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Abstract. We study model theoretic properties of valued �elds (equipped with a real-valued multiplicative
valuation), viewed as metric structures in continuous �rst order logic.

For technical reasons we prefer to consider not the valued �eld (K, |·|) directly, but rather the associated
projective spaces KPn, as bounded metric structures.

We show that the class of (projective spaces over) metric valued �elds is elementary, with theory MV F ,
and that the projective spaces Pn and Pm are biïnterpretable for every n,m ≥ 1. The theory MV F admits
a model completion ACMV F , the theory of algebraically closed metric valued �elds (with a non trivial
valuation). This theory is strictly stable (even up to perturbation).

Similarly, we show that the theory of real closed metric valued �elds, RCMV F , is the model companion
of the theory of formally real metric valued �elds, and that it is dependent.

1. The theory of metric valued fields

Let us recall some terminology from Berkovich [Ber90]. A semi-normed ring is a unital commutative ring
R equipped with a mapping |·| : R→ R≥0 such that

(i) |1| = 1,
(ii) |xy| ≤ |x||y|,
(iii) |x+ y| ≤ |x|+ |y|.

If |x| = 0 =⇒ x = 0 then |·| is a norm. A semi-norm is multiplicative if |xy| = |x||y|. A multiplicative norm
is also called a valuation. Thus, a valued �eld is equipped with a natural metric structure d(x, y) = |x− y|.
In some contexts, a valuation is allowed to take values in Γ∪{0} where (Γ, ·) is an arbitrary ordered Abelian
group and 0 < Γ, but this will not be the case in the present text. When we wish to make this explicit we
shall refer to our �elds as metric valued �elds.

If K is a complete valued �eld then either K ∈ {R,C} and |·| is the usual absolute value to some power
(in which case |·| is Archimedean) or |x + y| ≤ |x| ∨ |y| (|·| is non Archimedean, or ultra-metric). From a
model theoretic point of view, Archimedean valued �elds, being locally compact, resemble �nite structures
of classical logic and are thus far less interesting than their ultra-metric counterparts. On the other hand,
while everything we do here applies to arbitrary valued �elds, including Archimedean ones, restricting our
attention to the ultra-metric case does allow us many simpli�cations. Thus, with very little loss of generality,
we shall only consider ultra-metric valued �elds.

Convention 1.1. Throughout, unless explicitly stated otherwise, by a valued �eld we mean a non
Archimedean one.

The valuation is said to be trivial if |x| = 1 for every x 6= 0. It is discrete if the image of |·| on K×

is discrete. Clearly every trivial valuation is discrete. On the other hand, a non trivial valuation on an
algebraically (or separably) closed �eld cannot be discrete.

A non trivially valued �eld is unbounded as a metric space, and therefore does not �t in the framework
of standard bounded continuous logic. One device we use quite often with Banach space structures (Banach
spaces, Banach lattices, and so on) is to restrict our attention to the structure formed by the closed unit ball.
This approach may seem natural for valued �elds as well, since the unit ball is simply the corresponding
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valuation ring. However, in the case of a non discrete valuation this approach is not adequate, as shown by
the following result.

Proposition 1.2. Let (K, |·|) be a �eld equipped with a non discrete valuation, and let R = (R, 0, 1,−,+, ·, |·|)
be its valuation ring. Then R cannot be saturated as a metric structure (i.e., in the sense of continuous logic).
In fact, it cannot even realise every type over ∅.

Proof. Since R is not discrete we can �nd for each n an element an ∈ R such that 1− 2−n < |an| < 1. Such
an element is not invertible in R, and worse, for every b ∈ R we have |anb| < |b| ≤ 1, whereby |anb− 1| = 1.
In other words, each an satis�es the assertion that infy |xy − 1| = 1. Thus in an ultra-power of R there
exists a such that |a| = infy |ay − 1| = 1. Since every element of R of value 1 is invertible, such an element
cannot exist in R. �1.2

Therefore, if we are to hope for a reasonable model theoretic treatment of valued �elds, the entire �eld
should be considered as an unbounded structure. Unbounded metric structures are discussed in [Ben08a],
where we also introduce an emboundment process whereby unbounded structures can be turned into bounded
ones through the addition of a single point at in�nity. In the case of a valued �eld, the resulting structure
can be naturally identi�ed (as a set of points) with the projective line, which is a natural object in itself.
For our purposes it will be more convenient to consider the projective line directly, rather than as the
emboundment of the �eld (and one can check that the two structures are interde�nable). As in the general
case of emboundment, even though the �eld language contains function symbols, these do not pass on to the
projective line. Indeed, the addition map

(
[x : 1], [y : 1]

)
7→ [x + y : 1] is ill de�ned at

(
[1 : 0], [1 : 0]

)
, and

similarly
(
[x : 1], [y : 1]

)
7→ [xy : 1] is ill de�ned at

(
[0 : 1], [1 : 0]

)
. We shall therefore have to do, at least for

the time being, with a purely relational language (this will be remedied later on when we consider projective
spaces of higher dimension).

