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Abstract. We prove that IHSA, the theory of infinite dimensional Hilbert spaces equipped with a

generic automorphism, is ℵ0-stable up to perturbation of the automorphism, and admits prime models
up to perturbation over any set. Similarly, APrA, the theory of atomless probability algebras equipped

with a generic automorphism is ℵ0-stable up to perturbation. However, not allowing perturbation it is

not even superstable.

Introduction

It was proved by Chatzidakis and Pillay [CP98] that if T is a first order superstable theory, and
the theory Tτ = T ∪ {τ is an automorphism} has a model companion TA, then TA is supersimple.
Throughout this paper we refer to TA (when it exists) as the theory of models of T equipped with a
generic automorphism.

Continuous first order logic is an extension of first order logic, introduced in [BU] as a formalism for a
model theoretic treatment of metric structures (see also [BBHU08] for a general exposition of the model
theory of metric structures). It is a natural question to ask whether the theorem of Chatzidakis and
Pillay generalises to continuous logic and metric structures.

The proof of Chatzidakis and Pillay would hold in metric structures if we used the classical definitions
of superstability and supersimplicity literally (namely, types do not fork over finite sets). These defi-
nitions, however, are known to be too strong in metric structures, and need to be weakened somewhat
in order to make sense. For example, the theory of Hilbert spaces has a countable language, is totally
categorical and does not satisfy the classical definition of superstability.

The standard definition for ℵ0-stability and superstability for metric structures ([Iov99], and later
[Ben05]) comes from measuring the size of a type space not by its cardinality but by its density character
in the metric induced on it from the structures. A continuous theory is supersimple if for every ε > 0,
the ε-neighbourhood of a type does not fork over a finite set of parameters, or equivalently, if ordinal
Lascar ranks corresponding to “ε-dividing” exist. A theory is superstable if and only if it is stable and
supersimple. Similarly, ℵ0-stability is equivalent to the existence of ordinal ε-Morley ranks, which may
be defined via a metric variant of the classical Cantor-Bendixson ranks (see [Ben08] for a general study
of such ranks).

With these corrected definitions, the class of ℵ0-stable theories is rich with examples: Hilbert spaces,
probability algebras, Lp Banach lattices and so on. Furthermore, many classical results can be gener-
alised. For example, an ℵ0-stable theory has prime models over every set, an uncountably categorical
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theory in a countable language is ℵ0-stable, and so on (see [Ben05]). A somewhat more involved preser-
vation result was shown by the first author [Ben06], namely that the theory of lovely pairs of models of
a supersimple (respectively, superstable) theory is again supersimple (respectively, superstable).

With superstability and supersimplicity defined as above, the question whether a superstable theory
with a generic automorphism is supersimple arises again. A specific instance of this question was asked
by the second author and C. Ward Henson [BH] regarding the theory of probability algebras equipped
with a generic automorphism. It was answered negatively by the first author, showing that probability
algebras with a generic automorphism are not superstable. The proof appears in Section 3.

However, the notions of ℵ0-stability and/or superstability mentioned above might still be too strong:
while they consider types of tuples up to arbitrarily small distance, one may further relax this and
consider types also up to arbitrarily small perturbations of the entire language, or parts thereof. This
idea can be formalised with the theory of perturbations as developed in [Ben] and somewhat restated in
[Ben08, Section 4]. We shall assume some familiarity with the second reference.

The goal of this paper is to study carefully two examples: Hilbert spaces and probability algebras,
both equipped with a generic automorphism. The theory APr of atomless probability algebras and the
theory IHS of infinite dimensional Hilbert spaces have some features in common. They are ℵ0-stable,
separably categorical over any finite set of parameters and types over sets are stationary. It follows (see
[BH]) that both IHSτ and APrτ admit model companions IHSA and APrA.

In Section 1 we deal with the theory IHSA of Hilbert spaces equipped with a generic automorphism.
We recall some if its properties from [BUZ]. We use a Corollary of the Weyl-von Neumann-Berg Theorem
to show that IHSA is ℵ0-stable up to perturbation (of the automorphism), and admits prime models up
to perturbation over any set. Unlike the arguments in [BUZ], our arguments can be extended to a generic
action of a finitely generated group of automorphisms (i.e., a generic unitary representation, see [Ber07])
and even to Hilbert spaces equipped with a generic action of a fixed finitely generated C∗-algebra. This
section also serves as a soft analogue for the main results of the other sections.

In Section 2 we deal with the theory APrA of probability algebras with a generic automorphism, first
studied in [BH]. Specifically, we show that APrA is ℵ0-stable up to perturbations of the automorphism.
It is an open question if APrA admits prime models up to perturbations.

In Section 3 we conclude with the first author’s proof that without perturbation the theory APrA is
not superstable, showing that the results of Section 2 are in some sense optimal.

1. Hilbert spaces with an automorphism

Let us consider a Hilbert space H and let B(H) denote the space of bounded linear operators on H.
We recall that the operator norm of T ∈ B(H) is ‖T‖ = sup‖x‖=1 ‖T (x)‖. We also recall the notions of
the spectrum, punctual spectrum and essential spectrum of an operator T ∈ B(H):

σ(T ) = {λ ∈ C : T − λI is not invertible},
σp(T ) = {λ ∈ C : ker(T − λI) 6= 0},
σe(T ) = {non isolated points of σ(T )} ∪ {λ ∈ C : dim ker(T − λI) =∞}.

