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ABSTRACT. For a locally compact group G, we show that it is possible to present the class of continuous unitary rep-
resentations of G as an elementary class of metric structures, in the sense of continuous logic. More precisely, we show
how non-degenerate ∗-representations of a general ∗-algebra A (with some mild assumptions) can be viewed as an el-
ementary class, in a many-sorted language, and use the correspondence between continuous unitary representations
of G and non-degenerate ∗-representations of L1(G).

We relate the notion of ultraproduct of logical structures, under this presentation, with other notions of ultraprod-
uct of representations appearing in the literature, and characterise property (T) for G in terms of the definability of
the sets of fixed points of L1 functions on G.
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INTRODUCTION

When suggesting a model-theoretic treatment of a mathematical object, or of a class of such objects, one
must first present the said object(s) as logical structures. In other words, to each of the objects in question we
associate a logical structure, from which the original object can be recovered.

In some cases, such as fields or groups, this step is so straightforward that it is hardly noticed. In others,
such as valued fields, there is some (very small) degree of freedom, and one would say they can be viewed
as structures in this language, or in that. When dealing with metric structures in the formalism of continuous
logic, a new difficulty arises, namely that one might wish to consider an unbounded metric space, such as a
Banach space, in a logic which can only consider bounded metric spaces.

We know of two potential remedies for this. First, one can sometimes extend the logic to one which does
allow unbounded structures, with some price to pay at the level of technical complexity. Second, one can
sometimes argue that the unbounded structure can in fact be represented by a bounded structure (possibly
many-sorted). The second solution applies quite frequently in the case of Banach space structures. Indeed,
one can recover the entire Banach space from its unit ball equipped with the structure of a convex space. This
practice of restricting the domain of quantification to the unit ball is quite standard in other contexts – for
example, when defining the operator norm.

Whether such a presentation is “correct” is very context dependent, of course, but usually there are two or
three good indicators for that, especially when dealing with a natural class of objects. Either of the second or
third conditions implies the first, and all three are “usually” satisfied (or not) simultaneously.

(i) The class of (presentations of) objects should be closed under logical ultraproducts.
(ii) The class of (presentations of) objects should be elementary.

(iii) When there already exists a useful intrinsic notion of ultraproduct in the class, it should agree with
the logical one.
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The unit ball of a Banach space is a good example of the positive case, where the intrinsic ultraproduct
of Banach spaces (Dacunha-Castelle and Krivine [DK72]) coincides with the logical ultraproduct of their unit
balls.

A failure of a logical presentation to satisfy these criteria often comes in one of two flavours, which we refer
to as missing points and extraneous points, respectively. As an example, let us consider two natural yet misguided
attempts to represent the class of continuous unitary representations of a fixed non-discrete topological group
G.

• A first naïve approach would be to consider the structure consisting of the unit ball of a Hilbert space,
together with a function symbol for the action of each g ∈ G. While the map g 7→ gξ is continuous
(at 1 ∈ G) for each ξ in the structure, the family of such maps is not necessarily equicontinuous,
and a logical ultrapower may well contain ξ such that g 7→ gξ is not continuous at all. This is an
“extraneous point” (one kind of non-logical ultraproduct of continuous representations is defined
exactly by excluding such points from the Banach space ultraproduct).

• A next attempt might be to consider, for each modulus of continuity at 1, the sort of all ξ in the unit ball
such that g 7→ gξ satisfies that modulus of continuity. In such a structure, associated to a continuous
representation, G acts continuously, and even equicontinuously, on each sort, and this is preserved by
ultraproducts.

However, such a structure must also satisfy a subtler condition. Say A and B are two moduli
of continuity, with B stronger than A. Then the associated sorts must satisfy an inclusion relation
SB ⊆ SA. Moreover, any point of SA that happens to satisfy the modulus B must belong to SB – and
this property need not be preserved under ultraproducts. If this fails, then we may say that the sort
SB is “missing” some points.

In the case of a locally compact G we propose a solution, by splitting the representation into sorts not by
moduli of continuity, but as images of the action of L1(G). The resulting structure may be presented most
elegantly as a non-degenerate representation of the ∗-algebra L1(G). We therefore begin with a general dis-
cussion of the presentation of non-degenerate representations of ∗-algebras as logical structures in Section 1.
How this specialises to representations of a locally compact G is discussed in Section 2 (this is fairly standard
and mostly included for the sake of completeness). In Section 3 we put the notion of ultraproduct associated
with out logical structures in the context of notions of ultraproduct of unitary representations existing in the
literature. Finally, in Section 4 we give a model-theoretic characterisation of Kazhdan’s property (T) in G in
terms of definability of the set(s) of fixed points in the associated structure.

