The group of linear isometries of the Gurarij space is extremely amenable

Dana Bartošová ¹
Jordi López-Abad ² Brice R. Mbombo ³

¹,³University of São Paulo
²ICMAT Madrid

When Topological Dynamics meets Model Theory
July 1

The first author was supported by the grants FAPESP 2013/14458-9
and FAPESP 2014/12405-8.
(EA) Extreme amenability

- and a connection to Ramsey theory.
(EA) Extreme amenability
 - and a connection to Ramsey theory.

(G) Gurarij space
 - group of linear isometries
 - approximate Ramsey property for finite dimensional normed spaces
(EA) Extreme amenability
 - and a connection to Ramsey theory.

(G) Gurarij space
 - group of linear isometries
 - approximate Ramsey property for finite dimensional normed spaces

(S) Poulsen simplex
 - new characterization
 - group of affine homeomorphisms
 - approximate Ramsey property for finite dimensional simplexes
(EA) Extreme amenability
 - and a connection to Ramsey theory.

(G) Gurarij space
 - group of linear isometries
 - approximate Ramsey property for finite dimensional normed spaces

(S) Poulsen simplex
 - new characterization
 - group of affine homeomorphisms
 - approximate Ramsey property for finite dimensional simplexes

(M) Miscellaneous
 - Hilbert cube
 - Pseudoarc
A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is, $x \in X$ s.t. $gx = x$ for all $g \in G$.
A topological group G is **extremely amenable** every G-action on a compact Hausdorff space X has a fixed point, that is, $x \in X$ s.t. $gx = x$ for all $g \in G$.

Examples (Pestov)

- $\text{Homeo}_+(\mathbb{R})$
A topological group G is \textbf{extremely amenable} every G-action on a compact Hausdorff space X has a fixed point, that is, $x \in X$ s.t. $gx = x$ for all $g \in G$.

Examples (Pestov)
- $\text{Homeo}_+([0, 1])$
- $\text{Aut}(\mathbb{Q}, <)$

Extreme amenability of linear isometries of G.
A topological group G is **extremely amenable** every G-action on a compact Hausdorff space X has a fixed point, that is, $x \in X$ s.t. $gx = x$ for all $g \in G$.

Examples (Pestov)

- $\text{Homeo}_+([0, 1])$
- $\text{Aut}(\mathbb{Q}, <)$
- $\text{Iso}(\mathbb{U}, d)$
A topological group G is **extremely amenable** every G-action on a compact Hausdorff space X has a fixed point, that is, $x \in X$ s.t. $gx = x$ for all $g \in G$.

Examples (Pestov)

- $\text{Homeo}_+([0, 1])$
- $\text{Aut}(\mathbb{Q}, <)$
- $\text{Iso}(\mathbb{U}, d)$

FIRST

“Exotic groups” (Herrer–Christensen)
Extremely amenable groups

A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is, $x \in X$ s.t. $gx = x$ for all $g \in G$.

Examples (Pestov)

- $\text{Homeo}_+([0, 1])$
- $\text{Aut}(\mathbb{Q}, <)$
- $\text{Iso}(\mathbb{U}, d)$

FIRST

“Exotic groups” (Herrer–Christensen)

$U(l_2)$ (Gromov–Milman)
A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is, $x \in X$ s.t. $gx = x$ for all $g \in G$.

Examples (Pestov)
- Homeo$_+([0, 1])$
- Aut($\mathbb{Q}, <$)
- Iso(U, d)

FIRST
“Exotic groups” (Herrer–Christensen)
$U(l_2)$ (Gromov–Milman)

Lemma (Bodirsky–Pinsker–Tsankov)
Open subgroup of an extremely amenable group is extremely amenable.
A (countable) structure \mathcal{A} is ultrahomogeneous \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.

Theorem (KPT; NvT) $\text{Aut}(\mathcal{A})$ is extremely amenable \iff finitely-generated substructures of \mathcal{A} satisfy the Ramsey property and are rigid.

Examples:
- $\left(\mathbb{Q},<\right)$
- $\left(\mathbb{R},<\right)$
- $\left(\mathbb{C},\cdot\right)$
- Finite linear orders (Ramsey)
- Finite linearly ordered graphs (NR; AH)
- Finite Boolean algebras (GR)
A (countable) structure \mathcal{A} is ultrahomogeneous \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.