Definition 1.1. Let H be a Hilbert space, T0, T1 ∈ B(H). We say that T0 and T1 are approximately
unitarily equivalent if there is a sequence of unitary operators {Un}n∈N such that ‖T0 − UnT1U

∗
n‖ → 0.

Fact 1.2 (Weyl-von Neumann-Berg Theorem [Dav96, p. 60]). Let H be a Hilbert space and let T0, T1 ∈
B(H) be normal operators. Then T0 and T1 are approximately unitarily equivalent if and only if

(i) σe(T0) = σe(T1)
(ii) dim ker(T0 − λI) = dim ker(T1 − λI) for all λ in C r σe(T0).
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When considering a Hilbert space as a continuous structure we shall replace it with its unit ball,
as described in [Ben09]. We shall use the language L = {0,−, 2̇, x+y2 }, where 2̇x = min(2, 1

‖x‖ )x and
d(x, y) = ‖x−y2 ‖. Notice that we can recover the norm as ‖x‖ = d(x,−x). An axiomatisation for the
class of (unit balls of) Banach spaces in this language, excluding the symbol 2̇, appears in [Ben09]. The
symbol 2̇ serves as a Skolem function for the fullness axiom there, yielding a universal theory. A Banach
space is a Hilbert space if and only if the parallelogram identity holds, which is a universal condition as
well:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

We obtain that the class of Hilbert spaces is elementary, admitting a universal theory HS. Its model
companion is IHS, the theory of infinite dimensional Hilbert spaces, obtained by adding the appropriate
scheme of existential conditions. It is easy to check that the theory HS has the amalgamation property,
so IHS eliminates quantifiers (i.e., it is the model completion of HS).

Now let τ be a new unary function symbol and let Lτ be L ∪ {τ}. Let IHSτ be the theory IHS ∪
{τ is an automorphism}. Since IHS is ℵ0-stable and separably categorical even after naming finitely
many constants, the theory IHSτ admits a model companion IHSA (see [BH]). The universal part of
IHSτ is (IHSτ )∀ = (HSτ )∀ = HS ∪ {τ is a linear and isometric}. It is again relatively easy to check
that (HSτ )∀ has the amalgamation property. Indeed, if (H0, τ0) ⊆ (Hi, τi) for i = 1, 2 then we may write
(Hi, τi) = (H0, τ0)⊕(H′i, τ ′i), where ⊕ is the orthogonal direct sum, and then (H0, τ0)⊕(H′1, τ ′1)⊕(H′2, τ ′2)
will do. It thus follows that IHSA eliminates quantifiers as well.

Proposition 1.3 (Ben Yaacov, Usvyatsov, Zadka [BUZ]). Let H be a separable Hilbert space and let
τ be a unitary operator on H. Then (H, τ) � IHSA (i.e., (H, τ) is existentially closed as a model of
IHSτ ) if and only if σ(τ) = S1.

Proof. Clearly, if (H, τ) is existentially closed, then σ(τ) = S1. On the other hand, assume that (H, τ) �
IHSτ and that σ(τ) = S1. Passing to an elementary substructure, we may assume that H is separable.
Now let (H0, τ0) be separable and existentially closed. Since IHS is separably categorical, we may
assume that H0 = H. Since σ(τ0) = σ(τ) = S1, by Fact 1.2 there is a sequence {Un}n∈ω of unitary
operators on H such that Unτ1U∗n → τ0 in norm. It follows that if U is a non-principal ultra-filter on N
then ΠU (H, UnτU∗n) = ΠU (H, τ0).

On the other hand, (H, UnτU∗n) ∼= (H, τ) for all n ∈ N. Thus ΠU (H, τ) ∼= ΠU (H, τ0), whereby
(H, τ) ≡ (H, τ0) � IHSA. �1.3

Remark 1.4. Henson and Iovino observed that the theory IHSA is not ℵ0-stable (or even small) in the
sense defined in the introduction. Indeed, let (H, τ) � IHSA be ℵ1-saturated and for each λ ∈ S1 let
vλ ∈ H be a normal vector such that τvλ = λvλ. Then d

(
tp(vλ), tp(vρ)

)
=
√

2 for λ 6= ρ. Thus the
metric density character of S1(∅) is the continuum.

On the other hand, it is shown in [BUZ] that IHSA is superstable.

Let dclτ and aclτ denote the definable and algebraic closure (in the real sort) in models of IHSA.
We claim that if (H, τ) � IHSA and A ⊆ H, then dclτ (A) = aclτ (A) = dcl

(⋃
n∈Z τ

n(A)
)
, where

dcl(A) is the definable closure of A in the language L. Indeed, let B = dcl
(⋃

n∈Z τ
n(A)

)
. Then clearly

B ⊆ dclτ (A). On the other hand, we may decompose (H, τ) = (B, τ�B) ⊕ (B′, τ�B′), in which case
(H, τ) � (B, τ�B)⊕

⊕
n∈N(B′, τ�B′), showing that aclτ (A) ⊆ B.

We may similarly characterise non forking in models of IHSA. For (H, τ) � IHSA and subsets
A,B,C ⊆ H, say that A |̂

B
C if Pdclτ (B)(a) = Pdclτ (BC)(a) for every a ∈ A. We leave it to the reader

to check that |̂ satisfies the usual axioms of a stable notion of independence (invariance, symmetry,
transitivity, and so on), and therefore coincides with non forking.
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Proposition 1.5. Let (H, τ) � IHSA, A,B ⊆ H. Then tp(A/B) is stationary and Cb(A/B) is inter-
definable with the set C = {Pdclτ (B)(a)})a∈A.

