Diagrammatic rewriting modulo isotopies

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1
joint work with Philippe Malbos

SYCO 2
Glasgow, 18 December 2018

(Diagrammatic) Rewriting modulo (isotopies)

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1
joint work with Philippe Malbos

SYCO 2

Glasgow, 18 December 2018
I. Introduction and motivations
II. Double groupoids
III. Polygraphs modulo
IV. Coherence modulo

I. Introduction and motivations

Motivations: algebraic context

- Algebraic rewriting $=$ applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.

Motivations: algebraic context

- Algebraic rewriting $=$ applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- Computation of syzygies (relations among relations)

Exemple. For the group $\mathbb{Z}^{3}=\langle x, y, z \mid[x, y]=1,[y, z]=1,[z, x]=1\rangle$, the Jacobi identity

$$
\left[x^{y},[y, z]\right]\left[y^{z},[z, x]\right]\left[z^{x},[x, y]\right]=1
$$

is such a syzygy, with $[x, y]=x y x^{-} y^{-}$and $x^{y}=y^{-} x y$.

Motivations: algebraic context

- Algebraic rewriting $=$ applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- Computation of syzygies (relations among relations) Exemple. For the group $\mathbb{Z}^{3}=\langle x, y, z \mid[x, y]=1,[y, z]=1,[z, x]=1\rangle$, the Jacobi identity

$$
\left[x^{y},[y, z]\right]\left[y^{z},[z, x]\right]\left[z^{x},[x, y]\right]=1
$$

is such a syzygy, with $[x, y]=x y x^{-} y^{-}$and $x^{y}=y^{-} x y$.

- For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14.

Motivations: algebraic context

- Algebraic rewriting $=$ applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- Computation of syzygies (relations among relations)

Exemple. For the group $\mathbb{Z}^{3}=\langle x, y, z \mid[x, y]=1,[y, z]=1,[z, x]=1\rangle$, the Jacobi identity

$$
\left[x^{y},[y, z]\right]\left[y^{z},[z, x]\right]\left[z^{x},[x, y]\right]=1
$$

is such a syzygy, with $[x, y]=x y x^{-} y^{-}$and $x^{y}=y^{-} x y$.

- For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14.
- If a group $G=\langle X \mid R\rangle$ is presented as a monoid $M=\langle X \amalg \bar{X}| R \cup\left\{x x^{-} \stackrel{\alpha_{x}}{\Rightarrow} 1, x^{-} x \stackrel{\overline{\alpha_{\searrow}}}{\Rightarrow} 1\right\}$, the confluence diagram

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- Structural rules of these algebras make the study of local confluence complicated.

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

$$
\bigcap=\mid=\bigcup \bigcap
$$

$$
\oint \jmath=\emptyset=\bigcup \oint
$$

Motivation: objectives

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
- Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
- Temperley-Lieb algebras in statistichal mechanics;
- Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main questions:
- Coherence theorems;
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

$$
\bigcap=\mid=\bigcup \bigcap
$$

$$
\oint \jmath=\emptyset=\bigcup \oint
$$

- We use rewriting modulo.
- Algebraic axioms are not rewriting rules, but taken into account when rewriting.
- Rewriting system R :
- Coherence results in n-categories.

Globular

- Rewriting system R :
- Coherence results in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- Rewriting system R :
- Coherence results in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence results in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet ' 80

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence results in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet ' 80

Cubical

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence results in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet ' 80

Cubical

- ${ }_{E} R_{E}$: Rewriting with R on E-equivalence classes

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence results in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet ' 80

Cubical

Three paradigms of rewriting modulo

- Rewriting system R :
- Coherence results in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet ' 80

Cubical

- Rewriting with any system S such that $R \subseteq S \subseteq E R_{E}$, Jouannaud - Kirchner '84.
- Rewriting system R :
- Coherence results in n-categories.

Globular

- In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
- Rewriting with R modulo E, Huet ' 80

Cubical

- Rewriting with any system S such that $R \subseteq S \subseteq E R_{E}$, Jouannaud - Kirchner '84.
- Main interest and results for ${ }_{E} R$.

