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Abstract. We develop Fraïssé theory, namely the theory of Fraïssé classes and Fraïssé limits, in the
context of metric structures. We show that a class of �nitely generated structures is Fraïssé if and only
if it is the age of a separable approximately homogeneous structure, and conversely, that this structure
is necessarily the unique limit of the class, and is universal for it.

We do this in a somewhat new approach, in which ��nite maps up to errors� are coded by approximate

isometries.

Introduction

The notions of Fraïssé classes and Fraïssé limits were originally introduced by Roland Fraïssé [Fra54],
as a method to construct countable homogeneous (discrete) structures:

(i) Every Fraïssé class K has a Fraïssé limit, which is unique (up to isomorphism). The limit
is countable and ultra-homogeneous (or, in more model-theoretic terminology, quanti�er-free-
homogeneous).

(ii) Conversely, every countable ultra-homogeneous structure is the limit of a Fraïssé class, namely,
its age.

Moreover, the limit is universal for countable K-structures, namely for countable structures whose age
is contained in K.

Similar results hold for metric structures as well. Indeed, some general theory of this form is discussed
in the PhD dissertation of Schoretsanitis [Sch07]. Independently, Kubi± and Solecki [KS13] treated the
special case of the class of �nite dimensional Banach spaces, essentially showing that their Fraïssé limit
is the Gurarij space, which is therefore unique and universal, without ever actually uttering the phrase
�Fraïssé limit� (and in a fashion which is very speci�c to Banach spaces). This multitude of somewhat
incompatible approaches, reinforced by considerable nagging from Todor Tsankov convinced the author
of the potential usefulness of the present paper.

There is one main novelty in the present treatment, compared with earlier treatments of back-and-forth
arguments in the metric setting, in that we replace partial maps with approximate isometries (which is
just a fancy term for bi-Kat¥tov maps). These allow us to code in a single, hopefully natural, object,
notions such as a partial isometry between metric spaces, or even a �partial isometry only known up to
some error term ε > 0�. On a technical level, approximate isometries are easier to manipulate than, say,
partial isometries, and can be freely composed without loss of information. More importantly, their use
simpli�es arguments and dispenses with the need for several limit constructions at several crucial points:

• In the back-and-forth argument. The reader is invited to compare the proof of Theorem 2.19,
which is hardly distinguishable from the argument for discrete structures, with �traditional�
arguments for metric structures, involving the construction of partial isomorphisms which only
extend each other up to some error, as in the proofs of Facts 1.4 and 1.5 of [BU07].
• When checking that a structure is a Fraïssé limit, e.g., when proving that such exists, or when
proving that the Gurarij space is the limit of �nite-dimensional Banach spaces (Theorem 3.3).
Indeed, approximate isometries allow us to de�ne a Fraïssé limit in a manner which is for-
mally weaker than the �traditional approach� de�nition (namely Corollary 2.20(iv)). The limit
constructions required to pass from the weaker de�nition to the stronger one are then entirely
subsumed in the back-and-forth argument referred to above.
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Of course, some preliminary work is required in order to develop these tools. However, once this is done,
many arguments in metric model theory, not only those present here, can be simpli�ed signi�cantly, so we
consider this is worth the e�ort. In addition, approximate isometries are essential for a generalisation of
metric Fraïssé theory, to appear in a subsequent paper, in which the limit is only unique up to arbitrarily
small error (e.g., a Banach space which is almost isometrically unique).

1. Approximate isometries

Finite partial isomorphisms between structures play a crucial role in classical Fraïssé theory. For
example, homogeneity and uniqueness of the Fraïssé limit are proved using a back-and-forth argument,
in which �nite partial maps serve as better and better approximations for a desired global bijection. In the
metric setting, one may expect �nite partial isometries to play a similar role, coding partial information
regarding a desired global isometry. However, this analogy fails, essentially on the grounds that whereas
�nite maps de�ne neighbourhoods of global bijections (in the topology of point-wise convergence), �nite
isometries do not de�ne neighbourhoods of global isometries. In order to de�ne an open set of isometries
we need to restrict to a �nite set and allow for a small error : if g : X 99K X is a �nite partial isometry
and ε > 0, then

{
h ∈ Iso(X) : hx ∈ B(gx, ε) for all x ∈ dom g

}
is open and such sets form a basis for

the point-wise convergence topology on Iso(X).
Another de�ciency of partial isometries arises when considering compositions. Say f : X 99K Y and

g : Y 99K Z are partial isometries, such that img f ∩dom g = ∅, and say x ∈ dom f is such that fx is very
close to some y ∈ dom g. Then we should like to say that gfx is very close to gy, but the composition
gf is empty and cannot code this information.

In order to remedy either problem we require a more �exible object than a partial isometry, which can
say where an element goes, more or less, without having to say exactly where. These objects will serve
us mostly as approximations of actual isometries, whence their name. The reader may wish to compare
with the treatment of bi-Kat¥tov functions in Uspenskij [Usp08].

De�nition 1.1. Let X, Y and Z denote metric spaces.

(i) We say that a function ψ : X → [0,∞] is Kat¥tov if for all x, y ∈ X we have ψ(x) ≤ d(x, y)+ψ(y)
and d(x, y) ≤ ψ(x) + ψ(y). Unlike Uspenskij (and Kat¥tov) we allow the value ∞, observing
that a Kat¥tov function is either �nite or constantly ∞.

(ii) We say that ψ : X×Y → [0,∞] is an approximate isometry from X to Y , and write ψ : X  Y ,
if it is bi-Kat¥tov, i.e., separately Kat¥tov in each argument. The special case ψ =∞ is called
the empty approximate isometry.

(iii) Given any ψ : X×Y → [0,∞] and ϕ : Y×Z → [0,∞] we de�ne a composition ϕψ : X×Z → [0,∞]
and a pseudo-inverse ψ∗ : Y ×X → [0,∞] by

ϕψ(x, z) = inf
y∈Y

ψ(x, y) + ϕ(y, z), ψ∗(y, x) = ψ(x, y).

An approximate isometry ψ : X  Y is meant to provide partial information regarding some isometry,
possibly between larger spaces. We shall understand ψ as saying that x must be sent within ψ(x, y) of
y, so an isometry f is considered to satisfy the constraints prescribed by ψ if ψ(x, y) ≥ d(fx, y) for all
x, y, i.e., if f = ψf ≤ ψ in the sense of De�nition 1.4 below. Accordingly, another ϕ : X  Y imposes
stronger constraints if and only if ψ ≥ ϕ. The rest of our terminology (coarsening, re�nement, etc.)
should be understand in the context of this interpretation.