1. NON-DEGENERATE ∗-REPRESENTATIONS

Throughout, by an algebra we mean a complex algebra, i.e., a ring A, not necessarily commutative or unital,
that is also a complex vector space, satisfying α(ab) = (αa)b = a(αb) for all a, b ∈ A and α ∈ C. An algebra
equipped with a semi-linear involution ∗ satisfying (ab)∗ = b∗a∗ is a ∗-algebra. An algebra equipped with a
norm satisfying ∥ab∥ ≤ ∥a∥∥b∥ is a normed algebra, and a Banach algebra if it is complete. If it is both a normed
(Banach) algebra and a ∗-algebra, and ∥a∗∥ = ∥a∥, then it is a normed (Banach) ∗-algebra. A C∗-algebra is a
Banach ∗-algebra in which ∥aa∗∥ = ∥a∥2.

A morphism of normed algebras is a bounded linear map that respects multiplication, and a ∗-morphism of
normed ∗-algebras is a normed algebra morphism that respects the involution. A ∗-representation of a ∗-algebra
A in a Hilbert space E is a ∗-morphism π : A → B(E).

Fact 1.1. Let A be a Banach ∗-algebra and B a C∗-algebra. Then any ∗-morphism φ : A → B is contractive. In particular,
any ∗-representation of a Banach ∗-algebra is contractive.

Proof. See Folland [Fol95, Proposition 1.24(b)]. The hypothesis that B is unital is superfluous by [Fol95, Propo-
sition 1.27]. ■

Given a Banach ∗-algebra A, a ∗-representation of A can be naturally viewed as a single-sorted metric
structure. Indeed, all we need to do is take the unit ball of a Hilbert space E, and for each a ∈ A of norm at
most one, name the operator π(a) in the language. The class of all such structures is elementary, defined by
universal axioms (modulo the axioms for a unit ball of a Banach space), and if A is separable, then by choosing
a dense sub-family of A the language can be made countable.

This is a little too easy, and falls short of what we want to achieve. When A is unital, it would be natural to
add the requirement that π(1) = id. In the general case, this requirement can be replaced with non-degeneracy
(see for example [CCS04, Section 4]).
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Definition 1.2. Let A be a Banach algebra and let π : A → B(E) be a ∗-representation. The non-degenerate part
of the representation, let us call it Eπ , is the closed subspace generated by all π(a)ξ for a ∈ A and ξ ∈ E. If
Eπ = E, then π is non-degenerate.

Fact 1.3. Let π : A → B(E) be a ∗-representation of a Banach ∗-algebra A, and let ξ ∈ E.

(i) We have ξ ⊥ Eπ if and only if π(a)ξ = 0 for every a ∈ A. In particular, the ∗-representation restricts to a
non-degenerate one on Eπ .

(ii) Assume that (eα) is a left approximate unit for A. Then ξ ∈ Eπ if and only if π(eα)ξ → ξ. Equivalently (given
the first item), for any ξ ∈ E, the sequence π(eα)ξ converges to the orthogonal projection of ξ to Eπ .

Proof. The first item follows from the identity
〈
ξ, π(a)ζ

〉
=
〈
π(a∗)ξ, ζ

〉
. For the second, if π(eα)ξ → ξ, then

ξ ∈ Eπ by definition. For the converse, we may assume that ξ is of the form π(a)ζ. Then, by Fact 1.1:

∥π(eα)ξ − ξ∥ = ∥π(eαa)ζ − π(a)ζ∥ ≤ ∥eαa − a∥∥ζ∥ → 0. ■

If A does not have a unit, then the class of non-degenerate ∗-representations of A, presented naïvely as
above, need not be elementary, so something better needs to be done. The problem is that we cannot express
an infinite disjunction such as “there exists a ∈ A such that ξ is close to the image of π(a)”. We solve this by
using a many-sorted language: for each a ∈ A we shall have a sort Sa, consisting of the closure of the image of
the unit ball under π(a), and all that is left is to express the interactions between these sorts.

In what follows, by a symmetric convex space, we mean a complete convex subset of a Banach space closed un-
der opposite. Following [Ben09], a (bounded) symmetric convex space will be considered as a metric structure
in the language {0,−, x+y

2 }, where − is the unary opposite operation and x+y
2 is the binary average operation.

If E is a real Banach space and C ⊆ E is a symmetric convex set that generates a dense subset of E, then E can
be recovered from C. Linear maps can be recovered using the following easy result.

Lemma 1.4. Let E and F be real normed spaces, C ⊆ E a symmetric convex generating subset. Assume that f : C → F
is bounded in the sense that ∥ f (x)∥ < α∥x∥ for some α ∈ R. Then the following are equivalent:

(i) The map f respects the convex structure: f (0) = 0 and f ( x+y
2 ) = f (x)+ f (y)

2 .
(ii) The map f is additive: f (x + y) = f (x) + f (y) whenever x, y, x + y ∈ C.

