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ABSTRACT.

All C*-algebras are assumed to be unital and commutative.

A purely relational language £ consists of a set R* whose members are called predicate
symbols. Each predicate symbol P € RF also carries an arity np € N and a compact
spectrum Xp C C. An L-structure M consists of a set M along with interpretations of
the predicate symbols:

PM MM — Yp.
Let LM = B(MY,C) denote the C*-algebra of bounded functions ¢: MY — C. If
o € LM and (a;)ien € MY we may write p(a;)ien as a substitution @[e/z;];en, the idea

being that we substitute each a; for the variable x; (which serves as a place holder of
sorts) and then evaluate . This C*-algebra admits the following structure:

e If P is an n-ary predicate symbol then PM € £M via the addition of dummy
variables, i.e., PM(a;)ieny = P (ag, ..., an_1).

o If p € LM and £: N — N then ¢* € LM as well, where ¢%[ei/s,] = p[ac/a,).
The function ¢° can also be written as a substitution ¢[%e()/z;];en. The expected
composition rules for substitutions hold, namely:

plreo/m][9/z;] = plrew/z], (= plmew/m][oc/aei])
o[Fe /][ /x;] = placoe/as]. (= plee/a][Fcoci/eew))
e For any self-adjoint (i.e., real-valued) ¢ € £ and variable z, define:
(sup, @) [#/e:] = sup {@[tfe, 9i/e]g, 0 b€ M}

Then sup, ¢ € LM as well.

We may consider a more general case where £ consists of RX as above along with a
set F£ of function symbols. A function symbol f € F* only carries an arity n; € N. An
L-pre-structure M then consists of a set M along with interpretations:

MM — M, PM. M — p.

Date: 13 April 2008.
Research supported by ANR chaire d’excellence junior (projet THEMODMET) and by the European
Commission Marie Curie Research Network ModNet.
1



2 ITAI BEN YAACOV

Function symbols can be composed formally, yielding the term algebra T* of £. The term
algebra is the set generated freely from the formal variables {x;};eny by the composition
operations (7o,...,7n,—1) + f(70,...,Tn,;—1). Substitution of terms in other terms is
defined in the natural manner:

x;[%/x;] = oy, (f(TQ, . ,Tnf_l)) [0 /z;] = f(’T() 93/, . .. ,Tnf_l[ﬂj/xj}).

It will be convenient to consider the evaluation of a term 7 in M as a substitution:

I’ZM [9i/2;] = as, (f(7'0> e aTnf—l))M[aj/ij] = M (T({\A [93/x;], . .. ’77{0‘;‘_1[%/%])_
The same composition rules hold:
(p[n/xi])M[aj/xj] = pM [TZM[%/%}/M], pl7ifx)[0/=;] = p[ﬁ[%‘/ﬂfj]/m].

Now the algebra £M carries one additional operation:

e For any ¢ € LM and terms (7;);ey, the composition ¢ o (7/*') also belongs to

LM, Tt can be written as a term substitution ¢[7i/z;]. As usual:

o7/ [93/x;] = gp[T/M[aj/ffj]/zi], o[7i/xi][7i/2;] = gp[ﬂ'[d]‘/xj]/zi}.

These operations make sense in every L-structure M, leading us to the following
abstraction:

Definition 0.1. A L-algebra with variables {z, },en is a C*-algebra & equipped with
the following additional structure:

o Atomic formulae: A mapping R* — A, associating to each predicate symbol P
a member PA € A. Tt satisfies:

o(P4) C Sp.

o Term substitution: For each sequence (7;);en, & endomorphism [7/z;];en: A — A.
e Quantification: For each variable x a mapping sup, : As, — Asq.

They are required to satisfy the following properties:
N) /=]l < llell, — lIsup, @l < [l

-----

)
52) oll =¢
) lrifail[oife;) = p[riloilzilfa]
) (sup, @)[7/z:] = sup, ©["/zi| s,z if z does not appear in any 7;
Q1) ¢ < 1) = sup, ¢ < sup, ¥ i.e., sup, is monotone
Q2) sup, ¢ = ¢[7/a]

Q3) sup, @[¥/z] = p[Y/s] if x #y
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Remark 0.2. A reader familiar with classical first order logic may wish to compare the two.
We have chosen to avoid syntax altogether, whence our axiomatic, rather than syntactic,
definition of substitutions. One advantage is that we avoid the issue of correctness of
substitution (the restriction we impose in axiom S4 is reminiscent of it, though). The
axioms for quantifiers Q1-3 correspond very closely to the quantifier axioms for formal
deductions:

(A1) Vi (p =) = Ve — Ve
(A2) Voo — o[r/x]
(A3) o —VYrop if z is not free in ¢

A morphism of L-algebras is a morphism of C*-algebras which respects the additional
structure. While being a tedious construction, it is fairly standard to see that the category
of L-algebras admits an initial object, i.e., a free L-algebra. We call this algebra L.
Members of L are called formulae. Strictly speaking, £ depends on the set of variables
we chose. When we wish to make this explicit we may use the notation L£(z).ey or Ly
or something reasonable XXXXX.