Remark 1.2. Let ψ : X × Y → [0,∞) be given, let Z = X q Y , and de�ne dZ extending dX and dY by
d(x, y) = d(y, x) = ψ(x, y). Then ψ is bi-Kat¥tov (i.e., an approximate isometry) if and only if d is a
pseudo-distance on Z. The reader is advised that, while this interpretation is close to Kat¥tov's original
use for such functions, it is quite distant from our intended use, and may therefore be misleading.

Lemma 1.3. (i) The composition and pseudo-inverse of approximate isometries are again approx-
imate isometries.

(ii) Composition is associative, and pseudo-inversion acts as an involution: ψ∗∗ = ψ, (ϕψ)∗ = ψ∗ϕ∗.

Proof. Let ϕ : X  Y and ψ : Y  Z. Then for each x ∈ X and y ∈ Y , the function z 7→ ϕ(x, y)+ψ(y, z)
is Lipschitz with constant 1, and therefore so is z 7→ ψϕ(x, z) = infy ϕ(x, y) + ψ(y, z) for any �xed x.
Similarly, for any x ∈ X, y, y′ ∈ Y and z, z′ ∈ Z we have

ϕ(x, y) + ψ(y, z) + ϕ(x, y′) + ψ(y′, z′) ≥ d(y, y′) + ψ(y, z) + ψ(y′, z′) ≥ ψ(ψ′, z) + ψ(y′, z) ≥ d(z, z′),

whence ψϕ(x, z) + ψψ(x, z′) ≥ d(z, z′). Therefore ψϕ is an approximate isometry, and it is clear thatϕ∗

is one as well. The second item is even easier and is left to the reader. �
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The �rst examples we give of approximate isometries are simply partial isometries, viewed as instances
of the former (modulo some obvious identi�cations: a partial isometry and its restriction to a dense subset
of its domain carry the same information, and indeed induce the same approximate isometry).

De�nition 1.4. Let X and Y denote metric spaces.

(i) To a partial isometry f : X 99K Y we associate an approximate isometry ψf (x, y) =
infz∈dom f d(x, z) + d(fz, y). We shall mostly ignore the distinction between f and ψf , denoting
the latter by f as well.

(ii) Let i : X ⊆ X ′, j : Y ⊆ Y ′ isometric embeddings, and let ψ : X  Y . Then jψi∗ : X ′  Y ′

is called the trivial extension of ψ to X ′  Y ′. When there is no risk of ambiguity, we shall
identify an approximate isometry with its trivial extension to any pair of larger spaces.

Lemma 1.5. (i) If f is a partial isometry, then the corresponding ψf is an approximate isometry.
(ii) The approximate isometry ∞ = ψ∅ is destructive for composition, and idX , identi�ed with

ψidX
= dX , is neutral.

(iii) (Pseudo-)inversion is compatible with the identi�cation of partial isometries with approximate
ones. Similarly for composition ψgψf = ψgf when dom g ⊇ img f or dom g ⊆ img f , and for
the natural notion of trivial extension of a partial map to larger sets.

Proof. Left to the reader. �

This indeed solves both problems described in the beginning of the section. If g : X 99K X is a
�nite partial isometry and ε > 0 then the approximate isometry g + ε codes �g up to error ε�, and{
h ∈ Iso(X) : hx ∈ B(gx, ε) for all x ∈ dom g

}
is just Iso(X)∩Apx<g+ε(X) in the sense of De�nition 1.6

below. Similarly, in the situation of composition of partial isometries, if x ∈ dom f and y ∈ dom g then
ψgψf prescribes that x be sent no more than (ψgψf )(x, gy) = d(fx, y) from gy, which is exactly the
information we wanted to keep.

De�nition 1.6. Let X, Y and Z denote metric spaces.

(i) The space of all approximate isometries from X to Y will be denoted Apx(X,Y ), and equipped
with the topology induced from [0,∞]X×Y . When X = Y we let Apx(X) = Apx(X,X).

(ii) For ψ,ϕ ∈ Apx(X,Y ) we say that ϕ ≤ ψ is the comparison holds point-wise, i.e., ϕ(x, y) ≤
ψ(x, y) for all (x, y) ∈ X × Y . We then also say that ψ coarsens ϕ, or that ϕ re�nes ψ. We

de�ne Apx≤ψ(X,Y ) =
{
ϕ ∈ Apx(X,Y ) : ϕ ≤ ψ

}
.

(iii) We de�ne Apx<ψ(X,Y ) as the interior of Apx≤ψ(X,Y ) in Apx(X,Y ). If ϕ ∈ Apx<ψ(X,Y ) we
write ϕ < ψ and say that ψ strictly coarsens ϕ, or that ϕ strictly re�nes ψ.

(iv) For A ⊆ Apx(X,Y ) we de�ne its closure under coarsening A↑ = {ψ ∈ Apx(X,Y ) : ∃ϕ ∈ A, ψ ≥
ϕ}. We observe that A↑ = (A↑)↑.

Notice that ∞ <∞. This is in fact desired.

Lemma 1.7. (i) The space Apx(X,Y ) is compact, and the interpretation of actual isometries as
approximate isometries yields a topological embedding Iso(X) ⊆ Apx(X).

(ii) If ϕα ∈ Apx(X,Y ) is a net then lim supϕα, calculated coordinate-wise in [0,∞]X×Y , belongs to
Apx(X,Y ) as well.

(iii) Composition is upper semi-continuous, in the sense that the set
{

(ψ,ϕ) : ϕψ ∈ A
}
⊆

Apx(X,Y ) × Apx(Y,Z) is closed whenever A = A↑ ⊆ Apx(X,Z). Equivalently,
(lim supψα)(lim supϕα) ≥ lim sup(ψαϕα).

Proof. The space Apx(X,Y ) is closed in [0,∞]X×Y and therefore compact. A sub-basic open set Ux,y,ε =
{g : d(gx, y) < ε} ⊆ Iso(X) agrees with {ϕ : ϕ(x, y) < ε}∩Iso(X) under Iso(X) ⊆ Apx(X). Conversely, if
V = {ϕ : r < ϕ(x, y) < s} ⊆ Apx(X) and f ∈ Iso(X)∩V then we may assume that r+ε < d(fx, y) < s−ε
in which case f ∈ Ux,fx,ε ⊆ V . This proves the �rst item. That lim supϕα is also an approximate
isometry, and that (lim supψα)(lim supϕα) ≥ lim sup(ψαϕα), follow easily from the de�nitions. The

latter, together with A = A↑, implies that
{

(ψ,ϕ) : ϕψ ∈ A
}
is closed. �

Lemma 1.8. Let X, Y and Z be metric spaces.