(iii) The map f extends to a linear bounded map E → F.

Proof. (i) =⇒ (ii). For x ∈ C we have f (x/2) = f ( x+0
2 ) = f (x)+0

2 = f (x)/2. Therefore, if x, y, x + y ∈ C, then

f (x + y) = 2 f
(

x+y
2

)
= 2 f (x)+ f (y)

2 = f (x) + f (y).

(ii) =⇒ (iii). If f is additive on C, then it extends to an additive map E → F. Such a map is necessarily
Q-linear and bounded with the same constant α, so it is R-linear.

(iii) =⇒ (i). Immediate. ■

Definition 1.5. Let A be a Banach ∗-algebra, and π : A → B(E) a non-degenerate ∗-representation. We asso-
ciate to it a multi-sorted structure M = M(E, π) constructed as follows.

• For each a ∈ A, M admits a sort Sa = π(a)E≤1, where E≤1 denotes the unit ball of E.
• Each sort is equipped with the structure of a symmetric convex space, as well as with a symbol for

multiplication by i.
• For any a, b ∈ A, we name the restriction to Sa × Sb of the real part of the inner product: [ξ, ζ] =

Re⟨ξ, ζ⟩. Since one such predicate exists for each pair of sorts, we may sometimes write [·, ·]a,b.
• For any a, b ∈ A, the map π(a) : Sb → Sab is named by a function symbol πa.

All the symbols are bounded and uniformly continuous in a manner that does not depend on the choice
of (E, π), so these can all be viewed as structures in a common language, call it LA. Of course, the same
construction applies even if (E, π) has a degenerate part, but this degenerate part will not be reflected in any
way in the structure M(E, π).

We define TA to be the theory consisting of the following axiom schemes that we explain shortly. All the
axioms are either stated in continuous logic, or can easily be. Axioms (Conv) to (Complex) are universal, with
implicit universal quantifiers.
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Each Sa is a symmetric convex space of radius ≤ ∥a∥,(Conv)

[ξ, ζ] = [ζ, ξ],(Sym) [
ξ, ζ+ζ ′

2

]
= [ξ,ζ]+[ξ,ζ ′ ]

2 ,(Lin1)

[ξ, 0] = 0,(Lin2)

[ξ, ξ] = ∥ξ∥2,(Norm)
n

∑
i,j=1

[ξi, ξ j] ≥ 0,(Pos)

From here on, let ∥∑ ξi∥ be short for
√

∑[ξi, ξ j].∥∥∑ πaξi
∥∥ ≤ ∥a∥∥∑ ξi∥,(Pi1)

a 7→ πa is a ∗-morphism,(Pi2)

i : Sa → Sa respects all other symbols, i2ξ = −ξ,(Complex)

sup
ξi∈Sbi

inf
ζ∈Sa

∥∥∑ πaξi − ζ
∥∥ ≤

∣∣∥∥∑ ξi
∥∥− 1

∣∣ ∥a∥,(BallImg)

sup
ξ∈Sab

inf
ζ∈Sb

∥πaζ − ξ∥ = 0,(DenseImg)

sup
ξ∈Sa

inf
ζ∈Sb

∥ζ − ξ∥ ≤ ∥a − b∥.(HausDist)

Clearly, every structure of the form M(E, π) is a model of TA. Now let M be any model of TA, or, at a first
time, merely of (Conv) to (Complex).

(i) Axiom (Conv) requires that each sort Sa be a symmetric convex space of radius at most ∥a∥. This is
indeed expressible in continuous logic and the generated real normed space can be recovered, call it
Ea (see for example [Ben09]).

(ii) For each pair a, b ∈ A, axioms (Sym) to (Lin2) require [·, ·] on Sa × Sb to be symmetric and R-bilinear –
that it to say that it extends (uniquely) to an R-bilinear form on Ea × Eb, as per Lemma 1.4. By axiom
(Norm), it defines the norm on Ea.

(iii) Let F1 =
⊕

a∈A Ea. If ξ, ζ ∈ F1, say ξ = ∑ ξi and ζ = ∑ ζi where ξi, ζi ∈ Eai , let [ξ, ζ] = ∑i,j[ξi, ζ j]. This
defines a symmetric R-bilinear form on F1, and axiom (Pos) requires it to be positive semi-definite. It

follows that ∥∑ ξi∥ =
√

∑[ξi, ξ j] is a semi-norm. Let F0 ⊆ F1 be its kernel. Then F = F1/F0 with the
induced norm is a real Hilbert space.