Theorem (KPT; NvT)

$\text{Aut}(\mathcal{A})$ is extremely amenable \iff finitely-generated substructures of \mathcal{A} satisfy the Ramsey property and are rigid.

Examples:
- $(\mathbb{Q},<)$
- $(\mathbb{R},<)$
- (\mathbb{C},\mathbb{C})
- finite linear orders (Ramsey)
- finite linearly ordered graphs (NR; AH)
- finite Boolean algebras (GR)
A (countable) structure \mathcal{A} is **ultrahomogeneous** \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.

Theorem (KPT; NvT)

$\text{Aut}(\mathcal{A})$ is extremely amenable \iff finitely-generated substructures of \mathcal{A} satisfy the Ramsey property and are rigid.

Examples

- $(\mathbb{Q}, <)$
- finite linear orders (Ramsey)
A (countable) structure \mathcal{A} is **ultrahomogeneous** \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.

Theorem (KPT; NvT)

\[\text{Aut}(\mathcal{A}) \text{ is extremely amenable } \iff \text{finitely-generated substructures of } \mathcal{A} \text{ satisfy the Ramsey property and are rigid.} \]

Examples

- $(\mathbb{Q}, <)$
- $(\mathbb{R}, <)$
- finite linear orders (Ramsey)
- finite linearly ordered graphs (NR; AH)
A (countable) structure \mathcal{A} is **ultrahomogeneous** \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.

Theorem (KPT; NvT)

$\text{Aut}(\mathcal{A})$ is extremely amenable \iff finitely-generated substructures of \mathcal{A} satisfy the Ramsey property and are rigid.

Examples

- $(\mathbb{Q}, <)$
- $(\mathbb{R}, <)$
- (C, C)
- finite linear orders (Ramsey)
- finite linearly ordered graphs (NR; AH)
- finite Boolean algebras (GR)
Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, $\text{Iso}(M)$ is extremely amenable \iff finitely-generated substructures satisfy the approximate Ramsey property.
Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, $\text{Iso}(M)$ is extremely amenable \iff finitely-generated substructures satisfy the approximate Ramsey property.

Examples (B-LA-M)

- G
- finitely-dimensional normed spaces
Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, $\text{Iso}(M)$ is extremely amenable \iff finitely-generated substructures satisfy the approximate Ramsey property.

Examples (B-LA-M)

- \mathbb{G}: finitely-dimensional normed spaces
- (P, p): finite-dimensional simplexes

Dana Bartošová

Extreme amenability of linear isometries of \mathbb{G}
(1) separable Banach space
(1) separable Banach space
(2) contains isometric copy of every finite dimensional Banach space
Gurarij space \mathbb{G}

1. separable Banach space
2. contains isometric copy of every finite dimensional Banach space
3. for every E finite dimensional, $i : E \hookrightarrow \mathbb{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f : \mathbb{G} \rightarrow \mathbb{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$
Gurarij space \mathcal{G}

(1) separable Banach space
(2) contains isometric copy of every finite dimensional Banach space
(3) for every E finite dimensional, $i : E \hookrightarrow \mathcal{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f : \mathcal{G} \rightarrow \mathcal{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$

LUSKY
Conditions (1), (2), (3) uniquely define \mathcal{G} up to a linear isometry.
(1) separable Banach space
(2) contains isometric copy of every finite dimensional Banach space
(3) for every E finite dimensional, $i : E \rightarrow G$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f : G \rightarrow G$

$$\|i - f \upharpoonright E\| < \varepsilon$$

LUSKY
Conditions (1),(2),(3) uniquely define G up to a linear isometry.

