The topological conjugacy relation for Toeplitz subshifts

Marcin Sabok

Marseille, July 1, 2015

Definition

A Borel equivalence relation on a standard Borel space is *countable* if it has countable classes.

Definition

A Borel equivalence relation on a standard Borel space is *countable* if it has countable classes.

By a classical theorem of Feldman–Moore countable Borel equivalence relations are exactly those which arise as Borel actions of countable discrete groups.

Definition

A Borel equivalence relation on a standard Borel space is *countable* if it has countable classes.

By a classical theorem of Feldman–Moore countable Borel equivalence relations are exactly those which arise as Borel actions of countable discrete groups.

Definition

A countable equivalence relation is called *hyperfinite* if it induced by a Borel action of \mathbb{Z} .

Given an equivalence relation E on X and a function $f : E \to \mathbb{R}$, for $x \in X$ denote by $f_x : [x]_E \to \mathbb{R}$ the function $f_x(y) = f(x, y)$.

A (1) > A (2) > A

э

Given an equivalence relation E on X and a function $f: E \to \mathbb{R}$, for $x \in X$ denote by $f_x: [x]_E \to \mathbb{R}$ the function $f_x(y) = f(x, y)$.

Definition

Suppose E is a countable Borel equivalence relation. E is amenable if there exist positive Borel functions $\lambda^n:E\to\mathbb{R}$ such that

•
$$\lambda_x^n \in \ell^1([x]_E)$$
 and $||\lambda_x^n||_1 = 1$,

•
$$\lim_{n\to\infty} ||\lambda_x^n - \lambda_y^n||_1 = 0$$
 for $(x, y) \in E$.

Given an equivalence relation E on X and a function $f: E \to \mathbb{R}$, for $x \in X$ denote by $f_x: [x]_E \to \mathbb{R}$ the function $f_x(y) = f(x, y)$.

Definition

Suppose E is a countable Borel equivalence relation. E is amenable if there exist positive Borel functions $\lambda^n:E\to\mathbb{R}$ such that

•
$$\lambda_x^n \in \ell^1([x]_E)$$
 and $||\lambda_x^n||_1 = 1$,

•
$$\lim_{n\to\infty} ||\lambda_x^n - \lambda_y^n||_1 = 0$$
 for $(x, y) \in E$.

Theorem (Connes–Feldman–Weiss, Kechris–Miller)

If μ is any Borel probability measure on X and E is a.e. amenable, then E is a.e. hyperfinite.

< 17 ▶

Suppose G is a group. A natural action of G on 2^G is given by *left-shifts*:

$$(g \cdot s)(h) = s(g^{-1}h).$$

э

< 日 > < 同 > < 三 > < 三 >

Suppose G is a group. A natural action of G on 2^G is given by *left-shifts*:

$$(g \cdot s)(h) = s(g^{-1}h).$$

Definition

A subset $S \subseteq 2^G$ is called a *G*-subshift (a.k.a Bernoulli flow) if it is closed in the topology and closed under the above action.

Suppose G is a group. A natural action of G on 2^G is given by *left-shifts*:

$$(g \cdot s)(h) = s(g^{-1}h).$$

Definition

A subset $S \subseteq 2^G$ is called a *G*-subshift (a.k.a Bernoulli flow) if it is closed in the topology and closed under the above action.

Definition

Two G-subshifts $T,S \subseteq 2^G$ are topologically conjugate if there exists a homeomorphism $f:S \to T$ which commutes with the left actions.

(日) (同) (三) (

Definition

A $G\operatorname{-subshift}\,S$ is called $\min\!inal$ if it does not contain any proper subshift.

э

< 日 > < 同 > < 三 > < 三 >

Definition

A $G\operatorname{-subshift}\,S$ is called \min if it does not contain any proper subshift.

Equivalently, a subshift is minimal if every orbit in it is dense.

< 17 ▶

→ □ → → □ →

Definition

A G-subshift S is called *minimal* if it does not contain any proper subshift.

Equivalently, a subshift is minimal if every orbit in it is dense.

Definition

A G-subshift S is free if the left action on S is free, i.e. for every $x \in S$: if $g \cdot x = x$, then g = 1.

Definition

Recall that a group G is residually finite if for every $g \in G$ with $g \neq 1$ there exists a finite-index (normal) subgroup N such that $g \notin N$.

(日)

э

Definition

Recall that a group G is *residually finite* if for every $g \in G$ with $g \neq 1$ there exists a finite-index (normal) subgroup N such that $g \notin N$.

Definition

Given a residually finite group G, the *profinite topology* on G is the one with basis at 1 consisting of finite-index subgroups.

< A >

- A - B - M

Definition (Toeplitz, Krieger)

A word $x \in 2^G$ is called Toeplitz if x is continuous in the profinite topology.

