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Abstract.

All C∗-algebras are assumed to be unital and commutative.
A purely relational language L consists of a set RL whose members are called predicate

symbols. Each predicate symbol P ∈ RL also carries an arity nP ∈ N and a compact
spectrum ΣP ⊆ C. An L-structure M consists of a set M along with interpretations of
the predicate symbols:

PM : MnP → ΣP .

Let LM = B(MN,C) denote the C∗-algebra of bounded functions ϕ : MN → C. If
ϕ ∈ LM and (ai)i∈N ∈ MN we may write ϕ(ai)i∈N as a substitution ϕ[ai/xi]i∈N, the idea
being that we substitute each ai for the variable xi (which serves as a place holder of
sorts) and then evaluate ϕ. This C∗-algebra admits the following structure:

• If P is an n-ary predicate symbol then PM ∈ LM via the addition of dummy
variables, i.e., PM(ai)i∈N = PM(a0, . . . , an−1).

• If ϕ ∈ LM and ξ : N → N then ϕξ ∈ LM as well, where ϕξ[ai/xi] = ϕ[aξ(i)/xi].
The function ϕξ can also be written as a substitution ϕ[xξ(i)/xi]i∈N. The expected
composition rules for substitutions hold, namely:

ϕ[xξ(i)/xi][aj/xj] = ϕ[aξ(i)/xi],
(

= ϕ[xξ(i)/xi][aξ(i)/xξ(i)]
)

ϕ[xξ(i)/xi][xζ(j)/xj] = ϕ[aζ◦ξ(i)/xi].
(

= ϕ[xξ(i)/xi][xζ◦ξ(i)/xξ(i)]
)

• For any self-adjoint (i.e., real-valued) ϕ ∈ LM
sa and variable x, define:

(

supx ϕ
)

[ai/xi] = sup
{

ϕ[b/x, ai/xi]xi 6=x : b ∈M
}

Then supx ϕ ∈ LM
sa as well.

We may consider a more general case where L consists of RL as above along with a
set FL of function symbols. A function symbol f ∈ FL only carries an arity nf ∈ N. An
L-pre-structure M then consists of a set M along with interpretations:

fM : Mnf →M, PM : MnP → ΣP .

Date: 13 April 2008.
Research supported by ANR chaire d’excellence junior (projet THEMODMET) and by the European

Commission Marie Curie Research Network ModNet.
1
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Function symbols can be composed formally, yielding the term algebra T L of L. The term
algebra is the set generated freely from the formal variables {xi}i∈N by the composition
operations (τ0, . . . , τnf−1) 7→ f(τ0, . . . , τnf−1). Substitution of terms in other terms is
defined in the natural manner:

xi[σj/xj] = σi,
(

f(τ0, . . . , τnf−1)
)

[σj/xj] = f
(

τ0[σj/xj], . . . , τnf−1[σj/xj]
)

.

It will be convenient to consider the evaluation of a term τ in M as a substitution:

xMi [aj/xj] = ai,
(

f(τ0, . . . , τnf−1)
)M

[aj/xj] = fM
(

τM0 [aj/xj], . . . , τ
M
nf−1[aj/xj]

)

.

The same composition rules hold:
(

ρ[τi/xi]
)M

[aj/xj] = ρM
[

τMi [aj/xj ]/xi

]

, ρ[τi/xi][σj/xj] = ρ
[

τi[σj/xj ]/xi

]

.

Now the algebra LM carries one additional operation:

• For any ϕ ∈ LM and terms (τi)i∈N, the composition ϕ ◦ (τMi ) also belongs to
LM. It can be written as a term substitution ϕ[τi/xi]. As usual:

ϕ[τi/xi][aj/xj] = ϕ
[

τMi [aj/xj ]/xi

]

, ϕ[τi/xi][σj/xj] = ϕ
[

τi[σj/xj ]/xi

]

.

These operations make sense in every L-structure M, leading us to the following
abstraction:

Definition 0.1. A L-algebra with variables {xn}n∈N is a C∗-algebra A equipped with
the following additional structure:

• Atomic formulae: A mapping RL → A, associating to each predicate symbol P
a member PA ∈ A. It satisfies:

σ(PA) ⊆ ΣP .

• Term substitution: For each sequence (τi)i∈N, a endomorphism [τi/xi]i∈N : A → A.
• Quantification: For each variable x a mapping supx : Asa → Asa.