Proof. Stationarity follows from the characterisation of independence (and from quantifier elimination).
It is also clear that C ⊆ dclτ (B) and A |̂

C
B, and since we already know that tp(A/C) is stationary

as well, we obtain Cb(A/B) ⊆ C.
For the converse it suffices to show that for every a ∈ A, the projection Pdclτ (B)(a) belongs to the

definable closure of any Morley sequence in tp(A/B). So let (An)n∈N be such a Morley sequence. Then
Pdclτ (B)(an) = Pdclτ (B)(a) for all a ∈ A and all n, so {an−Pdclτ (B)(a)}n∈N forms an orthogonal sequence
of bounded norm. Thus

m−1∑
n=0

an
m

= Pdclτ (B)(a) +
m−1∑
n=0

an − Pdclτ (B)(a)
m

→ Pdclτ (B)(a). �1.5

It follows that IHSA has weak elimination of imaginaries, namely that for every imaginary element
e there exists a real tuple (possibly infinite) A such that A ⊆ aclτ (e), e ∈ dcleq(A).

We now turn to perturbations of the automorphism in models of IHSA. Let (Hi, τi) � IHSA for
i = 0, 1, and let r ≥ 0. We define an r-perturbation of (H0, τ0) to (H1, τ1) to be an isometric isomorphism
of Hilbert spaces U : H0

∼= H1 which satisfies in addition

‖Uτ0U−1 − τ1‖ ≤ r.

The set of all r-perturbations will be denoted Pertr
(
(H0, τ0), (H1, τ1)

)
. It is fairly immediate to verify

that this indeed satisfies all the conditions stated in [Ben08, Theorem 4.4], and therefore does indeed
correspond to a perturbation system as defined there.

Lemma 1.6. Let (H0, τ0) ⊆ (Hi, τi) be separable models of IHSτ for i = 1, 2. Then we may write
(Hi, τi) = (H0, τ0)⊕ (H′i, τ ′i), and let us assume that σ(τ ′1) ⊆ σ(τ ′2) and that σ(τ ′1) has no isolated points.

Then for every ε > 0 there is an isometric isomorphism U : H1 ⊕H′2 ∼= H2, which fixes H0 such that
‖U(τ1 ⊕ τ ′2)U−1 − τ2‖ ≤ ε.

Proof. Under the assumptions we have σ(τ ′1 ⊕ τ ′2) = σ(τ ′2). We also assume that σ(τ ′1) has no isolated
points. Therefore, if λ ∈ σ(τ ′1 ⊕ τ ′2) is isolated then its eigenspace in H′1 ⊕ H′2 is entirely contained in
H′2, so the multiplicity (possibly infinite) of λ is the same for τ ′1 ⊕ τ ′2 and for τ ′2. It follows that the
hypotheses of Fact 1.2 hold, and we obtain V : H′1⊕H′2 ∼= H′2 such that ‖V (τ ′1⊕ τ ′2)V −1− τ ′2‖ ≤ ε. Then
U = idH0 ⊕V will do. �1.6

Theorem 1.7. The theory IHSA is ℵ0-stable up to perturbation of the automorphism.

Proof. Let (H0, τ0), (H′1, τ ′1) � IHSA be separable, and let (H1, τ1) = (H0, τ0) ⊕ (H′1, τ ′1). By Proposi-
tion 1.3 we have (H1, τ1) � IHSA, so (H0, τ0) � (H1, τ1) by model completeness. It will therefore be
enough to show that every type over H0 is realised, up to perturbation, in (H1, τ1). Such a type can
always be realised in a separable elementary extension (H2, τ2) � (H1, τ1). Then (H0, τ0) ⊆ (H2, τ2) and
we may decompose the latter as (H2, τ2) = (H0, τ0)⊕ (H′2, τ ′2).

Notice that (H′1, τ ′1) ⊆ (H′2, τ ′2), so σ(τ ′1) = σ(τ ′2) = S1. We may therefore apply Lemma 1.6, obtaining
for every ε > 0 there an isometric isomorphism Uε : H1 → H2 fixing H0 such that ‖τ1 − U−1

ε τ2Uε‖ < ε.
We have thus shown that every type over H0 is realised, up to arbitrarily small perturbation of the

automorphism, in a fixed separable extension (H1, τ1) � (H0, τ0), as desired. �1.7

Remark 1.8. Let G be a finitely generated discrete group and let IHSgG be the theory of Hilbert spaces
with a generic action of G by automorphism (see [Ber07]). Using Voiculescu’s Theorem [Dav96] in place
of Fact 1.2, the same argument shows that the theory IHSgG is ℵ0-stable up to perturbations of the
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automorphisms. This can even be further extended to the theory IHSgA of a generic presentation of a
finitely generated C∗-algebra A.

Proposition 1.9. The theory IHSA has prime models up to perturbation over sets (of real or imaginary
elements).

By this we mean that for every set A in a model of IHSA there exists a model (H1, τ1), containing
A, such that if (H2, τ2) is any other model which contains A then, up to arbitrarily small perturbation
of τ2 to ρ2, we can embed (H1, τ1) elementarily in (H2, ρ2) over A.

