ON PERTURBATIONS OF HILBERT SPACES AND PROBABILITY ALGEBRAS
WITH A GENERIC AUTOMORPHISM

ITAI BEN YAACOV AND ALEXANDER BERENSTEIN

ABSTRACT. We prove that IHS 4, the theory of infinite dimensional Hilbert spaces equipped with a
generic automorphism, is Ng-stable up to perturbation of the automorphism, and admits prime models
up to perturbation over any set. Similarly, APr 4, the theory of atomless probability algebras equipped
with a generic automorphism is Rg-stable up to perturbation. However, not allowing perturbation it is
not even superstable.

INTRODUCTION

It was proved by Chatzidakis and Pillay [CP98| that if T is a first order superstable theory, and
the theory T, = T U {7 is an automorphism} has a model companion T4, then T4 is supersimple.
Throughout this paper we refer to T4 (when it exists) as the theory of models of T equipped with a
generic automorphism.

Continuous first order logic is an extension of first order logic, introduced in [BUJ as a formalism for a
model theoretic treatment of metric structures (see also [BBHUOS| for a general exposition of the model
theory of metric structures). It is a natural question to ask whether the theorem of Chatzidakis and
Pillay generalises to continuous logic and metric structures.

The proof of Chatzidakis and Pillay would hold in metric structures if we used the classical definitions
of superstability and supersimplicity literally (namely, types do not fork over finite sets). These defi-
nitions, however, are known to be too strong in metric structures, and need to be weakened somewhat
in order to make sense. For example, the theory of Hilbert spaces has a countable language, is totally
categorical and does not satisfy the classical definition of superstability.

The standard definition for Ry-stability and superstability for metric structures ([Tov99], and later
[Ben05]) comes from measuring the size of a type space not by its cardinality but by its density character
in the metric induced on it from the structures. A continuous theory is supersimple if for every € > 0,
the e-neighbourhood of a type does not fork over a finite set of parameters, or equivalently, if ordinal
Lascar ranks corresponding to “e-dividing” exist. A theory is superstable if and only if it is stable and
supersimple. Similarly, Ng-stability is equivalent to the existence of ordinal e-Morley ranks, which may
be defined via a metric variant of the classical Cantor-Bendixson ranks (see [Ben08] for a general study
of such ranks).

With these corrected definitions, the class of Ng-stable theories is rich with examples: Hilbert spaces,
probability algebras, LP Banach lattices and so on. Furthermore, many classical results can be gener-
alised. For example, an Ng-stable theory has prime models over every set, an uncountably categorical
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theory in a countable language is Rg-stable, and so on (see [Ben05]). A somewhat more involved preser-
vation result was shown by the first author [Ben06], namely that the theory of lovely pairs of models of
a supersimple (respectively, superstable) theory is again supersimple (respectively, superstable).

With superstability and supersimplicity defined as above, the question whether a superstable theory
with a generic automorphism is supersimple arises again. A specific instance of this question was asked
by the second author and C. Ward Henson [BH]| regarding the theory of probability algebras equipped
with a generic automorphism. It was answered negatively by the first author, showing that probability
algebras with a generic automorphism are not superstable. The proof appears in Section

However, the notions of Rg-stability and/or superstability mentioned above might still be too strong:
while they consider types of tuples up to arbitrarily small distance, one may further relax this and
consider types also up to arbitrarily small perturbations of the entire language, or parts thereof. This
idea can be formalised with the theory of perturbations as developed in [Ben| and somewhat restated in
[Ben08| Section 4]. We shall assume some familiarity with the second reference.

The goal of this paper is to study carefully two examples: Hilbert spaces and probability algebras,
both equipped with a generic automorphism. The theory APr of atomless probability algebras and the
theory ITHS of infinite dimensional Hilbert spaces have some features in common. They are Ny-stable,
separably categorical over any finite set of parameters and types over sets are stationary. It follows (see
[BH]) that both THS, and APr, admit model companions THS, and APr4.

In Section [I] we deal with the theory IHS 4 of Hilbert spaces equipped with a generic automorphism.
We recall some if its properties from [BUZ]. We use a Corollary of the Weyl-von Neumann-Berg Theorem
to show that THS 4 is Rg-stable up to perturbation (of the automorphism), and admits prime models up
to perturbation over any set. Unlike the arguments in [BUZ], our arguments can be extended to a generic
action of a finitely generated group of automorphisms (i.e., a generic unitary representation, see [Ber07])
and even to Hilbert spaces equipped with a generic action of a fixed finitely generated C*-algebra. This
section also serves as a soft analogue for the main results of the other sections.

In Section [2] we deal with the theory APr4 of probability algebras with a generic automorphism, first
studied in [BH]. Specifically, we show that APr4 is Rg-stable up to perturbations of the automorphism.
It is an open question if APr4 admits prime models up to perturbations.