(iv) Axiom (Pi1) implies, first of all, that πa : Sb → Sab ⊆ Eab ⊆ F is bounded:

∥πaξ∥ ≤ ∥a∥∥ξ∥.(1)

The axiom also implies that πa : Sb → F is additive, in the sense of Lemma 1.4, and therefore it extends
uniquely to an R-linear map Eb → F. These combine to a single R-linear map πa : F1 → F, and axiom
(Pi1) implies that this combined map also satisfies (1). Therefore it induces an operator σ(a) ∈ B(F)
of norm at most ∥a∥.

(v) Now that we have a map σ : A → B(F), we require it to be a ∗-morphism (with respect to the real
inner product [·, ·]). This consists of a long list of identities, which we chose to omit (axiom (Pi2)).

(vi) Axiom (Complex) means that multiplication by i is isometric and linear (Lemma 1.4 again), putting
a complex structure on F. Since i commutes with each πa, each σ(a) is C-linear. Following the con-
vention that a sesquilinear form is linear in the first argument and semi-linear in the second, we may
recover a complex inner product by ⟨ξ, ζ⟩ = [ξ, ζ] + i[ξ, iζ].

If (E, π) is a non-degenerate ∗-representation and M = M(E, π), then the isometric embeddings Sa =

π(a)E≤1 ↪→ F1 → F glue (by non-degeneracy) to a canonical isometric linear bijection E → F, which is the
desired isomorphism of ∗-representations (E, π) ∼= (F, σ) (if (E, π) is degenerate, then we recover its non-
degenerate part).

If M is an arbitrary model of (Conv) to (Complex), then we recover a ∗-representation (F, σ). However,
M(F, σ) need not be isomorphic to M, since we still need to say that Sa ⊆ F is exactly σ(π)F≤1. This will
follow from the three last axioms, provided we make one additional hypothesis regarding A: that for every
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a ∈ A there exists b ∈ A of norm one, such that ab is arbitrarily close to a. This holds, in particular, if A
admits a right approximate identity (eα) of norm one (in which case (e∗α) is a left approximate identity, and
(eα + e∗α − eαe∗α) is a two-sided approximate identity, albeit not necessarily of norm one).

(i) The inclusion Sa ⊇ σ(π)F≤1 is exactly axiom (BallImg).
(ii) For the opposite inclusion, let a ∈ A and ε > 0, and choose b ∈ A of norm one such that ∥a − ab∥ < ε.

By axioms (DenseImg) and (HausDist), for any ξ ∈ Sa there exists ζ ∈ Sb such that ∥πaζ − ξ∥ < ε, and
∥ζ∥ ≤ ∥b∥ = 1.

Putting this all together, we have proven the following.

Theorem 1.6. Let A be a Banach ∗-algebra. Assume that A admits an approximate one-sided identity of norm one, or
merely that every a ∈ A belong to aA≤1.

Then the class of non-degenerate ∗-representations of A can be identified with the class of models of TA, and therefore
may be considered to be an elementary class.

In particular, if A satisfies the hypotheses of Theorem 1.6, then the class of non-degenerate ∗-representations
of A is closed under the ultraproduct/ultrapower construction applied to LA-structures. This coincides with
the non-degenerate ultraproduct/ultrapower, as proposed in [CCS04, Section 4], obtained by taking the Banach
space ultraproduct/ultrapower of E (see Section 3), which is naturally a ∗-representation, and taking its non-
degenerate part.

2. CONTINUOUS UNITARY REPRESENTATIONS OF LOCALLY COMPACT GROUPS

Let G be a topological group, and let M(G) denote the space of regular complex Borel measures on G. For
every µ ∈ M(G) there exists a unique finite positive measure |µ| such that dµ = αd|µ|, where α : G → C is a
Borel function into the unit circle. We set the total variation of µ to be ∥µ∥ = |µ|(G). For µ, ν ∈ M(G) we may
define an involution and a convolution by

µ∗(g) = i∗µ, µ ∗ ν = m∗(µ ⊗ ν),

where m : G2 → G is the group law and i : G → G is inversion. It is easy to check that µ∗ and µ ∗ ν belong to
M(G), and that equipped with these two operations and with the norm ∥µ∥, M(G) is a Banach ∗-algebra.

For every g ∈ G we have a Dirac measure δg ∈ M(G), and δe is the unit of M(G). The map g 7→ δg is
injective and respects the algebraic structure: δ∗g = δg−1 , δg ∗ δh = δgh. (However, the norm topology on M(G)

induces the discrete topology on G under this identification.) In particular, G acts isometrically on M(G) on
either side by convolution with the Dirac measure:

f µh = δ f ∗ µ ∗ δh, ∥ f µh∥ = ∥µ∥.