We recall that the projective n-space over a �eld K is the quotient (Kn+1 r {0})/K×. The class of
(a) = (ai) = (a0, . . . , an) is denoted a = [a] = [ai] = [a0 : . . . : an]. Dividing by a coordinate with maximal
value we see that any member of KPn can be written as [ai] where

∨
|ai| = 1. From now on we shall assume

that all the representatives are of this form, which determines them up to a multiplicative factor from the
group {x ∈ K : |x| = 1} = ker |·|.
Notation 1.3. Let X̄ = (X0, . . . , Xn−1) denote n formal unknowns. We let X̄∗ denote a copy of X̄, and let
Zh[X̄] ⊆ Z[X̄, X̄∗] denote the ring of polynomials in X̄, X̄∗ which are homogeneous in each pair (Xi, X

∗
i )

separately (which is stronger than being homogeneous in all the variables simultaneously). For a polynomial
Q(X̄, X̄∗) ∈ Zh[X̄] let Q̄(X̄) = Q(X̄, 1̄) ∈ Z[X̄].

For P (X̄) ∈ Z[X̄] let degX̄ P = (degX0
P, . . . , degXn−1

P ) ∈ Nn and let P ∗(X̄∗) = (X̄∗)degX̄ P =∏
(X∗i )degXi

P ∈ Z[X̄∗], Ph(X̄, X̄∗) = P ( X̄
X̄∗

)P ∗(X̄∗). Then Ph ∈ Z[X̄, X̄∗] is unique such that P = Ph

and no X∗i can be factored out of Ph. We call Ph the homogenisation of P and observe that P 7→ Ph is
multiplicative. Conversely, every Q ∈ Zh[X̄] can be written uniquely as Q̄h · (X̄∗)α(Q), where α(Q̄) ∈ Nn is
a multi-exponent.

We now have everything we need to de�ne the language and theory of (projective lines of) metric valued
�elds in ordinary (i.e., bounded) continuous logic, as presented in [BU10] or [BBHU08].

De�nition 1.4. We de�ne the language LP1 to consist of a constant symbol ∞ and one n-ary, [0, 1]-valued
predicate symbol ‖P (x̄)‖ for each n and each polynomial P ∈ Z[X0, . . . , Xn−1]. (There is some abuse of
notation here, since P does not determine n but this will not cause any problems.)

De�nition 1.5. For a valued �eld (K, |·|), we view KP1 as an LP1-pre-structure by:

∞ := [1 : 0], ‖P (ā)‖ := |Ph(ā, ā∗)|, d(a,b) := ‖a− b‖ = |ab∗ − a∗b|.
This is independent of the choice of representatives, keeping mind that we only consider representatives for
[a : a∗] ∈ KP1 such that |a| ∨ |a∗| = 1.

We observe that |a∗| = ‖a − ∞‖ = d(a,∞), and we shall use ‖x∗‖ as an abbreviation for the formula

d(x,∞). For P (X̄) ∈ Z[X̄] we have |P ∗(ā∗)| =
∏
|a∗i |

degXi
P , and we shall similarly use ‖P ∗(x̄)‖ as an

abbreviation for
∏
‖x∗i ‖

degXi
P . We notice that ‖P (ā)‖ = |P (ā)|‖P ∗(ā)‖ (if ai ∈ K ⊆ KP1 whenever

degXi
P > 0 then this makes sense, and otherwise ‖P ∗(ā)‖ = 0, and the identity still makes sense).
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De�nition 1.6. We de�ne MV F , the theory of projective lines over metric valued �elds, to consist of the
following axioms. In axiom (Perm), σ ∈ Sn is a permutation and (X0, . . . , Xn−1)σ = (Xσ0, . . . , Xσ(n−1)).

‖x‖ ∨ ‖x∗‖ = 1(Norm)

‖P (x̄)‖ = ‖Q(x̄σ, ȳ)‖
(
P (X̄) = Q(X̄σ, Ȳ )

)
(Perm)

‖x̄∗‖α‖P (x̄)‖ ≤ ‖x̄∗‖β‖Q(x̄)‖ ∨ ‖x̄∗‖γ‖R(x̄)‖
(
(X̄∗)αPh = (X̄∗)βQh − (X̄∗)γRh

)
(Ult)

‖(PQ)(x̄)‖ = ‖P (x̄)‖‖Q(x̄)‖(Prod)

d(x, y) = ‖x− y‖(Dist)

∃y ‖P (x̄, y)‖ = 0
(
degY P (X̄, Y ) = 1

)
(Lin)

Axioms are universally quanti�ed, so axiom (Norm), for example, should be understood as the sentence
supx

∣∣1− ‖x‖ ∨ ‖x∗‖∣∣ (where we recall the convention of continuous logic, that zero is �True�), and similarly
for the other axioms which appear quanti�er-free. In the last axiom, the existential quanti�er should be
understood in the approximate sense: there exists y such that ‖P (x̄, y)‖ is as close as desired to zero, or
formally, supx̄ infy ‖P (x̄, y)‖. In continuous logic one simply cannot express directly the existence of some
y such that something holds precisely (e.g., such that ‖P (x̄, y)‖ is precisely zero), although in concrete
situations one can prove that approximate existence implies precise existence, as is the case with Lemma 1.7
below.

