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Abstract. We give a construction of the Gurarij space, analogous to Kat¥tov's construction of the
Urysohn space. The adaptation of Kat¥tov's technique uses a generalisation of the Arens-Eells envelop-
ing space to metric space with a distinguished normed subspace.

This allows us to give a positive answer to a question of Uspenskij, whether the linear isometry
group of the Gurarij space is a universal Polish group.

Introduction

Let Iso(X) denote the isometry group of a metric space X, which we equip with the topology of
point-wise convergence. For complete separable X, this makes of Iso(X) a Polish group. We let IsoL(E)
denote the linear isometry group of a normed space E (throughout this paper, over the reals). This is a
closed subgroup of Iso(E), and is therefore Polish as well when E is a separable Banach space.

It was shown by Uspenskij [Usp90] that the isometry group of the Urysohn space U is a universal
Polish group, namely, that any other Polish group is homeomorphic to a (necessarily closed) subgroup of
Iso(U), following a construction of U due to Kat¥tov [Kat88]. The Gurarij space G (see De�nition 3.1
below, as well as [Gur66, Lus76]) is, in some ways, the analogue of the Urysohn space in the category
of Banach spaces. Either one is the unique separable, universal and approximately ultra-homogeneous
object in its respective category, or equivalently, either one is the (necessarily unique) Fraïssé limit (see
[Ben]) of the �nitely generated objects in its respective category. This raises a natural question, put to
the author by Uspenskij, namely whether IsoL(G) is a universal Polish group as well. Before discussing
this question, let us brie�y recall Kat¥tov's construction and Uspenskij's argument for the Urysohn space.

Let X be a metric space. We say that a real-valued function ξ on X is Kat¥tov if ξ(x) ≤ ξ(y)+d(x, y)
and d(x, y) ≤ ξ(x) + ξ(y) for all x, y ∈ X (equivalently, ξ(x) ≥ |ξ(y) − d(x, y)| for all x, y ∈ X)
(equivalently, if ξ is the distance function from points in X to some �xed point in a metric extension
of X). Let K(X) denote the set of Kat¥tov functions on X. Equipped with the supremum distance,
K(X) is a complete metric space, endowed with a natural isometric embedding X ↪→ K(X), sending
x 7→ d(x, ·). This construction is functorial, in the sense that an isometric embedding Y ↪→ X gives

rise to a natural isometric embedding K(Y ) ↪→ K(X), where ξ goes to ξ̂(x) = infy∈Y d(x, y) + ξ(y),
and everything composes and commutes as one would expect. This functoriality gives rise to a natural
embedding Iso(X) ↪→ Iso

(
K(X)

)
, where the image of ϕ ∈ Iso(X) (call it K(ϕ)) extends ϕ.

There are two issues with K(X) which make it less useful than one might hope. First, even when X
is separable, K(X) need not be separable. More generally, letting w(X) denote the weight of X (namely
the minimal size of a base), we only have w(K(X)) ≤ |K(X)| ≤ 2w(X), and equality may occur. Second,
since a point inK(X) may �depend� on in�nitely many points in X, the embedding Iso(X) ↪→ Iso

(
K(X)

)
need not be continuous. The solution to both problems is to restrict our consideration to the Kat¥tov
functions which essentially only depend on �nitely many elements, in the following sense. When Y ⊆ X,
let us identify K(Y ) with its image in K(X), and de�ne

K0(X) =
⋃

Y⊆X �nite

K(Y ) ⊆ K(X).(1)

Then we have X ↪→ K0(X) and this is functorial as for K(X), yielding an embedding Iso(X) ↪→
Iso
(
K0(X)

)
. Moreover, w(K0(X)) = w(X), and the embedding of topological groups above is continuous.

We now de�ne X0 = X, Xn+1 = K0(Xn) and Xω =
⋃̂
Xn. If X is separable then so is Xω, and the latter
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is a Urysohn space. At the same time we obtain continuous, and in fact homeomorphic, embeddings
Iso(X) ⊆ Iso(Xn) and therefore Iso(X) ⊆ Iso(Xω) = Iso(U), whence the desired result. We refer the
reader to [Usp08, Section 3] for more details.