In Section [3| we conclude with the first author’s proof that without perturbation the theory APr, is
not superstable, showing that the results of Section [2| are in some sense optimal.

1. HILBERT SPACES WITH AN AUTOMORPHISM

Let us consider a Hilbert space H and let B(H) denote the space of bounded linear operators on H.
We recall that the operator norm of T' € B(H) is || T|| = sup|, =1 [ T'(z)||. We also recall the notions of
the spectrum, punctual spectrum and essential spectrum of an operator T' € B(H):

o(T) ={X\ € C: T — Al is not invertible},
op(T) ={X € C: ker(T — \I) # 0},
oe(T) = {non isolated points of o(T)} U{X € C: dimker(T — A\I) = oo}.

Definition 1.1. Let H be a Hilbert space, Ty, 71 € B(H). We say that Ty and T3 are approzimately
unitarily equivalent if there is a sequence of unitary operators {U, }nen such that | Ty — U, T2 U|| — 0.

Fact 1.2 (Weyl-von Neumann-Berg Theorem [Dav96, p. 60]). Let H be a Hilbert space and let Ty, Ty €
B(H) be normal operators. Then Ty and Ty are approzimately unitarily equivalent if and only if

(i) 0e(To) = 0e(Th)
(ii) dimker(To — AI) = dimker(Ty — A1) for all X in C \ 0.(Tp).
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When considering a Hilbert space as a continuous structure we shall replace it with its unit ball,
as described in [Ben09]. We shall use the language £ = {0, —,2, Z¥}, where 2z = min(2, 1r)z and

el
d(z,y) = ||%5%||. Notice that we can recover the norm as [|z|| = d(x, —x). An axiomatisation for the
class of (unit balls of) Banach spaces in this language, excluding the symbol 2, appears in [Ben09]. The
symbol 2 serves as a Skolem function for the fullness axiom there, yielding a universal theory. A Banach
space is a Hilbert space if and only if the parallelogram identity holds, which is a universal condition as

well:

lz +ylI? + llz = ylI* = 2)|z|* + 2]ly||?

We obtain that the class of Hilbert spaces is elementary, admitting a universal theory HS. Its model
companion is I HS, the theory of infinite dimensional Hilbert spaces, obtained by adding the appropriate
scheme of existential conditions. It is easy to check that the theory HS has the amalgamation property,
so THS eliminates quantifiers (i.e., it is the model completion of HS).

Now let 7 be a new unary function symbol and let £, be LU {r}. Let IHS; be the theory THS U
{7 is an automorphism}. Since IHS is Ryp-stable and separably categorical even after naming finitely
many constants, the theory IHS, admits a model companion IHS4 (see [BH]). The universal part of
IHS, is (IHS;)" = (HS;)" = HS U {7 is a linear and isometric}. It is again relatively easy to check
that (HS,)" has the amalgamation property. Indeed, if (Ho, 7o) € (H;, 7;) for i = 1,2 then we may write
(Hi, 1) = (Ho, 70)® (H}, /), where @ is the orthogonal direct sum, and then (Ho, 70) D (H], 1) & (H5, 75)

will do. It thus follows that I HS4 eliminates quantifiers as well.

Proposition 1.3 (Ben Yaacov, Usvyatsov, Zadka [BUZ|). Let H be a separable Hilbert space and let
T be a unitary operator on H. Then (H,7) E IHSA (i.e., (H,T) is existentially closed as a model of
IHS, ) if and only if o(7) = S*.

Proof. Clearly, if (H, 7) is existentially closed, then o(7) = S*. On the other hand, assume that (H,7) F
IHS, and that o(7) = S!. Passing to an elementary substructure, we may assume that H is separable.
Now let (Ho, 7o) be separable and existentially closed. Since IHS is separably categorical, we may
assume that Ho = H. Since o(79) = o(r) = S!, by Fact there is a sequence {U, }ne, of unitary
operators on H such that U, U — 7 in norm. It follows that if &/ is a non-principal ultra-filter on N
then Iy (H, U, 7U}) =y (H, 10).

On the other hand, (H,U,7U}) = (H,7) for all n € N. Thus Iy, (H,7) = Iy (H,70), whereby
(H,7) = (H,70) EIHS 4. H

Remark 1.4. Henson and Iovino observed that the theory ITHSy4 is not Rp-stable (or even small) in the
sense defined in the introduction. Indeed, let (H,7) F IHS4 be Rj-saturated and for each A € S* let
vy € H be a normal vector such that 7vy = Avx. Then d(tp(vy),tp(v,)) = V2 for A # p. Thus the
metric density character of S; (@) is the continuum.

On the other hand, it is shown in [BUZ] that IHS 4 is superstable.