KUBIŚ-SOLECKI; HENSON
Simple proof - metric Fraïssé theory.
Group of linear isometries

$\text{Iso}_l(G) + \text{point-wise convergence topology} = \text{Polish group}$
Group of linear isometries

\[\text{Iso}_l(\mathbb{G}) + \text{point-wise convergence topology} = \text{Polish group} \]

BASIS
Iso_l(\mathbb{G}) + point-wise convergence topology = Polish group

BASIS

- \(E \) - finite dimensional subspace of \(\mathbb{G} \)
Group of linear isometries

\[\text{Iso}_l(G) + \text{point-wise convergence topology} = \text{Polish group} \]

BASIS

- \(E \) - finite dimensional subspace of \(G \)
- \(\epsilon > 0 \)
Iso\textsubscript{l}(G) + point-wise convergence topology = Polish group

BASIS

- E - finite dimensional subspace of G
- $\varepsilon > 0$

$$V_\varepsilon(E) = \{ g \in \text{Iso}(G) : \| g \upharpoonright E - \text{id} \upharpoonright E \| < \varepsilon \}$$
Group of linear isometries

Isoₙ(𝐺) + point-wise convergence topology = Polish group

BASIS

- E - finite dimensional subspace of 𝐺
- ε > 0

\[V_ε(E) = \{ g \in Iso(𝐺) : ∥g \upharpoonright E - id \upharpoonright E∥ < ε \} \]

BEN YAACOV

Isoₙ(𝐺) is a universal Polish group.
Group of linear isometries

\[\text{Iso}_l(\mathbb{G}) + \text{point-wise convergence topology} = \text{Polish group} \]

BASIS
- \(E \) - finite dimensional subspace of \(\mathbb{G} \)
- \(\varepsilon > 0 \)

\[V_\varepsilon(E) = \{ g \in \text{Iso}(\mathbb{G}) : \| g \upharpoonright E - \text{id} \upharpoonright E \| < \varepsilon \} \]

BEN YAACOV
\(\text{Iso}_l(\mathbb{G}) \) is a universal Polish group.

Katětov construction
Approximate Ramsey property for l^n_∞'s

Theorem (B-LA-M)

$d \leq m$

r - number of colours

$\varepsilon > 0$

$\exists n$ for every colouring c

$\text{Emb}(l^d_\infty, l^n_\infty) \rightarrow \{0, 1, \ldots, r-1\}$

there is $i \in \text{Emb}(l^m_\infty, l^n_\infty)$ and $\alpha < r$

$i \circ \text{Emb}(l^d_\infty, l^m_\infty) \subset (c^{-1}(\alpha))$

Theorem (B-LA-M)

$\text{Iso}(G)$ is extremely amenable.

Dana Bartošová

Extreme amenability of linear isometries of G
Theorem (B-LA-M)

\[d \leq m \]
Theorem (B-LA-M)

\[d \leq m \]

\(r \) - number of colours
Approximate Ramsey property for l^n’s

Theorem (B-LA-M)

\[d \leq m \]
\[r \text{ - number of colours} \]
\[\varepsilon > 0 \]
Theorem (B-LA-M)

\[d \leq m \]

\[r - \text{number of colours} \]

\[\varepsilon > 0 \]

\[\exists n \]
Approximate Ramsey property for l^n_∞’s

Theorem (B-LA-M)

\[
d \leq m
\]

\[r - \text{number of colours}\]

\[\varepsilon > 0\]

\[\exists n\]

\[\text{for every colouring } c : \text{Emb}(l^d_\infty, l^n_\infty) \to \{0, 1, \ldots, r - 1\}\]
Theorem (B-LA-M)

d \leq m

r - number of colours

\varepsilon > 0

\exists n

for every colouring c : \text{Emb}(l^d, l^n) \rightarrow \{0, 1, \ldots, r - 1\}

there is i \in \text{Emb}(l^m, l^n) and \alpha < r
Approximate Ramsey property for l^n_∞’s

Theorem (B-LA-M)

$d \leq m$

r - number of colours

$\varepsilon > 0$

$\exists n$

for every colouring $c : \text{Emb}(l^d_\infty, l^n_\infty) \rightarrow \{0, 1, \ldots, r - 1\}$

there is $i \in \text{Emb}(l^m_\infty, l^n_\infty)$ and $\alpha < r$

$$i \circ \text{Emb}(l^d_\infty, l^m_\infty) \subset (c^{-1}(\alpha))_\varepsilon$$
Approximate Ramsey property for l^n_∞'s

Theorem (B-LA-M)

\[
d \leq m
\]
\[
r - \text{number of colours}
\]
\[
\varepsilon > 0
\]
\[
\exists n
\]
\[
\text{for every colouring } c : \text{Emb}(l^d_\infty, l^n_\infty) \rightarrow \{0, 1, \ldots, r - 1\}
\]
\[
\text{there is } i \in \text{Emb}(l^m_\infty, l^n_\infty) \text{ and } \alpha < r
\]
\[
i \circ \text{Emb}(l^d_\infty, l^m_\infty) \subset (c^{-1}(\alpha))_\varepsilon
\]