They are required to satisfy the following properties:

‖ϕ[τi/xi]‖ ≤ ‖ϕ‖, ‖ supx ϕ‖ ≤ ‖ϕ‖(N)

PA[τi/xi]i6=0,...,nP−1 = PA(S1)

ϕ[] = ϕ(S2)

ϕ[τi/xi][σj/xj] = ϕ
[

τi[σj/xj ]/xi

]

(S3)

(supx ϕ)[τi/xi] = supx ϕ[τi/xi]xi 6=x if x does not appear in any τi(S4)

ϕ ≤ ψ =⇒ supx ϕ ≤ supx ψ i.e., supx is monotone(Q1)

supx ϕ ≥ ϕ[τ/x](Q2)

supx ϕ[y/x] = ϕ[y/x] if x 6= y(Q3)
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Remark 0.2. A reader familiar with classical first order logic may wish to compare the two.
We have chosen to avoid syntax altogether, whence our axiomatic, rather than syntactic,
definition of substitutions. One advantage is that we avoid the issue of correctness of
substitution (the restriction we impose in axiom S4 is reminiscent of it, though). The
axioms for quantifiers Q1-3 correspond very closely to the quantifier axioms for formal
deductions:

∀x (ϕ→ ψ) → ∀xϕ→ ∀xψ(A1)

∀xϕ→ ϕ[τ/x](A2)

ϕ→ ∀xϕ if x is not free in ϕ(A3)

A morphism of L-algebras is a morphism of C∗-algebras which respects the additional
structure. While being a tedious construction, it is fairly standard to see that the category
of L-algebras admits an initial object, i.e., a free L-algebra. We call this algebra L.
Members of L are called formulae. Strictly speaking, L depends on the set of variables
we chose. When we wish to make this explicit we may use the notation L(x)x∈V or LV

or something reasonable XXXXX.

Proposition 0.3 (Induction principle). Let L′ ⊆ L be a sub-algebra, containing all the
atomic formulae and closed under term substitution and under quantification. Then L′

is dense in L. If L′ is closed then L′ = L.

Proof. Since substitutions and quantifiers are all continuous, the closed algebra L′ is also
closed under these operations. In this case L′ is itself an L-algebra and admits a unique
morphism L → L′. The composition of L → L′ ⊆ L must be idL, so L′ = L. �0.3

Let ϕ be a formula,X a set of variables. We say thatX determines ϕ if ϕ[τi/xi] = ϕ[σi/xi]
whenever τi = σi for all xi ∈ X. We define Lf to denote the collection of formulae which
are determined by a finite set of variables.

Lemma 0.4. Lf is a dense sub-algebra of L.

Proof. We prove by induction:
– Lf is a sub-algebra of L. Indeed, if Xϕ determines ϕ and Xψ determines ψ then Xϕ∪Xψ

determines ϕ+ ψ, ϕψ, and so on.
– Lf contains all the atomic formulae by axiom S1.
– Lf is closed under term substitution. Indeed, let ψ = ϕ[ρj/xj] where ϕ ∈ Lf . Let Xϕ be
a finite set which determines ϕ and let Xψ consist of all variables appearing in {ρj : xj ∈
Xϕ}. Then Xψ is finite. Assume that τi = σi for xi ∈ Xψ. Then ρj[τi/xi] = ρj[σi/xi] for
j ∈ Xϕ, whereby:

ψ[τi/xi] = ϕ
[

ρj [τi/xi]//xj
]

= ϕ
[

ρj [σi/xi]//xj
]

= ψ[σi/xi].

– Lf is closed under quantification. Indeed, let ϕ ∈ Lf be determined by Xϕ. Without
loss of generality we restrict ourselves to supx0

ϕ. Assume that τi = σi for xi ∈ Xϕ, and
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let τ ′i = τi[xj+1/xj], σ′
i = σi[xj+1/xj]. Then:

(supx0
ϕ)[τ ′i/xi] = supx0

ϕ[τ ′i/xi]i6=0 = supx0
ϕ[σ′

i/xi]i6=0 = (supx0
ϕ)[σ′

i/xi],

whereby:

(supx0
ϕ)[τi/xi] = (supx0

ϕ)[τ ′i/xi][xj/xj+1] = (supx0
ϕ)[σ′

i/xi][xj/xj+1]

= (supx0
ϕ)[σi/xi]. �0.4

Lemma 0.5. For every formula ϕ there is a (unique) smallest countable set of variables
DVar(ϕ) which determines ϕ. Moreover:

DVar(ϕ) = {x : ϕ 6= ϕ[τ/x] for some term τ}

= {x : ϕ 6= ϕ[y/x] for every variable y 6= x}.

