( )
(i, j) = i, d


 •


 (i, j) = 0

for any orientation of the strands and any label on it. The required inequalities are proved in [16].

2. LINEAR REWRITING MODULO

In this section, we introduce the notion of linear (3, 2)-polygraph modulo, for which we define the

property of confluence modulo, and give several ways to prove confluence modulo from confluence of

critical branchings in the case of termination or decreasingness in the case of quasi-termination. We give

a method to compute a hom-basis for a linear (2, 2)-category C using rewriting modulo.
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2.1. Linear (3, 2)-polygraphs modulo

The notion of n-dimensional polygraph modulo has been developed in [11] in a non-linear context. In

this subsection, we extend this construction by defining linear (3, 2)-polygraphs modulo. We refer the

reader to [11] for more details about polygraphs modulo.

2.1.1 Definition. A linear (3, 2)-polygraph modulo is a data (R, E, S) made of

i) a linear (3, 2)-polygraph R = (R0, R1, R2, R3), whose generating 3-cells are called primary rules;

ii) a linear (3, 2)-polygraph E = (E0, E1, E2, E3) such that Ek = Rk for k = 0, 1 and E2 ⊆ R2, whose

generating 3-cells are called modulo rules;

iii) S is a cellular extension of Rℓ2 the linear free 2-category generated by R, such that the following

inclusions of cellular extensions R ⊆ S ⊆ ERE holds, where the cellular extension

ERE
γERE

→ Sph(Rℓ2)

is defined in a similar way than in [11, Subsubsection 3.1.2]. The elements of ERE correspond to 2-

spheres (u, v) ∈ Rℓ2 such that (u, v) is the boundary of a 3-cell f in Rℓ2[R3, E3, E
−
3 ]/Inv(E3, E

−
3 ), the

free linear (2, 2)-category generated by (R0, R1, R2) augmented by the cellular extensions R, E and

the formal inverses E− of Emodulo the corresponding inverse relations, with shape f = e1⋆2 f1⋆2e2
with e1, e2 in Eℓ and f1 a rewriting step of R.

Note that this data defines a linear (3, 2)-polygraph (R0, R1, R2, S) that we will denote by S in the

sequel.

2.1.2. Examples. In the sequel, we will consider the 3-polygraphs modulo ERE and ER, whose un-

derlying 1-polygraph is (R0, R1), with E2 ⊆ R2 and whose set of 3-cells are respectively defined as

follows:

i) ERE has a 3-cell u→ v whenever there exists a rewriting step g of R and 3-cells e, e ′ in Eℓ as in the

following diagram:

u //❴❴❴

e
��

v

u ′
g

// v ′

e ′

OO

ii) ER has a 3-cell u → v whenever there exists a rewriting step g of R and 3-cells e in Eℓ as in the

following diagram:

u //❴❴❴

e
��

v

u ′
g

// v

=

OO

2.2. Branchings modulo and confluence modulo

In this subsection, we introduce the notion of confluence modulo for a linear (3, 2)-polygraph modulo

(R, E, S) following [11]. We give a classification of the local branchings modulo, and prove that if ERE
is terminating, confluence of S modulo E is equivalent to the confluence modulo of critical branchings

modulo.
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2.2.1. Branchings modulo. A branching of the linear (3, 2)-polygraph S is a pair (f, g) of positive

3-cells of Sℓ such that sS2(f) = s
S
2(g). Such a branching is depicted by

u
f //

=

��

u ′

u
g

// v ′

(2)

and will be denoted by (f, g) : u→ (u ′, v ′). We do not distinguish the branchings (f, g) and (g, f).

A branching modulo E of the linear (3, 2)-polygraph modulo S is a triple (f, e, g) where f is a

positive 3-cell of Sℓ, g is aiehter a positive 3-cell of Sℓ or an identity 3-cell, and e is a 3-cell of Eℓ. Such

a branching is depicted by

u
f //

e
��

u ′

v
g

// v ′

(
resp.

u
f //

e
��

u ′

v

)
(3)

when g is non trivial (resp. trivial) and denoted by (f, e, g) : (u, v) → (u ′, v ′) (resp. (f, e) : u →
(u ′, v). Note that any branching (f, g) is a branching (f, e, g) modulo E where e is the identity 3-cell on

s2(f) = s2(g).

2.2.2. Confluence modulo. A branching modulo E as in (3) is confluent modulo E if there exists posi-

tive 3-cells f ′, g ′ in Sℓ and a 3-cell e ′ in Eℓ as in the following diagram:

u
f //

e
��

u ′ f ′ // w

e ′
��

v
g

// v ′
g ′

// w ′

We then say that the triple (f ′, e ′, g ′) is a confluence modulo E of the branching (f, e, g) modulo E. The

linear (3, 2)-polygraph S is confluent modulo E if all its branchings modulo E are confluent modulo E.

When S is confluent modulo E, a 2-cell may admit several S-normal forms, which are all equivalent

modulo E.

2.2.3. Church-Rosser property modulo. We say that a linear (3, 2)-polygraph modulo (R, E, S) is

Church-Rosser modulo the linear (3, 2)-polygraph E if for any 2-cells u,v in Rℓ2 such that there exist a

zig-zag sequence

u
f1 // u1 u2

f2oo
f3 // . . .

fn−2 // un−1 un
fn //

fn−1oo v

where the fi are 3-cells of Eℓ or Rℓ, there exist positive 3-cells f ′ : u → u ′ and g ′ : v → v in Sℓ and a

3-cell e : u ′ → v ′ in Eℓ. In particular, when S is normalizing this implies that for any 2-cells u and v

such that u = v in C the category presented by R
∐
E, two normal forms û and v̂ of u and v respectively

with respect to S are equivalent modulo E.

2.2.4. Jouannaud-Kirchner confluence modulo. In [22], Jouannaud and Kirchner introduced another

notion of confluence modulo E, given by two properties that they call confluence modulo E and coherence

modulo E. Following [22], we say that

i) JK confluent modulo E, if any branching is confluent modulo E,
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ii) JK coherent modulo E, if any branching (f, e) : u→ (u ′, v) modulo E is confluent modulo E:

u
f //

e
��

v
f ′ // v ′

e ′

��
u ′

g ′

// w

in such a way that g ′ is a positive 3-cell in Sℓ.

However, we prove that this notion of confluence modulo is equivalent to that defined in subsection 2.2.

2.2.5 Lemma. For any linear (3, 2)-polygraph (R, E, S) such that S is terminating, the following asser-

tions are equivalent:

i) S is confluent modulo E.

ii) S is JK confluent modulo E and JK coherent modulo E.

Proof. By definition, the property of confluence modulo E trivially implies both JK confluence modulo

E and JK coherence modulo E. Conversely, suppose that the linear (3, 2)-polygraph S is JK confluent

and JK coherent modulo E and let us consider a branching (f, e, g) modulo E in S. If ℓ(e) = 0, then

it is clearly confluent modulo E by JK confluence modulo E so let us assume that ℓ(f) ≥ 1. If g is an

identity 3-cell, then the confluence of the branching (f, e) modulo E is given by JK coherence modulo

E. Otherwise, by JK coherence modulo E on the branching (f, e), there rewriting sequences f ′ and h

in Sℓ with h non trivial and a 3-cell e ′ : t2(f
′) → t2(h) in Eℓ. Applying JK confluence modulo on the

branching (h, g) of S, there exists positive 3-cells g ′ and h ′ in Sℓ and a 3-cell e ′′ : t2(h
′) → t2(g

′) in

Eℓ. By JK coherence modulo E on the branching (e ′−, h ′) modulo E, we get the existence of positive

3-cells f ′′ and h ′′ in Sℓ and a 3-cell e ′′′ : t2(f
′′)→ t2(h

′′) in Eℓ. This situation can be depicted by:

u
f //

e

��

u ′ f ′ // u ′′ f ′′ //

e ′

��

u ′′′

e ′′′

��

v h //

=

��

w h ′ // w ′

e ′′

��

h ′′ // w ′′

v g // v ′ g ′ // v ′′

JK coh.