Let dcl. and acl, denote the definable and algebraic closure (in the real sort) in models of THS4.
We claim that if (H,7) F IHS4 and A C H, then dcl.(4) = acl;(A) = del (U, ez, 7"(A)), where
dcl(A) is the definable closure of A in the language £. Indeed, let B = dcl (U,,c;, 7"(A)). Then clearly
B C dcl-(A). On the other hand, we may decompose (H,7) = (B,7|g5) ® (B’,7[5/), in which case
(H,7) = (B,7I5) ® @,cn(B’,71p:), showing that acl.(A) C B.

We may similarly characterise non forking in models of THS,. For (H,7) E THS4 and subsets
A, B,C C 'H, say that A J/B C if Pya, (By(a) = Pyar, (Bcy(a) for every a € A. We leave it to the reader
to check that | satisfies the usual axioms of a stable notion of independence (invariance, symmetry,
transitivity, and so on), and therefore coincides with non forking.
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Proposition 1.5. Let (H,7) F IHS4, A,B C H. Then tp(A/B) is stationary and Cb(A/B) is inter-
definable with the set C' = { Py, (5)(a)})aca-

Proof. Stationarity follows from the characterisation of independence (and from quantifier elimination).
It is also clear that C' C dcl-(B) and A |, B, and since we already know that tp(A4/C) is stationary
as well, we obtain Cb(A/B) C C.

For the converse it suffices to show that for every a € A, the projection Py B)(a) belongs to the
definable closure of any Morley sequence in tp(A/B). So let (A, )nen be such a Morley sequence. Then
Pye1, (By(an) = Pya, (By(a) for all a € A and all n, so {a,, — Pyc1, (B)(@) }nen forms an orthogonal sequence
of bounded norm. Thus

m—1 m—1

a an — Pyar, (B)(a)
Z En = Pya, (By(a) + Z T() — Paq1,(B)(a). u 5

It follows that IHS 4 has weak elimination of imaginaries, namely that for every imaginary element
e there exists a real tuple (possibly infinite) A such that A C acl;(e), e € dcl®/(A).

We now turn to perturbations of the automorphism in models of THS4. Let (H;,7;) E THS4 for
i =0,1, and let r > 0. We define an r-perturbation of (Ho, 7o) to (H1, 1) to be an isometric isomorphism
of Hilbert spaces U: Hy = H; which satisfies in addition

HUTOU_1 -7 <r

The set of all r-perturbations will be denoted Pert, ((Ho, 7o), (H1,71)). It is fairly immediate to verify
that this indeed satisfies all the conditions stated in [Ben08, Theorem 4.4], and therefore does indeed
correspond to a perturbation system as defined there.

Lemma 1.6. Let (Ho,70) C (H;, ;) be separable models of IHS, for i = 1,2. Then we may write
(Hi, 1) = (Ho, 70) ® (HS, 7)), and let us assume that o(71) C o(75) and that o(7]) has no isolated points.

Then for every e > 0 there is an isometric isomorphism U: Hy & Hby = Ho, which fives Hy such that
U @)Ut — 7 <e.

Proof. Under the assumptions we have (7] @ 75) = o(75). We also assume that o(7{) has no isolated
points. Therefore, if A € o(7]{ @ 74) is isolated then its eigenspace in H} @ H} is entirely contained in

%, so the multiplicity (possibly infinite) of A is the same for 7f & 75 and for 75. It follows that the
hypotheses of Fact hold, and we obtain V: ‘Hj @& HY = H) such that |V (7] ©75)V L — 75| < e. Then
U= id?‘lo EBV will do. .1.6

Theorem 1.7. The theory THS s is Rg-stable up to perturbation of the automorphism.

Proof. Let (Ho,m0), (H}, ) F THS4 be separable, and let (H1,71) = (Ho,70) ® (H}, 7). By Proposi-
tion we have (Hy,71) F ITHS4, so (Ho,70) = (H1,71) by model completeness. It will therefore be
enough to show that every type over Hy is realised, up to perturbation, in (Hy,71). Such a type can
always be realised in a separable elementary extension (Hz, 7o) = (H1,71). Then (Ho, 79) C (Ha, 72) and
we may decompose the latter as (Ha, 72) = (Ho, 70) © (Hb, 74).

Notice that (H;,7]) C (H,,15), s0 o(1]) = o(75) = S*. We may therefore apply Lemma obtaining
for every € > 0 there an isometric isomorphism U, : H; — Ha fixing Ho such that ||r — U7 1nU.| < e.