(i) Let ψ ∈ U ⊆ Apx(X,Y ), with U a neighbourhood of ψ. Then there exists ϕ ∈ U such that ψ < ϕ.
In particular, if ψ < ϕ in Apx(X,Y ) and V 3 ψ is open then there exists ρ ∈ Apx(X,Y ) ∩ V
such that ψ < ρ < ϕ.
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(ii) Let ϕ,ψ ∈ Apx(X,Y ). Then ϕ > ψ if and only if there are �nite X0 ⊆ X, Y0 ⊆ Y and ε > 0
such that ϕ ≥ ψ�X0×Y0

+ε. Moreover, in this case there exists ρ ∈ Apx(X0, Y0) which only takes
rational values (on X0 × Y0) such that ψ < ρ < ϕ.

(iii) Let ϕ > ψ ∈ Apx(X,Y ) and ϕ′ > ψ′ in Apx(Y, Z). Then ϕ′ϕ > ψ′ψ.

Proof. For the �rst item, we may assume that there are �nite sets X0 ⊆ X, Y0 ⊆ Y and some ε > 0 such
that ϕ ∈ U if and only if |ϕ(x, y)− ψ(x, y)| < 2ε on X0 × Y0. Let ψ0 = ψ�X0×Y0

∈ Apx(X0, Y0), and let
ϕ = ψ0 + ε ∈ Apx(X0, Y0) ⊆ Apx(X,Y ). Let

V = {ϕ : ϕ(x, y) < ψ(x, y) + ε on X0 × Y0}.

Then ψ ∈ V ⊆ Apx≤ϕ(X,Y ), so ψ < ϕ.
The rest is easy. �

2. Metric Fraïssé limits via approximate maps

Let us start by �xing a few basic de�nitions.

De�nition 2.1. Let L be denote a collection of symbols, each being either a predicate symbol or a
function symbol and each having an associated natural number called its arity. An L-structure A consists
of a complete metric space A, together with,

• For each n-ary predicate symbol R, a continuous interpretation RA : An → R. It will be
convenient to consider the distance as a (distinguished) binary predicate symbol.
• For each n-ary function symbol f , a continuous interpretation fA : An → A. A zero-ary function
is also called a constant.

If A is a structure and A0 ⊆ A, then the smallest substructure of A containing A0 is denoted 〈A0〉, the
substructure generated by A0. Its underlying set is just the metric closure of A0 under the interpretations
of function symbols.

An embedding of L-structures ϕ : A → B is a map which commutes with the interpretation of the
language: RB(ϕā) = RA(ā) and fB(ϕā) = ϕfA(ā) (in particular, dB(ϕa, ϕb) = dA(a, b), so an embed-
ding is always isometric). A partial isomorphism ϕ : A 99K B is a map ϕ : A0 → B where A0 ⊆ A and ϕ
extends (necessarily uniquely) to an embedding 〈A0〉 → B.

Remark 2.2. The de�nition given here is more relaxed than de�nitions given in more general treatments of
continuous logic, such as [BU10, BBHU08] for the bounded case and [Ben08] for the general (unbounded)
case, in that we only require plain continuity (rather than uniform), and no kind of boundedness. Indeed,
let us consider the following properties of a map f : X → Y between metric spaces, which imply one
another from top to bottom:

(i) The map f is uniformly continuous.
(ii) The map f sends Cauchy sequences to Cauchy sequences (equivalently, f admits a continuous

extension to the completions, f̂ : X̂ → Ŷ ). Let us call this Cauchy continuity.
(iii) The map f is continuous.

If X is complete then the last two properties coincide, if X is totally bounded then the �rst two coincide,
and ifX is compact then all three do. Thus Cauchy continuity is intimately connected with completeness.
Similarly, uniform continuity is intimately related with compactness: on the one hand, compactness
implies uniform continuity (assuming plain continuity), while on the other hand, uniform continuity of
the language is a crucial ingredient in the proof of compactness for �rst order continuous logic (similarly,
in unbounded logic, compactness below every bound corresponds to uniform continuity on bounded sets).

In light of this, and since compactness will not intervene in any way in our treatment, plain conti-
nuity on complete spaces will su�ce. In situations involving incomplete spaces we shall require Cauchy
continuity.

De�nition 2.3. We say that a separable structure M is approximately ultra-homogeneous if every �nite
partial isomorphism ϕ : M 99K M is arbitrarily close to the restriction of an automorphism of M: for
every ε > 0 there exists f ∈ Aut(M) such that d(ϕa, fa) < ε for all a ∈ domϕ. Equivalently, if

Aut(M)↑ ⊆ Apx(M) contains every (�nite) partial isomorphism ϕ : M 99KM.

De�nition 2.4. The age of an L-structure A, denoted Age(A), is the class of �nitely generated structures
which embed in A.

Metric Fraïssé theory deals with (ages of) approximately ultra-homogeneous separable structures. One
could, of course, say that a structure M is (precisely, rather than approximately) ultra-homogeneous if
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every isomorphism of �nitely generated substructures extends to an isomorphism, but this would make
us lose important examples (e.g., the Gurarij space), and in any case it does not seem that a Fraïssé
theory can be developed for this stronger notion. It follows that, whereas classical Fraïssé theory deals
with �nite partial isomorphism (and their extensions to automorphisms), metric Fraïssé theory must
deal with �nite partial isomorphisms �up to some error�, which is by no means a new phenomenon in
metric model theory.

The standard approach so far in similar situations, say when carrying out back-and-forth arguments
(see for example [BU07, Facts 1.4 and 1.5]), involves constructing a sequence of �nite partial isomorphisms
fn such that each fn+1 only extends fn up to some allowable error εn, keeping

∑
εn small. This involves

a considerable amount of bookkeeping, limit constructions and other complications. Replacing �partial
isometries up to error� with approximate isometries, as suggested in Section 1, we manage to avoid these
complications, and the metric Fraïssé theory follows quite e�ortlessly, in almost perfect analogy with its
discrete counterpart.

De�nition 2.5. Let K be a class of �nitely generated structures.

(i) By a K-structure we mean an L-structure A such that Age(A) ⊆ K.
(ii) We say that K has the HP (Hereditary Property) if every member of K is a K-structure.
(iii) Assume that K has HP. We say that K has the NAP (Near Amalgamation Property) if for every

A,B ∈ K, �nite partial isomorphism f : A 99K B and ε > 0 there are C ∈ K and embeddings
g : A → C, h : B → C such that d(ga, hfa) ≤ ε for all a ∈ dom f , or equivalently, such that (as
approximate isometries) f + ε ≥ h∗g.