Theorem (B-LA-M)

Iso(G) is extremely amenable.
Pestov’s characterization of extreme amenability

G - topological group
Pestov’s characterization of extreme amenability

G - topological group

$f : G \rightarrow \mathbb{R}$ is **finitely oscillation stable** if

$$\forall X \subset G \text{ finite and } \varepsilon > 0 \exists g \in G \text{ such that } \text{osc}(f|_{gX}) < \varepsilon.$$
Pestov’s characterization of extreme amenability

G - topological group

$f : G \to \mathbb{R}$ is finitely oscillation stable if $\forall X \subset G$ finite and $\varepsilon > 0$
Pestov’s characterization of extreme amenability

\[G \text{ - topological group} \]

\[f : G \rightarrow \mathbb{R} \text{ is finitely oscillation stable if } \forall X \subset G \text{ finite and } \varepsilon > 0 \ \exists g \in G \text{ such that } \text{osc}(f \upharpoonright gX) < \varepsilon. \]
Pestov’s characterization of extreme amenability

G - topological group

$f : G \to \mathbb{R}$ is finitely oscillation stable if $\forall X \subset G$ finite and $\varepsilon > 0$ $\exists g \in G$ such that $\text{osc}(f \upharpoonright gX) < \varepsilon$.

Lemma (Pestov)

TFAE

- G is extremely amenable,
- every $f : G \to \mathbb{R}$ bounded left-uniformly continuous is finite oscillation stable.
Pestov’s characterization of extreme amenability

G - topological group

$f : G \rightarrow \mathbb{R}$ is finitely oscillation stable if $\forall X \subset G$ finite and $\varepsilon > 0$ $\exists g \in G$ such that $\text{osc}(f \upharpoonright gX) < \varepsilon$.

Lemma (Pestov)

TFAE

- G is extremely amenable,
- every $f : G \rightarrow \mathbb{R}$ bounded left-uniformly continuous is finite oscillation stable.
Theorem (Graham and Rothschild)

For every $k \leq m$ and $r \geq 2$, there exists n such that for every colouring of the k-element partitions of n by r-many colours there is an m-element partition X of n such that all k-element coarsenings of X have the same colour.
Approximate Ramsey property for finite-dimensional normed spaces

\(E, F \) - finite dimensional spaces
\(\theta \geq 1 \)

\[\text{Emb}_\theta(E, F) = \{ T : E \rightarrow F : T \text{ embedding} \& \|T\| \|T^{-1}\| \leq \theta \} \]
Approximate Ramsey property for finite-dimensional normed spaces

\[E, F \text{ - finite dimensional spaces} \]
\[\theta \geq 1 \]

\[\text{Emb}_\theta(E, F) = \{ T : E \rightarrow F : T \text{ embedding} \& \|T\| \|T^{-1}\| \leq \theta \} \]

Theorem (B-LA-M)

\(r \) - number of colours, \(\varepsilon > 0 \quad \exists H \text{ f.d. with } \text{Emb}(F, H) \neq \emptyset \) such that for every

\[c : \text{Emb}_\theta(E, H) \rightarrow \{0, 1, \ldots, r - 1\} \]

\[\exists i \in \text{Emb}_\theta(F, H) \text{ and } \alpha < r \text{ such that} \]

\[i \circ \text{Emb}_\theta(E, F) \subset (c^{-1}(\alpha))_{\theta-1+\varepsilon} \]
Theorem

Finite metric spaces satisfy the approximate Ramsey property.
Theorem

Finite metric spaces satisfy the approximate Ramsey property.

Corollary (Pestov)

Iso(\(U\)) is extremely amenable.
Theorem

Finite metric spaces satisfy the approximate Ramsey property.

Corollary (Pestov)

Iso(\(\mathbb{U} \)) is extremely amenable.