II. Double groupoids

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- A double category is an internal category ($\left.\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{0}}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}, \boldsymbol{i}_{\mathbf{C}}\right)$ in Cat. Ehresmann '64

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- A double category is an internal category ($\left.\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{0}}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}, \boldsymbol{i}_{\mathbf{C}}\right)$ in Cat. Ehresmann '64
$\left(C_{0}\right)_{0}$

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}$, ic $\left.^{\mathbf{C}}\right)$ in Cat. Ehresmann '64

$$
\begin{gathered}
\left(\mathrm{C}_{0}\right)_{0} \\
\left(\mathrm{C}_{0}\right)_{1} \downarrow \downarrow \\
\left(\mathrm{C}_{0}\right)_{0}
\end{gathered}
$$

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{0}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}$, ic $\left.^{\mathbf{C}}\right)$ in Cat. Ehresmann '64

$\left(\mathrm{C}_{0}\right)_{0}$	$\left(\mathrm{C}_{0}\right)_{0}$
$\left(\mathrm{C}_{0}\right)_{1} \downarrow$	$\downarrow\left(\mathrm{C}_{0}\right)_{\mathbf{1}}$
$\left(\mathrm{C}_{0}\right)_{0}$	$\left(\mathrm{C}_{0}\right)_{0}$

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{0}}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}$, ic $)$ in Cat. Ehresmann '64

$$
\begin{aligned}
& \left(\mathrm{C}_{0}\right)_{0} \xrightarrow{\left(\mathrm{C}_{\mathbf{1}}\right)_{0}}\left(\mathrm{C}_{0}\right)_{0} \\
& \left(\mathrm{C}_{0}\right)_{1} \downarrow \\
& \left.\downarrow \mathrm{C}_{0}\right)_{0} \underset{\left(\mathrm{C}_{\mathbf{1}}\right)_{0}}{\longrightarrow}\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{0}}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}$, ic $)$ in Cat. Ehresmann '64

$$
\begin{aligned}
& \left(\mathrm{C}_{0}\right)_{0} \xrightarrow{\left(\mathrm{C}_{1}\right)_{0}}\left(\mathrm{C}_{0}\right)_{0} \\
& \left(\mathrm{C}_{0}\right)_{1} \downarrow \downarrow{ }^{\left(\mathrm{C}_{1}\right)_{1}} \downarrow \downarrow\left(\mathrm{C}_{0}\right)_{\mathbf{1}} \\
& \forall \\
& \left(\mathrm{C}_{0}\right)_{0} \underset{\left(\mathrm{C}_{\mathbf{1}}\right)_{0}}{\downarrow}\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

Double groupoids

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- A double category is an internal category ($\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{0}}, \partial_{-}^{\mathbf{C}}, \partial_{+}^{\mathbf{C}},{ }^{\circ} \mathbf{C}$, ic $)$ in Cat. Ehresmann '64

$$
\begin{aligned}
& \left(\mathrm{C}_{0}\right)_{0} \xrightarrow{\left(\mathrm{C}_{1}\right)_{0}}\left(\mathrm{C}_{0}\right)_{0} \\
& \left(\mathrm{C}_{0}\right)_{1} \downarrow \downarrow{ }^{\left(\mathrm{C}_{1}\right)_{1}} \downarrow \downarrow\left(\mathrm{C}_{0}\right)_{\mathbf{1}} \\
& \left.\forall \mathrm{C}_{0}\right)_{0} \underset{\left(\mathrm{C}_{1}\right)_{0}}{\downarrow}\left(\mathrm{C}_{0}\right)_{0}
\end{aligned}
$$

- There are point cells, horizontal cells and vertical cells respectively pictured by

- There are square cells

$$
\partial_{-, \mathbf{1}}^{v}(A) \downarrow \stackrel{\Downarrow_{A} \downarrow^{\partial_{+, \mathbf{1}}^{v}(A)}}{\downarrow} \stackrel{\partial_{-, \mathbf{1}}^{h}(A)}{\partial_{+, \mathbf{1}}^{h}(A)} \cdot
$$

Double groupoids

- There are square cells
- There are square cells
- Compositions

for all x_{i}, y_{i}, z_{i} point cells, f_{i}, g_{i} horizontal cells, e_{i}, e_{i}^{\prime} vertical cells and A, A^{\prime}, B square cells.
- There are square cells
- Compositions

$$
\begin{aligned}
& x_{1} \xrightarrow{f_{1}} x_{2}
\end{aligned}
$$

for all x_{i}, y_{i}, z_{i} point cells, f_{i}, g_{i} horizontal cells, e_{i}, e_{i}^{\prime} vertical cells and A, A^{\prime}, B square cells.