Proposition 0.3 (Induction principle). Let £ C L be a sub-algebra, containing all the
atomic formulae and closed under term substitution and under quantification. Then L'
is dense in L. If L' is closed then L = L.

Proof. Since substitutions and quantifiers are all continuous, the closed algebra L' is also
closed under these operations. In this case £’ is itself an L-algebra and admits a unique
morphism £ — L’. The composition of £ — L' C £ must be id,, so L' = L. [

Let ¢ be a formula, X a set of variables. We say that X determines ¢ if p[7i/z;| = @[7i/x;]
whenever 7; = o; for all z; € X. We define L to denote the collection of formulae which
are determined by a finite set of variables.

Lemma 0.4. Ly is a dense sub-algebra of L.

Proof. We prove by induction:

— Ly is a sub-algebra of £. Indeed, if X, determines ¢ and X, determines ¢ then X, ,UX,
determines ¢ + 1, 1), and so on.

— Ly contains all the atomic formulae by axiom S1.

— Ly is closed under term substitution. Indeed, let ¢ = @[ri/z;] where p € L;. Let X, be
a finite set which determines ¢ and let X, consist of all variables appearing in {p;: x; €
X,}. Then Xy is finite. Assume that 7, = o; for x; € X,,. Then p;[7i/z;| = p;[9i/x;] for
J € X,, whereby:

Ulrfe] = plotislpz)] = ololeillym,) = los)
— Ly is closed under quantification. Indeed, let ¢ € L be determined by X,,. Without
loss of generality we restrict ourselves to sup, . Assume that 7; = o; for z; € X,,, and
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let 7] = 7;[%i+1/x;], 0f = 0y[#i+1/z;]. Then:

(Sup, ) [7i/e:] = sup,, [7i/elizo = supy, @[7i/zlizo = (sup,, ©)[7i/=],
whereby:
(SUp,, ©)[7i/z:] = (SUp,, ©)[7i/2:][3/2511] = (SUpy, @) [74/2i] [#3/2;41]
= (sup,, ©)[7i/=]- W

Lemma 0.5. For every formula ¢ there is a (unique) smallest countable set of variables
DVar(y) which determines ¢. Moreover:

DVar(p) = {x: ¢ # ¢[7/«] for some term T}
={x: ¢ # pl¥/a] for every variable y # z}.

Proof. Let =, be the collection of all sets of variables X which determine ¢. It is easy
to see that =, is closed under finite intersections. Thus, if ¢ € Ly then =, contains a
smallest (finite) member DVar(y). For a general formula ¢ there is a sequence {¢,,} C Ly,
v, — ¢, and it is easy to check that |J, DVar g, determines ¢. Thus =, contains a
countable member. In order to show that =, contains a smallest member it will be enough
to show that if Xy O X; O ... is a decreasing sequence in =, then X = ﬂn X, € 2.

Assume that 7; = o; for all i € X, and we need to show that ¢[7i/z;] = p[oi/a;]. Fix
e > 0, and choose ¢ € Ly, ||t — ¢|| < e. Since DVar() is finite, for n big enough we
have X N DVar(¢y) = X,, N DVar(¢). Let p; = 7; for ¢ € DVar(v) and p; = o, otherwise,
so ||@[7i/z:] — plrifx]|| < 2e. If i € X, then either i ¢ DVar(¢), in which case we chose
p; = 0;, or i € DVar(¢), in which case i € X and again p; = 7; = 0;. Since X,, € =, we
have @|[ri/z;] = p[oi/z;]. We have thus shown that ||¢[7i/z;] — p[oi/z]|| < 2¢ for all € > 0, so
@[7ife;] = @[7i/e;], and X € E¢ as desired. This concludes the proof that It follows that
E, contains a countable smallest member, namely DVar(¢) = (] Z,.