It follows immediately from the axioms that ‖P‖ = ‖−P‖ and ‖∞‖ = 1.

Lemma 1.7. Assume thatM �MV F . Then for every P,Q ∈ Z[X̄] and every ā ∈Mn, if ‖P (ā)‖‖Q∗(ā)‖ 6=
0 then there exists a unique b ∈ M such that ‖P (ā)b − Q(ā)‖ = 0, i.e., ‖R(ā, b)‖ = 0 where R = PY − Q.
Moreover, this b is distinct from ∞.

Proof. Let α = degX̄ Q−. degX̄ P , β = degX̄ P −. degX̄ Q, so R
h = (X̄∗)αPhY − (X̄∗)βY ∗Qh. Then

(X̄∗)α
[
(Y − Z)P

]h
= Z∗R(X̄, Y )h − Y ∗R(X̄, Z)h.

By the ultra-metric axiom (Ult):

d(y, z) ≤ ‖R(ā, y)‖‖z∗‖ ∨ ‖R(ā, z)‖‖y∗‖
‖P (ā)‖‖ā∗‖α

≤ ‖R(ā, y)‖ ∨ ‖R(ā, z)‖
‖P (ā)‖‖Q∗(ā)‖

.

Uniqueness follows. By the linear solution axiom (Lin) there exists a sequence (bn) such that ‖P (ā)bn −
Q(ā)‖ → 0. It follows from our argument above that this is a Cauchy sequence, and its limit b is a solution.
Finally, ‖R(ā,∞)‖ = ‖P (ā)‖‖ā∗‖α 6= 0, so b 6=∞. �1.7

When b is as in the lemma we write b = Q(ā)
P (ā) , and if P = 1 we write b = Q(ā).

Theorem 1.8. An LP1-structure is a model of MV F if and only if it is isomorphic to KP1 for some
complete valued �eld K.

Proof. Only one direction requires a proof. Assume therefore that M � MV F . Let K = M r {∞}. For
a, b ∈ K, and with the notation above, a + b = a+b

1 is the unique solution for ‖Y − a − b‖ = 0. We may

similarly de�ne ab, −a, as well as the constants 0 and 1, and since ‖a∗‖ 6= 0 we may also de�ne |a| = ‖a‖
‖a∗‖ .

Let us check that (K, 0, 1,−,+, ·, |·|) is a valued �eld. For this purpose, we shall use brackets to enclose
expressions involving the �eld operations of K, whereas expressions outside brackets correspond to polyno-
mials over Z. Axiom (Perm) ensures that we need not worry about the order of variables in a polynomial
nor about dummy variables, and will be used implicitly throughout.

In order to see that addition is associative, for example, observe that

X∗(W − Y − Z − T )h = Y ∗Z∗(W −X − T )h +W ∗T ∗(X − Y − Z)h.

Then by (Ult) and the fact that ‖P‖ = ‖ − P‖, that for all a, b, c ∈ K,∥∥[a+ b]∗
∥∥∥∥[(a+ b) + c]− a− b− c

∥∥ = 0 =⇒
∥∥[(a+ b) + c]− a− b− c

∥∥ = 0.
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A similar argument yields
∥∥[a+ (b+ c)]− a− b− c

∥∥ = 0. It follows from the uniqueness clause of Lemma 1.7
that [(a+ b) + c] = [a+ (b+ c)]. Similarly,

X∗(W − Y ZT )h = Y ∗Z∗(W −XT )h +W ∗(XT − Y ZT )h.

Using also axiom (Prod) we obtain
∥∥[(ab)c] − abc

∥∥ = 0, and similarly
∥∥[a(bc)] − abc

∥∥ = 0, concluding that
[(ab)c] = [a(bc)].

Proceeding in this manner, we show that
∥∥[P (ā)]− P (ā)

∥∥ = 0 for every ā ∈ K, polynomial P (X̄) ∈ Z[X̄]
and ring language term [P ] which evaluates to P in rings. In particular [P (ā)] only depends on P and not
on the choice of [P ], whence it follows that K is a ring. If a ∈ K r {0} then ‖a‖ = ‖a − 0‖ > 0, so b = 1

a

exists. Thus
∥∥[ab]− 1

∥∥= 0 =
∥∥[1]− 1

∥∥, whereby ∥∥[ab]− [1]
∥∥= 0 and [ab] = [1], so K is a �eld.