Double groupoids

- These compositions satisfy the middle four interchange law:

Double groupoids

- These compositions satisfy the middle four interchange law:

Double groupoids

- These compositions satisfy the middle four interchange law:

Double groupoids

- These compositions satisfy the middle four interchange law:

Double groupoids

- These compositions satisfy the middle four interchange law:

$$
\begin{aligned}
& \begin{array}{cc}
y_{1} \xrightarrow{g_{1}} y_{2} \\
e_{\mathbf{1}}^{\prime} \downarrow & \Downarrow A^{\prime} \\
\forall & \Downarrow^{\prime} e_{\mathbf{2}}^{\prime} \\
z_{1} & -h_{\mathbf{1}} \rightarrow z_{2}
\end{array}
\end{aligned}
$$

Double groupoids

- These compositions satisfy the middle four interchange law:

$$
\begin{aligned}
& x_{2} \xrightarrow{f_{2}} x_{3} \quad x_{1} \xrightarrow{f_{1}} x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
y_{1} & \xrightarrow{g_{1}}>y_{2} \\
e_{1}^{\prime} \\
\Downarrow & \forall A^{\prime} & \downarrow e_{2}^{\prime} \\
z_{1} & -h_{1} \rightarrow z_{2}
\end{array}
\end{aligned}
$$

Double groupoids

- These compositions satisfy the middle four interchange law:

$$
\begin{aligned}
& x_{2} \xrightarrow{f_{2}} x_{3} \quad x_{1} \xrightarrow{f_{1}} x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
y_{2} \xrightarrow{g_{2}} y_{3} \\
\diamond^{v} e_{2}^{\prime} \downarrow \underset{y}{\downarrow} \begin{array}{l}
\forall B^{\prime} \\
z_{2} — h_{2} \rightarrow e_{3}^{\prime}
\end{array}
\end{array}
\end{aligned}
$$

Double groupoids

- These compositions satisfy the middle four interchange law:

$$
\begin{aligned}
& x_{2} \xrightarrow{f_{2}} x_{3} \quad x_{1} \xrightarrow{f_{1}} x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
y_{2} \xrightarrow{g_{2}} y_{3} \\
\diamond^{v} e_{2}^{\prime} \downarrow \underset{y}{\downarrow} \begin{array}{l}
\forall B^{\prime} \\
z_{2} — h_{2} \rightarrow e_{3}^{\prime}
\end{array}
\end{array}
\end{aligned}
$$

- Double groupoid $=$ double category ($\left.\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathrm{C}}, \partial_{+}^{\mathrm{C}},{ }^{\circ} \mathbf{C}, i_{\mathrm{C}}\right)$ in which \mathbf{C}_{1} and C_{0} are groupoids.

Double groupoids

- These compositions satisfy the middle four interchange law:

- Double groupoid $=$ double category ($\left.\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathrm{C}}, \partial_{+}^{\mathrm{C}},{ }^{\circ} \mathbf{C}, i_{\mathrm{C}}\right)$ in which C_{1} and C_{0} are groupoids.
- n-category enriched in double groupoids $=n$-category \mathcal{C} such that any homset $\mathcal{C}_{n}(x, y)$ is a double groupoid.

Double groupoids

- These compositions satisfy the middle four interchange law:

$\diamond^{h} \quad \diamond^{v}$
$y_{1} \xrightarrow{g_{1}} y_{2}$

$y_{1} \xrightarrow{g_{1}} y_{2}$
$y_{2} \xrightarrow{g_{2}} y_{3}$

- Double groupoid $=$ double category ($\left.\mathbf{C}_{1}, \mathbf{C}_{0}, \partial_{-}^{\mathrm{C}}, \partial_{+}^{\mathrm{C}},{ }^{\circ} \mathbf{C}, i_{\mathrm{C}}\right)$ in which C_{1} and C_{0} are groupoids.
- n-category enriched in double groupoids $=n$-category \mathcal{C} such that any homset $\mathcal{C}_{n}(x, y)$ is a double groupoid.
- Horizontal $(n+1)$-category will be the $(n+1)$-category of rewritings; vertical ($n+1$)-category is the $(n+1)$-category of modulo rules.