We have thus shown that every type over Hy is realised, up to arbitrarily small perturbation of the
automorphism, in a fixed separable extension (Hi,71) > (Ho, 7o), as desired. u

Remark 1.8. Let G be a finitely generated discrete group and let JH Sy be the theory of Hilbert spaces
with a generic action of G' by automorphism (see [Ber(7]). Using Voiculescu’s Theorem [Dav96] in place
of Fact the same argument shows that the theory IH S, is Ng-stable up to perturbations of the
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automorphisms. This can even be further extended to the theory IHS; 4 of a generic presentation of a
finitely generated C*-algebra A.

Proposition 1.9. The theory IHS 4 has prime models up to perturbation over sets (of real or imaginary
elements).

By this we mean that for every set A in a model of IHS, there exists a model (H1,71), containing
A, such that if (Ha,72) is any other model which contains A then, up to arbitrarily small perturbation
of 1o to pa, we can embed (H1,71) elementarily in (Ha, p2) over A.

Proof. We may assume that the set A over which we seek a prime model is algebraically closed. By
weak elimination of imaginaries we may assume that A is a real set, and we may further assume that
A =dcl;(A). It is therefore a Hilbert subspace Hy (possibly finite dimensional) on which 79 = 74, is
an automorphism. Moreover, since IHS 4 eliminates quantifiers, the type of Hy is determined by the
pair (Ho, 7o), and there is no need to consider the ambient structure.

If (Ho, 79) F THS 4 there is nothing to prove. Otherwise o(9) & S*. Let (H}, ) F IHS, be separable
such that o(m]) = S \ o(79) (for example we may take H; = Lo(S* \ o(70)) in the Lebesgue measure,
with (71 f)(z) = xf(z)). Let (Hi,71) = (Ho,70) & (Hy,71). Clearly (1) = S1, so (H1,71) F [HS4,
and we shall prove that it is prime, up to perturbation of the automorphism, over Hj.

So let (Ho,70) C (Ha,m2) E IHS4 and we may assume that Hs is separable. As usual, we may
decompose it as (Hz, 72) = (Ho, 70) ® (Hb, 74). Since o(m2) = S1, we necessarily have o(75) 2 S\ o(70),
and since o(74) is moreover closed, it contains o(71). By Lemma for every € > 0 there exists
an isometric isomorphism U: H; & H)y = Ho fixing Ho such that |[U(ry & 75) U~ — n|| < e. By
Proposition |1.3[ we also have (Hy,71) < (H1,71) ® (Hh, 75)

Thus pe = U(1y @ 75)U ! is as desired. m

2. PROBABILITY ALGEBRAS WITH AN AUTOMORPHISM

By a probability space we mean a triplet (X, B, 1), where X is a set, B a o-algebra of subsets of X, u
a o-additive positive measure on B such that u(X) = 1. A probability space (X, B, ) is called atomless
if for every A € B there is C' € B such that u(ANC) = 1u(A). We say that two elements A4, B € B
determine the same event, and write A ~,, B if y(AAB) = 0. The relation ~, is an equivalence relation
and the collection of classes is denoted by B and is called the measure algebra associated to (X, B, u).
Operations such as unions, interesections and complements are well defined for events, as well as the
measure. The distance between two events a, b € B is given by the measure of their symmetric difference.
This renders B a complete metric space.

Conversely, let (£4,0,1,-°,U,N) be a Boolean algebra and assume that d is a complete metric on A.
Let p(x) be an abbreviation for d(0,z) and assume furthermore that d(z,y) = p(zAy), w(x) + ply) =
w(xNy)+p(zUy) and u(l) = 1. Then A is the probability algebra associated to some probability space
(and we may moreover take that space to be the Stone space of £, equipped with the Borel o-algebra).

We may view probability algebras as continuous structures in the language Lp, = {0,1,-¢,U,N} (the
distance symbol is always implicit, and the measure can be recovered from it as above). The class of
probability algebras is elementary and admits a universal theory denoted Pr. Its model completion
is APr, the theory of atomless probability algebras. It admits quantifier elimination, is Ng-categorical
(even over finitely many parameters) and Ng-stable (see [BUL [BH]).

Definition 2.1. Let Z be a probability algebra. An automorphism 7 € Aut(%) is said to be aperiodic
if for every non-zero event a € % and every n > 0 there is a sub-event b C a such that 7(b) # b. (In
other words, the support of 7 is 1 for all n > 1.)
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Fact 2.2 (Halmos-Rokhlin-Kakutani Lemma, [Fre04, 386C]). Let & be a probability algebra, T €
Aut(#B). Then T is aperiodic if and only if, for every n > 1 and every € > 0 there is a € B such
that a, Ta, ..., ™ 1(a) are disjoint and nu(a) > 1 —¢.

Now let £, = Lp, U {7} where 7 is a new unary function symbol. Let APr, be the theory APr U
{7 is an automorphism}. It was shown in [BH] that APr, admits a model companion APr 4, consisting
of APr, together with axioms saying that 7 is aperiodic.