We now prove the moreover part. If x ¢ DVar(p) then ¢ = @[7/z] for every term
7. Conversely, assume that ¢ = @[¥/z] for some variable y # x. Assume that 7, = o;
whenever z; # . In particular let p = 7; = 0, for x; = y. Then:

plrifas] = ofal[ifai] = plofa, Tfai]aa = @l¥fal[7/n:] = @loi/2:].
Thus DVar(¢) \ {z} € E, whereby x ¢ DVar(y). LY

Lemma 0.6. Let ¢ € L be self-adjoint, x a variable. Then:
DVar(sup, ¢) C DVar(p) \ {z},
x ¢ DVar(p) <= ¢ = sup, ¢,

sup, ¢ = sup, ¢[v/|. if y ¢ DVar(p)
Proof. Let z,y, z be distinct, z ¢ DVar(y). Then
(sup,, )[¥/«] = sup, ¢ — = ¢ DVar(sup, ),

(sup, p)[¥/=] = sup,, ¢[¥/:] = sup, ¢ = z ¢ DVar(sup, ¢).
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Thus the first assertion is proved, and right to left of the second assertion follows. For
left to right, observe that if z ¢ DVar(y) then:

SUp, ¢ = sup, p[v/e] = p[vfz] = .
For the last assertion observe that for any variable y we have sup, ¢ > ¢[¥/z], whereby

sup, ¢ = sup, sup, ¢ > sup, ¢[¥/z]. If in addition y ¢ DVar(yp) then @[v/z][*/y] = p[*/y] =
¢, so by the same argument sup, ¢ < sup, @[¥/z]. I

The inclusion DVar(sup, ¢) € DVar(p) \ {z} may be strict. Indeed, assume ¢ =
—|P(z) — P(y)|. Then DVar(y) = {z,y}, but DVar(sup, ¢) = DVar(0) = @.

Lemma 0.7. Let p € L be self-adjoint, x a variable. We can characterise sup, ¢ as:
(i) The least formula satisfying ¥ > ¢ and x ¢ DVar(v).
(ii) The least upper bound in L for the sets {p[7/|: 7 € Tz} and {p[¥/]: y # x}:
sup, ¢ = sup{p[7/a]: 7 € T} = sup{p[v/s]: y # z}.

Proof. For the first item, we know that ¢ = sup, ¢ does indeed verify ¢ > ¢ and
x ¢ DVar(¢)). If ¢ is another formula with the same properties then sup, ¢ < sup, ¥ = 1.

For the second item, we know that sup, ¢ is an upper bound for {¢[7/z]: 7 € 7.}. We
need to show that if ¢ is an upper bound for {¢[¥/]: y variable} then ¢ > sup, ¢.

Let inf,1¢ = —sup, —¢, noticing that z ¢ DVar(inf, ) and inf, ¢ < 9. Choose
y ¢ DVar(yp) U DVar(¢), so y ¢ DVar(inf, 1) as well. Monotonicity of sup, implies
monotonicity of inf,, so ¢ > ¢[¥/z] implies inf, ¢ > inf, p[v/z] = p[¥/z]. Thus:

infy ¢ = (inf P)[7/s] = @[y/al[7/s] = pl=/] = .

By the first item, ¥ > inf, 1) > sup, ¢, as desired. %
Lemma 0.8. Assume x ¢ DVar(p). Then sup, (¢ +¢) = ¢ + sup, 9.
Proof. Immediate from the characterisation above. LIS
We do Henkin stuft:
Vo=V,

Vn—i—l - Vn U {Zgo,y}(go,y)eﬁvnxvm

V' ={JVa

neN
Y = {sup, ¢ — p[*ev/y]: (p,y) € Ly, x V, for some n}.

Lemma 0.9. Assume V C V' are two sets of variables. Then Ly admits a canonical
embedding in Ly, whose image consists of all ¢ € Ly such that DVar(p) C V.

Proof. The (L, V')-algebra Ly can be viewed as an (£, V)-algebra, whence a canonical
morphism of (£, V)-algebras 6;: Ly, — L.
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Assume first that [V| = V', so there exists a bijection §: V' — V. This bijection
induces an isomorphism &: £y — Ly, verifying:

g(P) = P[¢@)/z);0,.. np—1;
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£(sup, ¢) = supe(,) E(p).

Define also two mappings 65, 63: Ly, — Ly, by:
02(p) = [t aluev,  03(0) = p[Fe@lrer-

It is straightforward to check by induction that é 00 = 6y, and clearly 03 0 6, = id,,,.
Therefore 6, is injective (and isometric) and so is 6; = €' o 6s.