A continuous (always unitary) representation of G consists of a Hilbert space E equipped with a continuous
unitary action G ↷ E, or equivalently, with a continuous morphism π : G → U(E), where U(E) is equipped
with the strong (equivalently, weak) operator topology. This means in particular that we may write gξ and
π(g)ξ interchangeably, when g ∈ G and ξ ∈ E. For a unitary action G ↷ E to be (jointly) continuous it suffices
that for each ξ ∈ E (separately), the map g 7→ gξ be continuous at the identity.

Any continuous representation of G in E can be extended naturally to a ∗-representation of M(G), by

π(µ) =
∫

G
π(g)dµ(g).

By this we mean that π(µ)ξ ∈ E is the unique vector such that〈
π(µ)ξ, ζ

〉
=
∫

G
⟨gξ, ζ⟩ dµ(g).(2)

We have ∥π(µ)∥ ≤ ∥µ∥ by Cauchy-Schwarz, giving rise to a map π : M(G) → B(E). It is easy to check that
π(µ∗) = π(µ)∗ and π(µ ∗ ν) = π(µ)π(ν), so π is indeed a ∗-representation. In addition, π(δg) = π(g), so this
representation extends the original one via our identification G ⊆ M(G).

Lemma 2.1. Let ξ ∈ E, and let µ ∈ M(G) be a probability measure concentrated on the set
{

g ∈ G : ∥gξ − ξ∥ ≤ r
}

.
Then ∥π(µ)ξ − ξ∥ ≤ r.

Proof. For all ζ ∈ E we have
∣∣⟨π(µ)ξ − ξ, ζ⟩

∣∣ ≤ r∥ζ∥ by a direct application of (2) and the hypotheses. ■

Let us add the hypothesis that G is locally compact, and choose a left Haar measure H. Then H( f Ah) =
∆(h)H(A), where ∆ : G → (R>0, ·) is the modular function on G, a group morphism that only depends on G.
We shall write dg for dH(g).
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We may identify φ ∈ L1(G) (with respect to H) with µφ ∈ M(G) defined by dµφ = φ dH. The map φ 7→ µφ

is a linear isometry, so L1(G) ⊆ M(G) is a Banach subspace. If φ, ψ ∈ L1(G), then (under the identification of
φ with µφ)

φ∗(g) = ∆(g−1)φ(g−1)

and

(ψ ∗ φ)(g) =
∫

G
ψ(h)φ(h−1g) dh =

∫
G

∆(h−1)ψ(gh−1)φ(h) dh.

More generally, for any φ ∈ L1(G) and µ ∈ M(G):

(µ ∗ φ)(g) =
∫

G
φ(h−1g) dµ(h), (φ ∗ µ)(g) =

∫
G

∆(h−1)φ(gh−1) dµ(h),

so

(δ f ∗ φ ∗ δh)(g) = ∆(h−1)φ( f−1gh−1).

In particular, L1(G) ⊆ M(G) is a ∗-subalgebra, so to every continuous representation (E, π) of G corre-
sponds a canonical ∗-representation of L1(G), through the restriction of the ∗-representation of M(G):

π(φ) =
∫

G
φ(g)π(g) dg.

The usefulness of this representation is due to the following classical fact:

Fact 2.2. Let φ ∈ L1(G). Then δ f ∗ φ ∗ δh → φ in L1(G) as f , h → e.

Proof. When φ is bounded, this follows from dominated convergence, and the general case follows by a density
argument. ■

Let (Uα) be a basis of compact neighbourhoods of 1, and let α ≤ β when Uα ⊇ Uβ. Let eα ∈ Cc(G) ⊆ L1(G)

be continuous, positive, of norm one, supported in Uα. Then as a net, (eα) is an approximate identity of L1(G),
that is to say that eα ∗ φ → φ and φ ∗ eα → φ (in norm) for every φ ∈ L1(G). If (E, π) is a continuous
representation of G, then π(eα)ξ → ξ for every ξ ∈ E (e.g., by Lemma 2.1). In particular, Eπ = E and
π : L1(G) → B(E) is non-degenerate.

Conversely, let π : L1(G) → B(E) be any non-degenerate ∗-representation. For any g ∈ G, the map φ 7→
δg ∗ φ is isometric. If ξ ∈ E, then π(eα)ξ → ξ by non-degeneracy, so π(δg ∗ eα)ξ must converge as well, call
its limit π(g)ξ or gξ. This defines a group morphism π : G → U(E). A combination of Fact 2.2 with the rate
of convergence of π(eα)ξ to ξ yields that g 7→ gξ is continuous at e for any fixed ξ ∈ E, so π : G → U(E) is a
continuous representation.