Image: Image:

- ∢ ≣ ▶

э

Definition (Toeplitz, Krieger)

A word $x \in 2^G$ is called *Toeplitz* if x is continuous in the profinite topology.

Note

In case $G = \mathbb{Z}$, equivalently a word $x \in 2^{\mathbb{Z}}$ is Toeplitz if for every $k \in \mathbb{Z}$ there exists p > 0 such that k has period p in x, i.e.

$$x(k+ip) = x(k)$$
 for all $i \in \mathbb{Z}$

Definition

A subshift $S \subseteq 2^G$ is Toeplitz if it is generated by a Toeplitz word, i.e. there exists a Toeplitz $x \in 2^G$ such that $S = cl(G \cdot x)$.

< 67 ▶

Definition

A subshift $S \subseteq 2^G$ is Toeplitz if it is generated by a Toeplitz word, i.e. there exists a Toeplitz $x \in 2^G$ such that $S = cl(G \cdot x)$.

Theorem (folklore for \mathbb{Z} , Krieger for arbitrary G)

Every Toeplitz subshift is minimal.

It turns out that for any countable group G the topological conjugacy relation of G subshifts is a countable Borel equivalence relation.

< A >

It turns out that for any countable group G the topological conjugacy relation of G subshifts is a countable Borel equivalence relation.

Definition

A block code is a function

$$\sigma:2^A\to 2$$

for some finite subset $A \subseteq G$.

< 67 ▶

It turns out that for any countable group G the topological conjugacy relation of G subshifts is a countable Borel equivalence relation.

Definition

A block code is a function

$$\sigma:2^A\to 2$$

for some finite subset $A \subseteq G$.

A block code induces a G-invariant function $\hat{\sigma}: 2^G \rightarrow 2^G$:

$$\hat{\sigma}(x)(g) = \sigma(g^{-1} \cdot x \upharpoonright A).$$

Theorem (Curtis–Hedlund–Lyndon)

Any G-invariant homeomorphism of G-subshifts is given by a block code.

< 日 > < 同 > < 三 > < 三 >

э

Theorem (Curtis–Hedlund–Lyndon)

Any G-invariant homeomorphism of G-subshifts is given by a block code.

In particular, as there are only countably many block codes, the topological conjugacy relation is a countable Borel equivalence relation.

< A >

- A 🗄 🕨

Question (Gao–Jackson–Seward)

Given a countable group G, what is the complexity of topological conjugacy of **minimal** (or even free minimal) G-subshifts?

Question (Gao–Jackson–Seward)

Given a countable group G, what is the complexity of topological conjugacy of **minimal** (or even free minimal) G-subshifts?

Theorem (Gao–Jackson–Seward)

For any infinite countable group G the topological conjugacy of free minimal G-subshifts is not smooth.

・ロト ・同ト ・ヨト ・ヨト

Definition

A group G is *locally finite* if any finitely generated subgroup of G is finite.

< 17 >

Definition

A group G is *locally finite* if any finitely generated subgroup of G is finite.

Theorem (Gao–Jackson–Seward)

If G is locally finite, then the topological conjugacy of free minimal $G\mbox{-subshifts}$ is hyperfinite.

< A >

Definition

Note that any countable group G admits a natural right action on the set of its free minimal G-subshifts: $S\cdot g=\{x\cdot g:x\in S\}$, where

$$(x \cdot g)(h) = x(hg).$$

< 67 ▶

Definition

Note that any countable group G admits a natural right action on the set of its free minimal G-subshifts: $S\cdot g=\{x\cdot g:x\in S\}$, where

$$(x \cdot g)(h) = x(hg).$$

Note

It is not difficult to see that S and $S\cdot g$ are topologically conjugate for any $g\in G.$

< □ > < 同 >

- A 🗄 🕨

Theorem (S.–Tsankov)

For any residually finite countable groups G that there exists a probability measure μ on the set of free Toeplitz $G\-$ subshifts such that

- μ is invariant under the right action of G
- the stabilizers of points in this action are a.e. amenable.

Theorem (folklore)

If a countable group ${\cal G}$ acts on a probability space preserving the measure and so that

- the induced equivalence relation is amenable,
- a.e. stabilizers are amenable,

then the group G is amenable.

- 4 🗗 ▶

Theorem (folklore)

If a countable group ${\cal G}$ acts on a probability space preserving the measure and so that

- the induced equivalence relation is amenable,
- a.e. stabilizers are amenable,

then the group G is amenable.

Corollary

For any residually finite non-amenable group G the topological conjugacy relation is not hyperfinite.

< 口 > < 同 >

I ≡ ▶ < </p>

Definition

Given a Z-subshift $T \subseteq 2^{\mathbb{Z}}$, its topological full group [[T]] consists of all homeomorphisms $f: T \to T$ such that f(x) belongs to the same Z-orbit as x, for all $x \in T$ and there is a continuous function $n: T \to \mathbb{Z}$ such that $f(x) = S^{n(x)}(x)$.