Proof. We may assume that the set A over which we seek a prime model is algebraically closed. By
weak elimination of imaginaries we may assume that A is a real set, and we may further assume that
A = dclτ (A). It is therefore a Hilbert subspace H0 (possibly finite dimensional) on which τ0 = τ�H0

is
an automorphism. Moreover, since IHSA eliminates quantifiers, the type of H0 is determined by the
pair (H0, τ0), and there is no need to consider the ambient structure.

If (H0, τ0) � IHSA there is nothing to prove. Otherwise σ(τ0) ( S1. Let (H ′1, τ
′
1) � IHSτ be separable

such that σ(τ ′1) = S1 r σ(τ0) (for example we may take H ′1 = L2(S1 r σ(τ0)) in the Lebesgue measure,
with (τ ′1f)(x) = xf(x)). Let (H1, τ1) = (H0, τ0) ⊕ (H′1, τ ′1). Clearly σ(τ1) = S1, so (H1, τ1) � IHSA,
and we shall prove that it is prime, up to perturbation of the automorphism, over H0.

So let (H0, τ0) ⊆ (H2, τ2) � IHSA and we may assume that H2 is separable. As usual, we may
decompose it as (H2, τ2) = (H0, τ0)⊕ (H′2, τ ′2). Since σ(τ2) = S1, we necessarily have σ(τ ′2) ⊇ S1 rσ(τ0),
and since σ(τ ′2) is moreover closed, it contains σ(τ1). By Lemma 1.6, for every ε > 0 there exists
an isometric isomorphism U : H1 ⊕ H′2 ∼= H2 fixing H0 such that ‖U(τ1 ⊕ τ ′2)U−1 − τ2‖ ≤ ε. By
Proposition 1.3 we also have (H1, τ1) � (H1, τ1)⊕ (H′2, τ ′2)

Thus ρ2 = U(τ1 ⊕ τ ′2)U−1 is as desired. �1.9

2. Probability algebras with an automorphism

By a probability space we mean a triplet (X,B, µ), where X is a set, B a σ-algebra of subsets of X, µ
a σ-additive positive measure on B such that µ(X) = 1. A probability space (X,B, µ) is called atomless
if for every A ∈ B there is C ∈ B such that µ(A ∩ C) = 1

2µ(A). We say that two elements A,B ∈ B
determine the same event, and write A ∼µ B if µ(A4B) = 0. The relation ∼µ is an equivalence relation
and the collection of classes is denoted by B and is called the measure algebra associated to (X,B, µ).
Operations such as unions, interesections and complements are well defined for events, as well as the
measure. The distance between two events a, b ∈ B is given by the measure of their symmetric difference.
This renders B a complete metric space.

Conversely, let (B, 0, 1, ·c,∪,∩) be a Boolean algebra and assume that d is a complete metric on B.
Let µ(x) be an abbreviation for d(0, x) and assume furthermore that d(x, y) = µ(x4y), µ(x) + µ(y) =
µ(x∩y)+µ(x∪y) and µ(1) = 1. Then B is the probability algebra associated to some probability space
(and we may moreover take that space to be the Stone space of B, equipped with the Borel σ-algebra).

We may view probability algebras as continuous structures in the language LPr = {0, 1, ·c,∪,∩} (the
distance symbol is always implicit, and the measure can be recovered from it as above). The class of
probability algebras is elementary and admits a universal theory denoted Pr. Its model completion
is APr, the theory of atomless probability algebras. It admits quantifier elimination, is ℵ0-categorical
(even over finitely many parameters) and ℵ0-stable (see [BU, BH]).

Definition 2.1. Let B be a probability algebra. An automorphism τ ∈ Aut(B) is said to be aperiodic
if for every non-zero event a ∈ B and every n > 0 there is a sub-event b ⊆ a such that τn(b) 6= b. (In
other words, the support of τn is 1 for all n ≥ 1.)
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Fact 2.2 (Halmos-Rokhlin-Kakutani Lemma, [Fre04, 386C]). Let B be a probability algebra, τ ∈
Aut(B). Then τ is aperiodic if and only if, for every n ≥ 1 and every ε > 0 there is a ∈ B such
that a, τa, . . . , τn−1(a) are disjoint and nµ(a) > 1− ε.

Now let Lτ = LPr ∪ {τ} where τ is a new unary function symbol. Let APrτ be the theory APr ∪
{τ is an automorphism}. It was shown in [BH] that APrτ admits a model companion APrA, consisting
of APrτ together with axioms saying that τ is aperiodic.

Definition 2.3. By the Lebesgue space we mean the probability space ([0, 1], λ), where λ is the standard
Lebesgue measure. The associated probability algebra L = B([0, 1], λ) is the unique separable atomless
probability algebra.

An automorphism τ of the Lebesgue space is a measurable, measure-preserving bijection between
measure one subsets of [0, 1].

Remark 2.4. (i) Every automorphism of the probability algebra L comes from an automorphism
of the Lebesgue space.

(ii) An automorphism τ of the Lebesgue space induces an aperiodic automorphism on L if and
only if τ itself is aperiodic, namely if λ{x ∈ [0, 1] : τn(x) = x} = 0.

Definition 2.5. Let A be a probability algebra. We equip Aut(A ) with the uniform convergence metric

d(τ0, τ1) = sup
x∈A

d(τ0(x), τ1(x)).

Let (Ai, τi) � APrA for i = 0, 1 and let r ≥ 0. Then an r-perturbation of (A0, τ0) to (A1, τ1) is an
(isometric) isomorphism f : A0

∼= A1 such that d
(
fτ0f

−1, τ1
)
≤ r.