Fact 2.3. These operations are one the inverse of the other, yielding a bijective correspondence between continuous repre-
sentations of G on E and non-degenerate ∗-representations of L1(G) on E.

Proof. See Folland [Fol95, Theorem 3.11]. ■

Since L1(G) admits an approximate identity of norm one, the results of the previous section apply. In other
words, identifying a continuous representation of G with the corresponding representation of L1(G), and the
latter with the corresponding model of TL1(G), we may view the class of continuous representations of G as
elementary.

If G is discrete, a unitary representation of G can also be considered as a single-sorted structure, consisting
of the unit ball of a Hilbert space with each unitary operator π(g) (restricted to the unit ball) named in the
language (see for example by Berenstein [Ber07]). In this case, the Haar measure is (a multiple of) the counting
measure, and ∆ ≡ 1. Identifying g ∈ G with δg we have G ⊆ L1(G). Viewing a representation of G as an
LL1(G)-structure, the sort associated to δg is the entire unit ball, for any g ∈ G, and π(δh) acts on it as π(h)
for all h ∈ G. In other words, we may recover the single-sorted structure alluded to above as a reduct of the
LL1(G)-structure. Conversely, we can interpret the multi-sorted LL1(G)-structure in the single-sorted one. The
full details would involve more definitions than interesting results, so we shall omit them.
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3. ULTRAPRODUCT CONSTRUCTIONS

Let us discuss possible ultraproduct constructions for unitary actions. Throughout this discussion, I is a set
and U is an ultrafilter on I. Let ∏B

U Ei denote the Banach space ultraproduct of a family of Banach spaces,
possibly with additional structure.

In particular, if E = ∏B
U Ei and C = ∏B

U B(Ei), then C is again a C∗-algebra, and there is a natural isometric
embedding of C∗-algebras:

∏B

U
B(Ei) ⊆ B(E),

where [Ti] ∈ ∏B
U B(Ei) acts on E by [Ti][ξi] = [Tiξi].

If each (Ei, π) is a unitary representation (not necessarily continuous) of G, then (∏B
U Ei, πU ) is again such

a representation, where πU (g) =
[
πi(g)

]
∈ ∏B

U B(Ei) ⊆ B(E). We call this the naïve ultraproduct. Even if
each Ei is a continuous representation, the naïve ultraproduct need not be so. In the literature one finds two
main ideas for remedying this deficiency.

First, any unitary representation admits a continuous part:

Definition 3.1. Let E be a Hilbert space, and G → U(E) a unitary representation, not necessarily continuous.
We define Ec to consist of all ξ ∈ E for which the map g 7→ gξ is continuous. We call it the continuous part of
the unitary representation E.

In particular, if (Ei) are unitary representations (say, continuous, but this is not required for this definition),
we define the continuous ultraproduct as

∏c

U
Ei =

(
∏B

U
Ei

)c

.

The following is easy:

Fact 3.2. With the hypotheses of Definition 3.1, Ec is a Hilbert subspace of E. It is moreover G-invariant, and the
restricted representation G → U(Ec) is continuous.

In particular, the continuous ultraproduct of (continuous) unitary representations of G is a continuous unitary repre-
sentation.

For a slightly different, a priori stronger, approach, recall that a semi-norm on G is a function ρ : G → R+

satisfying ρ(1) = 0 and ρ(g−1 f ) ≤ ρ(g) + ρ( f ). It is a norm if ρ(g) = 0 implies g = 1. Let us write {ρ < ε} for{
g ∈ G : ρ(g) < ε

}
. A semi-norm is continuous if and only if {ρ < ε} is a neighbourhood of 1 for all ε > 0. In

particular, if ρ′ ≤ ρ are semi-norms and ρ is continuous, then so is ρ′.
Whenever a group G acts on a metric space X by isometry, every x ∈ X gives rise to a semi-norm ρx(g) =

d(x, gx). We encounter semi-norms of this form regularly. For example, we can restate Fact 2.2 as:

Fact 3.3. Let φ ∈ L1(G). Then ρφ(g) = ∥gφ − φ∥1 is a continuous semi-norm.

Similarly, if E is a unitary representation and ξ ∈ E, then ξ ∈ Ec if and only if ρξ(g) = ∥gξ − ξ∥ is continuous.

Definition 3.4. Let (Ei : i ∈ I) be continuous unitary representations of E. We define their equicontinuous
ultraproduct, denoted ∏ec

U Ei, to consist of all ξ = [ξi] ∈ ∏B
U Ei such that for some continuous semi-norm ρ,

we have ρξi ≤ ρ for all (or equivalently, U -many) i, as well as the limits of such:

∏ec

U
Ei =

{
[ξi] ∈ ∏B

U
Ei : ρξi ≤ ρ for some common continuous semi-norm ρ

}
.