Theorem (Nešetřil)

Linearly ordered finite metric spaces satisfy the (exact) Ramsey property.
Poulsen simplex P

(1) metrizable
Poulsen simplex P

(1) metrizable
(2) contains every metrizable simplex as its face
(1) metrizable
(2) contains every metrizable simplex as its face
(3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of P mapping E onto F
Poulsen simplex P

(1) metrizable
(2) contains every metrizable simplex as its face
(3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of P mapping E onto F

LINDENSTRAUSS-OLSEN-STERNFELD
Properties (1),(2) and (3) uniquely determine P up to an affine homeomorphism.
Poulsen simplex P

(1) metrizable
(2) contains every metrizable simplex as its face
(3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of P mapping E onto F

LINDENSTRAUSS-OLSEN-STERNFELD
Properties (1),(2) and (3) uniquely determine P up to an affine homeomorphism.

POULSEN
The set of extreme points of P is dense in P.
Poulsen simplex \(P \)

(1) metrizable
(2) contains every metrizable simplex as its face
(3) for every two faces \(E, F \) of \(P \) with the same finite dimension, there is an affine autohomeomorphism of \(P \) mapping \(E \) onto \(F \)

LINDENSTRAUSS-OLSEN-STERNFELD
Properties (1),(2) and (3) uniquely determine \(P \) up to an affine homeomorphism.

POULSEN
The set of extreme points of \(P \) is dense in \(P \).

FACT
\(T : \{0, 1\}^\mathbb{Z} \rightarrow \{0, 1\}^\mathbb{Z} \) the shift \(\Rightarrow T \)-invariant probability measures form \(P \)
A projective characterization of P

$S_n :=$ positive part of the unit ball of l_1^n – finite-dimensional simplex with $n + 1$ extreme points
A projective characterization of P

$S_n :=$ positive part of the unit ball of l_1^n – finite-dimensional simplex with $n + 1$ extreme points

$\text{Epi}(S_n, S_m) :=$ continuous affine surjections $S_n \rightarrow S_m$
A projective characterization of P

$S_n := \text{positive part of the unit ball of } l_1^n - \text{finite-dimensional simplex with } n + 1 \text{ extreme points}$

$\text{Epi}(S_n, S_m) := \text{continuous affine surjections } S_n \rightarrow S_m$

$AH(P) := \text{group of affine homeomorphisms of } P + \text{compact-open topology}$
A projective characterization of P

$S_n :=$ positive part of the unit ball of l_1^n – finite-dimensional simplex with $n + 1$ extreme points

$\text{Epi}(S_n, S_m) :=$ continuous affine surjections $S_n \rightarrow S_m$

$\text{AH}(P) :=$ group of affine homeomorphisms of $P +$ compact-open topology

(\text{U}) $\forall n \exists \phi : P \rightarrow S_n$ – continuous affine surjection

(\text{APU}) $\forall \varepsilon > 0 \forall n \forall \phi_1, \phi_2 : P \rightarrow S_n \exists f \in \text{AH}(P)$ with $d(\phi_1, \phi_2 \circ f) < \varepsilon$
A projective characterization of P

$S_n :=$ positive part of the unit ball of l_1^n – finite-dimensional simplex with $n + 1$ extreme points

$\text{Epi}(S_n, S_m) :=$ continuous affine surjections $S_n \rightarrow S_m$

$AH(P) :=$ group of affine homeomorphisms of P + compact-open topology

$\forall n \exists \phi : P \rightarrow S_n$ – continuous affine surjection

$(U) \forall \varepsilon > 0 \forall n \forall \phi_1, \phi_2 : P \rightarrow S_n \exists f \in AH(P)$ with $d(\phi_1, \phi_2 \circ f) < \varepsilon$

Theorem (B-LA-M)

$(U) + (APU)$ characterize P among non-trivial metrizable simplexes up to affine homeomorphism.
Approximate Ramsey property for P

$\text{Epi}_0(S_n, S_m)$ - continuous affine surjections preserving 0
Approximate Ramsey property for P

$\text{Epi}_0(S_n, S_m)$ - continuous affine surjections preserving 0

Theorem (B-LA-M)

If $d \leq m$ and r natural numbers and $\varepsilon > 0$ given, then there exists n such that for every colouring

$$c : \text{Epi}_0(S_n, S_d) \to \{0, 1, \ldots, r\}$$

there is $\pi \in \text{Epi}_0(S_n, S_m)$ and $\alpha < r$ such that

$$\text{Epi}_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_\varepsilon$$
Approximate Ramsey property for P