It turns out that the same strategy works for the Gurarij space as well. In Section 1 we identify the
space of isomorphism types of one point extensions of a Banach space E (in model-theoretic terminology
we would speak of quanti�er-free 1-types over E) as the space KC(E) of convex Kat¥tov functions. The
passage from K to K0 carries over essentially unchanged, in that KC,0(E) = KC(E) ∩K0(E) will do.
The main technical di�culty lies in the fact that, while K(X) is a metric space extension of X, KC(E)
is not a Banach space extension of E. In Section 2 we show that KC(E) embeds canonically in a Banach
space extension of E. In fact we prove a stronger result, generalising the Arens-Eells construction from
pointed metric spaces to metric spaces over a normed space. We conclude in Section 3, constructing, for
a separable Banach space E, a chain of separable Banach space extensions as above, with limit Eω, and
show that Eω ∼= G, with only marginally more complexity than for pure metric spaces.

1. Convex Kat¥tov functions

De�nition 1.1. Let E be a normed space, X ⊆ E convex. We de�ne KC(X) ⊆ K(X) to consist of all
convex Kat¥tov functions. We also de�ne KC,0(X) = K0(X) ∩KC(X), where K0 is as per (1).

We start by observing that KC(E) is the space of isomorphism types of one-point extensions of E.

Lemma 1.2. Given ξ ∈ KC(E), let E(x) = E ⊕Rx, and for αx− a ∈ E(x) de�ne

‖αx− a‖ξ =

{
|α|ξ(a/α) α 6= 0

‖a‖ α = 0.

The map ξ 7→ ‖·‖ξ is a bijection between KC(E) and semi-norms on E(x) extending ‖·‖E, whose inverse
sends ‖·‖ to ‖x− ·‖.

Proof. All there is to show is that if ξ ∈ KC(E) then ‖·‖ξ is indeed a semi-norm, and for this it will
su�ce to show that ‖αx− a‖ξ + ‖βx− b‖ξ ≥ ‖(α+ β)x− (a+ b)‖ξ. We consider several cases:

(i) If both α and β are zero then there is nothing to show.
(ii) If α and β are non zero with equal sign, say 0 < α, β and α + β = 1, then we use convexity:

αξ(a/α) + β(b/β) ≥ ξ(αa/α+ βb/β) = ξ(a+ b).
(iii) If α = −β, say α = 1, then this is ξ(a) + ξ(−b) ≥ ‖a+ b‖ = d(a,−b), which follows from ξ being

Kat¥tov.
(iv) The last case is when α and β have distinct signs and absolute values, say β ≤ 0 < α, and we

may assume that α+ β = 1. Then indeed, using the hypothesis that ξ is Kat¥tov, if β 6= 0 then

αξ(a/α)− βξ(b/β) = ξ(a/α)− β
[
ξ(a/α) + ξ(b/β)

]
≥ ξ(a/α)− β‖a/α− b/β‖
= ξ(a/α) + ‖a/α− (a+ b)‖ ≥ ξ(a+ b).

When β = 0 (and α = 1), what we need to show is just the last inequality above, namely
ξ(a) + ‖b‖ ≥ ξ(a+ b). �1.2

From a model theoretic point of view, set KC(E) may therefore be identi�ed with the space of
quanti�er-free 1-types over E (see [BH]). In addition, the notions of convex and Kat¥tov functions are
compatible in the following sense.

Lemma 1.3. Let E be a normed space, X ⊆ Y ⊆ E convex. Then

(i) The inclusion K(X) ⊆ K(Y ) restricts to KC(X) ⊆ KC(Y ) (in other words, the natural Kat¥tov
extension of a convex Kat¥tov functions is convex as well).

(ii) For ξ ∈ K(X) we de�ne the generated convex function ξC : X → R to be the greatest convex
function lying below ξ, namely

ξC(x) = inf
n; ȳ∈A(x,n)

∑
ξ(yk)/n, where A(x, n) =

{
ȳ ∈ Xn : x =

∑
yi/n

}
.

Then ξC is Kat¥tov as well.

Moreover, if X ⊆ Y ⊆ E are convex and ξ ∈ K(X), then passing from ξ to ξC (on X) and then
extending to Y gives the same result as �rst extending ξ to Y and then passing to ξC , so we may refer
to ξC ∈ KC(Y ) without ambiguity.
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Proof. For the �rst item, if x, y ∈ Y and ξ ∈ KC(X), then

ξ(x)+ξ(y)
2 = inf

x′,y′∈X
‖x−x′‖+ξ(x′)+‖y−y′‖+ξ(y′)

2 ≥ inf
x′,y′∈X

‖x+y
2 −

x′+y′

2 ‖+ ξ(x
′+y′

2 ) ≥ ξ(x+y
2 ).