It is clear that ∏ec
U Ei is a G-invariant Hilbert space, and if ρξi ≤ ρ for some continuous ρ and all i, then

ρξ ≤ ρ as well. Therefore:

∏ec

U
Ei ⊆ ∏c

U
Ei ⊆ ∏B

U
Ei.

Proposition 3.5. Assume that G is locally compact. Let (Ei, πi) be continuous representations for i ∈ I, and let
E = ∏B

U Ei. Each πi extends to a ∗-morphism πi : M(G) → B(Ei), giving rise to π : M(G) → ∏B
U B(Ei) ⊆ B(E).

In addition, since ∏c
U Ei = Ec is a continuous representation, it gives rise to a ∗-morphism σ : M(G) → B(Ec). Then

the following are equivalent for ξ ∈ E:
(i) ξ ∈ Ec and π(φ)ξ = σ(φ)ξ for all φ ∈ L1(G).
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(ii) ξ belongs to the non-degenerate part of the ∗-representation π : L1(G) → B(E) (i.e., to the non-degenerate
ultraproduct in the sense of [CCS04]).

(iii) ξ ∈ ∏ec
U Ei.

Proof. (i) =⇒ (ii). Let (eα) be any approximate identity of norm one in L1(G). Since σ : G → U(Ec) is continu-
ous, the ∗-representation σ : L1(G) → B(Ec) is non-degenerate. Therefore π(eα)ξ = σ(eα)ξ → ξ, so ξ is in the
non-degenerate part of π : L1(G) → B(E).

(ii) =⇒ (iii). Assume that ξ = π(φ)ζ for φ ∈ L1(G) and ζ = [ζi] in E. We may assume that ∥ζi∥ ≤ ∥ζ∥ for
all i, and that ξ = [ξi], where ξi = πi(φ)ζi. Then ρξi < ∥ζi∥ρφ ≤ ∥ζ∥ρφ, and ξ ∈ ∏ec

U Ei. Since ∏ec
U Ei is

complete, this is enough.
(iii) =⇒ (i). Finally, let ξ ∈ ∏ec

U Ei ⊆ ∏c
U Ei, and let φ ∈ L1(G). We need to show that π(φ)ξ = σ(φ)ξ.

The latter is a closed condition in both ξ and φ. We may therefore assume that ξ = [ξi], ρ is a continuous
semi-norm, ρξi ≤ ρ for all i (and therefore ρξ ≤ ρ), and that φ has compact support. Let ε > 0. By a partition of
unity argument, we can express φ as a finite sum ∑m<n φm, where the φm are supported on disjoint sets, each
contained in a single translate gm{ρ < ε}. Then, by Lemma 2.1, we have∥∥∥∥∥σ(φ)ξ − ∑

m<n
∥φm∥gmξ

∥∥∥∥∥ ≤ ∑
m<n

∥∥∥σ(φm)ξ − ∥φm∥gmξ
∥∥∥ ≤ ∑

m<n
ε∥φm∥ = ε∥φ∥.

By the same argument, for all i we have∥∥∥∥∥πi(φ)ξi − ∑
m<n

∥φm∥gmξi

∥∥∥∥∥ ≤ ε∥φ∥,

and therefore, in the ultraproduct, ∥∥∥∥∥π(φ)ξ − ∑
m<n

∥φm∥gmξ

∥∥∥∥∥ ≤ ε∥φ∥.

It follows that ∥σ(φ)ξ − π(φ)ξ∥ ≤ 2ε∥φ∥, and since ε was arbitrary, σ(φ)ξ = π(φ)ξ. ■

This means in particular that the non-degenerate ultraproduct of ∗-representations of L1(G) and the
equicontinuous ultraproduct of representations of G are, in essence, the same construction.

Question 3.6. Find an example where ∏ec
U Ei ⊊ ∏c

U Ei (or show that this can never happen).

4. PROPERTY (T)

Suppose that G is a topological group, Q ⊆ G, and ε > 0. Let E be a unitary representation of G.
A vector ξ ∈ E is (Q, ε)-invariant if supg∈Q ∥gξ − ξ∥ < ε∥ξ∥. Note, in particular, that a (Q, ε)-invariant

vector must be nonzero. We say that ξ ∈ E is G-invariant if gξ = ξ for all g ∈ G. We say that (Q, ε) is a Kazhdan
pair for G if, whenever E is a unitary representation of G with a (Q, ε)-invariant vector, then E has a nonzero
G-invariant vector. If there is ε > 0 such that (Q, ε) is a Kazhdan pair for G, then we say that Q is a Kazhdan set
for G. Finally, G is said to have property (T) if it has a compact Kazhdan set.