If o = 602(¢)) then clearly DVar(p) C £(V). Conversely, if DVar(y) C &(V) Then
© = 05(03(p)). In other words, the image of fy consists precisely of those ¢ verifying
DVar(p) C £(V). Therefore the image of 6; = &' 06, consists of those ¢ € Ly verifying
DVar(p) C V.

If [V| < |V, consider S = {V":V C V" C V' and [V| = [V'|}. This is a directed
system, and by the case we have handled so is {Ly» }yres. The limit is easily checked to
be the free (L£,V’)-algebra, i.e., L£y». The statement now follows from this construction
of ‘CV" .0.9

Lemma 0.10. The natural mapping Ly — Ly /() is an embedding.

Proof. Assume not. Then there is a non zero ¢ € Ly, which belongs to the closed ideal
m. By standard properties of C*-algebras we may assume that ¢ = |¢| > 0 is positive
and actually belongs to the ideal generated algebraically by ;. Since all members of 3,
are positive, and possibly replacing ¢ with something smaller, this boils down to saying

that there is a finite family of distinct pairs (¢, ;), ¢ < k, such that:

0 <> (sup,, v — il=/u)),

i<k

where z; = 2y, ,,- We may assume that & is minimal.
For each ¢ < k there is n; such that z; € V,, 41 — V,. We may assume that ny is
maximal, which means that z, ¢ DVar(vy;) for i < k and z, # z for i < k. Thus
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2z & DVar(sup,, ;) for i < k and 2 ¢ DVar(y;[#/y]) for i < k.
@ =sup,, ¢
<sup,, > (sup,, ¥ — if=/u])

i<k
- Z (Supyi Vi — 1 [Zl/yl]) + sup,, Uk — SUDy, Un [/ ]
i<k
= (supy, v; — til#+/u]) + sup,, vx — sup,, ¥y
i<k
= (supy, v = wif#/u]).
i<k
This contradicts the minimality of £. M.

Theorem 0.11 (Completeness Theorem). Let I C L be a proper ideal. Then there exists
an L-structure M such that the mapping £ — L™ factors via L/1.

Proof. We have £ = Ly, and let £ = Ly and X; be as above. Let I’ C L' be the
ideal generated by I and ¥j. By Lemmal0.10]it is a proper ideal, so it is contained in a
maximal ideal m, corresponding to a homomorphism A: £ — C.

Let M = 7;,. The function symbols of £ admit a natural interpretation on M. For
the predicate symbols we define:

PM(T(), . ,Tn_l) = )\(P[To/zo, . ,T”—l/xn,lp.
We claim that for every formula ¢ € L:
oM [rifz] = Aplri/a]).
Indeed, let Ly consist of all formulae with this property which in addition only depend

on finitely many variables. Then L is a sub-algebra and contains all atomic formulae.
If ¢ € Ly then ¢[oi/z;] € Loy as well:

oloifefM[7ife)] = M oM m/2ilfa;] = M [oilmi/ailfa;]
= /\(gp[aj[Ti/M/ij = /\(go[Uj/mj][Ti/xi]).
Let us now show that if ¢ € £, then sup, ¢ € Ly. We may choose y which does not appear

in the finite set of terms {7;: x; € DVar(p)}. Let ¢ = @[¥/, /2], 20 = P¥/e]|[7/2i)0i0y-
Then ¢ € Ly,

(sup, ) [7i/z:] = (sup, @[¥/=]) [Fi/ai]a, 22 = sup, [¥/2][7i/2]2, 0,y = sup, .
Thus:
(sup, ©)M[73/x:] = sup {(pM ()2, /e gin 0 € Tz}
= sup {A([/z, /wi]ota) : 0 € Tr}
=sup {\(¥[7/y]): o € Tz} < A(sup, ¥).
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On the other hand, by our finiteness assumption there exists n such that {y} UDVar(¢y) C
Vp. For 2 = 2y, € Vpqa:

A(sup, ¥) = A(¥[7s]) < (sup, )™ [7/a]
Putting together both inequalities, we have shown that:

(sup, @)™ [7/x:] = Asup, ¥) = A((sup, ¢)[7/=]).
We have shown by induction that £y is dense in £. Thus for ¢ € L there is a sequence
¢n — ¢ in Lo. Then e — M, whereby ¢M[i/e;)] = A(ip[7/2]) as well.
Finally, I C ker A so £ — LM factors through £/1. .
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