Notice that this is essentially the same definition as for (unit balls of) Hilbert space. In particular,
as in the Hilbert space case, this definition satisfies the conditions of [Ben08, Theorem 4.4] and thereby
comes from a perturbation system.

Definition 2.6. Let A be a probability algebra, τ ∈ Aut(A ), a ∈ A . We say that (a, τ) generate an
(n, ε)-partition (of A ) if a, τ(a), . . . , τn−1(a) are disjoint and µ

(∨
i<n τ

i(a)
)
≥ 1−ε. An (n, 0)-partition

will simply be called an n-partition.

If Ai, i = 0, 1 are probability algebras and B = A0 ⊗ A1 is their free amalgam, we may identify
A0 with its image A0 ⊗ 1 = {a ⊗ 1: a ∈ A0} ⊆ B, and similarly A1

∼= 1 ⊗ A1 ⊆ B. In particular, if
(Ai, τi) � APrτ , i = 0, 1 then (A0 ⊗A1, τ0 ⊗ τ1) � APrτ as well. If in addition (A0, τ0) � APrA then τ0
is aperiodic, whereby so is τ0 ⊗ τ1, i.e., (A0 ⊗A1, τ0 ⊗ τ1) � APrA. Since APrA is model complete we
conclude that

(A0, τ0) � APrA, (A1, τ1) � APrτ =⇒ (A0, τ0) � (A0 ⊗A1, τ0 ⊗ τ1).

Definition 2.7. Let (A , τA ) � (B, τB) � APrA be separable. We say that (B, τB) is partitioned over
A if:

(i) The probability algebra B is isomorphic to A ⊗L over A (meaning that a ∈ A gets mapped
to a⊗ 1).

(ii) Under this isomorphism, for each 0 < n ∈ N there exists cn ∈ L such that (1⊗cn, τB) generate
an n-partition, all of whose members belong to 1⊗L .

Lemma 2.8. Let (A , τA ) � (B, τB) � APrA be separable. Then there exists a further elementary
extension (B, τB) � (C , τC ) which is partitioned over A .

Proof. First of all, we may assume that B is atomless over A . Indeed, (B′, τ ′B) = (B, τB)⊗ (L , id) is
a separable elementary extension of (B, τB) and we may replace the latter with the former. Therefore
we may assume that B = A ⊗ L.
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It is not difficult to construct an automorphism ρ ∈ Aut(L ) such that for each n there is cn ∈ L
such that (cn, ρ) generate an n-partition. Let (C , τC ) = (B ⊗L , τB ⊗ ρ), so (B, τB) � (C , τC ).

On the other hand we have C = B ⊗L = A ⊗ [L ⊗L ], and for every k < n

τkC (1⊗ [1⊗ cn]) = 1⊗ [1⊗ ρk(cn)].

Now use the fact that L ⊗L ∼= L to conclude. �2.8

Notation 2.9. For a probability algebra C and c ∈ C , let C≤c denote the ideal {c′ ∈ C : c′ ≤ c}.

Notation 2.10. For 0 < n ∈ N fix (`n, ρn) ∈ L × Aut(L ) generating an n-partition such that in
addition (ρn)n = id. Note that this determines (L , ρn) up to isomorphism, and that it is not a model
of APrA.

Lemma 2.11. Let (A , τA ) � (B, τB) � APrA, and assume that (B, τB) is partitioned over A . Then
for every 0 < n ∈ N there exists τ ′B ∈ Aut(B) such that:

(i) d(τB, τ ′B) ≤ 1
2n .

(ii) (B, τ ′B) ∼= (A , τA )⊗ (L , ρn) over A , where (L, ρn) are as in Notation 2.10.

Proof. We may assume that (B, τB) = (A ⊗L , τB) and that this identification witnesses that (B, τB)
is partitioned over A . Therefore there exists c ∈ L are such that (1⊗ c, τB) generate an n-partition all
of whose members are in 1 ⊗L . Let 1⊗ ck = τkB(1⊗ c) ∈ 1⊗ L for k < n (or, for that matter, for all
k ∈ Z).

Let `n, ρn be as in Notation 2.10. Since c, `n ∈ L and µ(c) = µ(`n) = 1
n , there is an isomorphism

θ0 : L≤c ∼= L≤`n , which induces in turn θ1 = idA ⊗θ0 : B≤1⊗c ∼= B≤1⊗`n . We shall extend θ1 to an
automorphism of B as follows. For b ∈ B, observe that b =

∨
k<n

(
b ∧ (1⊗ ck)

)
is a partition of b, and

τ−kB

(
b ∧ (1⊗ ck)

)
∈ B≤1⊗c. We then define

θ2(b) =
∨
k<n

(τA ⊗ ρn)kθ1τ−kB

(
b ∧ (1⊗ ck)

)
.