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data $\left(P^{v}, P^{h}, P^{s}\right)$ made of:

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{v}, P^{h}, P^{s}) made of:
- two ($n+1$)-polygraphs P^{v} and P^{h} such that $P_{k}^{v}=P_{k}^{h}$ for $k \leq n$,

$$
P_{n+1}^{v} \Longrightarrow P_{n}^{*} \rightleftarrows P_{n+1}^{h}
$$

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{\vee}, P^{h}, P^{s}) made of:
- two $(n+1)$-polygraphs P^{\vee} and P^{h} such that $P_{k}^{\vee}=P_{k}^{h}$ for $k \leq n$,

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{\vee}, P^{h}, P^{s}) made of:
- two $(n+1)$-polygraphs P^{\vee} and P^{h} such that $P_{k}^{v}=P_{k}^{h}$ for $k \leq n$,
- a 2-square extension P^{s} of the pair of $(n+1)$-categories $\left(\left(P^{v}\right)^{*},\left(P^{h}\right)^{*}\right)$, that is a set equipped with four maps $\partial_{ \pm, n}^{\mu}$, with $\mu \in\{v, h\}$, making 「 a 2 -cubical set.

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{\vee}, P^{h}, P^{s}) made of:
- two $(n+1)$-polygraphs P^{\vee} and P^{h} such that $P_{k}^{v}=P_{k}^{h}$ for $k \leq n$,
- a 2-square extension P^{s} of the pair of $(n+1)$-categories $\left(\left(P^{v}\right)^{*},\left(P^{h}\right)^{*}\right)$, that is a set equipped with four maps $\partial_{ \pm, n}^{\mu}$, with $\mu \in\{v, h\}$, making 「 a 2 -cubical set.

- A double $(n+2, n)$-polygraph is a double n-polygraph whose square extension P^{s} is defined on $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$.

Double $(n+2, n)$-polygraphs

- A double n-polygraph is a data (P^{\vee}, P^{h}, P^{s}) made of:
- two ($n+1$)-polygraphs P^{v} and P^{h} such that $P_{k}^{v}=P_{k}^{h}$ for $k \leq n$,
- a 2-square extension P^{s} of the pair of $(n+1)$-categories $\left(\left(P^{v}\right)^{*},\left(P^{h}\right)^{*}\right)$, that is a set equipped with four maps $\partial_{ \pm, n}^{\mu}$, with $\mu \in\{v, h\}$, making Γ a 2 -cubical set.

- A double $(n+2, n)$-polygraph is a double n-polygraph whose square extension P^{s} is defined on $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$.
- A double n-polygraph (resp. double ($n+2, n$)-polygraph) $\left(P^{v}, P^{h}, P^{s}\right)$ generates a free ($n-1$)-category enriched in double categories (resp. in double groupoids), denoted by $\left(P^{v}, P^{h}, P^{s}\right) \Pi$.

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square

$$
S=\left(P^{v}\right)^{\top} \downarrow \stackrel{{ }^{\left(P^{h}\right)^{\top}}}{\stackrel{\rightharpoonup}{\longrightarrow}}{\left.\stackrel{P}{ }{ }^{h}\right)^{\top}}_{\overbrace{}^{\top}}\left(P^{v}\right)^{\top}
$$

Acyclicity

- A 2-square extension P^{s} of $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square

$$
S=\left(P^{\vee}\right)^{\top} \downarrow \stackrel{\downarrow^{\downarrow}}{\stackrel{\left(P^{h}\right)^{\top}}{\downarrow^{\top}} \downarrow_{\left(P^{h}\right)^{\top}}^{\gtrless}}\left(P^{\vee}\right)^{\top}
$$

there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.