$Epi_0(S_n, S_m)$ - continuous affine surjections preserving 0

Theorem (B-LA-M)

\[d \leq m \text{ and } r \text{ natural numbers and } \varepsilon > 0 \text{ given } \implies \exists n \text{ such that} \]

for every colouring

\[c : Epi_0(S_n, S_d) \rightarrow \{0, 1, \ldots, r\} \]

there is $\pi \in Epi_0(S_n, S_m)$ and $\alpha < r$ such that

\[Epi_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_\varepsilon \]

p - extreme point of P

\[AH_p(P) = \{ f \in AH(P) : f(p) = p \} \]
Approximate Ramsey property for P

$Epi_0(S_n, S_m)$ - continuous affine surjections preserving 0

Theorem (B-LA-M)

$d \leq m$ and r natural numbers and $\varepsilon > 0$ given $\Rightarrow \exists n$ such that for every colouring

$$c : Epi_0(S_n, S_d) \rightarrow \{0, 1, \ldots, r\}$$

there is $\pi \in Epi_0(S_n, S_m)$ and $\alpha < r$ such that

$$Epi_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_\varepsilon$$

p - extreme point of P

$$AH_p(P) = \{f \in AH(P) : f(p) = p\}$$

Theorem (B-LA-M)

$AH_p(P)$ is extremely amenable.
Universal minimal flows

\[G = \text{Aut}(\mathcal{A}) \simeq \mathcal{A} \text{ ultrahomogeneous} \]
Universal minimal flows

\[G = \text{Aut}(\mathcal{A}) - \mathcal{A} \text{ ultrahomogeneous} \]
\[G^* = \text{Aut}(\mathcal{A}^*) - \mathcal{A}^* \text{ ultrahomogeneous expansion of } \mathcal{A} \]
Universal minimal flows

\[G = \text{Aut}(\mathcal{A}) - \mathcal{A} \text{ ultrahomogeneous} \]
\[G^* = \text{Aut}(\mathcal{A}^*) - \mathcal{A}^* \text{ ultrahomogeneous expansion of } \mathcal{A} \]

Finite substructures of \(\mathcal{A}^* \) satisfy the Ramsey property and are rigid.
Universal minimal flows

\[G = \text{Aut}(\mathcal{A}) - \mathcal{A} \text{ ultrahomogeneous} \]
\[G^* = \text{Aut}(\mathcal{A}^*) - \mathcal{A}^* \text{ ultrahomogeneous expansion of } \mathcal{A} \]

Finite substructures of \(\mathcal{A}^* \) satisfy the Ramsey property and are rigid.

OFTEN \(M(G) \cong \hat{G}/G^* \)
Universal minimal flows

\[G = \text{Aut}(\mathcal{A}) - \mathcal{A} \text{ ultrahomogeneous} \]
\[G^* = \text{Aut}(\mathcal{A}^*) - \mathcal{A}^* \text{ ultrahomogeneous expansion of } \mathcal{A} \]
Finite substructures of \(\mathcal{A}^* \) satisfy the Ramsey property and are rigid.

OFTEN \(M(G) \cong \hat{G}/G^* \)

<table>
<thead>
<tr>
<th>Structure (\mathcal{A})</th>
<th>(M(\text{Aut}(\mathcal{A})))</th>
<th>authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_+^1)</td>
<td>(S_+^1)</td>
<td>Pestov</td>
</tr>
<tr>
<td>(\mathbb{N})</td>
<td>linear orders on (\mathbb{N})</td>
<td>Glasner and Weiss</td>
</tr>
<tr>
<td>random graph (\mathcal{R})</td>
<td>linear orders on (\mathcal{R})</td>
<td>KPT</td>
</tr>
<tr>
<td>Cantor space (C)</td>
<td>maximal chains of closed subsets of (C)</td>
<td>Glasner and Weiss</td>
</tr>
<tr>
<td>Lelek fan (L)</td>
<td>(\text{Homeo}(L)/\text{Homeo}(L_<))</td>
<td>B-Kwiatkowska</td>
</tr>
</tbody>
</table>
Theorem (B-LA-M)

\[M(AH(P)) \cong \widehat{AH(P)}/AH_p(P) \cong P \]
PROBLEM

What is the universal minimal flow of Homeo(\(\mathcal{Q}\))?
PROBLEM
What is the universal minimal flow of Homeo(\mathcal{Q})?