The identity
∥∥[P (ā)] − P (ā)

∥∥ = 0 also implies that
∥∥P ∗(ā)

∥∥∥∥[P (ā)]
∥∥ =

∥∥[P (ā)]∗
∥∥∥∥P (ā)

∥∥, or ∣∣[P (ā)]
∣∣ =

‖P (ā)‖
‖P∗(ā)‖ . By axiom (Prod) it follows that |[ab]| = ‖a‖‖b‖

‖a∗‖‖b∗‖ = |a||b|. Similarly, with axiom (Ult) we have

|[a+b]| = ‖a+b‖
‖a∗|‖b∗‖ ≤

‖b∗‖‖a‖+‖a∗‖‖b‖
‖a∗|‖b∗‖ = |a|+ |b|. It follows that K is a valued �eld, and that the interpretation

of the symbols ‖P‖ is as intended, completing the proof. �1.8

The problem with extending multiplication to the projective line arises with expressions close to 0 · ∞,
i.e., when trying to multiply points which are close to 0 with points which are close to ∞. This situation
cannot happen when taking powers, and indeed,

Lemma 1.9. For n ∈ Z, the operation x 7→ xn is uniformly de�nable in models of MV F . This is under the
convention that 00 =∞0 = 1, ∞n =∞ for n > 0, and ∞n = 0, 0n =∞ for n < 0.

Proof. Indeed, an = [an : (a∗)n] and |an| ∨ |(a∗)n| = 1. It follows that d(y, xn) = ‖xn − y‖, and similarly
d(y, x0) = ‖y∗‖, d(y, x−n) = ‖1− xny‖. �1.9

It is natural to ask whether other projective spaces KPn, for n > 1, have more (or less) structure than the
projective line. In order to give a precise meaning to this question, we should �rst de�ne the projective spaces
as metric structures. It will be most convenient to de�ne the entire family (KPn)n as a single multi-sorted
structure KP.

De�nition 1.10. The signature LP consists of ℵ0 many sorts {Pn}n∈N. They are equipped with the
following symbols:

• For each n,m a function symbol ⊗ : Pn ×Pm → Pn+m+nm.
• For each A ∈ SLn+1(Z) (or in some generating subset), a function symbol A : Pn → Pn.
• For each n a predicate symbol ‖·‖ on Pn.

De�nition 1.11. Let (K, |·|) be any valued �eld. We de�ne an LP-pre-structure KP as follows:

• The sort Pn consists of the projective space KPn, namely the quotient of Kn+1 r {0} by K×. The
equivalence class of (a0, . . . , an) will be denoted a = [a] = [ai]i = [a0, . . . , an]. We may, and shall,
assume that each representative satis�es

∨
|ai| = 1.

• For n,m ∈ N, we �x some natural isomorphism Kn+1⊗Km+1 ∼= K(n+1)(m+1), say the one given by
(a⊗b)i+(n+1)j = aibj . We then interpret ⊗ as the Segre embedding [a]⊗[b] = [a⊗b] = [aibj ]i≤n,j≤m.

• For A ∈ SLn+1(Z), the corresponding function symbol acts on KPn naturally via its action on
Kn+1 r {0}.

• We interpret: ∥∥a∥∥ = |a0|.

• The distance on KPn is interpreted as:

d(a,b) =
∨

i<j<n

|aibj − ajbi|.

Notice that on KP1, the interpretation of ‖x‖ and d(x, y) is consistent with that given in De�nition 1.5.

We need check that the distance de�ned above is indeed an ultra-metric distance function. Clearly it
only depends on the equivalence classes a and b. One checks easily that d(a,b) = 0 if and only if a = b.
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Symmetry is immediate. We are left with checking the ultra-metric triangle inequality. Let a,b, c ∈ KPn,
and �x j0 such that |bj0 | = 1. For all i and k we then have:

|aick − akci| = |aibj0ck − aj0bick + aj0bick − aj0bkci + aj0bkci − akbj0ci|
≤ |ck||aibj0 − aj0bi| ∨ |aj0 ||bick − bkci| ∨ |ci||aj0bk − akbj0 |
≤ d(a,b) ∨ d(b, c).

In order to show that Pn is interpretable in P1 we shall attempt to repeat the standard trick of covering
Pn with n + 1 a�ne charts. The problem is that An is not de�nable, or even type-de�nable, in P, so we
shall have to make do with n + 1 copies of (P1)n instead. As above, a point a ∈ P1 is viewed as [a : a∗]
where |a| ∨ |a∗| = 1. It is either equal to ∞ = [1 : 0] or else can be identi�ed with a

a∗ ∈ K. Agreeing that

|∞| =∞ we have |a| ≤ 1 if and only if |a∗| = 1. As in Lemma 1.9 we also have a−1 = [a∗ : a].

Let M = n(n+1)
2 . Given a tuple ā = (aij)i<j≤n ∈ (P1)M let aii = 1 = [1 : 1] and aji = a−1

ij , and consider
the matrix

(
aij
)
i,j≤n =



1 a0,1 · · · a0,n

a−1
0,1 1 · · · a1,n

1
...

... 1
...