For the second item, we just take convex combinations of the two inequalities de�ning the Kat¥tov
property. The moreover part is a direct calculation. �1.3

Our next step is to show that the intersection KC(X) ∩K0(X) is not �too small�.

Lemma 1.4. For every normed space E and convex subset X ⊆ E, we have

KC,0(X) =
⋃{

KC(Y ) : convex compact Y ⊆ X
}

=
{
ξC : ξ ∈ K0(X)

}
.

Proof. We argue that

KC,0(X) ⊇
⋃{

KC(Y ) : convex compact Y ⊆ X
}
⊇
{
ξC : ξ ∈ K0(X)

}
⊇ KC,0(X).

For the �rst inclusion it su�ces to observe that K0(X) contains K(Y ) for every compact Y ⊆ X. The
second inclusion holds since ξ 7→ ξC is continuous and the convex hull of a �nite set is compact. The
third is immediate. �1.4

Given two (isometric) extensions E ⊆ Fi, i = 0, 1, let �rst F0 ⊕E F1 denote their co-product over E
as vector spaces, namely F0⊕F1 divided by equality of the two copies of E. Then there exists a greatest
(compatible) norm on F0 ⊕E F1, given by ‖a − b‖ = infc∈E ‖a − c‖ + ‖c − b‖. With F0 =

(
E(x), ‖·‖ξ

)
for some ξ ∈ KC(E) and F1 = F �xed, we obtain a canonical extension of ‖·‖ξ to F (x) = E(x) ⊕E F ,
compatible with the embedding KC(E) ⊆ KC(F ).

Lemma 1.5. Let E be a normed space and ξi ∈ KC(E), i = 0, 1. Let also r0 = d(ξ0, ξ1) and r1 =
infa∈E ξ0(a) + ξ1(a). Then for every r0 ≤ r ≤ r1 there exists a semi-norm ‖·‖r on E(x0, x1) = E ⊕
Rx0 ⊕Rx1 whose restriction to E(xi) is ‖·‖ξi , such that ‖x0 − x1‖r = r.

Proof. When r = r1, just take the greatest norm on E(x0) ⊕E E(x1) compatible with ‖·‖ξi as above.
When r = r0, this is a special case of an amalgamation result of Henson (see [BH]). Indeed, for
a ∈ αx0 + βx1 ∈ E(x0, x1) de�ne

‖a+ αx0 + βx1‖′ = inf
b∈E,γ∈R

‖b+ (α+ γ)x0‖ξ0 + ‖a− b+ (β − γ)x1‖ξ1 + |γ|r0.

This is clearly a semi-norm, and ‖x0 − x1‖′ ≤ r0. For all a + αx0 ∈ E(x0) and b, γ, we have, by choice
of r0,

‖a+ αx0‖ξ0 ≤ ‖b+ (α+ γ)x0‖ξ0 + ‖a− b− γx1‖ξ1 + |γ|r0,

so ‖·‖ = ‖·‖ξ0 on E(x0), and similarly ‖·‖ = ‖·‖ξ1 on E(x1). It follows that ‖x0 − x1‖′ = r0, as desired.
Intermediate values can be obtained as convex combinations of the two extreme cases. �1.5

2. The Arens-Eells space over a normed space

Notation 2.1. Given two pointed metric spaces (X, 0) and (Y, 0), we let Lip0(X,Y ) denote the space
of all Lipschitz functions θ : X → Y which send 0 7→ 0, and for θ ∈ Lip0(X,Y ) (or for that matter, for
any Lipschitz function θ) we let L(θ) denote its Lipschitz constant. If Y = R, we omit it.

We recall the following facts from Weaver [Wea99, Chapter 2.2]:

Fact 2.2. Let (X, 0) be a pointed metric space. Then there exists a Banach space AE(X), together
with an isometric embedding X ⊆ AE(X) sending 0 7→ 0, called the Arens-Eells space of X, having
the following universal property: every θ ∈ Lip0(X,F ), where F is a Banach space, admits a unique
continuous linear extension θ′ : AE(X)→ F , and this unique extension satis�es ‖θ′‖ ≤ L(θ).

This universal property characterises the Arens-Eells space up to a unique isometric isomorphism.
Its dual Banach space AE(X)∗ is canonically isometrically isomorphic to Lip0(X), the isomorphism
consisting of sending a linear functional to its restriction to X.