Definition

Given a Z-subshift $T \subseteq 2^{\mathbb{Z}}$, its topological full group [[T]] consists of all homeomorphisms $f: T \to T$ such that f(x) belongs to the same Z-orbit as x, for all $x \in T$ and there is a continuous function $n: T \to \mathbb{Z}$ such that $f(x) = S^{n(x)}(x)$.

Theorem (Giordano–Putnam–Skau)

If T, T' are minimal \mathbb{Z} -subshifts, then the following are equivalent:

- [[T]] and [[T']] are isomorphic (as groups)
- T is topologically conjugate to T' or to the inverse shift on T'.

Definition

Given a Z-subshift $T \subseteq 2^{\mathbb{Z}}$, its topological full group [[T]] consists of all homeomorphisms $f: T \to T$ such that f(x) belongs to the same Z-orbit as x, for all $x \in T$ and there is a continuous function $n: T \to \mathbb{Z}$ such that $f(x) = S^{n(x)}(x)$.

Theorem (Giordano–Putnam–Skau)

If T, T' are minimal \mathbb{Z} -subshifts, then the following are equivalent:

- [[T]] and [[T']] are isomorphic (as groups)
- T is topologically conjugate to T' or to the inverse shift on T'.

Theorem (Juschenko-Monod)

If T is a minimal \mathbb{Z} -subshift, then [[T]] is amenable.

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

In terms of Borel-reducibility the two previous theorems show that the topological conjugacy of minimal \mathbb{Z} -subshifts is (almost) Borel reducible to the isomorphism of countable amenable groups.

In terms of Borel-reducibility the two previous theorems show that the topological conjugacy of minimal \mathbb{Z} -subshifts is (almost) Borel reducible to the isomorphism of countable amenable groups.

Question (Thomas)

What is the complexity of the topological conjugacy of minimal $\mathbb{Z}\text{-subshifts}?$

In terms of Borel-reducibility the two previous theorems show that the topological conjugacy of minimal \mathbb{Z} -subshifts is (almost) Borel reducible to the isomorphism of countable amenable groups.

Question (Thomas)

What is the complexity of the topological conjugacy of minimal $\mathbb{Z}\text{-subshifts}?$

Theorem (Clemens)

The topological conjugacy of (arbitrary, not neccessarily minimal) \mathbb{Z} -subshifts is a universal countable Borel equivalence relation.

< A >

Note

Recall that a word $x \in 2^{\mathbb{Z}}$ is Toeplitz if for every $k \in \mathbb{Z}$ there exists p > 0 such that k has period p in x, i.e.

x(k+ip) = x(k) for all $i \in \mathbb{Z}$

< 17 >

< ∃ >

Note

Recall that a word $x \in 2^{\mathbb{Z}}$ is Toeplitz if for every $k \in \mathbb{Z}$ there exists p > 0 such that k has period p in x, i.e.

 $x(k+ip) = x(k) \quad \text{for all } i \in \mathbb{Z}$

Notation

Given $x \in 2^{\mathbb{Z}}$ Toeplitz write

$$\operatorname{Per}_p(x) = \{k \in \mathbb{Z} : k \text{ has period } p \text{ in } x\}.$$

Write also

$$H_p(x) = \{0, \dots, p-1\} \setminus \operatorname{Per}_p(x).$$

< □ > < 同 >

- ₹ 🖬 🕨

Definition

A Toeplitz word $x \in 2^{\mathbb{Z}}$ is said to have separated holes if

$$\lim_{p \to \infty} \min\{|i - j| : i, j \in H_p(x), i \neq j\} = \infty.$$

< 同 ▶

э

Definition

A Toeplitz word $x \in 2^{\mathbb{Z}}$ is said to have separated holes if

$$\lim_{p \to \infty} \min\{|i - j| : i, j \in H_p(x), i \neq j\} = \infty.$$

Definition

A subshift $S \subseteq 2^{\mathbb{Z}}$ has separated holes if it is generated by a Toeplitz word which has separated holes.

< 17 ▶

Theorem (S.–Tsankov)

The topological conjugacy relation of $\mathbb{Z}\text{-}\mathsf{Toeplitz}$ subshifts with separated holes is amenable.

< 17 ▶

< ∃ >

Theorem (S.–Tsankov)

The topological conjugacy relation of $\mathbb{Z}\text{-}\mathsf{Toeplitz}$ subshifts with separated holes is amenable.

Question

Is it true that the conjugacy relation of all $\mathbb Z\text{-}\mathsf{Toeplitz}$ subshifts is hyperfinite?

< 17 ▶

< ∃ >