1
a−1

0,n a−1
1,n · · · 1


(1)

Intuitively, we wish to consider such matrices whose rows represent identical points in the standard a�ne
charts for Pn, i.e., such that

[1 : a0,1 : . . . : a0,n] = [a1,0 : 1 : a1,2 : . . . : a1,n] = . . . = [an,0 : . . . : an,n−1 : 1].

These precise identities are meaningless, since some of the aij may be ∞, but we may nonetheless express
them formally by the system of equations

XijXjk = Xik (i < j < k ≤ n),

which are homogenised into

XijXjkX
∗
ik = XikX

∗
ijX

∗
jk (i < j < k ≤ n).

The following asserts that the solutions to these equations form a well-behaved (de�nable) set, and that
this set coversPn. We recall from [BBHU08] or [Ben10, Fact 1.7] that in continuous logic, a subsetX ⊆Mn is
called a de�nable set if it is closed and the distance predicate d(X, x̄) is de�nable. This has several equivalent
characterisations, among which the existence of a de�nable predicate ϕ(x̄) such that d(X, x̄) ≤ ϕ(x̄) and
such that the zero set of ϕ is exactly X. That the latter property implies the former uses quanti�cation, and
when dealing with quanti�er-free de�nability the two properties need no longer be equivalent. The latter
one is more robust, and in particular can be shown to still hold if we replaced the ambient distance with an
equivalent de�nable one, so it is it we shall use.

De�nition 1.12. We shall say that a set X is quanti�er-free de�nable if there exists a quanti�er-free
de�nable predicate (i.e., a uniform limit of quanti�er-free formulae) ϕ(x̄) such that, �rst, X is the zero set
of ϕ, and second, d(X, x̄) ≤ ϕ(x̄).

Lemma 1.13. Let E ⊆ (P1)M consist of all tuples satisfying the homogeneous equations above.

(i) The set E is quanti�er-free de�nable.
(ii) For every tuple ā ∈ E there exists ` ≤ n such that in the `th row of the matrix (1) all entries are

�nite of value ≤ 1.
(iii) Let ` be as in the previous item, and let b ∈ Pn be the class of the `th row, i.e., b = [a`,0 : . . . :

a`,`−1 : 1 : a`,`+1 : . . . : a`,n]. Then b is the unique solution for the following system of homogeneous
equations

aijYi = a∗ijYj (i < j).

Conversely, every b ∈ Pn arises in this manner (for some ā ∈ E).
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Proof. We de�ne

ϕ(x̄) =
∨

i<j<k

‖xijxjk − xik‖.

Then E is the zero set of ϕ, and we claim that d(x̄, E) ≤ ϕ(x̄), which is enough for the �rst item. Indeed,
assume that ā /∈ E, so ϕ(ā) = r > 0, and we wish to show that d(ā, E) ≤ r. If r = 1 then there is nothing to
show. We may therefore assume that r < 1. It will be convenient to work with the entire matrix (1) rather
than with its upper triangle. Observe that passing to the whole matrix does not change our basic hypothesis,
i.e.,

∨
i<j<k≤n ‖aijajk − aik‖ =

∨
i,j,k≤n ‖aijajk − aik‖. If we apply a permutation of n+ 1 both to the rows

and columns of the matrix, the resulting matrix will still have the same properties (namely aij = a−1
ji and∨

i,j,k≤n ‖aijajk − aik‖ ≤ r).
We �rst claim that if ϕ(ā) = r < 1 then the matrix possesses a row, say the `th, such that |a`j | ≤ 1 for all

j ≤ n. In order to prove the claim it will be enough to show that if the ith row does not have this property,
say because |aij | > 1, then in the jth row there are strictly more entries than in the ith with value ≤ 1.
Indeed, assume that |aik| ≤ 1 and let us show that |ajk| ≤ 1 as well. By assumption we have

|aijajka∗ik − aika∗ija∗jk| = ‖aijajk − aik‖ ≤ r < 1.

We also assume that |a∗ik| = 1 and |a∗ij | < 1 = |aij |, whereby |aijajka∗ik| = |ajk| and |aika∗ija∗jk| ≤ |a∗ij | < 1.

Since the di�erence has value < 1 we must have |ajk| < 1 as well, so |a∗jk| = 1 and |ajk| = |ajk| < 1. In

addition we have |ajj | = 1 < |aij |, which is one more, so our claim is proved.
We next claim that applying a permutation of rows and columns as described earlier, the entire upper

triangle can be assumed to consist of elements of value ≤ 1. Indeed, by the previous claim we may assume
that |a0i| ≤ 1 for all i and then proceed by induction on n to treat the matrix (aij)1≤i,j≤n.

We are now at a situation where |aij | ≤ 1 if i < j (and |aij | ≥ 1 if i > j). We observe that if a,b, c ∈ P1

all have values ≤ 1 then the product ab = [ab : a∗b∗] is well de�ned and moreover |ab| ≤ 1 = |a∗b∗|, i.e., the
|ab| ∨ |a∗b∗| = 1. It follows that

d(ab,ac) = |aba∗c∗ − a∗b∗ac| ≤ |bc∗ − b∗c| = d(b, c).