Notice that an age always has HP, and if M is approximately ultra-homogeneous then Age(M) has
NAP as well.

De�nition 2.6. Let K be a class of �nitely generated structures with HP, and let A and B be K-
structures. We de�ne Apxn,K(A,B) by induction: Apx1,K(A,B) is the set of all �nite partial isomor-
phisms f : A 99K B, and

Apxn+1,K(A,B) =
{
ϕψ : ψ ∈ Apxn(A,C) and ϕ ∈ Apx1(C,B) for some C ∈ K

}
,

where composition is in the sense of approximate isometries. Notice that if we allowed C to be an arbitrary
K-structure we would obtain the same de�nition, since we can always replace C with 〈img g ∪ dom f〉.
Finally, following De�nition 1.6, de�ne

ApxK(A,B) =
⋃
n

Apxn,K(A,B)↑.

Members of ApxK(A,B) are called (K-intrinsic) approximate isomorphisms. When K is clear from the
context we usually drop it.

For ψ ∈ Apx(A,B), we de�ne Apx<ψ(A,B) = Apx(A,B) ∩Apx<ψ(A,B). We say that ψ is a strictly

approximate isomorphism if Apx<ψ(A,B) 6= ∅, and let Stx(A,B) denote the collection of such ψ.

Intuitively, approximate isomorphisms are to partial isomorphisms (between members of K) as ap-
proximate isometries are to partial isometries, so in particular every member of Apx1(A,B) should then
be considered an approximate isomorphism. The reason for taking iterates is that Apx1 may �miss� some
information: for example, it may happen that A,B ∈ K are �close�, as witnessed by some embeddings
A → C and B → C with close images even though they have no non-trivial common substructure (so
Apx1 sees nothing). We therefore need at least Apx2, and we shall see below that, in fact, the two-
iterate su�ces. We also require Apx(A,B) to be compact and closed under coarsening (as is Apx(A,B)),
whence the de�nition. Strictly approximate isomorphisms are analogous to �nite partial isomorphisms
in the classical setting, in that they do not �x too much information, leaving an open set of possibilities
(clearly, Apx<ψ(A,B) contains the relative interior of Apx≤ψ(A,B) in Apx(A,B), and one can check
that in fact, the two agree).

Lemma 2.7. Let K be a class of �nitely generated structures with HP. Let A and B be K-structures.
Then

(i) Apx(A,B) = Stx(A,B).
(ii) Every partial isomorphism between A and B belongs to Apx(A,B) (see Remark 2.13 below for

a converse of this).
(iii) The composition of any two (strictly) approximate isomorphisms between K-structures is one as

well.
(iv) If ψ ∈ Stx(A,B) then Apx<ψn (A,B) 6= ∅ for some n.
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Proof. First, let ϕ ∈ Apx(A,B). For �nite A0 ⊆ A and B0 ⊆ B and for ε > 0 we have ϕ�A0×B0
+ ε > ϕ

by Lemma 1.8(ii), so ϕ�A0×B0
+ ε ∈ Stx(A,B). It follows that ϕ ∈ Stx(A,B), and the converse inclusion

is clear. Similarly, every �nite partial isomorphism is an approximate isomorphism. Taking limits, every
partial isomorphism is an approximate isomorphism.

The third item, for approximate isomorphisms, follows directly from the de�nitions and for strictly
approximate isomorphisms using Lemma 1.8(iii). The last item follows from the de�nitions. �

Lemma 2.8. Let K be a class of �nitely generated structures with HP and NAP. Then

(i) For any A,B ∈ K, ϕ ∈ Apxn(A,B) and ε > 0 there exist C ∈ K and embeddings f : A → C,
g : B→ C such that g∗f ≤ ϕ+ ε.

(ii) For any A,B ∈ K and ϕ ∈ Stx(A,B) there exist C ∈ K and embeddings f : A → C,
g : B → C such that g∗f < ϕ. Moreover, there are �nite sets A0 ⊆ A and B0 ⊆ B such
that (g�B0

)∗(f�A0
) < ϕ.

(iii) Let A ∈ K, let B be a K-structure, and let ϕ ∈ Stx(A,B). Then there exists an extension
A ⊆ C ∈ K and a �nite partial isomorphism f : C 99K B such that f < ϕ.

(iv) In particular, if ψ ∈ Stx(A,B) then Apx<ψ2 (A,B) 6= ∅ and Apx(A,B) = Apx2(A,B)↑.

Proof. We prove the �rst item by induction on n, with the case n = 1 being the de�nition of NAP. For
the case n + 1 let C0 ∈ K, ψ0 ∈ Apx1(A,C0) and ψn ∈ Apx1(C0,B) be such that ϕ = ψ1ψ0. By NAP
and the induction hypothesis there are C1,C2 ∈ K and embeddings as in the diagram below such that
f∗2 f1 ≤ ψ0 + ε and g∗2g1 ≤ ψ1 + ε. Let X = imgψ0 ⊆ C0, a �nite set, and we let h0 : C1 99K C2 be the
�nite partial isomorphism sending f2X 7→ g1X, i.e., h0 = (g1f

∗
2 )�f2X×g1X = g1 idX f

∗
2 . Applying NAP

once more we complete the diagram with h∗2h1 ≤ h0 + ε.

A

C0

B

C1

C2

C

ψ0

��

ψ1

��

f1 ''

f2
77

g1 ''

g2
77

h0

��

h1 ''
h2

77

Now,

ϕ+ 3ε = ψ1 idX ψ0 + 3ε ≥ g∗2g1 idX f
∗
2 f1 + ε = g∗2h0f1 + ε ≥ g∗2h∗2h1f1.

Letting f = h1f1 and g = h2g2 we obtain ϕ+ 3ε ≥ g∗f , which is enough.
For the second and third items, by Lemma 2.7(iv) there exists ψ ∈ Apx<ϕn (A,B) and we may assume

that ψ + ε < ϕ for some ε > 0. We know there exists �nite sets A0 ⊆ A and B0 ⊆ B such that
ψ = ψ�A0×B0

, so letting B1 = 〈B0〉 ∈ K we have ψ ∈ Apx<ϕn (A,B1), whence, by the �rst item,
C ∈ K and embeddings f : A → C and g : B1 → C such that g∗f ≤ ψ + ε < ϕ, and moreover even
(g�B0

)∗(f�A0
) ≤ ψ�A0×B0

+ ε = ψ + ε < ϕ. Now, in the second item we may assume that B1 = B and

conclude. In the third, we may assume that f is an inclusion, and then (g�B0
)−1 is the desired �nite

partial isomorphism.
The last item follows from the second. �

Convention 2.9. We equip products of metric spaces with the supremum distance, so for two n-tuples
ā and b̄ we have d(ā, b̄) = maxi d(ai, bi).