- A 2-square extension P^{s} of $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square
there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.
- A 2-fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic
- A 2-square extension P^{s} of $\left(\left(P^{v}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square

$$
S=\left(P^{\vee}\right)^{\top} \stackrel{\stackrel{\left(P^{h}\right)^{\top}}{\downarrow} \stackrel{\downarrow^{\top}}{\downarrow_{A}} \downarrow_{\left(P^{h}\right)^{\top}}^{\longrightarrow}}{\overbrace{}^{\vee}} \text {. } P^{\vee})^{\top}
$$

there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.

- A 2-fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic
- Example: Let E be a convergent $(n+1)$-polygraph and \mathbf{C} the n-category presented by E.
- A 2-square extension P^{s} of $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square

$$
S=\left(P^{\vee}\right)^{\top} \stackrel{\stackrel{\left(P^{h}\right)^{\top}}{\downarrow} \stackrel{\downarrow^{\top}}{\downarrow_{A}} \downarrow^{\stackrel{\left(P^{h}\right)^{\top}}{\longrightarrow}}\left(P^{\vee}\right)^{\top}}{ }
$$

there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi}$ such that $\partial(A)=S$.

- A 2-fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic
- Example: Let E be a convergent $(n+1)$-polygraph and C the n-category presented by E. $\operatorname{Cd}(E):=$ square extension of $\left(E^{\top}, 1\right)$ containing squares

for a choice of confluence diagram of any critical branching $\left(e_{1}, e_{2}\right)$ of E.
- A 2-square extension P^{s} of $\left(\left(P^{\vee}\right)^{\top},\left(P^{h}\right)^{\top}\right)$ is acyclic if for any square

$$
S=\left(P^{\vee}\right)^{\top} \stackrel{\stackrel{\left(P^{h}\right)^{\top}}{\downarrow} \stackrel{\downarrow^{\top}}{\downarrow_{A}} \downarrow^{\stackrel{\left(P^{h}\right)^{\top}}{\longrightarrow}}\left(P^{\vee}\right)^{\top}}{ }
$$

there exists a square $(n+1)$-cell A in $\left(P^{\vee}, P^{h}, P^{s}\right)^{\Pi \quad}$ such that $\partial(A)=S$.

- A 2-fold coherent presentation of an n-category \mathbf{C} is a double $(n+2, n)$-polygraph (P^{v}, P^{h}, P^{s}) such that:
- the ($n+1$)-polygraph $P^{\vee} \amalg P^{h}$ presents C;
- P^{s} is acyclic
- Example: Let E be a convergent $(n+1)$-polygraph and C the n-category presented by E. $\operatorname{Cd}(E):=$ square extension of $\left(E^{\top}, 1\right)$ containing squares

for a choice of confluence diagram of any critical branching $\left(e_{1}, e_{2}\right)$ of E.
- From Squier's theorem, $(E, \emptyset, \operatorname{Cd}(E))$ is a 2-fold coherent presentation of \mathbf{C}.

III. Polygraphs modulo

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,
- S is a cellular extension of R_{n-1}^{*} such that $R \subseteq S \subseteq{ }_{E} R_{E}$,

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,
- S is a cellular extension of R_{n-1}^{*} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by

$$
\gamma^{E} R_{E}:{ }_{E} R_{E} \rightarrow \operatorname{Sph}_{n-1}\left(R_{n-1}^{*}\right)
$$

where ${ }_{E} R_{E}$ is the set of triples $\left(e, f, e^{\prime}\right)$ in $E^{\top} \times R^{*(1)} \times E^{\top}$ such that

Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

- an n-polygraph R of primary rules,
- an n-polygraph E such that $E_{k}=R_{k}$ for $k \leq n-2$ and $E_{n-1} \subseteq R_{n-1}$, of modulo rules,
- S is a cellular extension of R_{n-1}^{*} such that $R \subseteq S \subseteq{ }_{E} R_{E}$, where the cellular extension ${ }_{E} R_{E}$ is defined by

$$
\gamma^{E} R_{E}:{ }_{E} R_{E} \rightarrow \operatorname{Sph}_{n-1}\left(R_{n-1}^{*}\right)
$$

where ${ }_{E} R_{E}$ is the set of triples $\left(e, f, e^{\prime}\right)$ in $E^{\top} \times R^{*(1)} \times E^{\top}$ such that

and the map $\gamma^{E} R_{E}$ is defined by $\gamma^{E} R_{E}\left(e, f, e^{\prime}\right)=\left(\partial_{-, n-1}(e), \partial_{+, n-1}\left(e^{\prime}\right)\right)$.