JK confl.

JK coh.

At this point, either h ′′ is trivial and thus e ′′′ : u ′′′ → w ′ so that the branching (f, e, g) is confluent mod-

ulo, or it is non-trivial and we can apply JK coherence on the branching (h ′′, e ′′). Since S is terminating,

this process can not apply infinitely many times, and thus in finitely many steps we prove the confluence

modulo of the branching (f, e, g).

Now, following [22, Theorem 5] and Lemma 2.2.5, given a a linear (3, 2)-polygraph modulo (R, E, S)

such that S is terminating, the following properties are equivalent:

i) S is confluent modulo E. ii) S is Church-Rosser modulo E.

2.2.6. Local branchings modulo. A branching (f, g) of the linear (3, 2)-polygraph S is local if f, g are

3-cells of S∗ of length 1. A branching (f, e, g) modulo E is local if f is a 3-cell of Sℓ(1), g is either a

positive 3-cell of Sℓ or an identity and e a 3-cell ofEℓ such that ℓ(g)+ ℓ(e) = 1. Local branchings belong

to one of the following families:
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i) local aspherical branchings of the form:

u
f //

=

��

v

=

��
u

f
// v

where f is a 3-cell of Sℓ(1).

ii) local Peiffer branchings of the form:

u ⋆i v+w
f⋆iv //

=

��

u ′
⋆i v+w

u ⋆i v+w u⋆ig
// u ⋆i v

′ +w

where 0 ≤ i ≤ n− 2, w is a 2-cell of Rℓ2 and f and g are positive 3-cells in Sℓ(1).

iii) local additive branchings of the form:

u+ v
f+v //

=

��

u ′ + v

u+ v
u+g

// u+ v ′

where f and g are positive 3-cells in Sℓ(1).

iv) local Peiffer branchings modulo of the form:

u ⋆i v+w
f⋆iv //

u⋆ie
��

u ′
⋆i v +w

u ⋆i v
′ +w

v ⋆i u+w
v⋆if //

e ′⋆iu
��

v ⋆i u
′ +w

v ′ ⋆i u+w

where 0 ≤ i ≤ n− 2, w is a 2-cell of Rℓ2, f is a 3-cell in Sℓ(1) and e, e ′ are 3-cells of Eℓ of length 1.

v) local additive branchings modulo of the form:

u+ v
f+v //

u+e
��

u ′ + v

u+ v ′

w+ u
w+f //

e ′+u
��

w+ u ′

w ′ + u

where f is a positive 3-cell in Sℓ(1) and e, e ′ are 3-cell in Eℓ(1) of length 1.

vi) overlapping branchings are the remaining local branchings:

u
f //

=

��

v

u
g

// v ′

where f and g are positive 3-cells in Sℓ(1).
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vii) overlapping branchings modulo are the remaining local branchings modulo:

u
f //

e
��

v

v ′

where f is a positive 3-cell in Sℓ(1) and e is a 3-cell in Eℓ of length 1.

We say that S is locally confluent modulo E if any of its local branchings modulo E is confluent

modulo E. From [11, Theorem 4.1.4, Proposition 4.2.1], we have the following result which is an abstract

rewriting result and does not depend on the linear context:

2.2.7 Theorem. Let (R, E, S) be a linear (3, 2)-polygraph modulo such that ERE is terminating. The

following assertions are equivalent:

i) S is confluent modulo E,

ii) S local confluent modulo E,

iii) S satisfies the following properties a) and b):

a) any local branching (f, g) : u→ (v,w) with f in Sℓ(1) and g in Rℓ(1) is confluent modulo E:

u
f //

=

��

v
f ′ // v ′

e ′

��

u
g

// w // w ′

b) any local branching (f, e) : u → (v, u ′) modulo E with f in Sℓ(1) and e in Eℓ of length 1 is

confluent modulo E:

u
f //

e
��

v
f ′ // v ′

e ′

��
u ′

g ′

// w

2.2.8. Critical branchings. Let ⊑ be the order on monomials of the linear (3, 2)-polygraph S defined

by f ⊑ g if there exists a context C of R∗2 such that g = C[f], a critical branching modulo E is an

overlapping local branching modulo E that is minimal for the order ⊑.

2.2.9 Theorem (Linear critical branching lemma modulo). Let (R, E, S) be a linear (3, 2)-polygraph

modulo such that ERE is terminating. Then S is locally confluent modulo E if and only if the two following

conditions hold

a0) any critical branching (f, g) with f positive 3-cell in Sℓ(1) and g positive 3-cell in Rℓ(1) is confluent

modulo E:

u
f //

=

��

v
f ′ // v ′

e ′

��

u
g

// w // w ′
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b0) any critical branching (f, e) modulo E with f in Sℓ(1) and e in Eℓ of length 1 is confluent modulo

E:

u
f //

e
��

v
f ′ // v ′

e ′

��
u ′

g ′

// w

Proof. By Theorem 2.2.7, the local confluence of S modulo E is equivalent to both conditions a) and

b). Let us prove that the condition a) (resp. b)) holds if and only if the condition a0) (resp. b0)) holds.

One implication is trivial, let us prove the converse implication. To do so, let us proceed by Huet’s

double noetherian induction as introduced in [19] on the polygraph modulo S∐ defined in [11] which

is terminating since ERE is assumed terminating. We refer to [11] for further details on this double

induction.

Following the proof of the linear critical pair lemma in [15], we assume that condition a0) holds and

prove condition a). Let us consider a local branching (f, g) of S modulo E of source (u, v) with f and g

positive 3-cells in Sℓ(1) and Rℓ(1) respectively. Let us assume that any local branching of source (u ′, v ′)

such that there is a 3-cell (u, v) → (u ′, v ′) in S∐ is confluent modulo E. The local branching (f, g) is

either a local Peiffer branching, an additive branching or an ovelapping branching. We prove that for

each case, (f, g) is confluent modulo E.

i) If (f, g) is a Peiffer branching of the form

u ⋆i v+w
f⋆iv //

=

��

u ′
⋆i v+w

u ⋆i v+w u⋆ig
// u ⋆i v

′ +w

where 0 ≤ i ≤ n − 2, w is a 2-cell of Rℓ2, f is a positive 3-cell in Sℓ(1) and g is a positive 3-cell in

Rℓ(1), there exist elementary 3-cells in Sℓ as follows:

u ⋆i v+w
f⋆iv //

=

��

u ′
⋆i v+w

u ′
⋆ig+w// u ′

⋆i v
′ +w

=

��

u ⋆i v+w u⋆ig
// u ⋆i v

′ +w
f⋆iv

′+w
// u ′

⋆i v
′ +w

However, these 3-cells are not necessarily positive, for instance if u ′v ∈ Supp(w) or

uv ′ ∈ Supp(w). By Lemma 1.1.5, there exist positive 3-cells f1, f2, g1, g2 in Sℓ of length at most 1

such that f ⋆i v
′ +w = f1 ⋆2 f

−
2 and u ′

⋆i g+w = g1 ⋆2 g
−
2 . Then, the 3-cells f2 and g2 of Sℓ have

the same 2-source and by assumption, the branching (f2, g2) is confluent modulo E, so there exist

positive 3-cells f ′ and g ′ in Sℓ and a 3-cell e in Eℓ as follows:

u ⋆i v +w
f⋆iv+w //

=

��

u ′
⋆i v +w

=

��

f1 //

=

��

f ′ //

e ′

��

u ⋆i v +w
f⋆iv+w //

=

��

u ′
⋆i v +w

u ′
⋆ig+w// u ′

⋆i v
′ +w

=

��

f2 //

u ⋆i v +w u⋆ig+w
//

=

��

u ⋆i v
′ +w

f⋆iv
′+w

//

=

��

u ′
⋆i v

′ +w
g2

//

=

��u ⋆i v +w u⋆ig+w
// u ⋆i v

′ +w
g1

//

g ′

//

which proves the confluence modulo of the branching (f, g).
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ii) If (f, g) is an additive branching of the form

u+ v
f+v //

=

��

u ′ + v

u+ v
u+g

// u+ v ′

where f is positive 3-cells of Sℓ(1) and g is a positive 3-cell of Rℓ(1), there exist elementary 3-cells in