De�nition 2.10. Let K be a class of �nitely generated L-structures. For n ≥ 0, we let Kn denote the
class of all pairs (ā,A), where A ∈ K and ā ∈ An generates A. By an abuse of notation, we shall refer to
(ā,A) ∈ Kn by ā alone, and denote the generated structure A by 〈ā〉.

By Apx(ā,B) we shall mean those members Apx(〈ā〉,B) which extend trivially from an approximate
isometry ā  B, and similarly for Stx(ā,B), Apx(ā, b̄), and so on. Under HP and NAP, these still
compose correctly as per Lemma 2.8.

De�nition 2.11. Let K be a class of �nitely generated structures with NAP. We equip Kn with a
pseudo-distance dK de�ned by

dK(ā, b̄) = inf
ψ∈StxK(ā,b̄)

d(ψ) = inf
ψ∈ApxK(ā,b̄)

d(ψ), where d(ψ) = max
i
ψ(ai, bi).
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Equivalently, d(ā, b̄) is the in�mum of all possible d(ā, b̄) under embeddings of 〈ā〉 and 〈b̄〉 into some
C ∈ K. The triangle inequality is a consequence of Lemma 2.8.

De�nition 2.12. A Fraïssé class (of L-structures) is a class K of �nitely generated L-structures having
the following properties:

• HP.
• JEP (Joint Embedding Property): Every two members of K embed in a third one.
• NAP.
• PP (Polish Property): The pseudo-metric dK is separable and complete on Kn for each n.
• CP (Continuity Property): Every symbol is continuous on K. For an n-ary predicate symbol P ,
this means that the map Kn → R, ā 7→ P 〈ā〉(ā), is continuous. For an n-ary function symbol P ,

this means that for each m, the map Kn+m → Kn+m+1, (ā, b̄) 7→
(
ā, b̄, f 〈ā,b̄〉(ā)

)
, is continuous.

We say that K is an incomplete Fraïssé class if instead of PP & CP we have:

• WPP (Weak Polish Property): The pseudo-metric dK is separable on Kn for each n.
• CCP (Cauchy Continuity Property): Every symbol is Cauchy continuous on K (as per Re-
mark 2.2).

Remark 2.13. We observe that:

(i) CP implies that the kernel of dK on Kn is exactly the isomorphism relation: dK(ā, b̄) = 0 if and
only if exists a (necessarily unique) isomorphism ϕ : 〈ā〉 → 〈b̄〉 sending ā 7→ b̄. It follows that
a partial isometry between K-structures is an approximate isomorphism if and if it is a partial
isomorphism.

(ii) Together with PP this implies that a K-structure generated by a set of cardinal κ has density
character at most κ + ℵ0 (even if the language contains more than κ symbols). In particular,
every member of K is separable.

(iii) Every Fraïssé class is in particular an incomplete Fraïssé class, and conversely, every incomplete

Fraïssé class K admits a unique completion K̂, consisting of all limits of Cauchy sequences in K
(that is, in Kn, as n varies), which is a Fraïssé class.

(iv) JEP is equivalent to saying that the empty approximate isometry is always a (strictly) approxi-
mate isomorphism. Modulo NAP, JEP is further equivalent to there being a unique ∅-generated
(empty, if there are no constant symbols) structure in K.

De�nition 2.14. We say that an approximate isometry ψ : X  Y is r-total for some r > 0 if ψ∗ψ ≤
idX +2r, or equivalently, if for all x ∈ X and s > r there is y ∈ Y such that ψ(x, y) < s. If ψψ∗ ≤ idY +2r
then we say that ψ is r-surjective and if it is both then it is r-bijective.

De�nition 2.15. Let K be a Fraïssé class. By a limit of K we mean a separable K-structureM, satisfying
that for every K-structure A, �nite A0 ⊆ A, ψ ∈ Stx(A,M) and ε > 0 there exists ϕ ∈ Stx<ψ(A,M)
which is ε-total on A0.

Lemma 2.16. Let K be a Fraïssé class, M a separable K-structure. For each n let Kn,0 ⊆ Kn be
dK-dense, and let M0 = {ai}i∈N ⊆M be dense. We shall use the notation a<m for the tuple (ai)i<m.

Then in order for M to be a limit of K, is enough that for every n,m ∈ N, ε > 0, b̄ ∈ Kn,0 and
ψ : b̄×a<m → Q, if ψ ∈ Stx(b̄,M) (so in particular, ψ : b̄ a<m is an approximate isometry) then there

exist ϕ ∈ Apx≤ψ(b̄,M) which is ε-total on b̄.

Proof. Let B be a K-structure, B0 ⊆ B �nite, ψ ∈ Stx(B,M) and ε > 0. There exist a �nite tuple
b̄ ∈ Bn and ψ0 ∈ Stx(b̄,M) such that ψ0 < ψ, and we may assume that b̄ contains B0. Let 0 < δ ≤ ε/3 be
small enough that ψ0 + 3δ < ψ. Let c̄ ∈ Kn,0 with dK(c̄, b̄) < δ, and let ρ ∈ Stx(c̄, b̄) witness this, namely

satisfy d(ρ) < δ as per De�nition 2.11. Then ψ0ρ ∈ Stx(c̄,M), so there exists ψ1 ∈ Apx<ψ0ρ(〈c̄〉,M).
Replacing ψ1 with its restriction to c̄ ×M0 we still have ψ1 < ψ0ρ. By Lemma 1.8(ii) there exist some

m and ψ′ : c̄× a<m → Q such that ψ1 < ψ′ < ψ0ρ, i.e., ψ
′ ∈ Stx<ψ0ρ(c̄,M). By assumption there exists

ϕ′ ∈ Apx≤ψ
′
(c̄,M) which is δ-total on c̄, and we may further assume that ϕ′ ∈ Apx≤ψ0ρ(c̄, a<k) for some

k. Thus ϕ′ρ∗ < ψ′ρ∗+δ ≤ ψ0ρρ
∗+δ ≤ ψ0 +3δ < ψ, so ψ′ρ∗+δ ∈ Stx<ψ(B,M) and ψ′ρ∗+δ is moreover

ε-total on b̄, as desired. �

Lemma 2.17. Every Fraïssé class K admits a limit.