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple $(f, e, g$) where f and g are n-cells of S^{*} with f non trivial and e is an n-cell of E^{\top}, such that:

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple $(f, e, g$) where f and g are n-cells of S^{*} with f non trivial and e is an n-cell of E^{\top}, such that:

- It is local if f is an n-cell of $S^{*(1)}, g$ is an n-cell of S^{*} and e an n-cell of E^{\top} such that $\ell(g)+\ell(e)=1$.

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple $(f, e, g$) where f and g are n-cells of S^{*} with f non trivial and e is an n-cell of E^{\top}, such that:

- It is local if f is an n-cell of $S^{*(1)}, g$ is an n-cell of S^{*} and e an n-cell of E^{\top} such that $\ell(g)+\ell(e)=1$.
- It is confluent modulo E if there exists n-cells f^{\prime}, g^{\prime} in S^{*} and e^{\prime} in E^{\top} :

Branchings and confluence modulo

- A branching modulo E of the n-polygraph modulo S is a triple $(f, e, g$) where f and g are n-cells of S^{*} with f non trivial and e is an n-cell of E^{\top}, such that:

- It is local if f is an n-cell of $S^{*(1)}, g$ is an n-cell of S^{*} and e an n-cell of E^{\top} such that $\ell(g)+\ell(e)=1$.
- It is confluent modulo E if there exists n-cells f^{\prime}, g^{\prime} in S^{*} and e^{\prime} in E^{\top} :

- S is said confluent modulo E (resp. locally confluent modulo E) if any branching (resp. local branching) of S modulo E is confluent modulo E.
IV. Coherence modulo

Coherent confluence modulo

- We consider 「 a 2-square extension of $\left(E^{\top}, S^{*}\right)$.

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist n-cells f^{\prime}, g^{\prime} in S^{*}, e^{\prime} in E^{\top}

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist n-cells f^{\prime}, g^{\prime} in S^{*}, e^{\prime} in E^{\top} and an $(n+1)$-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)) \Pi, v$:

Coherent confluence modulo

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist n-cells f^{\prime}, g^{\prime} in S^{*}, e^{\prime} in E^{\top} and an $(n+1)$-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)) \Pi, v$:

- $(E, S,-)^{\pi, v}$ is the free n-category enriched in double categories generated by $(E, S,-)$, in which all vertical cells are invertible.
- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist n-cells f^{\prime}, g^{\prime} in S^{*}, e^{\prime} in E^{\top} and an $(n+1)$-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)) \Pi, v$:

- $(E, S,-)^{\pi, v}$ is the free n-category enriched in double categories generated by $(E, S,-)$, in which all vertical cells are invertible.
- $\operatorname{Peiff}(E, S)$ is the 2-square extension containing the following squares for all $e, e^{\prime} \in E^{\top}$ and $f \in S^{*}$.

$$
\begin{gathered}
u \star_{i} v \stackrel{f \star_{i} v}{\longrightarrow} u^{\prime} \star_{i} v \\
u \star_{i} e \downarrow \\
u \star_{i} v^{\prime} \xrightarrow[f_{i} v^{\prime}]{>} u^{\prime} \star_{i} v^{\prime}
\end{gathered}
$$

- We consider Γ a 2 -square extension of $\left(E^{\top}, S^{*}\right)$.
- A branching modulo E is Γ-confluent modulo E if there exist n-cells f^{\prime}, g^{\prime} in S^{*}, e^{\prime} in E^{\top} and an $(n+1)$-cell A in $(E, S, E \rtimes \Gamma \cup \operatorname{Peiff}(E, S)) \Pi, v$:

- $(E, S,-)^{\pi, v}$ is the free n-category enriched in double categories generated by $(E, S,-)$, in which all vertical cells are invertible.
- $\operatorname{Peiff}(E, S)$ is the 2-square extension containing the following squares for all $e, e^{\prime} \in E^{\top}$ and $f \in S^{*}$.