Sℓ as follows:

u+ v
f+v //

=

��

u ′ + v
u ′+g

// u ′ + v ′

=

��

u+ v
u+g

// u+ v ′
f+v ′

// u ′ + v ′

However, these 3-cells are not necessarily positive, for instance if u ∈ Supp(v) or u ∈ Supp(v ′). By

Lemma 1.1.5, there exist positive 3-cells f1, f2, g1, g2 in Sℓ of length at most 1 such that f⋆iv
′+w =

f1 ⋆2 f
−
2 and u ′

⋆i g + w = g1 ⋆2 g
−
2 . We then prove the confluence modulo of (f, g) in a same

fashion as for case i).

iii) If (f, g) is an overlapping branching of S with f in Sℓ(1) and g in Rℓ(1) that is not critical, then by

definition there exists a context C = m1 ⋆1 (m2 ⋆0 � ⋆0m3) ⋆1m4 of R∗2 and positive 3-cells f ′ and

g ′ in Sℓ and Rℓ respectively such that f = C[f ′] and g = C[g ′], and the branching (f ′, g ′) is critical.

By property a0), the branching (f ′, g ′) is confluent modulo E, so that there exist positive 3-cells f1
and g1 in Sℓ and a 3-cell e in Eℓ as follows:

u
f ′ //

=

��

u ′ f1 // w
e
��

u
g ′

// v ′
g1

// w ′

inducing a confluence modulo of the branching (f, g):

C[u]
f //

=

��

C[u ′]
C[f1 ] // C[w]

C[e]
��

C[u]
g

// C[v ′]
C[g1]

// C[w ′]

Now, suppose that conditions b0) holds and prove condition b). Let us consider a local branching

(f, e) of S modulo E of source (u, v), with f in Sℓ(1) and e in Eℓ of length 1. We still assume that any

local branching of source (u ′, v ′) such that there is a 3-cell (u, v)→ (u ′, v ′) in S∐ is confluent modulo

E. The branching (f, e) is either a local Peiffer branching modulo E, an additive branching modulo E or

an ovelapping modulo E. Let us prove that it is confluent modulo E for each case.

i’) If (f, e) is a local Peiffer branching modulo of the form

u ⋆i v+w
f⋆iv //

u⋆ie
��

u ′
⋆i v+w

u ⋆i v
′ +w

withw in Rℓ2, f a positive 3-cell in Sℓ(1) and e a 3-cell in Eℓ (the other form of such branching being

treated similarly), there exist 3-cells f ⋆i v
′ and u ′

⋆i e in Sℓ and Eℓ respectively as in the following
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diagram

u ⋆i v +w
f⋆iv //

u⋆ie
��

u ′
⋆i v+w

u ′
⋆ie

��

u ⋆i v
′ +w

f⋆iv
′

// u ′
⋆i v

′ +w

However, the dotted horizontal 3-cell is not necessarily positive, for instance if uv ′ ∈ Supp(w). By

Lemma 1.1.5, there exist positive 3-cells f1, f2 in S∗ of length at most 1 such that f ⋆i v
′ = f1 ⋆2 f

−
2 .

Then, we have tE2 (u
′
⋆i e) = s

S
2(f2) and by assumption the branching (f2, (u

′
⋆i e)

−) is confluent

modulo E, so there exists positive 3-cells g and h in Sℓ and a 3-cell e ′ in Eℓ as follows:

u ⋆i v
f⋆iv //

u⋆ie

��

u ′
⋆i v

u ′
⋆ie

��

g
// w

e ′

��

u ⋆i v
′

f⋆iv
′

//

=

��

u ′
⋆i v

′ f2 // u ′′

=

��

u ⋆i v
′

f1

// u ′′

h
// w ′

which proves the confluence modulo of (f, g).

ii’) If (f, e) is a local additive branching modulo E of the form

u+ v
f+v //

u+e
��

u ′ + v

u+ v ′

where f is a positive 3-cell in Sℓ(1) and e is a 3-cell in Eℓ of length 1 (the other form of such

branching being treated similarly), there exist 3-cells f+ v ′ and u ′ + e in Sℓ and in Eℓ respectively

as in the following diagram

u+ v
f+v

//

u+e
��

u ′ + v

u ′+e
��

u+ v ′
f+v ′

// u ′ + v ′

However, the 3-cell f + v ′ in Sℓ(1) is not necessarily positive, for instance if u ∈ Supp(v ′) but by

Lemma 1.1.5, there exist positive 3-cells f1 and f2 in S∗ of length at most 1 such that f + v ′ =

f1 ⋆2 f
−
2 . We then prove the confluence modulo of the branching (f, e) by a similar argument than

above.

iii’) If (f, e) is an overlapping modulo, the proof is similar to the proof for property a0).

2.3. Confluence modulo by decreasingness

Van Oostrom introduced the notion of decreasingness in [35] in order to weaken the termination assump-

tion needed to prove confluence from local confluence. In this section, we extend this construction to the

context of rewriting modulo.
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2.3.1. Labelled linear (3, 2)-polygraphs. A well-founded labelled linear (3, 2)-polygraph is a data

(P,X,<,ψ) made of:

i) a linear (3, 2)-polygraph P;

ii) a set X;

iii) a well-founded order < on X;

iv) a map ψ which associates to each rewriting step f of P an element ψ(f) of X called the label of f.

The map ψ is called a well-founded labelling of P. Given a rewriting sequence f = f1 ⋆1 . . . ⋆1 fk,

we denote by LX(f) the set {ψ(f1), . . . , ψ(fk)}.

2.3.2. Multisets and multiset ordering. Recall that a multiset is a collection in which elements are

allowed to occur more than once or even infinitely often, contrary to an usual set. It is called finite when

every element appears a finite number of times. These multisets are equipped with three operations:

union ∪, intersection ∩ and difference −.

Given a well-founded set of labels (X,<), we denote by ∨x the multiset {y ∈ X | y < x} for any x

in X, and by ∨M the multiset ⋃

x∈M

∨x

for any multiset M over X. The order < extend to a partial order <mult on the multisets over X defined

byM <mult N if there exists multisets M1,M2 and M3 such that

i) M =M1 ∪M2,N =M1 ∪M3 and M3 is not empty,

ii) M2 ⊆ ∨M3, that is for every x2 inM2, there exists x3 inM3 such that x2 < x3.

Following [10], if < is well-founded, then so is <mult. Let us recall the following lemma from [35,

Lemma A.3.10] establishing the properties of the operations on multisets, that we will use to establish

the proof of confluence by decreasingness:

2.3.3 Lemma. For any multisets M,N and S, the following properties hold:

i) ∪ is commutative, associative and admits ∅ as unit element,

ii) ∪ is distributive over ∩,

iii) S ∩ (M ∪N) = (S ∩M) ∪ (S ∩N),

iv) M ∩ (N− S) = (M ∩N) − (M ∩ S)

v) (M ∩N) − S = (M − S) ∩ (N− S),

vi) (S ∪M) −N = (S −N) ∪ (M −N),

vii) (M ∪N) − S = (M− S) ∪ (N− S),

viii) (M−N) − S =M− (N ∪ S),

ix) M = (M ∩N) ∪ (M−N),

x) (M−N) ∩ S = (M ∩ S) −N.