Definition 2.3. By the Lebesgue space we mean the probability space ([0, 1], A), where A is the standard
Lebesgue measure. The associated probability algebra £ = 9([0, 1], \) is the unique separable atomless
probability algebra.

An automorphism 7 of the Lebesgue space is a measurable, measure-preserving bijection between
measure one subsets of [0, 1].

Remark 2.4. (i) Every automorphism of the probability algebra £ comes from an automorphism
of the Lebesgue space.
(ii) An automorphism 7 of the Lebesgue space induces an aperiodic automorphism on £ if and
only if 7 itself is aperiodic, namely if Mz € [0,1]: 7™(z) =z} = 0.

Definition 2.5. Let o7 be a probability algebra. We equip Aut(</) with the uniform convergence metric
d(7o0,m1) = sup d(7o(z), 71(z)).
i1sy4
Let (o, 7;) F APra for i = 0,1 and let » > 0. Then an r-perturbation of (4, 19) to (&, 1) is an
(isometric) isomorphism f: o = & such that d(fToffl, 7'1) <r.

Notice that this is essentially the same definition as for (unit balls of) Hilbert space. In particular,
as in the Hilbert space case, this definition satisfies the conditions of [Ben08, Theorem 4.4] and thereby
comes from a perturbation system.

Definition 2.6. Let &/ be a probability algebra, 7 € Aut(«/), a € «/. We say that (a,7)
(n,e)-partition (of &) if a,7(a),..., 7" *(a) are disjoint and p (\/,,, 7'(a)) > 1—¢. An (n
will simply be called an n-partition.

generate an
,0)-partition

If o7, i = 0,1 are probability algebras and # = o ® 4 is their free amalgam, we may identify
oy with its image o @1 ={a®1l:a € A} C A, and similarly &) 2 1 ® o C AB. In particular, if
(e, 1) FE APr,, i =0,1 then (o ® & ,70 ® T1) E APr, as well. If in addition (), 79) F APr4 then 7y
is aperiodic, whereby so is 79 ® 11, i.e., (2 ® & ,70 ® T1) FE APra. Since APr, is model complete we
conclude that

(#,70) F APra, (¢4, 1) F APr, = (9,70) =2 (9 ® 91,70 @ 71).
Definition 2.7. Let (&, 7y) <X (#,7%) E APr, be separable. We say that (%, 74) is partitioned over
of if:
(i) The probability algebra £ is isomorphic to & ® £ over & (meaning that a € o gets mapped
toa®1).

(ii) Under this isomorphism, for each 0 < n € N there exists ¢, € .Z such that (1®¢,, T#) generate
an n-partition, all of whose members belong to 1 @ Z.

Lemma 2.8. Let (&7, 7y) = (#,7%) E APr4 be separable. Then there exists a further elementary
extension (B,7z) X (€,7¢) which is partitioned over o .

Proof. First of all, we may assume that % is atomless over <. Indeed, (#',7l,) = (#,72) ® (Z,id) is
a separable elementary extension of (%, 74) and we may replace the latter with the former. Therefore
we may assume that Z = & ® L.
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It is not difficult to construct an automorphism p € Aut(.Z) such that for each n there is ¢, € &
such that (c,, p) generate an n-partition. Let (¢, 7¢) = (B ® £, 72 & p), so (B,72) 3 (€, 7¢).
On the other hand we have ¥ = Z® ¥ = & ® [£ ® Z], and for every k <n
re(1®[1®c]) =10 [1®p*(ea)]-
Now use the fact that . ® £ = £ to conclude. | DY
Notation 2.9. For a probability algebra ¢ and ¢ € €, let ¥<. denote the ideal {¢ € €: ¢’ < c}.

Notation 2.10. For 0 < n € N fix (4, pn) € £ x Aut(.Z) generating an n-partition such that in
addition (p,)™ = id. Note that this determines (£, p,) up to isomorphism, and that it is not a model
of APry4.

Lemma 2.11. Let (,7) = (B, 7%) E APra, and assume that (B, T) is partitioned over «/. Then
for every 0 < n € N there exists T, € Aut(#) such that:

(i) d(1#,7%) < 5=

(i) (B,7l) = (A7) @ (L, pp) over o, where (L, py) are as in Notation[2.10}
Proof. We may assume that (%, 72) = (& ® £, 75) and that this identification witnesses that (%, 72)
is partitioned over 7. Therefore there exists ¢ € £ are such that (1 ® ¢, 74) generate an n-partition all
of whose members are in 1 ® .. Let 1 ® ¢, = 75(1®c¢) € 1 ® L for k < n (or, for that matter, for all
keZ).