For each k < n, θ2 restricts to an isomorphism B≤1⊗ck
∼= B≤1⊗ρkn(`n), so θ2 ∈ Aut(B). In addition, if

a ∈ A then:

θ2
(
(a⊗ 1) ∧ (1⊗ ck)

)
= (τA ⊗ ρn)kθ1τ−kB (a⊗ ck)

= (τA ⊗ ρn)kθ1
(
τ−kA (a)⊗ c)

= (τA ⊗ ρn)k
(
τ−kA (a)⊗ `n)

= a⊗ ρkn(`n),

whereby θ2(a⊗ 1) = a⊗ 1. Thus θ2 acts as the identity on A ⊗ 1.
Let τ ′B = θ−1

2 (τA ⊗ ρn)θ2. For b ∈ B and for k < n let bk = b ∧ (1 ⊗ ck) ∈ B≤1⊗ck , in which case
θ2(bk) ∈ B≤1⊗ρkn(`n) and (τA ⊗ ρn)θ2(bk) ∈ B≤1⊗ρk+1

n (`n). Assume now in addition that 0 ≤ k ≤ n− 2,
i.e., that k + 1 ≤ n− 1. Then in the expression τ ′B(bk) = θ−1

2 (τA ⊗ ρn)θ2(bk), the instances of θ−1
2 and

θ2 can be expanded explicitly as follows:

τ ′B(bk) = θ−1
2 (τA ⊗ ρn)θ2(bk)

=
[
τk+1
B θ−1

1 (τA ⊗ ρn)−k−1
]
(τA ⊗ ρn)

[
(τA ⊗ ρn)kθ1τ−kB

]
(bk)

= τB(bk).

(On the other hand, this fails for k = n − 1, since then θ−1
2 expands to θ−1

1 .) It follows that
d
(
τB(b), τ ′B(b)

)
= d

(
τB(bn−1), τ ′B(bn−1)

)
≤ 1

2n (since both events are sub-events of same measure of
1⊗ cn−1 which has measure 1

n ). Thus d(τB, τ ′B) ≤ 1
2n , as desired. �2.11
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Theorem 2.12. The theory APrA is ℵ0-stable up to perturbations of the automorphism.

Proof. Let (A , τA ) � APrA. By Lemma 2.8 (A , τA ) admits a partitioned extension (B, τB). We claim
that up to perturbation, every type over A is realised in (B, τB).

Indeed any such type is realised in some separable extension (C , τC ) � (A , τA ). By Lemma 2.8
again we may assume that (C , τC ) is also partitioned over A . By Lemma 2.11 any two partitioned
extensions of A admit an 1

2n perturbation over A to (A , τA )⊗ (L , ρn), and composing these we obtain
an 1

n -perturbation (C , τC )→ (B, τB) which fixes A , and this for every 0 < n ∈ N. �2.12

3. Non superstability of probability algebras with a generic automorphism

The second author and Henson [BH] asked whether the theory of probability algebras with a generic
automorphism is superstable, as one might expect by analogy with a theorem of Chatzidakis and Pillay
[CP98] regarding generic automorphisms in classical first order logic. In this section we present the
first author’s negative answer, which chronologically came before the results in Section 2, and to a large
extent motivated them.

Our aim is to show that the theory APrA admits many types over small sets of parameters, and for
this purpose it will suffice to show that there are many 1-types over parameters which belong to the
fixed algebra of the automorphism. We therefore proceed in two steps, first characterising such types
and then showing there are many of them. Throughout we let (U , τ) denote a monster model of APrA,
and let Uτ denote the fixed sub-algebra of U under τ .

3.1. Types over the empty set and over fixed sub-algebras. Let us try to describe the space of
1-types in APrA over a set of parameters contained in Uτ . We start with types over the empty set.

Consider a function η : 2<ω → [0, 1] sending s 7→ ηs. We call such a function shift invariant if

η∅ = 1, ηs_0 + ηs_1 = η0_s + η1_s = ηs, for all s ∈ 2<ω.(SI)

We define X ⊆ [0, 1]2
<ω

to consist of all shift invariant mappings. This is a closed subset of [0, 1]2
<ω

,
and therefore compact.

Let p ∈ S1(APrA), and for n ∈ N, s ∈ 2n, let ηp,s = µ
(∧

i<n τ
i(xsi)

)p (where x0 = x, x1 = xc is the
natural action of (Z/2Z,+)). Then ηp : s 7→ ηp,s is shift invariant, yielding a mapping ρ : S1(APrA)→ X
sending p 7→ ηp. This mapping ρ is clearly continuous, and by quantifier elimination it is injective.

Conversely, let η ∈ X, and let A be any sufficiently homogeneous atomless probability algebra. Then
one can find in A a sequence of events (an) such that µ(a0) = η0, µ(a0)c = η1 = 1− η0, and in general,
for every n and s ∈ 2n:

µ
(
an ∧

∧
k<n

askk

)
= ηs_0, µ

(
acn ∧

∧
k<n

askk

)
= ηs_1 = ηs − ηs_0.

This is indeed consistent by shift invariance. Moreover, shift invariance implies that for every n, k ∈ N
and s ∈ 2n: ηs = µ

(∧
i<n a

si
k+i

)
(by induction on k). It follows by quantifier elimination that the mapping

an 7→ an+1 is elementary and therefore extends to an automorphism τA ∈ Aut(A ), and we may embed
(A , τA ) in (U , τ). In other words, for every η ∈ X we can find a ∈ U such that ηs = µ

(∧
i<n τ

i(asi)
)

for
all s ∈ 2<ω. Thus η = ρ(tp(a)), showing that ρ is bijective. Since it is also continuous, from a compact
to a Hausdorff space, it is a homeomorphism.