2.3.4. Lexicographic maximum measure. Let (P,X,<,ψ) be a well-founded labelled linear (3, 2)-

polygraph. Let x = x1 . . . xn and x ′ = x ′1 . . . x
′
m be two 1-cells in the free monoid X∗. We denote by

x(x
′) the 1-cell x1 . . . xn where each wi is defined as

- 1 if xk < x
′
j for some 1 ≤≤ m;

- xk otherwise.

Following [35], we consider the measure | · | from X∗ to the set of multisets over X and defined as

follows:
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i) for any x in X, the multiset |x| is the singleton {x}.

ii) for any i in X and any 1-cell x of X∗, |ix| = |i| ∪ |x(i)|.

This measure is extended to the set of finite rewriting sequences of P by setting for every rewriting

sequence f1 ⋆1 . . . ⋆1 fn:

|f1 ⋆1 . . . ⋆1 fn| = |k1 . . . kn|

where each fi is labelled by ki and k1 . . . kn is a product in the monoid X∗. Finally, the measure | · | is

extended to the set of finite branchings (f, g) of P be setting|(f, g)| = |f] ∪ |g|.

Recall from [35, Lemma 3.2] that for any 1-cells x1 and x2 in X∗, we have

|x1x2| = |x1| ∪ |x
(x1)
2 |

and as a consequence, for any rewriting sequences f and g of P, the following relations hold:

|f ⋆2 g|| = |f| ∪ |k1 . . . k
(l1...ln)
m |

where f = f1 ⋆1 . . . ⋆1 fn (resp. g = g1 ⋆1 . . . ⋆1 gm) and each fi (resp. gj) is labelled by li (resp. kj).

2.3.5. Well-founded labelling modulo. Given a linear (3, 2)-polygraph modulo (R, E, S), a well-founded

labelling modulo of S is a well-founded labelling ψ of R extended to ERE by setting ψ(e) = 1 the trivial

word in X∗ for any e in E. The lexicographic maximum measure defined in 2.3.4 then extends to the

rewriting steps of S as follows:

|e1 ⋆1 f ⋆1 e2| = |f|

for any 3-cells e1 and e2 in Eℓ and rewriting step f of R. It then extends to the rewriting sequences of S

and ERE, and to the finite branchings (f, e, g) of S modulo E.

2.3.6. Decreasingness modulo. Following [35, Definition 3.3], we introduce a notion of decreasing-

ness for a diagram of confluence modulo. Let (R, E, S) be a linear (3, 2)-polygraph modulo equipped

with a well-founded labelling modulo (X,<,ψ) of S. A local branching (f, g) (resp. (f, e)) of S modulo

E is decreasing modulo E if there exists confluence diagrams of the following form

f //

=

��

f ′ //
g ′′

//
h1 //

e ′

��
g

//

g ′

//

f ′′
//

h2

//

, (resp.

f //

e
��

f ′ //
h1 //

e ′

��

h2

//

)

such that the following properties hold:

i) k < ψ(f) for all k in LX(f ′).

ii) k < ψ(g) for all k in LX(g ′).

iii) f ′′ is an identity or a rewriting step labelled by ψ(f).

iv) g ′′ is an identity or a rewriting step labelled by ψ(g).

v) k < ψ(f) or k < ψ(g) for all k in LX(h1) ∪ L
X(h2) (resp. k ≤ ψ(f) for any k in LX(h2) and

k ′ < ψ(f) for any k ′ in LX(h1)).

22



2.3.7 Remark. Note that the definition of decreasingness for a local branching (f, g) where f and g are

positive 3-cells in Sℓ(1) is the same than Van Oostrom’s definition. This definition is enlarged for a local

branching (f, e) where f is a positive 3-cell in Sℓ(1) and E is a 3-cell in Eℓ of length 1 with the large

inequality k ≤ ψ(f) in order to make sure that critical branchings of the form (f, e) are decreasing with

respect to the quasi-normal form labelling ψQNF defined in 2.4.2 when rewriting with a linear (3, 2)-

polygraph modulo (R, E, S) such that ER ⊆ S. Indeed, recall from [11, Section 3.1] that in this case

these critical branchings are trivially confluent as follows:

u
f //

e
��

v

=

��
v ′

e−·f
// v

In that case, h2 := e
− · f has the same label than f for ψQNF, but we require that this confluence diagram

is decreasing.

Such a diagram is called a decreasing confluence diagram of the branching modulo (f, e, g). A

linear (3, 2)-polygrah modulo (R, E, S) is decreasing is there exists a well-founded labelling (X,<,ψ) of

Rmaking all the local branchings (f, e, g) of Smodulo E decreasing. It was proven in [1, Theorem 4.3.3],

following the original proof by Van Oostrom for an abstract rewriting system [35], that any decreasing

left-monomial linear (3, 2)-polygraph P is confluent. We adapt these proofs to establish the following

result:

2.3.8 Theorem. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo. If (R, E, S) is decreas-

ing, then S is confluent modulo E.

Let us at first prove the following two lemmas:

2.3.9 Lemma. Let (R, E, S, X,<,ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For every

diagram of the following form
f1 //

=

��

f2 //

=

��f1 //

e1
��

f ′1
//

e ′1
��

g1
//

g ′

1

//

such that the confluence modulo (f1 ⋆2 f
′
1, g1 ⋆2 g

′
1) is decreasing, the inequality

|(f ′1, f2)| 6mult |(g1, f1 ⋆2 f2)|

holds.

Proof. By Lemma 2.3.3 ix), we get the following inequality:

|(f ′1, f2)| = |(f ′1, f2)| ∩∨|f1| ∪ |(f ′1, f2)| −∨|f1|.

Since ∨|f1| <mult |f1|, we get that

|(f ′1, f2)| <mult |f1| ∪ |((f ′1)
(f1), f

(f1)
2 )| = |f1 ⋆2 f

′
1| ∪ |f

(f1)
2 |.

Finally, we get from the decreasingness assumption that

|f1 ⋆2 f
′
1| ∪ |f

(f1)
2 | 6mult |(f1, e1, g1)|| ∪ |f

(f1)
2 | = |(g1, f1 ⋆2 f2)|.
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2.3.10 Lemma. Let (R, E, S, X,<,ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For

every diagram of the following form

f1 //

=

��

f2 //

=

��

h //

e2

��

f1 //

e1
��

f ′1
//

e ′1
��

g1
//

g ′

1

//
g2

//

such that the confluence (f ′1, e
′
1, g

′
1) and (f2 ⋆2 h, e2, g2) are decreasing, i.e. the following inequalities

hold:

a) |g1 ⋆2 g
′
1| 6mult |(f1, e1, g1)| and |f1 ⋆2 f

′
1| 6mult |(f1, e1, g1)|,

b) |f ′1 ⋆2 e
′
1 ⋆2 g2| 6mult |(f

′
1, f2)| and |f2 ⋆2 h| 6mult |(f

′
1, f2)|

Then the following inequalities hold:

|g1 ⋆2 g
′
1 ⋆2 g2| 6mult |(f1 ⋆2 f2, e1, g1)| and |f1 ⋆2 f2 ⋆2 h| 6mult |(f1 ⋆2 f2, e1, g1)|

Proof. To shorten the notations in this proof, we will denote the 2-cell f ⋆2 g by simply fg. For the

second inequality, we get that

|f1f2h| = |f1f2| ∪ |h(f1f2)| = |f1f2| ∪ |h(f1)(f2)|

6mult |f1f2| ∪ |(f ′1)
(f1)|

since |h(f2)| 6mult |f ′1| and |f1f
′
1| 6mult |f1| ∪ |g1| respectively by properties b) and a). For the first

inequality, we have by Lemma 2.3.3 ix) that

|g1g
′
1g2| = |g1g

′
1| ∪ |g

(g1g
′

1)

2 | = |g1g
′
1| ∪

[(
|g

(g1g
′

1)

2 | ∩∨f1

)
∪
(
|g

(g1g
′

1)

2 | −∨f1

)]
.