Proof. Let Ξϕ be the collection of all sets of variables X which determine ϕ. It is easy
to see that Ξϕ is closed under finite intersections. Thus, if ϕ ∈ Lf then Ξϕ contains a
smallest (finite) member DVar(ϕ). For a general formula ϕ there is a sequence {ϕn} ⊆ Lf ,
ϕn → ϕ, and it is easy to check that

⋃

n DVarϕn determines ϕ. Thus Ξϕ contains a
countable member. In order to show that Ξϕ contains a smallest member it will be enough
to show that if X0 ⊇ X1 ⊇ . . . is a decreasing sequence in Ξϕ then X =

⋂

nXn ∈ Ξϕ.
Assume that τi = σi for all i ∈ X, and we need to show that ϕ[τi/xi] = ϕ[σi/xi]. Fix

ε > 0, and choose ψ ∈ Lf , ‖ψ − ϕ‖ < ε. Since DVar(ψ) is finite, for n big enough we
have X ∩ DVar(ψ) = Xn ∩ DVar(ψ). Let ρi = τi for i ∈ DVar(ψ) and ρi = σi otherwise,
so ‖ϕ[τi/xi] − ϕ[ρi/xi]‖ < 2ε. If i ∈ Xn then either i /∈ DVar(ψ), in which case we chose
ρi = σi, or i ∈ DVar(ψ), in which case i ∈ X and again ρi = τi = σi. Since Xn ∈ Ξϕ we
have ϕ[ρi/xi] = ϕ[σi/xi]. We have thus shown that ‖ϕ[τi/xi]−ϕ[σi/xi]‖ < 2ε for all ε > 0, so
ϕ[τi/xi] = ϕ[σi/xi], and X ∈ Ξϕ as desired. This concludes the proof that It follows that
Ξϕ contains a countable smallest member, namely DVar(ϕ) =

⋂

Ξϕ.
We now prove the moreover part. If x /∈ DVar(ϕ) then ϕ = ϕ[τ/x] for every term

τ . Conversely, assume that ϕ = ϕ[y/x] for some variable y 6= x. Assume that τi = σi
whenever xi 6= x. In particular let ρ = τj = σj for xj = y. Then:

ϕ[τi/xi] = ϕ[y/x][τi/xi] = ϕ[ρ/x, τi/xi]xi 6=x = ϕ[y/x][σi/xi] = ϕ[σi/xi].

Thus DVar(ϕ) r {x} ∈ Ξϕ whereby x /∈ DVar(ϕ). �0.5

Lemma 0.6. Let ϕ ∈ L be self-adjoint, x a variable. Then:

DVar(supx ϕ) ⊆ DVar(ϕ) r {x},

x /∈ DVar(ϕ) ⇐⇒ ϕ = supx ϕ,

supx ϕ = supy ϕ[y/x]. if y /∈ DVar(ϕ)

Proof. Let x, y, z be distinct, z /∈ DVar(ϕ). Then

(supx ϕ)[y/x] = supx ϕ =⇒ x /∈ DVar(supx ϕ),

(supx ϕ)[y/z] = supx ϕ[y/z] = supx ϕ =⇒ z /∈ DVar(supx ϕ).
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Thus the first assertion is proved, and right to left of the second assertion follows. For
left to right, observe that if x /∈ DVar(ϕ) then:

supx ϕ = supx ϕ[y/x] = ϕ[y/x] = ϕ.

For the last assertion observe that for any variable y we have supx ϕ ≥ ϕ[y/x], whereby
supx ϕ = supy supx ϕ ≥ supy ϕ[y/x]. If in addition y /∈ DVar(ϕ) then ϕ[y/x][x/y] = ϕ[x/y] =
ϕ, so by the same argument supx ϕ ≤ supy ϕ[y/x]. �0.6

The inclusion DVar(supx ϕ) ⊆ DVar(ϕ) r {x} may be strict. Indeed, assume ϕ =
−|P (x) − P (y)|. Then DVar(ϕ) = {x, y}, but DVar(supx ϕ) = DVar(0) = ∅.