If Y is an arbitrary topological space we have C(Y, [0, 1])2
<ω

= C
(
Y, [0, 1]2

<ω)
as sets. Equipping

C(Y, Z) with the compact-open topology and 2<ω with the discrete topology these are homeomorphisms.
(The common topology can be given by a sub-basis, where a sub-basic open set is of the form

{
f ∈

C(Y × 2<ω, [0, 1]) : f [K × {s}] ⊆ U
}

, with K ⊆ Y compact, s ∈ 2<ω and U ⊆ [0, 1] is open). We may
define when a mapping η ∈ C(Y, [0, 1])2

<ω

is shift invariant by (SI) as above, and let XY be the set of
all such shift invariant functions. It is then clear that XY = C(Y,X).
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We now turn to types over a sub-algebra A ⊆ Uτ , namely over parameters fixed by τ . We shall use
the following.

Fact 3.1. Let A be a probability algebra, and let Ã be the Stone space of the underlying Boolean algebra.
For an event a ∈ A let ã ⊆ Ã be the corresponding clopen set.

(i) The space Ã admits a unique regular Borel probability measure µ̃ such that µ̃(ã) = µ(a) for all
a ∈ A .

(ii) The probability algebra of (Ã , µ̃) is canonically isomorphic to A , identifying the equivalence
class of ã with the event a.

(iii) The natural mapping C(Ã ,R)→ L∞(Ã , µ̃) is bijective. In other words, every equivalence class
of bounded Borel functions up to equality µ̃-a.e. contains a unique continuous representative.

(iv) Let B ⊇ A be a larger probability algebra. Then there exists a conditional expectation operation
E[·|A ] : L1(B̃)→ L1(Ã ) where E[f |A ] is the unique function such that for all a ∈ A :∫

ã⊆ eB f dµ̃B =
∫
ã⊆ eA

E[f |A ] dµ̃A .

Proof. See [Fre04]. The Stone space associated to a Boolean algebra is discussed in 311. The construction
of the measure µ̃ and the isomorphism between A and the probability algebra of (Ã , µ̃) appears in
321J. The identification of C(Ã ,R) and L∞(Ã , µ̃) can be found in 363 and 364K. Finally, conditional
expectations are discussed in 365R. �3.1

Now let A ⊆ Uτ ⊆ U , and let p ∈ S1(A ), say realised by b ∈ U . For s ∈ 2n, the type p determines
the mapping associating to every a ∈ A the measure µ

(
a ∧

∧
i<n τ

i(bsi)
)
. In other words, p determines

the function ηp,s = P
[∧

i<n τ
i(bsi)

∣∣∣A ] ∈ L1(Ã ). Since the essential range of ηp,s lies in [0, 1] we have

ηp,s ∈ L∞(Ã ) = C(Ã ,R), and in fact ηp,s ∈ C(Ã , [0, 1]). Let ηp ∈ C(Ã , [0, 1])2
<ω

, ηp : s 7→ ηp,s. It is
not difficult to see that ηp satisfies (SI), so identifying C(Ã , [0, 1])2

<ω

with C(Ã , [0, 1]2
<ω

) we actually
have ηp ∈ XA := C(Ã , X). We have thus obtained a mapping ρA : S1(A )→ XA . Again, it is injective
by quantifier elimination and continuous, and a construction as above yields that it is surjective. We
have thus obtained a homeomorphism

ρA : S1(A ) ∼= XA = C(Ã , X).

For a closed set K ⊆ X and a ∈ A define

Ka = {η ∈ XA : η[ã] ⊆ K}.

It is not difficult to see that Ka is closed in the compact-open topology. If π(x) is a partial type over
∅ and K ⊆ X corresponds to the closed set [π] ⊆ S1(APrA), then the closed set Ka corresponds to
[πa] ⊆ S1(A ), where πa is a partial type over A . If πa(b) holds we say that b satisfies π over a.

Let dA denote the distance function between types over A , and similarly d∅. It is fairly easy to verify
that the distance mapping d∅ : S1(APrA)2 → [0, 1], i.e., d∅ : X2 → [0, 1], is Borel measurable (but not
continuous, since the theory is not ℵ0-categorical). Thus, if p, q ∈ S1(A ), then d∅ ◦ (ηp, ηq) is a random
variable from A to [0, 1], which we can integrate.

Lemma 3.2. For all p, q ∈ S1(A ): dA (p, q) ≥
∫
d∅ ◦ (ηp, ηq) dµ̃.

Proof. Assume a � p, b � q. Let g = P[a4b|A ]. Then g ≥ d∅ ◦ (ηp, ηq). �3.2
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3.2. Non superstability proof. We say that a continuous theory is small if the metric on Sn(APr)
is separable for all n ∈ N.

Lemma 3.3. The theory APrA is not small. More precisely, there is an uncountable family of types
over the empty set every two of which have distance ≥ 1

2 .

Proof. For every real α, let pα be the type of one half of the circle on which τ acts by rotation by 2πα
(the measure on the circle being the Lebesgue measure normalised to have total length 1). If α, β ≥ 0
are irrational and linearly independent over the rationals then for every ε > 0 there exist n, k, ` ∈ N
such that |nα − k|, |nβ − ` − 1

2 | < ε. If a � pα, b � pβ then d(a, τn(a)) = µ(a4τn(a)) < 2ε while
d(b, τn(b)) > 1− 2ε. It follows that 2d(a, b) = d(a, b) + d(τn(a), τn(b)) ≥ 1− 4ε, namely d(a, b) ≥ 1

2 − ε.
Therefore d(pα, pβ) ≥ 1

2 (it is not difficult to check that the distance between the types is in fact equal
to 1

2 ).
Let S ⊆ R be a vector space base for R over Q. Then follows that {pα : α ∈ S} is a continuum-size

set of equally distanced types. �3.3

Proposition 3.4. There exists a family {πs(x)}s∈2<ω of partial types over ∅ such that
(i) For all s ∈ 2<ω we have d(πs_0, πs_1) ≥ 1

3 , meaning that d(a0, ai) ≥ 1
3 whenever ai � πs_i.