Similar observations hold if all values are ≥ 1. We may therefore de�ne

cij =
∏

i≤k<j

ak,k+1, cji = c−1
ij =

∏
i≤k<j

ak+1,k, (i ≤ j).

It is not di�cult to check that c̄ ∈ E, and in order to prove the �rst item all that is left to check is that
d(c̄, ā) ≤ r. Keeping in mind that d(c,a) = d(c−1,a−1), it will be enough to check that d(aij , cij) ≤ r for
all i < j. We do this by induction on j − i. In the base case j − i = 1 we have aij = cij . Assume now that
d(aij , cij) ≤ r. Then

d(ci,j+1,ai,j+1) ≤ d(ci,j+1,aijaj,j+1) ∨ d(aijaj,j+1,ai,j+1)

= d(cijaj,j+1,aijaj,j+1) ∨ ‖aijaj,j+1 − ai,j+1‖
≤ d(cij ,aij) ∨ r = r.

This concludes the proof of the �rst item, and we have also proved the second item as a special case of our
�rst claim.

For the third item, the fact that [a`,0 : . . . : a`,`−1 : 1 : a`,`+1 : . . . : a`,n] ∈ Pn is a solution is an immediate
consequence of the hypothesis that ā ∈ E. Conversely, let b ∈ Pn be any solution. Then bi = a`ib` for all
i, and since

∨
|bi| = 1 we must have |b`| = 1. We may therefore assume that b` = 1 and we obtain bi = a`i

as desired. Finally, let b ∈ Pn, and de�ne aij = [bj : bi] when at least one of bi, bj is non zero and [1 : 1]
otherwise. Then ā ∈ E and b is the associated solution. �1.13

We recall from [Ben10, Section 1.2] that a map f : X → Y between type-de�nable subsets of a structure
is called de�nable if its graph is type-de�nable, or equivalently, if composing any de�nable predicate with f
yields a de�nable predicate (a type-de�nable set is one which is the intersection of a family of zero sets of
formulae, or of de�nable predicates; as in classical logic, a type-de�nable set corresponds to a closed set of
types, see [Ben10, Section 1.1]). The former characterisation implies that if f is bijective then its inverse is
de�nable as well. In the latter characterisation, it su�ces to verify for the distance predicate alone.
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Theorem 1.14. The projective line KP1 is uniformly quanti�er-free biïnterpretable with KP, and in fact
KP1 is uniformly de�nable (rather than merely interpretable) in each of the sorts KPn of KP for n ≥ 1.
More precisely:

(i) The LP1-structure KP1 and the sort P1 of the LP-structure KP are quanti�er-free de�nable in
one another, meaning that a predicate ϕ : (KP1)m → [0, 1] is quanti�er-free de�nable in KP1 if
and only if it is quanti�er-free de�nable in KP.

(ii) For every n ≥ 1 there exist a quanti�er-free de�nable subset Dn ⊆ Pn and a de�nable bijection
θn : Dn → P1 such that for every quanti�er-free de�nable predicate ϕ : (P1)m → [0, 1], the predicate
ϕ ◦ (θn) : (Dn)m → [0, 1] is quanti�er-free de�nable as well.

(iii) For every n there exist a quanti�er-free de�nable subset En ⊆ (P1)M(n) and a de�nable surjection
ρn : En → Pn such that for every quanti�er-free de�nable predicate ϕ : Pn0 × · · · ×Pnm−1 → [0, 1],
the predicate ϕ ◦ (ρn0

, . . . , ρnm−1
) : En0

× · · · × Enm−1
→ [0, 1] is quanti�er-free de�nable as well.

(iv) The predicates de�ning Dn and En, as well as the translation schemes from quanti�er-free predicates
in one sort or structure to another are uniform, i.e., do not depend on K.

Proof. The �rst item is easy, keeping in mind that it is enough to show that every atomic formula in one
structure is quanti�er-free de�nable in the other.

For the second item, we let Dn = {[a0 : a1 : 0 : . . . : 0] : [a0 : a1] ∈ P1}. It is not di�cult to check that
d(b, Dn) =

∨
2≤i≤n |bi| which is de�nable by a quanti�er-free formula. The map θn : [a0 : a1 : 0 : . . . : 0] 7→

[a0 : a1] is de�nable since its graph is given by

θn(x) = y ⇐⇒ ‖x0y1 − x1y0‖ = 0.

We leave it to the reader to check that the pull-back of every atomic formula in P1 is quanti�er-free de�nable
in Pn.

For the third item most of the work has already been done in Lemma 1.13. We take M(n) = n(n+1)
2 and

de�ne En as in the Lemma. Then we have already seen that En is quanti�er-free de�nable and constructed
the surjection ρn : En → Pn. Again we leave it to the reader to check that the pull-back of an atomic formula
from

∏
Pni to

∏
Eni

is quanti�er-free de�nable.
Everything we did (or left to the reader) is independent of the �eld K, whence follows the uniformity.