Let ¢,,, p,, be as in Notation Since ¢, l, € £ and p(c) = p(f,) = L, there is an isomorphism
Oo: L<. =2 L<y,, which induces in turn 6; = idy ®0y: B<i1gc = B<ige,. We shall extend 6; to an
automorphism of % as follows. For b € &, observe that b=\/, _, (b AN1l® ck)) is a partition of b, and
T (bA(1®cr)) € B<ige. We then define

02(0) = \/ (1o @ pn)F 175" (b A (1 @ 1)),
k<n
For each k < n, 0, restricts to an isomorphism B<igc, = B<igpk(1,): S0 b2 € Aut(£). In addition, if
a € o then:
b2((a@ DA (1@ ) = (T ® pn)E017 .  (a @ )

= (s @ pn)"01 (75" (a) ® )
(Tﬂf ® pn)k (Tg_{k (a) ®Lly)

=a® pfz (4n),
whereby 03(a ® 1) = a® 1. Thus 0 acts as the identity on & ® 1.

Let 7/, = 951(79{ ® pp)ba. For b € # and for k < nlet by =bA (1Q®ci) € B<ie,, in which case
02(bi) € B<rgpt(e,) and (Ter @ pn)02(bi) € By i1y, )- Assume now in addition that 0 < k <n — 2,

i.e., that £ +1 <n — 1. Then in the expression 7/ (bx) = 05 (Tey @ pr.)02(bx), the instances of 65 ' and
f5 can be expanded explicitly as follows:
Tig(br) = 03 (Tor @ pn)02(br)
=[50 (7o @ pu) T (T @ ) [(Ter @ ) 01757 (Br)
= 7o(b).

(On the other hand, this fails for & = n — 1, since then ;' expands to 6;'.) It follows that
d(ng(b),TL@(b)) = d(T@(bn_l),T:@(bn_l)) < ﬁ (since both events are sub-events of same measure of

1 ® cp—1 which has measure ). Thus d(74,7) < 5, as desired. [ PR
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Theorem 2.12. The theory APr 4 is Ng-stable up to perturbations of the automorphism.

Proof. Let (#/,74) F APra. By Lemma[2.§| (o7, 7./) admits a partitioned extension (%, 7). We claim
that up to perturbation, every type over & is realised in (%, 7).

Indeed any such type is realised in some separable extension (€,7¢) = (&/,7). By Lemma
again we may assume that (%, 7¢) is also partitioned over /. By Lemma any two partitioned
extensions of & admit an 5 perturbation over & to (#,77)® (£, py), and composing these we obtain
an %—perturbation (¢,7¢) — (B, 7%) which fixes o7, and this for every 0 < n € N. | DRD)

3. NON SUPERSTABILITY OF PROBABILITY ALGEBRAS WITH A GENERIC AUTOMORPHISM

The second author and Henson [BH] asked whether the theory of probability algebras with a generic
automorphism is superstable, as one might expect by analogy with a theorem of Chatzidakis and Pillay
[CP98] regarding generic automorphisms in classical first order logic. In this section we present the
first author’s negative answer, which chronologically came before the results in Section |2} and to a large
extent motivated them.

Our aim is to show that the theory APr4 admits many types over small sets of parameters, and for
this purpose it will suffice to show that there are many 1-types over parameters which belong to the
fixed algebra of the automorphism. We therefore proceed in two steps, first characterising such types
and then showing there are many of them. Throughout we let (U, 7) denote a monster model of APr4,
and let U™ denote the fixed sub-algebra of & under 7.

3.1. Types over the empty set and over fixed sub-algebras. Let us try to describe the space of
1-types in APr4 over a set of parameters contained in 7. We start with types over the empty set.
Consider a function 7: 2<% — [0, 1] sending s — 7. We call such a function shift invariant if

(SI) ne =1, Ns—~0 + Ms—~1 = No~s + M~ = 7s, for all s € 2%,

g<w

We define X C [0, 1]2@ to consist of all shift invariant mappings. This is a closed subset of [0,1]% ",
and therefore compact.

Let p € S1(APry4), and for n € N, s € 2", let s = pt (A, 7'(x%))" (where 2° = 2, 2 = 2° is the
natural action of (Z/2Z,+)). Then n,: s — 7y, ¢ is shift invariant, yielding a mapping p: S1(APrs) — X
sending p — 7,. This mapping p is clearly continuous, and by quantifier elimination it is injective.