We deduce from [35, Claim in Lemma 3.5] the following two inequalities, that we do not detail here:

|g1g
′
1g2| 6mult |g1| ∪ |f1| ∪ |g

(g1g
′

1)(f1)

2 | 6mult |g1| ∪ |f1| ∪ |g
(f ′1)(f1)

2 |.

Since |g
(f ′1)

2 | 6mult |f2| by b), we finally get that

|g1g
′
1g2| 6mult |g1| ∪ |f1| ∪ |f

(f1)
2 | = |g1| ∪ |f1f2| = |(f1f2, e1, g1)|.

Before proving Theorem 2.3.8, let us also establish the following preliminary lemma:

2.3.11 Lemma. Let (R, E, S, X,<,ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For any

branching (f, e, g) of S modulo E with f and g positive 3-cells in Sℓ(1) and e a 3-cell in Eℓ of length 1,

there exist a confluence (f ′, e ′, g ′) of this branching such that

|f ⋆2 f
′| 6mult |(f, e, g)| and |g ⋆2 g

′| 6mult |(f, e, g)|
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Proof. Let us denote by (X,<,ψ) the well-founded labelling on S making it decreasing. We consider

such a branching (f, e, g) of S modulo E, and we prove this result by well-founded induction, assuming

that it is true for any branching (f ′′, e ′′, g ′′) of S modulo E such that |(f ′′, e ′′, g ′′)| <mult |(f, e, g)|.

The local branching (f, e) of S modulo E being decreasing by assumption, there exist positive 3-

cells f ′, f ′1 and h2 in Sℓ such that k ≤ ψ((f) for any k in LX(h2). Let us fix a decomposition h2 =

h12 ⋆2 h
2
2 where h2 is a positive 3-cell in Sℓ(1). Then (h11, g1) is a local branching of S modulo E and by

decreasingness, there exist a decreasing confluence of this local branching, as depicted in the following

diagram:

f1 //

e1
��

f ′ //
f ′1 //

e ′1
��

=
��

h12
//

=

��

h22 //

=

��

h12
//

k1 //

e2
��

g1
//

g ′1
//

By decreasingness of (f, e), we have that |h22| 6mult |f1| and by decreasingness of (h12, g), we have that

|k1| <mult [g1| so that |(f, e, g)| <mult |(h22, k1)| and by induction, this branching admits a confluence

(h3, e3, k2) satisfying

|h22 ⋆2 h3| 6mult |(h
2
2, k1)| and |k1 ⋆3 k2| 6mult |(h

2
2, k1)|

We can now repeat the same process on the branchings ((e ′1)
−, h3) and (e2, k2) to obtain a confluence

modulo of these branchings as follows:

f1 //

e1
��

f ′ //
f ′1 //

e ′
1

��

f2 //

e ′′
1

��

=

��

h12
//

=

��

h22 // h3 // h4 //

e3
��

=

��

h12
//

k1 //

e2
��

k2 // k3 //

e ′2
��

g1
//

g ′1
//

g2
//

One can repeat this process, however it terminates in finitely many steps, otherwise this would lead to

infinite sequences (hn)n∈N and (kn)n∈N satsifying

|f| 6mult |h2| <mult |h3| 6mult |h4| <mult |h5| . . . , |g| <mult |k1| <mult |k2| . . .

yielding two infinite strictly decreasing sequences for <mult, which is impossible since by assumption, <

is well-founded and then so is <mult as explained in section 2.3.2.

Let us now prove Theorem 2.3.8:

Proof. Let us denote by (X,<,ψ) the well-founded labelling on S making it decreasing. We consider a

branching (f, e, g) of S modulo E such that f and g are positive 3-cells of Sℓ. We prove by well-founded

induction on the labels that (f, e, g) can be completed into a confluence modulo diagram with positive

3-cells f ′, g ′ in Sℓ and a 3-cell e ′ in Eℓ such that

|f ⋆2 f
′| 6mult |(f, e, g)|, and |g ⋆2 g

′| 6mult |(f, e, g)| (4)

We assume that for any branching (f ′′, e ′′, g ′′) of S modulo E such that |(f ′′, e ′′, g ′′)| <mult |(f, e, g)|,

there exists a decreasing confluence modulo of the branching (f ′′, e ′′, g ′′). Let us choose decompositions
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f = f1 ⋆2 f2 and g = g1 ⋆2 g2 where f1, g1 belong to Sℓ(1) and f2 and g2 are in Sℓ. By Lemma 2.3.11, the

branching (f1, e, g1) admits a confluence modulo (f ′1, e1, g
′
1) satsifying the conditions of (4), as depicted

on the following diagram:
f //

=

�� f1 //

e1
��

f ′1
//

e ′1
��

g1
//

=

��

g ′

1

//

g
//

Using Lemma 2.3.9, we get that |f2| ∪ |f ′1| <mult |(f, e, g)| and |g2| ∪ |g ′
1| <mult |(f, e, g)| so that by

induction on the branchings (f2, f
′
1) and (g ′

1, g2), there exist positive 3-cells f3, f
′
2, g3, g

′
2 in Sℓ satisfying

the conditions of (4) and 3-cells e2, e
′
2 in Eℓ as in the following diagram:

f1 //

=

��

=

��

f2 //
f3 //

e2
��f1 //

e1
��

f ′1
//

e ′1
��

f ′2
//

g1
//

=

��

g ′

1

//

=

��

g ′

2
//

e ′2
��

g1
//

g2
//

g3
//

Now, either there is a 2-cell e ′′′ : t2(e2) → s2(e
′
2) in Eℓ, and the confluence diagram obtained satisfy

the conditions of (4) using Lemma 2.3.10 on the top part of the diagram and decreasingness of the

confluence modulo (g ′
2, e

′
2, g3). Otherwise, the branching (f ′2, e

′
1, g

′
2) is a branching of S modulo E

whose label is strictly smaller than |(f, e, g)| with respect to <mult by construction. Applying induction

on this branching, there exists a confluence modulo (f ′3, e3, g
′
3) of this branching satisfying the conditions

of (4). Then, we may still apply induction on the branchings (e2, f
′
3) and (e ′2, g

′
3) of S modulo E, whose

respective multisets |f ′3| and |g ′
3| are strictly smaller than |(f, e, g)| with respect to <mult by construction.

We get the following situation:

f1 //

=

��

=

��

f2 //
f3 //

e2
��

f4 //

e3

��f1 //

e1
��

f ′1
//

e ′1
��

f ′2
// f ′3

//

e3
��

f ′4
//

g1
//

=

��

g ′

1

//

=

��

g ′

2
//

e ′2
��

g ′

3
// g ′

4
//

e ′3
��

g1
//

g2
//

g3
//

g4
//

This process can be repeated, however it terminates in finitely many steps to reach a confluence modulo

of the branching (f, e, g), using a similar argument than in the proof of Lemma 2.3.11. This confluence

modulo satisty the properties of (4) from successive use of Lemmas 2.3.9 and 2.3.10.

2.4. Quasi-termination of polygraphs modulo

In this section, we recall some results on quasi-terminating linear (3, 2)-polygraphs from [3] and [12].

2.4.1. Quasi-termination and exponentiation freedom. A linear (3, 2)-polygraph P is quasi-terminating

if for each sequence (un)n∈N of 2-cells such that for each n in N there is a rewriting step from un to
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un+1, the sequence (un)n∈N contains an infinite number of occurences of the same 2-cell. A 2-cell u of

P is called a quasi-normal form if for any rewriting step from u to another 2-cell v, there exist a rewriting

sequence from v to u. A quasi-normal form of a 2-cell u is a quasi-normal form u such that there exists

a rewriting sequence from u to u. A linear (3, 2)-polygraph P is said exponentiation free is for any 2-cell

u, there does not exist a 3-cell α in P such that

u
α→ λu+ h with λ ∈ K\{0} and h 6= 0.