�1.14

It follows that the class of structures KP is elementary as well. Moreover, if we prove that some theory ex-
tendingMV F eliminates quanti�ers (as we shall, in Theorem 2.4 below) it will follow that the corresponding
LP-theory eliminates quanti�ers as well.

2. The theory of algebraically closed metric valued fields

De�nition 2.1. We de�ne ACMV F , the theory of algebraically closed metric valued �elds, to consist of
MV F along with the following additional axioms

∃y ‖y‖ = 1
2

∃y ‖P (x̄, y)‖ = 0 (degY (P ) ≥ 1)

As usual, the existential quanti�er should be understood in the approximate sense. In the case of the �rst
axiom, it may indeed happen that in a model of ACMV F the value 1

2 never occurs. For the second axiom,
the approximate witnesses must accumulate near at least one of �nitely many roots, so a root must exist in
the (complete) model.

Lemma 2.2. The models of ACMV F are precisely the projective lines over complete, algebraically closed,
non trivially valued �elds.

Proof. One direction is clear. For the other, given an algebraically closed �eld equipped with a non trivial
valuation, the set of values must be dense in R and in particular contain 1

2 in its closure. �2.2

Fact 2.3. Let K ⊆ L be an extension of valued �elds, where K is complete, and let a ∈ L be algebraic over
K of degree n and with irreducible polynomial P (X) ∈ K[X]. Then |a|n = |P (0)|.

Theorem 2.4. The theory ACMV F eliminates quanti�ers. It is therefore the model completion of MV F .
7



Proof. Let both KP1, FP1 � ACMV F be somewhat saturated, and let θ : A→ B be a valuation-preserving
isomorphism of relatively small sub-�elds A ⊆ K and B ⊆ F . First of all we may assume that A and B are
complete. Second, any extension of the isomorphism to an algebraic isomorphism of their algebraic closure
will preserve the valuation, so we may further assume that A and B are algebraically closed (of course, the
algebraic closure need not be complete, so we would have to pass to the completion again).

Let now c ∈ K be transcendental over A. The quanti�er-free type of c over A is determined by the
mapping assigning to each P (X) ∈ A[X] the value |P (c)|. Since A is algebraically closed, it su�ces to know
this for linear polynomials, i.e., to know |c− a| for all a ∈ A.

For our purposes it will be enough to show that for every �nite tuple a0, . . . , an−1 ∈ An and every ε > 0
there exists d ∈ F such that

∣∣|c− ai| − |d− θai|∣∣ < ε for i < n. Let r = mini<n |c− ai|. Possibly decreasing ε
and re-arranging the tuple ā, we may assume that there is k such that |c−ai| = r if i < k and |c−ai| > r+ε
if k ≤ i < n. It will therefore be enough to �nd d ∈ F such that

∣∣r − |d − θai|∣∣ < ε for i < k (since then
|d− θai| = |a0 − ai| = |c− ai| follows for k ≤ i < n). We consider two cases:
Case I: If |c| > r, we choose d0 ∈ F such that r < |d0| < min(r + ε, |c|) (such d0 exists since the set of

values is dense in R), and let d = d0 + θa0. Then |d− θai| = |d0| for all i < k.
Case II: If |c| ≤ r, then |ai| ≤ r for all i < k. Since B is algebraically closed, so is its residue �eld.

In particular, the residue �eld is in�nite, so we may choose b≤k ∈ B such that |bi| = 1 for all i ≤ k and
|bi − bj | = 1 for all i < j ≤ k. We may also choose e ∈ F such that r − ε < |e| < r. We claim that there is
j ≤ k such that for all i < k: |bje − θai| ≥ |e|. Indeed, otherwise, by the pigeonhole principle we can �nd
i < j ≤ k such that |bie − bje| < |e|, whereby |bi − bj | < 1, contrary to our assumption. Let d be this bje.
Since |ai| ≤ r and |d| < r, we must have |e| ≤ |d− θai| ≤ r for all i < k.

This concludes the proof that K and F correspond by an in�nite back and forth. It follows that ACMV F
eliminates quanti�ers. It is also clearly a companion ofMV F and therefore it is its model completion. �2.4

Remark 2.5. LetMV FZ denote the theoryMV F along with axioms saying that the set of non zero values is
contained in some �xed in�nite discrete group, say eZ. This can be expressed by the axiom ‖x∗‖ ∈ e−N∪{0}.
In models of this theory both the valuation ring and its complement are type-de�nable, so they are in fact
de�nable. The maximal ideal is de�nable as well, so we may refer to the residue �eld directly as an imaginary
sort. Similarly, for every n, the set of �eld elements of value e−n is de�nable.

Let ACMV FZ consist in addition of axioms saying that the value e−1 is attained, that every element
of value ekn has an nth root and that every irreducible monic polynomial over the valuation ring with free
term 1 has a root. Then ACMV FZ eliminates quanti�ers, and it is the model completion of MV FZ. The
argument is similar to that given for Theorem 2.4.