Proof. We construct an increasing chain of An ∈ K, starting with A0 being the unique ∅-generated
structure in K, letting in,m : An → Am denote the inclusion maps. For each n we �x a countable
dK-dense subset of Kn, call it Kn,0, and a countable dense subset An,0 ⊆ An, such that An,0 ⊆ An+1,0.
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By Lemma 2.8(ii) we can construct the chain An so that for each b̄ ∈ Kn,0, �nite subset B ⊆ Am,0
and ψ : b̄ × B → Q, if ψ ∈ Stx(b̄,Am) then there exists k > m and an embedding h : 〈b̄〉 → Ak+1 such
that i∗k,k+1h < ψ, and in particular h < ψ. By PP and CP, the chain A0 ⊆ A1 ⊆ . . . admits a unique

limit in the category of K-structures, which we denote by M =
⋃

An, in which M0 =
⋃
An,0 ⊆ M is

dense. By Lemma 2.16, M is a limit. �

In fact, we can do better. For ā ∈ Kn let [ā] denote the equivalence class ā/ ker dK, and let
Kn = Kn/ ker dK denote the quotient space, equipped with the quotient metric (which is separable and
complete, by PP). For each n we have a natural map Kn+1 → Kn, sending [a0, . . . , an] 7→ [a0, . . . , an−1],
giving rise to an inverse system with a limit Kω = lim←−Kn, equipped with the topology induced from∏
nKn. A member of Kω will be denoted by ξ, represented by a compatible sequence (ξn)n∈N. Con-

sidering limits of increasing chains as in the proof of Lemma 2.17, we see that for every ξ ∈ Kω there

exists a K-structure Mξ along with a generating sequence āξ = (aξi )i∈N ⊆Mξ, such that ξn = [aξ<n] for
all n, and this pair (Mξ, āξ) is determined by ξ up to a unique isomorphism. Conversely, any pair of a
separable K-structure M and a generating N-sequence is of this form.

Theorem 2.18. Let K be a Fraïssé class, and let Kω be as above. Let Ξ be the set of ξ ∈ Kω for which

Mξ is a limit of K and every tail of the sequence (aξi ) is dense in Mξ. Then Kω is a Polish space and

Ξ ⊆ Kω is a dense Gδ.

Proof. That Kω is a Polish space is clear.
LetKn,0 ⊆ Kn be countable dense as earlier, and let b̄ ∈ Kn,0, ε > 0 (say rational) and ψ : b̄×m→ Q>0.

De�ne Xb̄,ε,ψ ⊆ Kω to consist of all ξ such that one of the following holds:

• either there is no ϕ ∈ Stx(b̄,Mξ) such that ϕ(bi, a
ξ
j) < ψ(bi, j) for all i < n, j < m (let us call

such a ϕ good),

• or there exists a good ϕ such that, moreover, for each i < n there is k ≥ m with ϕ(bi, a
ξ
k) < ε.

It is easy to check using Lemma 2.16 that Ξ is the intersection of all such Xb̄,ε,ψ, of which there are
countably many, so all we need to show is that each Xb̄,ε,ψ is a dense Gδ set.

The �rst possibility de�nes a closed set and the second an open one, so Xb̄,ε,ψ is indeed a Gδ set. For

density, let U ⊆ Kω be open and ξ ∈ U . If there is no good ϕ ∈ Stx(b̄,Mξ) then ξ ∈ Xb̄,ε,ψ ∩ U and we

are done. Otherwise, let us �x a good ϕ, and let ϕ0 ∈ Stx(b̄, aξ<m) be the restriction of ϕ to b̄ × aξ<m.
We may assume that U is the inverse image in Kω of an open set V ⊆ K`, with ` ≥ m and ξ` ∈ V . By
Lemma 2.8(ii) there exists an extension 〈aξ<`〉 ⊆ C ∈ K and an embedding ϕ0 > h : 〈b̄〉 → C, and we may

assume that C = 〈c̄〉 where c̄ = aξ<`, hb̄, so c̄ ∈ K`+n. Let ζ ∈ Kω be any such that ζ`+n = [c̄]. Then
ζ ∈ U ∩Xb̄,ε,ψ, as desired. �

Theorem 2.19. Let K be a Fraïssé class, M and N separable K-structures, and let ψ ∈ Stx(M,N).

(i) If N is a limit of K then ψ strictly coarsens an embedding θ : M→ N.
(ii) If both M and N are limits of K then ψ strictly coarsens an isomorphism θ : M ∼= N.

In particular (with ψ =∞), the limit of K is unique up to isomorphism.

Proof. We only prove the second assertion, the �rst being similar and easier. Let {an} and {bn} enu-
merate dense subsets of M and N, respectively. We construct a decreasing sequence of θn ∈ Stx(M,N),

starting with θ0 = ψ. For even n we choose θn+1 ∈ Stx<θn(M,N) which is 2−n-total on a<n. For odd

n we similarly choose θn+1 ∈ Stx<θn(M,N), which is 2−n-surjective on b<n (i.e., θ∗n+1 ∈ Stx<θ
∗
n(N,M)

which is 2−n-total on b<n). Then θ = lim θn is the desired isomorphism. �

The unique limit of K will be denoted by limK. It can also be characterised in terms of actual maps.

Corollary 2.20. Let K be a Fraïssé class and M a separable K-structure. Then the following are
equivalent:

(i) The structure M is a limit of K.
(ii) Theorem 2.19(i) holds: for every separable K-structure B and ψ ∈ Stx(B,M), there is an

embedding f : B→M, f < ψ.
(iii) For a separable K-structure B, �nite tuple ā ∈ B, embedding h : 〈ā〉 → M and ε > 0, there is

an embedding f : B → M such that d(fā, hā) < ε. (Equivalently, we can take h to be a �nite
partial isomorphism and ā to enumerate domh.)

(iv) Same, where B is �nitely generated (i.e., B ∈ K).

Proof. (i) =⇒ (ii). By Theorem 2.19(i).
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(ii) =⇒ (iii) =⇒ (iv). Clear.
(iv) =⇒ (i). Let B ∈ K and ψ ∈ Stx(B,M). By Lemma 2.8(iii), possibly increasing B we may

assume there is a �nite partial isomorphism h : B 99K M such that h < ψ, and so h + ε < ψ for some
ε > 0. By hypothesis we obtain f : B → M such that d(fa, ha) < ε for a ∈ domh, or f < h + ε. In
particular, f is total and f < ψ. Thus M is a limit. �

Theorem 2.21. Let K be a class of �nitely generated structures. Then the following are equivalent:

(i) The class K is a Fraïssé class.
(ii) The class K is the age of a separable approximately ultra-homogeneous structure M.