2.4.2. Labelling to the quasi-normal form. Given a quasi-terminating linear (3, 2)-polygraph P, any

2-cell u in P∗2 admits at least quasi normal form. For such a 2-cell u, we fix a choice of a quasi normal

form denoted by u. Then we get a quasi-normal form map s : Pℓ2 → Pℓ2 sending a 2-cell u in P∗2 on u.

The labelling to the quasi-normal form, labellling QNF for short associates to the map s the labelling

ψQNF : Pstp → N defined by

ψQNF(f) = d(t1(f), t1(f))

where d(t1(f), t1(f)) represent the minimal number of rewriting steps needed to reach the quasi normal

form t1(f) from t1(f).

2.4.3. Proving confluence modulo under quasi-termination. Alleaume established in [2] that if P is a

quasi-terminating and exponentiation free linear (3, 2)-polygraph, then it is locally confluent if and only

if all its critical branchings are confluent. The proof of this result consists in two different stepsFirst of all,

one proves that the local additive branchings are confluent under quasi-termination and exponentiation

freedom using Lemma 1.1.5. Then, one proves that the overlapping local branchings are confluent in a

similar fashion than in Theorem 2.2.9. This result is adapted to rewriting modulo in [12], where it was

also established that one can prove decreasingness of a linear (3, 2)-polygraph modulo using decreasing

confluence modulo of critical branchings modulo:

2.4.4 Proposition. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo such that ERE is

quasi-terminating and S is exponentiation free. The following properties hold:

i) S is locally confluent modulo E if and only if its critical branchings of the form a0) and b0) of

Theorem 2.2.9 are confluent modulo E.

ii) If all these critical branchings of S modulo E are decreasing with respect to the labelling to the

quasi-normal form ψQNF, then S is decreasing.

2.5. Linear bases by confluence modulo

We give a method to compute a hom-basis for a linear (2, 2)-category C from a presentation of C by

a linear (3, 2)-polygraph P admitting a convergent subpolygraph E such that the polygraph with set of

3-cells R3 = P3\E3 is confluent modulo E, and ERE is terminating, or quasi-terminating.

2.5.1. Splitting of a polygraph. Given a linear (3, 2)-polygraph P, recall that a subpolygraph of P is

a linear (3, 2)-polygraph P ′ such that P ′
i ⊆ Pi for any 0 ≤ i ≤ 3. A splitting of P is a pair (E, R) of

linear (3, 2)-polygraphs such that:

i) E is a subpolygraph of P such that E≤1 = P≤1,

ii) R is a linear (3, 2)-polygraph such that R≤2 = P≤2 and P3 = R3
∐
E3.

Such a splitting is called convergent if we require that E is convergent. Note that any linear (3, 2)-

polygraph P admits a convergent splitting given by (P0, 1, P2, ∅) and (P0, P1, P2, P3). It is not unique in

general. The data of a convergent splitting of a linear (3, 2)-polygraph P gives two distinct linear (3, 2)-

polygraphs R = (P0, P1, P2, R3) and E = (P0, P1, E2, E3) satisfying R≤1 = E≤1 and E2 ⊆ P2, so that

we can construct a linear (3, 2)-polygraph modulo from R and E. Note that when P is left-monomial, if

(E, R) is a splitting of P, then both E and R are left-monomial.
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2.5.2. Normal forms modulo. Let us consider a linear (3, 2)-polygraph P presenting a linear (2, 2)-

category C, (E, R) a convergent splitting of P and (R, E, S) a normalizing linear (3, 2)-polygraph modulo

such that S is confluent modulo E.

S being normalizing, each 2-cell u of Rℓ2 admits at least one normal form with respect to E, and all

these normal forms are congruent with respect to E. We fix such a normal form that we denote by û,

with the convention that if u is already a normal form with respect to E, then û = u. By convergence

of E, any 2-cell u of Rℓ2 admits a unique normal form with respect to E, that we denote by ũ. Note that

when S is confluent modulo E, the element ˜̂u does not depend on the chosen normal form û for u with

respect to S, since two normal forms of u being equivalent with respect to E, they have the same normal

form with respect to E. A normal form for (R, E, S) of a 2-cell u in Rℓ2 is a 2-cell v such that v appears

in the monomial decomposition of w̃ where w is a monomial in the support of û. Given a 2-cell u in

Rℓ2, we denote by NF(R,E,S)(u) the set of all normal forms of u for (R, E, S). Such a set is obtained by

reducing u into its chosen normal form with respect to S, then taking all the monomials appearing in

the E-normal form of each element in Supp(û). Note that when E is also right-monomial, the E-normal

form of a monomial in normal form with respect to S already is a monomial. In particular, this is the

case when E is the polygraph of isotopies described in 1.2.6.

2.5.3 Lemma. Let P be a left-monomial linear (3, 2)-polygraph, (E, R) be a convergent splitting of P

and (R, E, S) be a normalizing left-monomial linear (3, 2)-polygraph modulo such that S is confluent

modulo E, and let C be the category presented by P. Then, for any parallel 1-cells x and y in R∗1, the map

γx,y : R
ℓ
2(x, y)→ C(x, y) sending each 2-cell to its congruence class in C has for kernel the subspace of

Rℓ2 made of 2-cells u such that ˜̂u = 0.

Proof. Let us denote by N the set {u ∈ Rℓ2 ; ˜̂u = 0}. Then N ⊆ Ker(γ) since if u ∈ N, there exist

positive 3-cells f in Eℓ and e in Eℓ such that

u
f // û

e // ˜̂u = 0

Thus by definition of S there exist a zig-zag sequence of rewriting steps either of R or E between u and 0,

so that u = 0 in C and u belongs to Ker(γ). Conversely, if u belongs to Ker(γ), that is π(u) = 0 where

π : Rℓ2 → C is the canonical projection, there is a zig-zag sequence of rewriting steps (fi) for 0 ≤ i ≤ n

with fi being either a rewriting step of R or a rewriting step of E such that

u
f1 // u1 u2

f2oo . . .
fn−2 // un−1 un

fn //
fn−1oo v

S being confluent modulo E, it is Church-Rosser modulo E from 2.2.4, and then by 2.2.3, we get that

there exist rewriting sequences f : u → û and g : 0 → 0̂ in Sℓ and a 3-cell e : v̂ → 0̂ in Eℓ. As S is

left-monomial, 0 is a normal form with respect to S so that 0̂ = 0. Then û and 0 are equivalent with

respect to E so that, by convergence of the linear (3, 2)-polygraph E, we get that ˜̂u = 0̃, and similarly

0̃ = 0 since E is left-monomial and 0 is a normal form with respect to E. This finishes the proof.

We then obtain the following result:

2.5.4 Theorem. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C, (E, R) a con-

vergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

i) S is normalizing,

ii) S is confluent modulo E,

then the set of all normal forms for (R, E, S) is a hom-basis of C.
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Proof. Let us denote by B the set of E-normal forms of all monomials in normal forms with respect to

S, and let BMon be the set of all normal forms for (R, E, S). Note that by definition, BMon is obtained by

considering all the 2-cells in the support of the elements of B. Since S is left-monomial, each normal

form in Rℓ2 can be decomposed into a linear combination of monomials in normal form with respect to

S, and by left-monomiality of E, we get that an element of B is a linear combination of monomials in

BMon, so that BMon is a basis of B. For any 1-cells p and q of C, the map γx,y : Rℓ2(p, q) → C2(p, q) is

surjective by definition, each 2-cell of C2(p, q) having at least one representative in Rℓ2(p, q). Moreover,

the restriction of γp,q to the subvector space B of Rℓ2 has for kernel B ∩ Ker(γp,q), which is reduced to

{0} by confluence modulo E of S, using Lemma 2.5.3. This proves that (γp,q)|B is a bijection between B

and C2(p, q), and so BMon is a linear basis of C2(p, q).