Lemma 0.7. Let ϕ ∈ L be self-adjoint, x a variable. We can characterise supx ϕ as:

(i) The least formula satisfying ψ ≥ ϕ and x /∈ DVar(ψ).
(ii) The least upper bound in L for the sets {ϕ[τ/x] : τ ∈ TL} and {ϕ[y/x] : y 6= x}:

supx ϕ = sup{ϕ[τ/x] : τ ∈ TL} = sup{ϕ[y/x] : y 6= x}.

Proof. For the first item, we know that ψ = supx ϕ does indeed verify ψ ≥ ϕ and
x /∈ DVar(ψ). If ψ is another formula with the same properties then supx ϕ ≤ supx ψ = ψ.

For the second item, we know that supx ϕ is an upper bound for {ϕ[τ/x] : τ ∈ TL}. We
need to show that if ψ is an upper bound for {ϕ[y/x] : y variable} then ψ ≥ supx ϕ.

Let infx ψ = − supx−ψ, noticing that x /∈ DVar(infx ψ) and infx ψ ≤ ψ. Choose
y /∈ DVar(ϕ) ∪ DVar(ψ), so y /∈ DVar(infx ψ) as well. Monotonicity of supx implies
monotonicity of infx, so ψ ≥ ϕ[y/x] implies infx ψ ≥ infx ϕ[y/x] = ϕ[y/x]. Thus:

infx ψ = (infx ψ)[x/y] ≥ ϕ[y/x][x/y] = ϕ[x/y] = ϕ.

By the first item, ψ ≥ infx ψ ≥ supx ϕ, as desired. �0.7

Lemma 0.8. Assume x /∈ DVar(ϕ). Then supx(ϕ+ ψ) = ϕ+ supx ψ.

Proof. Immediate from the characterisation above. �0.8

We do Henkin stuff:

V0 = V ,

Vn+1 = Vn ∪ {zϕ,y}(ϕ,y)∈LVn×Vn
,

V ′ =
⋃

n∈N

Vn,

Σh = {supy ϕ− ϕ[zϕ,y/y] : (ϕ, y) ∈ LVn
× Vn for some n}.

Lemma 0.9. Assume V ⊆ V ′ are two sets of variables. Then LV admits a canonical
embedding in LV ′, whose image consists of all ϕ ∈ LV ′ such that DVar(ϕ) ⊆ V.

Proof. The (L,V ′)-algebra LV ′ can be viewed as an (L,V)-algebra, whence a canonical
morphism of (L,V)-algebras θ1 : LV → LV ′ .
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Assume first that |V| = |V ′|, so there exists a bijection ξ : V ′ → V . This bijection

induces an isomorphism ξ̃ : LV ′ → LV verifying:

ξ̃(P ) = P [ξ(xi)/xi]i=0,...,nP−1,

ξ̃
(

ϕ[τi/xi]xi∈V ′

)

=
(

ξ̃(ϕ)
)[

τi[ξ(x)/x]x∈V′/ξ(xi)
]

xi∈V ′
,

ξ̃
(

supx ϕ
)

= supξ(x) ξ̃(ϕ).

Define also two mappings θ2, θ3 : LV → LV by:

θ2(ϕ) = ϕ[ξ(x)/x]x∈V , θ3(ϕ) = ϕ[x/ξ(x)]x∈V .

It is straightforward to check by induction that ξ̃ ◦ θ1 = θ2, and clearly θ3 ◦ θ2 = idLV
.

Therefore θ2 is injective (and isometric) and so is θ1 = ξ̃−1 ◦ θ2.
If ϕ = θ2(ψ) then clearly DVar(ϕ) ⊆ ξ(V). Conversely, if DVar(ϕ) ⊆ ξ(V) Then

ϕ = θ2(θ3(ϕ)). In other words, the image of θ2 consists precisely of those ϕ verifying

DVar(ϕ) ⊆ ξ(V). Therefore the image of θ1 = ξ̃−1 ◦ θ2 consists of those ϕ ∈ LV ′ verifying
DVar(ϕ) ⊆ V.

If |V| < |V ′|, consider S = {V ′′ : V ⊆ V ′′ ⊆ V ′ and |V| = |V ′|}. This is a directed
system, and by the case we have handled so is {LV ′′}V ′′∈S. The limit is easily checked to
be the free (L,V ′)-algebra, i.e., LV ′ . The statement now follows from this construction
of LV ′ . �0.9

Lemma 0.10. The natural mapping LV → LV ′/〈Σh〉 is an embedding.