Moreover, such a structure M is necessarily a limit of K, and thus unique up to isomorphism and
universal for separable K-structures.

Proof. The second item clearly implies the �rst, as well as the moreover part. Conversely, if K is a Fraïssé
class then by Lemma 2.17 it has a limit M. By Theorem 2.19(i) we have Age(M) = K, and homogeneity
follows from Theorem 2.19(ii). �

Remark 2.22. Let K be a Fraïssé class, and let θ : [0,∞] → [0, 1] be any increasing sub-additive map
which is continuous and injective near zero. For example, plain truncation x 7→ x ∧ 1 will do, or if one
wants a homeomorphism, one may take x 7→ 1 − e−x or x 7→ x

x+1 . The important point is that for any
distance function d, θd is a bounded distance function, uniformly equivalent to d.

We de�ne a new language LK, consisting of one n-ary predicate symbol P[ā] for each equivalence class

[ā] in Kn (or in a dense subset thereof). Then every K-structure A gives rise to an LK-structure A′, with
the same underlying set, where

dA
′

= θdA, PA
[ā](b̄) = θdK(ā, b̄).

Let K′ =
⋃

A∈KAge(A′). Since L′ is purely relational, all members of K′ are necessarily �nite, while
members of K are merely �nitely generated, and in general K′ 6= {A′ : A ∈ K}. However, for each n

we do have canonical identi�cation between Kn and K′n, with dK
′

= θdK. Then one checks that K′ is a
Fraïssé class, and that a K-structure M is a limit of K if and only if M′ is a limit of K′.

We conclude that up to a change of language, any Fraïssé class or approximately ultra-homogeneous
structure can be assumed to be in a 1-Lipschitz, [0, 1]-valued relational continuous language, and that
our more relaxed de�nitions (see Remark 2.2), while convenient for some concrete examples, do not in
truth add any more generality.

Another curious property of this construction is that (limK)′ = limK′ is always an atomic model of
its continuous �rst order theory (since all distances to types are de�nable), and therefore a prime model.

Notice that in Remark 2.22 all isolated types are isolated by quanti�er-free formulae, but non-isolated
types need not be determined by their quanti�er-free restriction, so the theory need not eliminate quan-
ti�ers.

3. Examples of metric Fraïssé classes

3.1. Standard examples. Let KM be the class of �nite metric spaces; KM,1 the class of �nite metric
spaces of diameter at most one; KH the class of �nite dimensional Hilbert spaces; and KP the class of
�nite probability algebra, each in the appropriate language. We leave it to the reader to check that these
are all Fraïssé classes. We claim that the Urysohn space, the Urysohn sphere, `2, and the (probability
algebra of the) Lebesgue space ([0, 1], λ), are, respectively, limits of these classes. In fact, in each of these
cases, the limits satisfy a strong version of Corollary 2.20(iv):

For each extension A ⊆ B of members of K, every embedding A → M extends to an
embedding B→M.

3.2. An incomplete example. Fix 1 ≤ p <∞, and let K be the class of (real) atomic Lp lattices with
�nitely many (see [Mey91] for a formal de�nition and [BBH11] for a model-theoretic treatment).

Then K is not a Fraïssé class, since it is incomplete (this is in contrast with the class of �nite probability
algebras, which are all atomic, and do form a complete class). Indeed, working inside E = Lp[0, 1], let
f(x) = 1 and g(x) = x. Then on the one hand, E = 〈f, g〉 is non atomic, while on the other hand,
approximating g by step functions, the pair (f, g) can be arbitrarily well approximated by pairs which
do generate an atomic lattice.

The class K is an incomplete Fraïssé class, though, and its completion is the class of all separable Lp

lattices, whose limit is the unique separable atomless Lp lattice. This is somewhat uninteresting, since
the limit already belongs to K.
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Alternatively, one could add structure to atomic Lp lattices making embeddings preserve atoms. With
this added structure, the class of Lp lattices over �nitely many atoms is a Fraïssé class, with limit the
unique atomic Lp with ℵ0 atoms. The automorphism group of the latter is S∞, the permutation group
of N, so in a sense this fails to produce something truly new.

3.3. The Gurarij space. We recall that

De�nition 3.1. A Gurarij space is a separable Banach space G having the property that for any ε > 0,
�nite dimensional Banach space E ⊆ F , and isometric embedding ψ : E → G, there is a linear embedding
ϕ : F → G extending ψ such that in addition, for all x ∈ F , (1− ε)‖x‖ < ‖ϕx‖ < (1 + ε)‖x‖.

Gurarij [Gur66] proved the existence and almost isometric uniqueness of such spaces, while actual (i.e.,
isometric) uniqueness of G was shown by Lusky [Lus76]. This uniqueness was more recently reproved
by Kubi± and Solecki [KS13], in what essentially amounts to showing that it was the Fraïssé limit of the
class of all �nite dimensional Banach spaces, an observation we now have the tools to state and prove
formally. From here on, K = KB is the class of �nite dimensional Banach space. Then this is a Fraïssé
class. In particular, it is separable since a separable universal Banach space exists.

Let us also recall the following fact, hitherto unpublished, due to Henson:

Fact 3.2 (See also [BH]). Let ā, b̄ ∈ Kn. Then

dK(ā, b̄) = sup∑
|si|=1

∣∣∣∥∥∑ siai
∥∥− ∥∥∑ sibi

∥∥∣∣∣ .(1)

Proof. The inequality ≥ is clear. For ≤, let r denote the right hand side of (1). Let E = 〈ā〉 ⊕ 〈b̄〉 in the
category of vector spaces over R, and for x ∈ 〈ā〉, y ∈ 〈b̄〉 de�ne:

‖x− y‖′ = inf
s̄

∥∥∥x−∑ siai

∥∥∥〈ā〉 +
∥∥∥y −∑ sibi

∥∥∥〈b̄〉 + r
∑
|si|.

This is clearly a semi-norm on E, and ‖ai − bi‖′ ≤ r. For x ∈ 〈ā〉 we have ‖x‖′ ≤ ‖x‖〈ā〉, while on the
other hand, for any s̄ we have by choice of r:

‖x‖〈ā〉 ≤
∥∥∥x−∑ siai

∥∥∥〈ā〉 +
∥∥∥∑ siai

∥∥∥〈ā〉
≤
∥∥∥x−∑ siai

∥∥∥〈ā〉 +
∥∥∥∑ sibi

∥∥∥〈b̄〉 + r
∑
|si|.