We shall generalise this as follows:

De�nition 2.3. Let E be a �xed normed space. By a metric space over E we mean a pair (X,ϕ) where
X is a metric space, ϕ : E → X is isometric, and for each x ∈ X the function a 7→ d(ϕa, x) is convex.
Most of the time ϕ will just be an inclusion map, in which case it is replaced with E or simply omitted.

For a normed space F we also de�ne LipE(X,F ) to consist of all Lipschitz functions θ : X → F which
are linear on E, and if F = R then we omit it.
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For the trivial normed space 0, a metric space over 0 is the same thing as a pointed metric space.
Also, every isometric inclusion of normed spaces E ⊆ F renders F metric over E.

Theorem 2.4. Let X be a metric space over a normed space E. Then there exists a Banach space
AE(X,E), together with an isometric embedding X ⊆ AE(X,E) which is linear on E, having the follow-
ing universal property: every θ ∈ LipE(X,F ), where F is a Banach space, admits a unique continuous
linear extension θ′ : AE(X,E)→ F , and this unique extension satis�es ‖θ′‖ ≤ L(θ).

This universal property characterises AE(X,E) up to a unique isometric isomorphism, and we shall
call it the Arens-Eells space of X over E. Its dual AE(X,E)∗ is isometrically isomorphic to LipE(X)
via restriction to X.

Proof. Let ι : E → AE(X) denote the inclusion map, so that we may distinguish between algebraic
operations in E and in AE(X). Let F0 ⊆ AE(X) be the closed subspace generated by all expressions of
the form ι(a+ b)− ιa− ιb for a, b ∈ E, observing that it also contains ιαa− αιa for a ∈ E and α ∈ R.
De�ne AE(X,E) as the completion of the quotient AE(X)/F0, and let ψ : X → AE(X,E) be the natural
map. Then ψ is linear and 1-Lipschitz, and both the universal property and characterisation of the dual
hold, so all we need to show is that ψ is isometric.

Indeed, let xi ∈ X, i = 0, 1, and let ξi = d(·, xi) ∈ KC(E). Let r0 ≤ r1 be as in Lemma 1.5, and observe
that by the triangle inequality r0 ≤ d(x0, x1) ≤ r1. Therefore, by Lemma 1.5 there exists a semi-norm ‖·‖
on E(x0, x1) which induces the same distance on E∪{x0, x1} as X does. By the Hahn-Banach Theorem,
there exists a linear functional λ ∈ E(x0, x1)∗ which norms x0−x1: ‖λ‖ = 1 and λ(x0−x1) = d(x0, x1).
The restriction of λ to E ∪ {x0, x1} is 1-Lipschitz, and by [Wea99, Theorem 1.5.6], it extends to a 1-
Lipschitz function λ′ : X → R. Then λ′ ∈ LipE(X) = AE(X,E)∗ ⊆ Lip0(X) and ‖λ′‖ = 1, witnessing
that ‖ψx0 − ψx1‖ ≥ d(x0, x1), completing the proof. �2.4

Similarly, it is shown in [Wea99] that if Y ⊆ X then AE(Y ) is naturally identi�ed with the subspace
of AE(X) generated by Y , and the same can be deduced for metric spaces over a normed space E.

Corollary 2.5. Let E be a normed space and E ⊆ X ⊆ KC(E) (here we identify E with its image in
KC(E)). Then there exists a Banach space E[X] together with an isometric embedding X ⊆ E[X] such
that E ⊆ E[X] is a Banach space extension, and the following universal property holds: every Lipschitz
map θ : X → F , where F is a Banach space, which is linear on E, admits a unique continuous linear
extension θ′ : E[X]→ F with ‖θ′‖ ≤ L(θ).

In particular, E[X] is uniquely determined by this universal property, and is generated as a Banach
space by X.

Proof. Just take E[X] = AE(X,E). �2.5

3. Main Theorem

We recall (say from Lusky [Lus76]) the de�nition of the Gurarij space.

De�nition 3.1. A Gurarij space is a separable Banach space G having the property that for any ε > 0,
�nite-dimensional Banach space E ⊆ F , and isometric embedding ψ : E → G, there is a linear embedding
ϕ : F → G extending ψ which is, in addition, ε-isometric, namely (1 − ε)‖x‖ ≤ ‖ϕx‖ ≤ (1 + ε)‖x‖ for
all x ∈ F .

Fact 3.2. The Gurarij space G exists and is unique.