Proof. Assume not. Then there is a non zero ϕ ∈ LV which belongs to the closed ideal
〈Σh〉. By standard properties of C∗-algebras we may assume that ϕ = |ϕ| ≥ 0 is positive
and actually belongs to the ideal generated algebraically by Σh. Since all members of Σh

are positive, and possibly replacing ϕ with something smaller, this boils down to saying
that there is a finite family of distinct pairs (ψi, yi), i ≤ k, such that:

ϕ ≤
∑

i≤k

(

supyi
ψi − ψi[zi/yi]

)

,

where zi = zψi,yi
. We may assume that k is minimal.

For each i ≤ k there is ni such that zi ∈ Vni+1 − Vn. We may assume that nk is
maximal, which means that zk /∈ DVar(ψi) for i ≤ k and zk 6= zi for i < k. Thus
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zk /∈ DVar(supyi
ψi) for i ≤ k and zk /∈ DVar(ψi[zi/yi]) for i < k.

ϕ = supzk
ϕ

≤ supzk

∑

i≤k

(

supyi
ψi − ψi[zi/yi]

)

=
∑

i<k

(

supyi
ψi − ψi[zi/yi]

)

+ supyk
ψk − supzk

ψk[zk/yk]

=
∑

i<k

(

supyi
ψi − ψi[zi/yi]

)

+ supyk
ψk − supyk

ψk

=
∑

i<k

(

supyi
ψi − ψi[zi/yi]

)

.

This contradicts the minimality of k. �0.10

Theorem 0.11 (Completeness Theorem). Let I ⊆ L be a proper ideal. Then there exists
an L-structure M such that the mapping L → LM factors via L/I.

Proof. We have L = LV , and let L′ = LV ′ and Σh be as above. Let I ′ ⊆ L′ be the
ideal generated by I and Σh. By Lemma 0.10 it is a proper ideal, so it is contained in a
maximal ideal m, corresponding to a homomorphism λ : L′ → C.

Let M = TL,V ′ . The function symbols of L admit a natural interpretation on M . For
the predicate symbols we define:

PM(τ0, . . . , τn−1) = λ
(

P [τ0/x0, . . . , τn−1/xn−1]
)

.

We claim that for every formula ϕ ∈ L:

ϕM[τi/xi] = λ
(

ϕ[τi/xi]
)

.

Indeed, let L0 consist of all formulae with this property which in addition only depend
on finitely many variables. Then L0 is a sub-algebra and contains all atomic formulae.
If ϕ ∈ L0 then ϕ[σj/xj] ∈ L0 as well:

ϕ[σj/xj]
M[τi/xi] = ϕM

[

σM
j [τi/xi]/xj

]

= ϕM
[

σj [τi/xi]/xj

]

= λ
(

ϕ
[

σj [τi/xi]/xj

])

= λ
(

ϕ[σj/xj][τi/xi]
)

.

Let us now show that if ϕ ∈ L0 then supx ϕ ∈ L0. We may choose y which does not appear
in the finite set of terms {τi : xi ∈ DVar(ϕ)}. Let ψ = ϕ[y/x, τi/xi]xi 6=x = ϕ[y/x][τi/xi]xi 6=x,y.
Then ψ ∈ L0,

(supx ϕ)[τi/xi] =
(

supy ϕ[y/x]
)

[τi/xi]xi 6=x = supy ϕ[y/x][τi/xi]xi 6=x,y = supy ψ.

Thus:

(supx ϕ)M[τi/xi] = sup
{

ϕM[σ/x, τi/xi]xi 6=x : σ ∈ TL

}

= sup
{

λ
(

ϕ[σ/x, τi/xi]xi 6=x

)

: σ ∈ TL

}

= sup
{

λ
(

ψ[σ/y]
)

: σ ∈ TL

}

≤ λ(supy ψ).
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On the other hand, by our finiteness assumption there exists n such that {y}∪DVar(ψ) ⊆
Vn. For z = zψ,y ∈ Vn+1:

λ(supy ψ) = λ
(

ψ[z/y]
)

≤ (supx ϕ)M[τi/xi]

Putting together both inequalities, we have shown that:

(supx ϕ)M[τi/xi] = λ(supy ψ) = λ
(

(supx ϕ)[τi/xi]
)

.

We have shown by induction that L0 is dense in L. Thus for ϕ ∈ L there is a sequence
ϕn → ϕ in L0. Then ϕM

n → ϕM, whereby ϕM[τi/xi] = λ
(

ϕ[τi/xi]
)

as well.

Finally, I ⊆ kerλ so L → LM factors through L/I. �0.11
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