- $E \rtimes \Gamma$ is to avoid "redundant" elements in Γ for different squares corresponding to the same branching of S modulo E :

and

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties a) and \mathbf{b}):
a):

b):

for any local branching of S modulo E.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties a) and \mathbf{b}):
a) :

b):

for any local branching of S modulo E.
- S satisfies properties a) and $\mathbf{b})$ for any critical branching of S modulo E.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties a) and \mathbf{b}):
a) :

b):

for any local branching of S modulo E.
- S satisfies properties a) and $\mathbf{b})$ for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties a) and \mathbf{b}):
for any local branching of S modulo E.
- S satisfies properties a) and $\mathbf{b})$ for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties a) and \mathbf{b}):
a):

b):

for any local branching of S modulo E.
- S satisfies properties a) and \mathbf{b}) for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherent Newman and critical pair lemmas

- S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is Γ-confluent modulo E.
- Theorem. [D.-Malbos '18] If ${ }_{E} R_{E}$ is terminating, the following assertions are equivalent:
- S is Γ-confluent modulo E;
- S is locally Γ-confluent modulo E;
- S satisfies properties a) and \mathbf{b}):
a):

b):

for any local branching of S modulo E.
- S satisfies properties a) and \mathbf{b}) for any critical branching of S modulo E.
- For $S={ }_{E} R$, property \mathbf{b}) is trivially satisfied.

Coherence modulo

- A set X of $(n-1)$-cells in R_{n-1}^{*} is E-normalizing with respect to S if for any u in $X_{\text {, * }}$ *

$$
\operatorname{NF}(S, u) \cap \operatorname{Irr}(E) \neq \emptyset
$$

- Theorem. [D.-Malbos '18] Let (R, E, S) be n-polygraph modulo, and Γ be a square extension of the pair of $(n+1, n)$-categories $\left(E^{\top}, S^{\top}\right)$ such that
- E is convergent,
- S is Γ-confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S,
- ${ }_{E} R_{E}$ is terminating,
then $\Gamma \cup \operatorname{Cd}(E)$ is acyclic.

Coherent extensions

- A coherent completion modulo E of S is a square extension denoted by $\mathcal{C}(S)$ of the pair of $(n+1, n)$-categories $\left(E^{\top}, S^{\top}\right)$ containing square cells $A_{f, g}$ and $B_{f, e}$:

for any critical branchings (f, g) and (f, e) of S modulo E.

Coherent extensions

- A coherent completion modulo E of S is a square extension denoted by $\mathcal{C}(S)$ of the pair of $(n+1, n)$-categories $\left(E^{\top}, S^{\top}\right)$ containing square cells $A_{f, g}$ and $B_{f, e}$:

for any critical branchings (f, g) and (f, e) of S modulo E.
- Corollary. [D.-Malbos '18] Let (R, E, S) be an n-polygraph modulo such that
- E is convergent,
- S is confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S,
- ${ }_{E} R_{E}$ is terminating,

Then $\mathcal{C}(S) \cup \operatorname{Cd}(E)$ is acyclic.

Coherent extensions

- A coherent completion modulo E of S is a square extension denoted by $\mathcal{C}(S)$ of the pair of $(n+1, n)$-categories $\left(E^{\top}, S^{\top}\right)$ containing square cells $A_{f, g}$ and $B_{f, e}$:

for any critical branchings (f, g) and (f, e) of S modulo E.
- Corollary. [D.-Malbos '18] Let (R, E, S) be an n-polygraph modulo such that
- E is convergent,
- S is confluent modulo E,
- $\operatorname{Irr}(E)$ is E-normalizing with respect to S,
- ${ }_{E} R_{E}$ is terminating,

Then $\mathcal{C}(S) \cup \operatorname{Cd}(E)$ is acyclic.