2.5.5. Linear bases under quasi-termination. Note that both Lemma 2.5.3 and Theorem 2.5.4 have

an adaptation in a non-normalizing but quasi-terminating setting. Indeed, instead of fixing a normal form

û with respect to S for any u in Rℓ2, we fix a choice of a quasi-normal form u for u satisying u = u

if u already is a quasi-normal form with respect to S. By confluence modulo, u and v are 2-cells of Rℓ2
such that there is a 3-cell e : u → v in Eℓ, then the 2-cells u and v are equivalent modulo E. We then

say that a quasi-normal form for (R, E, S) is a monomial appearing in the monomial decomposition of

the E-normal form of a monomial in Supp(u). With a similar proof than above, we obtain the following

result:

2.5.6 Theorem. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C, (E, R) a con-

vergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

i) S is quasi-terminating,

ii) S is confluent modulo E,

Then the set of quasi-normal forms form (R, E, S) is a hom-basis of C.

3. AFFINE ORIENTED BRAUER CATEGORY

In this section, we illustrate the previous results by computing a hom-basis for the affine Oriented Brauer

linear (2, 2)-category AOB. We describe a linear (3, 2)-polygraph (E, R, ER) for which we prove that

ER is quasi-terminating and ER is confluent modulo. As a consequence, we prove that a choice of quasi-

normal forms yields to the well-known basis obtained in [20, 1].

3.1. A presentation of AOB

We recall from [31] the natural presentation of the affine oriented Brauer category from the degenerate

affine Hecke monoidal category.

3.1.1. The degenerate affine Hecke category. Let AHdeg be the linear (2, 2)-category with only one

0-cell, one generating 1-cell , two generating 2-cells

: ⋆0 → ⋆0 and • : →

and three relations

=
,

=
,

• =
•

+
.
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Following [31], EndAHdeg

(
⊗n

)
is isomorphic to the degenerate affine Hecke algebra of degree n.

3.1.2. The linear (2, 2)-category AOB. To define the affine oriented Brauer linear (2, 2)-category

AOB, we add to this data an additional generating 1-cell that we require to be right dual to . Fol-

lowing 1.2.1, this requires the existence of unit and counit 2-cells

: 1→ ⋆0 , and : ⋆0 → 1.

where 1 denoted the identity 1-cell on the only 0-cell of AHdeg. These 2-cells have to satisfy the adjunc-

tion relations

=
,

=
.

We also add an additional 2-cell defined by a right-crossing as follows:

:=

that we require to be invertible, namely there exists a two-sided inverse to this 2-cell, that we will denote

by . The resulting category AOB is called the affine oriented Brauer category. It was proved to be

a pivotal linear (2, 2)-category in [5], with also being the left dual of and the unit and counit 2-cells

being defined as follows:

= =

The left crossing 2-cell is then proved to be equal to

The inverse condition is then given by the following two relations:

= =

3.1.3. The linear (3, 2)-polygraph AOB. Let AOB be the linear (3, 2)-polygraph having:

i) one 0-cell,

ii) two biadjoint generating 1-cells and ,

iii) 8 generating 2-cells:

• •
(5)

iv) the following families of 3-cells:
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a) Isotopy 3-cells:

•α
iα1
⇛ •α , •α

iα3
⇛ •α , •α

iα4
⇛ •α , •α

iα2
⇛ •α , for any α ∈ {0, 1}

(6)

•
i21
⇛ • • i23

⇛
• •

i22
⇛ • • i24

⇛
•

(7)

b) degenerate affine Hecke 3-cells:

α+

⇛
,

β+

⇛
,

•
γl,+
⇛

•
+

,
•

γr,+
⇛

•
−

.

and the corresponding 3-cells with downward orientations respectively denoted by α−,β−, γl,−
and γr,−.

c) Invertibility 3-cells:

E
⇛

F
⇛

d) 3-cells defining the caps and cups:

A
⇛ ,

B
⇛ ,

C
⇛ ,

D
⇛

e) sliding 3-cells s0n and s1n and ordering 3-cells on defined by induction in [20], and oriented in the

same way than in [1].

We easily prove following [31] that this linear (3, 2)-polygraph is a presentation of AOB. To study

this linear (3, 2)-polygraph modulo, we consider its convergent subpolygraph E defined by Ei = AOBi
for i = 0, 1, E2 contains the last six generating 2-cells in 5 and E3 contains exactly the isotopy 3-cells

(6). Following 1.2.6, E is convergent. We denote by R the linear (3, 2)-polygraph having the same i-cells

than AOB for i = 0, 1, 2 and such that R3 = AOB3\E3. From the data of E and R, we can then consider

the linear (3, 2)-polygraph (R, E, ER), and prove the following result:

3.1.4 Theorem. Let (R, E) be the splitting of AOB defined above, then ER is quasi-terminating and R

is confluent modulo E.

3.2. Quasi termination of ER

To prove quasi-termination of the linear (3, 2)-polygraph ER is quasi-terminating, we will proceed in

two steps: at first we will prove that the linear (3, 2)-polygraph R minus the sliding 3-cells is terminating

using derivations as in 1.3.3. Then, using a notion of quasi-ordering and a suited notion of polynomial

interpretation on AOBℓ2, we will describe in the same fashion than in [1] a procedure proving that every

2-cell in AOB can be rewritten in a finite number of steps into a monomial on which the only 3-cells

that can be applied are the cells creating cycles.
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3.2.1. Termination without sliding 3-cells. In order to prove that the linear (3, 2)-polygraph ER is

quasi-terminating, let us at first state the following lemma:

3.2.2 Lemma. The linear (3, 2)-polygraph R ′ = R \{s0n, s
1
n}n∈N is terminating.

Proof. Let us proceed in three steps, using the derivation method given in 1.3. We at first consider

a derivation d defined by d(u) = ||u||{ , } into the trivial modulo M∗,∗,Z, counting the num-

ber of crossing generators in a given 2-cell. We have that d(s2(ω)) > d(ωi) for any 3-cell ω in

{A,B,C,D, E, F, α} and any ωi in Supp(t(ω)). As a consequence, one gets that if the linear (3, 2)-

polygraph R ′′ defined as R ′ minus each of these 3-cell terminates, then so does R ′. Indeed, otherwise

there would exist an infinite reduction sequence (fn)n∈N in R ′ and thus, an infinite decreasing sequence

(d(fn))n∈N of natural numbers. Moreover, this sequence would be strictly decreasing at each step that

is generated by any of these 3-cells and thus, after some natural number p, this sequence would be gen-

erated by the other 3-cells only. This would yield an infinite reduction sequence (fn)n≥p in R ′′, which is

impossible by assumption.

It remains to prove that the linear (3, 2)-polygraph (R0, R1, R2, {β±, γl,±, γr,±, on}n∈N) terminates.

We can still reduce this problem to the termination of the rules β±, γl,± and γr,± by considering a

derivation d ′ with values in the trivial moduloM∗,∗,Z counting the number of clockwise oriented bubbles.

To prove this, let us consider X the 2-functor X : AOB∗
2 → Ord on generating 2-cells by:

X( )(i) = i X( • )(i) = i+ 1 X( )(i, j) = (j + 1, i) ∀i, j ∈ N

for both orientations of strands, and we consider the AOB∗
2-module MX,∗,Z and define the derivation

d : AOB∗
2 →MX,∗,Z on the generating 2-cells by

d( )(i, j) = i d( )(i) = 0 = d( • )(i)

One then checks that the following inequalities hold:

d( )(i, j, k) = 2i+ j + 1 > 2i + j = d( )(i, j, k)

d( • )(i, j) = i > 0 = d( • )(i, j), d( • )(i, j) = i > 0 = d( • )(i, j)

so that the 2-functor X and the derivation d satisfy the conditions i), ii) and iii) of 1.3.3, and thus the

corresponding linear (3, 2)-polygraph is terminating.

However, as explained in [1], the addition of the sliding 3-cells create rewriting cycles, so that R is

not terminating. Nethertheless, we will prove that it is quasi-terminating.