Fact 4.1. A locally compact group G with property (T) is compactly generated. Moreover, if Q ⊆ G has non-empty
interior, then it is generating if and only if it is a Kazhdan set.

Proof. See [BdlHV08, Theorem 1.3.1 and Proposition 1.3.2]. ■

For each φ ∈ L1(G), we let

Fixφ = {ξ ∈ Sφ : gξ = ξ for all g ∈ G}.

For φ ∈ L1(G) and m ∈ N, define an open neighbourhood of the identity by

Uφ,m =
{

g ∈ G : ∥φ − gφ∥1 < 2−m} .

For K ⊆ G compact, choose Kφ,m ⊆ K finite so that K ⊆ Kφ,mUφ,m.
Consider continuous unitary representations of G, as models of TL1(G), in the language LL1(G), as described

in Section 1. Let

αK,φ,m(x) = max
g∈Kφ,m

d(x, gx), ΦK,φ(x) = sup
m

2−mαK,φ,m(x).

Both are definable predicates in a single variable x of sort Sφ.
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If E is such a representations and ξ ∈ Fixφ, then ΦK,φ(ξ) = 0. Conversely, if ξ ∈ Sφ and ΦK,φ(ξ) = 0, then
gξ = ξ for all g ∈ K. In particular, if K is a compact generating set, then

ξ ∈ Fixφ ⇐⇒ ΦK,φ(ξ) = 0.

Theorem 4.2. Suppose that G is a compactly generated locally compact group. Then G has property (T) if and only if,
for each φ ∈ L1(G), we have that Fixφ is a definable subset of Sφ in the sense of the theory TL1(G).

Proof. First suppose that G has property (T). Let K be a compact generating set for G, and let φ ∈ L1(G) be
arbitrary. Since the result is trivial for φ = 0, we assume that φ ̸= 0. By Fact 4.1, K is a Kazhdan set for G.

Let ε > 0 be such that (K, ε) is a Kazhdan pair for G. We already know that Fixφ is the zero-set of ΦK,φ, and
we need to show that if ΦK,φ(ξ) is small, then ξ is close to Fixφ. Indeed, assume that ΦK,φ(ξ) < 2−2m−2. Then
αK,φ,m+1(ξ) < 2−m−1. Let f ∈ K. Then f = gh, where g ∈ Kφ,m+1 and h ∈ Uφ,m+1. The former implies that
∥ξ − gξ∥ < 2−m−1, and the latter that ∥ξ − hξ∥ < 2−m−1. Since the action of g is isometric,

∥ξ − f ξ∥ ≤ ∥ξ − gξ∥+ ∥gξ − ghξ∥ ≤ ∥ξ − gξ∥+ ∥ξ − hξ∥ < 2−m.

In other words, ξ is (K, 2−m)-invariant. By [BdlHV08, Proposition 1.1.9] there exists a G-invariant vector ζ ∈ E
such that ∥ξ − ζ∥ ≤ ∥ξ∥

2mε and ∥ζ∥ ≤ ∥ξ∥ ≤ ∥φ∥1. The latter, together with the fact that ζ is fixed, implies that
ζ ∈ Sφ, so ζ ∈ Fixφ. Thus indeed, if ΦK,φ(ξ) is sufficiently small, then ξ is as close as desired to Fixφ.

For the converse implication, let us fix a compact generating K for G, with non-empty interior. Set φ =
1K

H(K) ∈ L1(G). Then by hypothesis, Fixφ is definable in Sφ, and we shall prove that (K, ε) is a Kazhdan pair
for G for ε > 0 small enough. Let µ ∈ M(G) be such that dµ = φdH. This is a probability measure on
G concentrated on K. Since Fixφ is a definable set and equals the zeroset of Φφ, there is δ > 0 such that, if
Φφ(ξ) < δ, then d(ξ, Fixφ) <

1
2 . Take ε > 0 small enough so that if ξ ∈ Sφ is (K, 3ε)-invariant, then Φφ(ξ) < δ.

Now suppose that ξ is a (K, ε)-invariant unit vector, and let ξ̂ = π(φ)ξ. By Lemma 2.1, ∥ξ̂ − ξ∥ ≤ ε, so ξ̂ is a
(K, 3ε)-invariant vector. Since ξ̂ ∈ Sφ, it follows that Φφ(ξ̂) < δ, whence d(ξ̂, Fixφ) < 1

2 . If ζ ∈ Fixφ is such
that d(ξ̂, ζ) < 1

2 , then d(ξ, ζ) < ε + 1
2 . We may assume that ε < 1

2 , so ζ ̸= 0. We have thus found a nonzero
G-invariant vector, which shows that (K, ε) is a Kazhdan pair for G. ■
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