- Corollary: Usual Squier's theorem. $(E=\emptyset)$

Toy example: Diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:

Toy example: Diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,

Toy example: Diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,

Toy example: Diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,
- $E_{2}=\{\Omega, \cup, \Omega \cup, \uparrow, \downarrow\}$
- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{1}=\{\wedge, \vee\}$,
$E_{2}=\{\downarrow \sim \downarrow, \downarrow$

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{\mathbf{1}}=\{\wedge, \vee\}$,
$\rightarrow E_{2}=\{\downarrow \sim \sim$

Toy example: Diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{\mathbf{1}}=\{\wedge, \vee\}$,
- $E_{2}=\{\curvearrowleft, \uparrow, \Omega, \bigcup, \uparrow, \downarrow\} \quad R_{2}=E_{2} \amalg\{耳, \downarrow\}$

- $R_{\mathbf{3}}=\{\underbrace{\alpha} \stackrel{\alpha_{+}}{\Rightarrow} \uparrow \uparrow \stackrel{\alpha_{-}}{\Rightarrow} \downarrow \downarrow$,

Toy example: Diagrammatic rewriting modulo isotopy

- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{\mathbf{1}}=\{\wedge, \vee\}$,
- $E_{2}=\{\curvearrowleft, \uparrow, \Omega, \bigcup, \uparrow, \downarrow\} \quad R_{2}=E_{2} \amalg\{耳, \downarrow\}$

- $R_{\mathbf{3}}=\{\underbrace{\alpha} \stackrel{\alpha_{+}}{\Rightarrow} \uparrow \uparrow \stackrel{\alpha_{-}}{\Rightarrow} \downarrow \downarrow$,
- Let E and R be two 3-polygraphs defined by:
- $E_{0}=R_{0}=\{*\}$,
- $E_{1}=R_{\mathbf{1}}=\{\wedge, \vee\}$,
- $E_{2}=\{\curvearrowleft, \uparrow, \Omega, \bigcup, \uparrow, \downarrow\} \quad R_{2}=E_{2} \amalg\{耳, \downarrow\}$

- $R_{3}=\left\{\mathcal{R}^{\alpha} \stackrel{\alpha_{+}}{\Rightarrow} \uparrow \uparrow \stackrel{\alpha_{-}}{\Rightarrow} \downarrow \downarrow\right.$,
- Fact: E is convergent.

Toy example: Diagrammatic rewriting modulo isotopy

- If no rewriting modulo:

Not confluent !

- If no rewriting modulo:

Not confluent !

- If rewriting modulo:
- All branchings ($E R, R$) are those of the form (R, R).
- γ does not overlap with $\alpha_{ \pm}$and $\beta_{ \pm}$.
- Branchings between $\alpha_{ \pm}$and $\beta_{ \pm}$are confluent modulo E.
- If no rewriting modulo:

- If rewriting modulo:
- All branchings ($E R, R$) are those of the form (R, R).
- γ does not overlap with $\alpha_{ \pm}$and $\beta_{ \pm}$.
- Branchings between $\alpha_{ \pm}$and $\beta_{ \pm}$are confluent modulo E.
- ${ }_{E} R_{E}$ is terminating.
- Termination order for E defined by characteristics of diagrams, compatible with R.

Toy example: Diagrammatic rewriting modulo isotopy

- If no rewriting modulo:

- If rewriting modulo:
- All branchings ($E R, R$) are those of the form (R, R).
- γ does not overlap with $\alpha_{ \pm}$and $\beta_{ \pm}$.
- Branchings between $\alpha_{ \pm}$and $\beta_{ \pm}$are confluent modulo E.
- ${ }_{E} R_{E}$ is terminating.
- Termination order for E defined by characteristics of diagrams, compatible with R.
- $\operatorname{Irr}(E)$ is E-normalizing.
- Any generating 2-cell in a source/target of an R-rewriting does not contain generating 2-cells of E.

Toy example: Diagrammatic rewriting modulo isotopy

Conclusion

- We proved a coherence result for polygraphs modulo.

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?
- Explicit a quotient of a square extension by all modulo rules

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?
- Explicit a quotient of a square extension by all modulo rules
- Work in progress:

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?
- Explicit a quotient of a square extension by all modulo rules
- Work in progress:
- Extend these results to linear polygraphs modulo.

Conclusion

- We proved a coherence result for polygraphs modulo.
- How to weaken E-normalization assumption ?
- Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo ?
- Explicit a quotient of a square extension by all modulo rules
- Work in progress:
- Extend these results to linear polygraphs modulo.
- Obtain a basis theorem for higher dimensional linear categories with hypothesis of confluence modulo.

THANK YOU FOR YOUR ATTENTION.