(ii) If s, t ∈ 2<ω and t extends s then πt ` πs.

Proof. This is a metric Cantor-Bendixson rank argument which applies more generally, saying that if T
is a non-small theory with a countable language then such a tree exists (with 1

3 possibly replaced with
another positive constant). For an even more general statement of this fact see [Ben08, Propositions
3.16 and 3.19].

Define compacts subsets Xα ⊆ S1(∅) by induction on α. Start with X0 = S1(∅); for α limit,
Xα =

⋂
β<αXβ ; and given Xα, obtain Xα+1 by removing from Xα all points for which there is a

relatively open neighbourhood of diameter < 1
2 .

Since the language is countable, the topology on X admits a countable base. If we only take out
basic open sets of diameter < 1

2 we still get the same sequence Xα, and since the base is countable the
sequence stabilises before ℵ1. Let S ⊆ S1(∅) be an uncountable subset of types every pair of which
have distance ≥ 1

2 . Each set of diameter < 1
2 can contain at most one member of S, so Xℵ1 6= ∅. The

topological space Xℵ1 (with the induced topology) is 1
2 -perfect, meaning that every non-empty open

subset has diameter ≥ 1
2 .

Let D = {(q, r) ∈ S1(APrA)2 : d(q, r) ≤ 1
3} and D1 = D ∩X2

ℵ1
. Then D is closed, being the image

of the closed set [d(x, y) ≤ 1
3 ] ⊆ S2(APrA) under the projection S2(APrA)→ S1(APrA)2 (a continuous

mapping from a compact space to a Hausdorff space is always closed). Thus D1 is closed in X2
ℵ1

.
Through the end of the proof we work in Xℵ1 , with the induced topology. In particular, if Y ⊆ Xℵ1

then Y ◦ denotes the interior of Y in this topology.
We start with π∅(x) being the partial type defining Xℵ1 . It has the property that [π∅]◦ 6= ∅. Assume

now we have πs such that [πs]◦ 6= ∅. The interior has diameter ≥ 1
2 , so there are q, r ∈ [πs]◦ such that

d(r, q) > 1
3 . Thus (q, r) /∈ D1, so they admit open neighbourhoods q ∈ U ⊆ [πs]◦ and r ∈ V ⊆ [πs]◦ such

that (U ×V )∩D1 = ∅. We can then find smaller open neighbourhoods such that q ∈ U1 ⊆ U1 ⊆ U and
r ∈ V1 ⊆ V 1 ⊆ V . Letting πs_0 be the partial type defining U1 and πs_1 the partial type defining V 1 we
get: [πs] ⊇ [πs_0] ⊇ [πs_0]◦ 6= ∅ and [πs] ⊇ [πs_1] ⊇ [πs_1]◦ 6= ∅. Finally, ([πs_0]× [πs_1]) ∩D1 = ∅
implies d(πs_0, πs_1) > 1

3 .
Repeating this argument we obtain the required partial types. �3.4

Lemma 3.5. The theory APrA λ-stable if and only if λℵ0 = λ.

Proof. One direction is since APrA is stable in a countable language.
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For the other, assume λℵ0 > λ. Let {πs : s ∈ 2<ω} be as in Proposition 3.4. Let {ai : i < λ} be
a sequence of independent events of measure 1

2 , all fixed by τ , and let A be the generated complete
algebra.

For θ ∈ λN and s ∈ 2<ω let bθ,s =
∧
i<|s| a

s(i)
θ(i) ∈ A , and let

ρθ,n =
⋃
s∈2n

π
bθ,s
s (x), ρθ =

⋃
n

ρθ,n.

In other words, ρθ(c) holds if and only if, for every s ∈ 2<ω, c satisfies πs over
∧
i<|s| a

s(i)
θ(i). It is easy to

check that ρθ,n is consistent and implies ρθ,m for m < n, so ρθ is consistent as well. Choose for each θ a
complete type rθ ∈ S1(A ) extending ρθ.

Let θ 6= θ′ ∈ λN, and let i ∈ N be such that θ(i) 6= θ′(i). Then over aθ(i) r aθ′(i), ηrθ takes only
values in

⋃
s∈2i [πs_0] ⊆ S1(APrA), while ηrθ′ only takes values in

⋃
s∈2i [πs_1], and the opposite holds

over aθ′(i) r aθ(i). Thus d∅ ◦ (ηrθ , ηrθ′ ) ≥
1
3 over aθ(i)4aθ′(i), which has measure 1

2 . We conclude that
d(rθ, rθ′) ≥ 1

6 .
We have shown that there are λN equally distanced types over a set of λ parameters, as desired. �3.5

We conclude:

Theorem 3.6. The theory APrA is not superstable, and therefore not supersimple.

Notice the difference from the case of IHSA, which is superstable (but not ℵ0-stable).
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[Iov99] José Iovino, Stable Banach spaces and Banach space structures, I and II, Models, algebras, and proofs (Bogotá,
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