Proof. Existence (which also follows from Lemma 3.5 below) is due to Gurarij [Gur66], as is almost
isometric uniqueness. Isometric uniqueness is due to Lusky [Lus76], with a recent plethora of more
�elementary� (that is to say, in the author's view, more model-theoretic) proofs [KS, BH, Ben]. �3.2

De�nition 3.3. For a Banach space E we de�ne

• E′ = E[KC,0(E)] as per Corollary 2.5,

• E0 = E, En+1 = E′n, Eω =
⋃
En.

In order to show that this construction yields a Gurarij space, it will be convenient to use the following,
which is a special case of an unpublished result of Henson:

Fact 3.4 (See also [BH]). Let E and F be normed spaces, let x̄ ∈ Ek and ȳ ∈ F k, and let

r = sup∑
|si|=1

∣∣∣∥∥∑ sixi
∥∥
E
−
∥∥∑ siyi

∥∥
F

∣∣∣ .



THE LINEAR ISOMETRY GROUP OF THE GURARIJ SPACE IS UNIVERSAL 5

Then r is the least real number for which exists a normed space E1 and isometric embeddings E ⊆ E1,
F ⊆ E1, such that ‖xi − yi‖ ≤ r for all i.

Proof. Let E1 = E⊕F as vector spaces, and consider the maximal function ‖·‖′ : E1 → R satisfying, for
all x ∈ E, y ∈ F and s̄ ∈ Rn:∥∥∥x+ y +

∑
si(xi − yi)

∥∥∥′ ≤ ‖x‖E + ‖y‖F + r
∑
|si|.

This is clearly a semi-norm on E, and ‖xi − yi‖′ ≤ r. For x ∈ E we have ‖x‖′ ≤ ‖x‖E , while on the
other hand, for any s̄ we have by choice of r:

‖x‖E ≤
∥∥∥x−∑ sixi

∥∥∥
E

+
∥∥∥∑ sixi

∥∥∥
E

≤
∥∥∥x−∑ sixi

∥∥∥
E

+
∥∥∥∑ siyi

∥∥∥
F

+ r
∑
|si|.

It follows that ‖x‖′ = ‖x‖E , and similarly for y ∈ F , whence the desired amalgam. It is clear that r is
least. �3.4

Lemma 3.5. Let E be a Banach space. Then E′ and Eω are Banach space extensions of E with
w(E) = w(E′) = w(Eω), and Eω satis�es the second property of De�nition 3.1. In particular, if E is
separable then Eω is a Gurarij space.

Proof. Since E[X] is generated over E by the image of X, we have w(E[X]) = w(E) + w(X), whence
w(E) = w(E′) = w(Eω). For the Gurarij property, it will be enough to show that for every �nite-
dimensional normed space F1, sub-space F0 of co-dimension one, and ε > 0, there exists δ > 0 such that
every linear δ-isometry ϕ : F0 → Eω there exists a linear ε-isometry ϕ : F1 → Eω extending ψ. Let v
generate F1 over F0, and say ‖v‖ = 1.

Let us �rst assume that ψ is isometric, with ψF0 ⊆
⋃
nEn, and de�ne ξ ∈ KC(F0) by ξ(x) = ‖x− v‖.

Fix R > 0, let X ⊆ F0 be the closed ball of radius R, and let ξ′ = ξ�X ∈ KC(X) ⊆ KC(F0). Since X is
compact, ξ′ ∈ KC,0(F0), and by construction there exists u ∈

⋃
nEn such that ‖ψx− u‖Eω = ‖x− v‖F1

for all x ∈ X. In particular, ‖u‖ = 1 as well, so for x ∈ F0 rX we have
∣∣‖ψx − u‖Eω

− ‖x − v‖F1

∣∣ ≤
2 ≤ 2

R−1‖x− v‖F1
. Thus the extension ϕ : F1 → Eω given by v 7→ u is 2

R−1 -isometric, and we may take
R as large as we wish.

Now consider the general case, and let x̄ ⊆ F0 be a basis, say with ‖xi‖ = 1. Then there are constants
C and C ′ such that for every x ∈ F0 and linear θ : F0 → F , where F extends F0, we have ‖x‖ ≤ C‖x+v‖
and ‖x−θx‖ ≤ C ′maxi ‖xi−θxi‖‖x‖. Let δ = ε

6CC′+1+ε , and let ψ : F0 → Eω be a δ-isometry. Then by

Fact 3.4, we may assume that Eω and F1 are embedded isometrically in some F , in which ‖xi−ψxi‖ ≤ δ
for all i. We can now choose x̄′ ∈