3.2.3. Quasi-orderings. Following [9], a quasi-ordered set is a set A equipped with a transitive and

reflexive binary relation & on elements of A. For example, for any abstract rewriting system (A,→R),

the derivability relation →∗
R is a quasi-ordering on the set A. Given a quasi-ordering & on a set A, we

define the associated equivalence relation ≈ as both & and . and the strict partial ordering > as & but

not .. Such a quasi-ordering is said total if for any a,b in A, we have either a & b or b & a. The strict

part > of a quasi-ordering is well-founded if and only if all infinite quasi-descending sequences

a1 & a2 & . . .

of elements of A contains a pair sj . sk for j < k. A quasi-ordering defined on a set of 2-cells of a

linear (2, 2)-category C is said monotonic if

(u & v) ⇒ (C[u] & C[v])
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for any context C of C. From [9], if & is monotonic then ≈ is a congruence. Many termination and quasi-

termination proofs in the literature are made using well-founded quasi-orderings defined by monotonic

polynomial interpretations, [27]. In the case of linear (2, 2)-categories, these polynomial interpretations

will be given by weight functions.

3.2.4. Weight functions. Let C a linear (2, 2)-category. A weight function on C is a function τ from C2
toN such that

i) τ(u ⋆i v) = τ(u) + τ(v) for i = 0, 1 for any i-composable 2-cells u and v,

ii) for each 2-cell u in C2,

τ(u) = max{τ(ui) | ui ∈ Supp(u)}

Note that when C is presented by a linear (3, 2)-polygraph P, such a weight function is uniquely and

entirely determined by its values on the generating 2-cells of P2. This enables to define a quasi-ordering

& on AOB
ℓ
2 by u & v if τ(u) ≥ τ(v).

3.2.5. Quasi-reduced monomials. Recall from [1] that a monomial in AOB is quasi-reduced if it can

be rewritten by only one of the 3-cells derived from ordering and sliding 3-cells in ER on the following

subdiagrams:

•n •n

•n •n

for any n inN. We call a 2-cell of AOBℓ2 quasi-reduced if all monomials in its monomial decomposition

are quasi-reduced.

3.2.6. Quasi-termination of ER. Following [1], we define a weight function on AOBℓ2 by its following

values on generating 2-cells:

τ( ) = τ( ) = τ( ) = τ( ) = 0, τ( • ) = τ(
•
) = 0, τ( ) = τ( ) = 3.

Note that for any 3-cell α in E3, we have τ(s2(α)) = τ(t2(α)) so that the isotopy 3-cells preserve this

weight function. Then, starting with a monomial u of AOB
ℓ
2:

- While u can be rewritten with respect to ER into a 2-cell u ′ such that τ(u ′) < τ(u), then assign

u to u ′.

- While u can be rewritten with respect to ER into a 2-cell u ′ without any of the 3-cells depicted in

3.2.5, then assign u to u ′.

From Lemma 3.2.2 and well-foundedness of the quasi-ordering & defined in 3.2.4, this procedure termi-

nates and returns a linear combination of monomials in AOB
ℓ
2 which are quasi-reduced.

3.3. Confluence modulo

In this subsection, we prove that the linear (3, 2)-polygraph modulo ER is confluent modulo E using

Theorem 2.3.8 and Proposition 2.4.4.

33



3.3.1. Critical branchings modulo. Let us at first enumerate the list of all critical branchings modulo

that we have to prove decreasing with respect to ψQNF. First of all, there are 6 regular critical branchings

implying the degenerate affine Hecke 3-cells:

(α±, α±), (α±, β±), (β±, α±), (α±, γη,±)η∈{l,r}, (β±γη,±)η∈{l,r}, (γl,±, γr,±).

The first three families are proved confluent modulo in the same way that the polygraph of per-

mutations is proved confluent in [16]. The remaining critical branchings are decreasingly confluent as

follows:

• •
//

=

��

•
•

−
• // •

•
−

•
+

•

=

��

• •
// •

•
+

• // •
•

+
•

−
•

•

//

= ��

•
//
•

// •

=

��•

// •

•

//

=

��

•

+ // • + +

=

''◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

•

//

•

// • + //

•
+ +

for both orientations of strands. In the last two cases, we proceed similarly if the dot is placed on another

strand. Following the study of the 3-polygraphs of permutations in [16], there also are two families of

indexed critical branchings given by

k

(8)

where the normal forms k that we can plug in (8) are of the form

i) •n for every n ∈ N, which is just an identity if n = 0.

ii) •n for all n ∈ N.

These indexed critical branchings are confluent modulo E, and the proof of their confluence is not drawn

here but can be found in a forecoming paper, in the more general combinatorics of KLR algebras. The

critical branchings modulo implying the sliding and ordering 3-cells are proved confluent modulo E in a

similar fashion than in [1]. We then give the exhaustive list of all critical branchings modulo implying the
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3-cells A,B,C,D,E and F. First of all, these branchings overlap with degenerate affine Hecke relations to

give the following sources of critical branchings modulo:

(A,C), (B,D), (B, F), (E,D), (C,E), (E, F), (F, E),

(A,γl,+), (B, i24, γl,+), (D,γr,+), (E, γl,+), (γr,+, i
2
3, C), (F, γr,+),

(α+, i
0
1 ⋆2 i

0
4, F), (γr,+, i

0
1 ⋆2 i

0
4 ⋆2 (i

2
3 ⋆2 i

2
1)

−, F), (β+, i
0
1 ⋆2 i

0
4, F),

(α+, i
0
1 ⋆2 i

0
4, E), (γl,+, i

0
1 ⋆2 i

0
4 ⋆2 (i

2
2 ⋆2 i

2
4)

−, E).

Some of these branchings are proved decreasingly confluent with respect to ψQNF by the confluence

modulo diagrams below. The remaining one are obtained by symmetries of the diagrams and are thus

not drawn.

=

��

C //
o10 //

=

��

A
//

F //

=

��
=

��

λ

A
//

D
//

λ B //

=

��

C //

=

��
λ

F
//

B //

=

��

o10 //

=

��

D
//

λ E //

=

��

=

��

λ

D
//

A
//

C //

=

��

B //

=
��

E
//

F //

=

��

=

��

E
//

• Ai,λ //

=

��

•

=

��

•
γl,+

//

•
+

i22⋆2(i
2
3)

−·γr,+

//
λ

• (i21)
−·A

// •
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• B //

=
��

•

(i24)
−

��

• i24·γl,+ //

•
+

i22⋆2(i
2
3)

−·γr,+

//

•
B

// •

• E //

=

��

•

=

��

•
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//

•

− +
E−A+B

// •

α //

i01⋆2i
0
4

��

s00 //

=

��

F
//

•

i01⋆2i
0
4

��

γr,+ //

•

−
α+−(i01)

−·C
// • −

s01 // •

=

��

•
F

// •

(i01)
−
⋆2(i

0
4)

−

��

β+

// ≡E
C //

(i01)
−
⋆2(i

0
4)

−·α+

//

(i01)
−

��

F
//

(i01)
−·C

//

3.3.2. Normally ordered Brauer diagrams. A dotted oriented Brauer diagram is a planar string dia-

gram built from ⋆0 and ⋆1-compositions of the above generating 2-cells in which every edge is oriented

and is either a bubble or have a boundary point as source and target, each edge is decorated with an arbi-

trary number of dots not allowed to pass through the crossings. Such a diagram is said normally ordered
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if all its bubbles are clockwise oriented and located in the leftmost region, and if all dots are either on a

bubble or a segment pointing toward a boundary (or in the opposite direction). In a similar fashion than

[1, Lemma 5.2.6], we prove that each 2-cell of AOBℓ2 can be rewritten with respect to ER into a linear

combination of diagrams whose normal forms with respect to E are normally ordered dotted oriented

Brauer diagrams. As a consequence, we get from 2.5.6 that the set of such diagrams with 1-source u and

1-target v form a basis of the K-vector space AOB2(u, v), and we recover the result from [20, 1].
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