Conversely, let n € X, and let o/ be any sufficiently homogeneous atomless probability algebra. Then
one can find in & a sequence of events (a,,) such that p(ag) = 1o, p(ag)® =n =1 — 1o, and in general,
for every n and s € 2™:

/L(an/\ /\ azk) = 1s~0, u(a%/\ /\ CLZ’“) =TMNs~1=1"s — Ns~0-
k<n k<n

This is indeed consistent by shift invariance. Moreover, shift invariance implies that for every n,k € N
ands € 2": ng = p ( Nicn a‘,?_s_i) (by induction on k). It follows by quantifier elimination that the mapping
ap, > apt is elementary and therefore extends to an automorphism 7., € Aut(</), and we may embed
(o, 7o) in (U, 7). In other words, for every n € X we can find a € U such that n, = p (A, _,, 7°(a®)) for
all s € 2<¥. Thus 1 = p(tp(a)), showing that p is bijective. Since it is also continuous, from a compact
to a Hausdorff space, it is a homeomorphism.

If Y is an arbitrary topological space we have C(Y, [0, 1])2<u = C(v, o, 1]2@) as sets. Equipping
C(Y, Z) with the compact-open topology and 2<“ with the discrete topology these are homeomorphisms.
(The common topology can be given by a sub-basis, where a sub-basic open set is of the form { fe
C(Y x 2<%[0,1]): f[K x {s}] CU}, with K CY compact, s € 2<“ and U C [0, 1] is open). We may
define when a mapping n € C(Y, [0, 1])2<u is shift invariant by as above, and let Xy be the set of
all such shift invariant functions. It is then clear that Xy = C(Y, X).
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We now turn to types over a sub-algebra &/ C U", namely over parameters fixed by 7. We shall use
the following.

Fact 3.1. Let o/ be a probability algebra, and let of be the Stone space of the underlying Boolean algebra.
For an event a € & let a C o be the corresponding clopen set.

(i) The space </ admits a unique reqular Borel probability measure fi such that a(a) = u(a) for all
a€ . .
(ii) The probability algebra of (<, i) is canonically isomorphic to </, identifying the equivalence
class of a with the event a. .
(iii) The natural mapping C(/,R) — Loo (&, i) is bijective. In other words, every equivalence class
of bounded Borel functions up to equality fi-a.e. contains a unique continuous representative.
(iv) Let B O o be a larger probability algebra. Then there exists a conditional expectation operation

E[|]: Li(#B) — L\(/) where E[f| <] is the unique function such that for all a € o :

[ tdpa= [ Bl die
ac%® acCel

Proof. See [Fre04]. The Stone space associated to a Boolean algebra is discussed in 311. The construction
of the measure i and the isomorphism between &/ and the probability algebra of (sz?: f1) appears in
321J. The identification of C(«/,R) and Lo (7, ji) can be found in 363 and 364K. Finally, conditional
expectations are discussed in 365R. s,

Now let & C U™ C U, and let p € S1(&), say realised by b € U. For s € 2", the type p determines
the mapping associating to every a € & the measure p (a A Nicn Ti(bs'i)). In other words, p determines
the function 7, s = ]P’[/\Kn 74 (b%%)
Np,s € Loo(,gaffv) = C(JZZR), and in fact n, s € C(,;aZ[O, 1]). Let n, € C(,QZ[O, 1, s e Itis
not difficult to see that 7, satisfies , so identifying C(«7,[0,1])2™" with C(«7,[0,1]2~") we actually
have n, € X := C(«/, X). We have thus obtained a mapping po: S1(&) — X . Again, it is injective
by quantifier elimination and continuous, and a construction as above yields that it is surjective. We
have thus obtained a homeomorphism

424 € Ll(sz,{v). Since the essential range of n, s lies in [0, 1] we have

Pt S1(H) = Xy = O, X).
For a closed set K C X and a € < define
K*={ne Xy:nla) C K}.

It is not difficult to see that K* is closed in the compact-open topology. If 7(z) is a partial type over
@ and K C X corresponds to the closed set [r] C S;(APry), then the closed set K corresponds to
[7*] C S1(«), where 7® is a partial type over «7. If 7%(b) holds we say that b satisfies m over a.

Let do denote the distance function between types over o7, and similarly dg. It is fairly easy to verify
that the distance mapping dg: S1(APr4)? — [0,1], i.e., dg: X? — [0,1], is Borel measurable (but not
continuous, since the theory is not Ro-categorical). Thus, if p,q € S1(%), then dg o (np,74) is a random
variable from & to [0,1], which we can integrate.

Lemma 3.2. For all p,q € S1(): de(p,q) > [ do o (np,14) djt.

Proof. Assume a Ep, bE q. Let g = PlaAbl&/]. Then g > dg o (1,,14)- PP
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3.2. Non superstability proof. We say that a continuous theory is small if the metric on S,,(APr)
is separable for all n € N.