It follows that ‖x‖′ = ‖x‖〈ā〉, and similarly for y ∈ 〈b̄〉, whence the desired amalgam. �

Theorem 3.3. A Banach space G is a Gurarij space if and only if it is the Fraïssé limit of the class of
all �nite dimensional Banach space. In particular, the Gurarij space exists, is unique, and is universal
for separable Banach spaces.

Proof. Assume �rst that G = limK. Let E ⊆ F be two �nite dimensional Banach spaces, with bases
ā ⊆ b̄, respectively, and let ψ : E → G be an isometric embedding. By Corollary 2.20 there exists an
isometric ϕ′ : F → G with d(ā, ϕā) = δ arbitrarily small. De�ne ϕ : F → G as ψ on ā and ϕ′ on b̄ r ā.
Taking δ su�ciently small, ϕ is injective, and both ‖ϕ‖ and ‖ϕ−1‖ (with ϕ restricted to its image)
arbitrarily close to one, so G is Gurarij.

Conversely, assume that G is Gurarij, and let F = 〈b̄〉 ∈ K, ψ ∈ Stx(b̄, G) and ε > 0 be given.
By Lemma 2.8(iii), possibly extending F and decreasing ε we may assume that there are a �nite tuple
c̄ ∈ Fm and an isometric embedding ψ′ : 〈c̄〉 → G such that ψ ≥ ψ′�c̄ + ε. By assumption there
exists a linear ϕ : F → G extending ψ′, with ‖ϕ‖, ‖ϕ−1‖ arbitrarily close to one. By Fact 3.2 we can
then have dK

(
b̄c̄, ϕ(b̄c̄)

)
< ε. Then there exists ϕ′ ∈ Apx

(
b̄c̄, ϕ(b̄c̄)

)
⊆ Apx(F,G) with ϕ′(bi, ϕbi) < ε,

ϕ′(cj , ψ
′cj) < ε. This ϕ′ is ε-total on b̄ and ψ ≥ ψ′�c̄ + ε > ϕ′�c̄ ≥ ϕ′, so G is a limit. �

References

[BBH11] Itaï Ben Yaacov, Alexander Berenstein, and C. Ward Henson, Model-theoretic independence in the

Banach lattices Lp(µ), Israel Journal of Mathematics 183 (2011), 285�320, doi:10.1007/s11856-011-0050-4,
arXiv:0907.5273. 9

[BBHU08] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model theory for

metric structures, Model theory with applications to algebra and analysis. Vol. 2, London Math. Soc. Lecture
Note Ser., vol. 350, Cambridge Univ. Press, Cambridge, 2008, pp. 315�427, doi:10.1017/CBO9780511735219.011.
4

[Ben08] Itaï Ben Yaacov, Continuous �rst order logic for unbounded metric structures, Journal of Mathematical Logic
8 (2008), no. 2, 197�223, doi:10.1142/S0219061308000737, arXiv:0903.4957. 4

http://math.univ-lyon1.fr/~begnac/articles/Lp.pdf
http://math.univ-lyon1.fr/~begnac/articles/Lp.pdf
http://dx.doi.org/10.1007/s11856-011-0050-4
http://arxiv.org/abs/0907.5273
http://math.univ-lyon1.fr/~begnac/articles/mtfms.pdf
http://math.univ-lyon1.fr/~begnac/articles/mtfms.pdf
http://dx.doi.org/10.1017/CBO9780511735219.011
http://math.univ-lyon1.fr/~begnac/articles/Unbdd.pdf
http://dx.doi.org/10.1142/S0219061308000737
http://arxiv.org/abs/0903.4957


FRAÏSSÉ LIMITS OF METRIC STRUCTURES 11

[BH] Itaï Ben Yaacov and C. Ward Henson, Generic orbits and type isolation in the Gurarij space, research notes.
10

[BU07] Itaï Ben Yaacov and Alexander Usvyatsov, On d-�niteness in continuous structures, Fundamenta Mathe-
maticae 194 (2007), 67�88, doi:10.4064/fm194-1-4. 1, 5

[BU10] , Continuous �rst order logic and local stability, Transactions of the American Mathematical Society
362 (2010), no. 10, 5213�5259, doi:10.1090/S0002-9947-10-04837-3, arXiv:0801.4303. 4

[Fra54] Roland Fraïssé, Sur l'extension aux relations de quelques propriétés des ordres, Annales Scienti�ques de l'École
Normale Supérieure. Troisième Série 71 (1954), 363�388. 1

[Gur66] Vladimir I. Gurarij, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of

Banach spaces, Sibirsk. Mat. �. 7 (1966), 1002�1013. 10
[KS13] Wiesªaw Kubi± and Sªawomir Solecki, A proof of uniqueness of the Gurari�� space, Israel Journal of Mathe-

matics 195 (2013), no. 1, 449�456, doi:10.1007/s11856-012-0134-9, arXiv:1110.0903. 1, 10
[Lus76] Wolfgang Lusky, The Gurarij spaces are unique, Archiv der Mathematik 27 (1976), no. 6, 627�635. 10
[Mey91] Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. 9
[Sch07] Konstantinos Schoretsanitis, Fraïssé theory for metric structures, Ph.D. thesis, University of Illinois at

Urbana-Champaign, 2007. 1
[Usp08] Vladimir V. Uspenskij, On subgroups of minimal topological groups, Topology and its Applications 155 (2008),

no. 14, 1580�1606, doi:10.1016/j.topol.2008.03.001, arXiv:math/0004119. 2

Itaï Ben Yaacov, Université Claude Bernard � Lyon 1, Institut Camille Jordan, CNRS UMR 5208, 43

boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

URL: http://math.univ-lyon1.fr/~begnac/

http://math.univ-lyon1.fr/~begnac/articles/Gurarij.pdf
http://math.univ-lyon1.fr/~begnac/articles/dfin.pdf
http://dx.doi.org/10.4064/fm194-1-4
http://math.univ-lyon1.fr/~begnac/articles/cfo.pdf
http://dx.doi.org/10.1090/S0002-9947-10-04837-3
http://arxiv.org/abs/0801.4303
http://dx.doi.org/10.1007/s11856-012-0134-9
http://arxiv.org/abs/1110.0903
http://dx.doi.org/10.1016/j.topol.2008.03.001
http://arxiv.org/abs/math/0004119
http://math.univ-lyon1.fr/~begnac/

	Introduction
	1. Approximate isometries
	2. Metric Fraïssé limits via approximate maps
	3. Examples of metric Fraïssé classes
	3.1. Standard examples
	3.2. An incomplete example
	3.3. The Gurarij space

	References