⋃
nEn such that ‖xi − x′i‖ < 2δ, and let θ : F0 → Eω be xi 7→ x′i, so

‖x− θx‖ ≤ 2δCC ′‖x+ v‖ for all x ∈ F0. By the special case above, applied to 〈x̄′〉 ⊆ 〈x̄′, v〉, there exists
u ∈ Eω such that

∣∣‖y+u‖−‖y+ v‖
∣∣ < δ‖y+ v‖ for every y ∈ 〈x̄′〉. We de�ne ϕ : F1 → Eω to agree with

idF0
= ψ on F0 and send v 7→ u. Then for x ∈ F0,∣∣‖ϕ(x+ v)‖ − ‖x+ v‖

∣∣ =
∣∣‖x+ u‖ − ‖x+ v‖

∣∣
≤ 2‖x− θx‖+

∣∣‖θx+ u‖ − ‖θx+ v‖
∣∣

≤ 2‖x− θx‖+ δ‖θx+ v‖
≤ 3‖x− θx‖+ δ‖x+ v‖
≤
[
6CC ′ + 1

]
δ‖x+ v‖ < ε‖x+ v‖,

as desired. �3.5

We recall from Uspenskij [Usp08],

De�nition 3.6. An isometric embedding of metric spaces X ⊆ Y is said to be a g-embedding if there
exists a continuous homomorphism Θ: Iso(X)→ Iso(Y ) such that Θϕ extends ϕ for each ϕ ∈ Iso(X).

Notice that since the restriction map img Θ→ Iso(X), ϕ 7→ ϕ�X , is continuous as well, such a map Θ
is necessarily a homeomorphic embedding.

Fact 3.7 (Mazur-Ulam Theorem, [FJ03, Theorem 1.3.5]). For a normed space E, Iso(E) is the group
of a�ne isometries. Stated equivalently, IsoL(E) = {ϕ ∈ Iso(E) : ϕ0 = 0}.
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It follows that an isometric embedding of Banach spaces E ⊆ F is a g-embedding if and only if there
exists a continuous homomorphism Θ: IsoL(E)→ IsoL(F ) such that Θϕ extends ϕ for all ϕ ∈ IsoL(E).
Indeed, given Θ: Iso(E) → Iso(F ) we have (Θϕ)0 = ϕ0 = 0, so Θ restricts to Θ′ : IsoL(E) → IsoL(F ),
and conversely, given Θ: IsoL(E)→ IsoL(Y ) we can de�ne Θ′ : Iso(E)→ Iso(F ) by Θ′ϕ = Θ(ϕ−ϕ0) +
ϕ0.

Lemma 3.8. With E, E′ and Eω as in De�nition 3.3, the embeddings E ⊆ E′ ⊆ Eω are g-embeddings.

Proof. Every ϕ ∈ IsoL(E) of E extends to an isometry ϕ1 : ξ 7→ ξ ◦ ϕ−1 of KC,0(E), which, by the
universal property of E[X], extends uniquely to an isometry ϕ2 ∈ IsoL(E′). The map ϕ 7→ ϕ1 is
continuous as in the case of K0(X), and the map ϕ1 7→ ϕ2 is continuous since KC,0(E) generates a dense
subset of E′. These are also clearly homomorphisms. The result for Eω follows by induction. �3.8

Fact 3.9 (See Teleman's Theorem, [Pes99, Theorem 2.2.1]). Every Polish group embeds homeomorphi-
cally in IsoL(E) for some separable Banach space E.

Proof. Let H be a Polish group. Then it admits a compatible left-invariant distance d, which we may
assume is bounded by 1. Adjoining a distinguished point ∗ to H with d(∗, h) = 1 (or even 1

2 ) for all
h ∈ H we obtain a pointed metric space H∗, and let E = AE(H∗, ∗). The left action of h ∈ H on H∗,
�xing ∗, is an isometry, which extends by the universal property to a linear isometry h′ ∈ IsoL(E), and
the map h 7→ h′ is a continuous embedding, which is easily seen to be homeomorphic. (In other words,
H ⊆ E is a g-embedding inducing H ⊆ Iso(H) ⊆ IsoL(E).) �3.9

Theorem 3.10. The group IsoL(G) of linear isometries of the Gurarij space is a universal Polish group,
that is to say that every other Polish group embeds there homeomorphically. Moreover, every separable
normed space is g-embeddable in G.

Proof. The moreover part follows immediately from earlier results, and implies the main assertion by
Fact 3.9. �3.10
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