Lemma 3.3. The theory APr 4 is not small. More precisely, there is an uncountable family of types
over the empty set every two of which have distance > %

Proof. For every real a, let p, be the type of one half of the circle on which 7 acts by rotation by 27w«
(the measure on the circle being the Lebesgue measure normalised to have total length 1). If o, 5 > 0
are irrational and linearly independent over the rationals then for every € > 0 there exist n,k,¢ € N
such that [na — k|, [ng — € — 3| < e. If a F po, b F pg then d(a,7"(a)) = p(aAt™(a)) < 2 while
d(b, 7 (b)) > 1 — 2. It follows that 2d(a,b) = d(a,b) + d(7"(a),7™(b)) > 1 — 4, namely d(a,b) > 1 —c.
Therefore d(pa,pg) > % (it is not difficult to check that the distance between the types is in fact equal

to 1).

2

Let S C R be a vector space base for R over Q. Then follows that {p,: a € S} is a continuum-size
set of equally distanced types. ;s

Proposition 3.4. There exists a family {ms(x)}sca<e of partial types over & such that
(i) For all s € 2<% we have d(Ts—q, Ts~1) > %, meaning that d(ag,a;) > % whenever a; F Tg~;.
(i) If s,t € 2<¢ and t extends s then m - 7.

Proof. This is a metric Cantor-Bendixson rank argument which applies more generally, saying that if T’
is a non-small theory with a countable language then such a tree exists (with % possibly replaced with
another positive constant). For an even more general statement of this fact see [Ben08, Propositions
3.16 and 3.19].

Define compacts subsets X, C S;(@) by induction on «. Start with X, = S;(@); for « limit,
Xo = ﬂﬁ<a Xps; and given X, obtain X4 by removing from X, all points for which there is a
relatively open neighbourhood of diameter < %

Since the language is countable, the topology on X admits a countable base. If we only take out
basic open sets of diameter < % we still get the same sequence X, and since the base is countable the
sequence stabilises before ;. Let S C S;(&) be an uncountable subset of types every pair of which
have distance > % Each set of diameter < % can contain at most one member of 5, so Xy, # @. The
topological space Xy, (with the induced topology) is %—perfect, meaning that every non-empty open
subset has diameter > %

Let D = {(q,7) € S1(APra)*: d(¢q,r) < 3} and Dy = DN X3 . Then D is closed, being the image
of the closed set [d(x,y) < 3] C S2(APr4) under the projection Sy(APra) — S1(APr4)? (a continuous
mapping from a compact space to a Hausdorff space is always closed). Thus D is closed in szh'

Through the end of the proof we work in Xy,, with the induced topology. In particular, if ¥ C Xy,
then Y° denotes the interior of Y in this topology.

We start with 74 () being the partial type defining Xy, . It has the property that [7z]° # @. Assume
now we have 75 such that [r,]° # @. The interior has diameter > %, so there are ¢q,r € [m4]° such that
d(r,q) > %. Thus (¢,7) ¢ D1, so they admit open neighbourhoods ¢ € U C [m,]° and r € V C [m,]° such
that (U x V)N Dy = @. We can then find smaller open neighbourhoods such that ¢ € Uy C Uy C U and
reViCV,CV. Letting w4~ be the partial type defining U, and 74~ the partial type defining V1 we
get: [ms] D [ms—~0] 2 [Ts—~0]° # @ and [7r5] D [15~1] 2 [7s—~1]° # &. Finally, ([rs~0] X [1s~1]) N D1 = &
implies d(ms—~0, Ts~1) > %

Repeating this argument we obtain the required partial types. WA

Lemma 3.5. The theory APr4 \-stable if and only if AN = \.

Proof. One direction is since APr 4 is stable in a countable language.
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For the other, assume A¥0 > \. Let {ms: s € 2<%} be as in Proposition Let {a;: 7 < A} be
a sequence of independent events of measure %, all fixed by 7, and let & be the generated complete
algebra.

For § € \¥ and s € 25 let by, = A\, ap\) € o/, and let

Po.n = U Wge’s(z), Po = Upa,n-

se2n

In other words, pg(c) holds if and only if, for every s € 2<“, ¢ satisfies 7; over /\i<‘s| aZEg. It is easy to

check that pg ,, is consistent and implies pg ., for m < n, so pg is consistent as well. Choose for each 6 a
complete type rg € S1(&) extending py.

Let 0 # 0" € AV, and let i € N be such that (i) # 6'(i). Then over ag(i)  Agr(i), Mre takes only
values in (J,cqi[ms~0] € S1(APra), while 7,,, only takes values in | J,co:[ms~1], and the opposite holds
over ag (i) \ giy. Thus dg o (g, 0ry, ) > % over ag(;)Aag (;), which has measure % We conclude that
d(rg,re:) > %

We have shown that there are AN equally distanced types over a set of X\ parameters, as desired. M35

We conclude:
Theorem 3.6. The theory APra is not superstable, and therefore not supersimple.

Notice the difference from the case of THS,, which is superstable (but not Rg-stable).
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