\mathcal{Q} is homeomorphic to P.
PROBLEM
What is the universal minimal flow of Homeo(\(Q\))?

\(Q\) is homeomorphic to \(P\).

Theorem (B-LA-M)
Homeo(\(Q\)) admits a closed subgroup with the universal minimal flow being the natural action on \(Q\).
Hilbert cube $\mathcal{Q} = [-1, 1]^\mathbb{N}$

PROBLEM
What is the universal minimal flow of $\text{Homeo}(\mathcal{Q})$?

\mathcal{Q} is homeomorphic to P.

Theorem (B-LA-M)

$\text{Homeo}(\mathcal{Q})$ admits a closed subgroup with the universal minimal flow being the natural action on \mathcal{Q}.

\mathcal{Q} with its natural convex structure.
Hilbert cube $Q = [-1, 1]^\mathbb{N}$

PROBLEM
What is the universal minimal flow of Homeo(Q)?

Q is homeomorphic to P.

Theorem (B-LA-M)
Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

Q with its natural convex structure.

Theorem (B-LA-M)
$\text{Aut}(Q)$ is topologically isomorphic to $\{-1,1\}^\mathbb{N} \times S_\infty$.

Dana Bartošová

Extreme amenability of linear isometries of G
Hilbert cube $\mathcal{Q} = [-1, 1]^\mathbb{N}$

PROBLEM

What is the universal minimal flow of $\operatorname{Homeo}(\mathcal{Q})$?

\mathcal{Q} is homeomorphic to P.

Theorem (B-LA-M)

$\operatorname{Homeo}(\mathcal{Q})$ admits a closed subgroup with the universal minimal flow being the natural action on \mathcal{Q}.

\mathcal{Q} with its natural convex structure.

Theorem (B-LA-M)

$\operatorname{Aut}(\mathcal{Q})$ is topologically isomorphic to $\{-1, 1\}^\mathbb{N} \times S_\infty$.

Theorem (B-LA-M)

$M(\operatorname{Aut}(\mathcal{Q})) = \{-1, 1\}^\mathbb{N} \times LO(\mathbb{N})$.

Dana Bartošová

Extreme amenability of linear isometries of G
Conjecture (Uspenskij)

The universal minimal flow of $\text{Homeo}(P)$ is its natural action on the pseudoarc.
Conjecture (Uspenskij)

The universal minimal flow of Homeo(P) is its natural action on the pseudoarc.

IRWIN-SOLECKI

\((\mathbb{P}, E) - \mathbb{P}\) the Cantor set, \(E\) closed edge relation and \(\mathbb{P}/E \cong P\)
Conjecture (Uspenskij)

The universal minimal flow of Homeo(\(P\)) is its natural action on the pseudoarc.

IRWIN-SOLECKI

\((\mathbb{P}, E) - \mathbb{P}\) the Cantor set, \(E\) closed edge relation and \(\mathbb{P}/E \cong P\)

\(\text{Aut}(\mathbb{P}) \longrightarrow \text{Homeo}(P)\) continuous with dense image.
Conjecture (Uspenskij)
The universal minimal flow of Homeo(\(P\)) is its natural action on the pseudoarc.

IRWIN-SOLECKI

\((\mathbb{P}, E) - \mathbb{P}\) the Cantor set, \(E\) closed edge relation and \(\mathbb{P}/E \cong P\)

\(\text{Aut}(\mathbb{P}) \longrightarrow \text{Homeo}(P)\) continuous with dense image.

Lemma (B-Kwiatkowska; Solecki)

\(M(\text{Aut}(\mathbb{P}))\) is not metrizable.
Lionel’s conjecture

Oligomorphic automorphism groups of countable structures have metrizable universal minimal flows.
Lionel’s conjecture

Oligomorphic automorphism groups of countable structures have metrizable universal minimal flows.

Good example

$\text{Aut}(\mathbb{P})$ is NOT oligomorphic.
Theorem (Veech)

Locally compact groups have non-metrizable universal minimal flows.
Theorem (Veech)

Locally compact groups have non-metrizable universal minimal flows.

Good example

Aut(\mathbb{P}) is NOT locally compact.
OBRIGADA