Corollary 2.6. The following is an exhaustive list of the completions of ACMV F :

(i) Characteristic (0, 0): |p| = 1 for all prime p.
(ii) Characteristic (0, p): |p| = α for some prime p and 0 < α < 1.
(iii) Characteristic (p, p): p = 0 for some prime p.

Proof. It is known (e.g., from [Art67]) that every model of ACMV F falls into one of these categories and
that none of them is empty. Since each of the listed theories determines |n| for each n ∈ Z, by quanti�er
elimination they are complete. �2.6

The space of completions consists therefore of a family of segments [0, 1], one for each prime p, with all
the 1 points identi�ed (the (0, 0) case). This is essentially the zero dimensional Berkovich space over Z, just
without the segment corresponding to Archimedean valuations, which we chose to exclude. Similarly,

Corollary 2.7. Let K be a model of model of ACMV F , let A ⊆ K, and let K0 be the complete sub-�eld
generated by A. Then the space of 1-types over A in the sort Pn is precisely the n-dimensional projective
analytic Berkovich space over K0.

Let us give a slightly di�erent characterisation of types (or more precisely, of 1-types) which will be useful
for counting them.

De�nition 2.8. Let K be a valued �eld and let C and C′ be two chains of closed balls in KP1. Say that C
and C′ are mutually co-�nal if each ball in one chain contains some ball belonging to the other. This is an
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equivalence relation, and by a sphere over KP1 we mean an equivalence class of such a chain. The set of all
spheres will be denoted Sph(KP1).

Let S, S′ ∈ Sph(KP1) be spheres, say represented by C and C′. We de�ne the radius of S as rad(S) =
infB∈C rad(B). We de�ne the Hausdor� distance between S and S′ as the limit of Hausdor� distances
between balls in C and C′:

dH(S, S′) = lim
B∈C,rad(B)→rad(S)

B′∈C′,rad(B′)→rad(S′)

dH(B,B′).

It is not di�cult to see that for closed balls B and B′,

• dH(B,B′) = 0 if and only if B = B′,
• if B ) B′ then dH(B,B′) = rad(B), and
• if B ∩B′ = ∅ then dH(B,B′) = d(B,B′).

Notice that every sphere admits a countable representative. The �eld K is complete if and only if every
sphere of radius zero contains a point. If every sphere contains a point then K is called spherically complete.

Theorem 2.9. Let KP � ACMV F . Then:

(i) Let S ∈ Sph(KP1) be a sphere, say the class of C = {B(an, rn)}n∈N, and let r = inf rn denote its
radius. Then the set of conditions

{‖x− an‖ ≤ rn}n∈N ∪ {‖x− a‖ ≥ r}a∈KP1(2)

axiomatises a complete type pS(x) ∈ S1(K) which depends only on S.
(ii) The mapping S 7→ pS is an isometric bijection

(
Sph(KP1), dH

) ∼= (
S1(K), d

)
, where the distance

between two types is the minimal distance between realisations.

Proof. Let us �rst show that (2) is consistent for every S. Possibly passing to a sub-sequence, and possibly
applying the isometry a 7→ a−1 to P1, we may assume that |an| ≤ 1 for all n. Let L = K(α) where α
is transcendental over K. Then we may extend the valuation to L so that for every polynomial P (X) =∑
k≤m bkX

k ∈ K[X] we have |P (α)| =
∨
k rad(S)k|bk|. In particular, |α| = rad(S) ≤ 1. Further extending

to a model of ACMV F we may assume that LP1 � KP1. Let cn = an + α. For a ∈ KP1 we have
‖cn − a‖ = 1 ≥ rad(S) if |a| > 1 and ‖cn − a‖ = |cn − a| = |an − a| ∨ rad(S) otherwise. For m < n we also
have ‖cn − am‖ = |α+ (an − am)‖ ≤ rm. Thus (2) is �nitely consistent and therefore consistent.

By quanti�er elimination and the fact that K is algebraically closed, the type of an element α over KP1

is determined by |α − a| as a varies over K, or equivalently, by ‖α − a‖ as a varies over KP1. Let S be
the sphere consisting of all balls B

(
a, d(a, α)

)
, a ∈ KP1. Then S only depends on tp(α/K), and conversely,

pS = tp(α/K). This yields the bijection Sph(KP1)→ S1(K).
It is left to show that this bijection is isometric. So let S and S′ be two distinct spheres and let α

and β realise pS and pS′ , respectively. Assume �rst that B ∩ B′ 6= ∅ for all B ∈ S and B′ ∈ S′. Then
rad(S) 6= rad(S′) (since else the spheres coincide), say rad(S) > rad(S). Then dH(S, S′) = rad(S) = d(α, β).
On the other hand, if there are B ∈ S and B′ ∈ S′ which are disjoint then dH(S, S′) = d(B,B′) = d(α, β)
again. �2.9

Corollary 2.10. The theory ACMV F is strictly stable (i.e., stable non super-stable).

Proof. Let K be a model. Since every sphere has a countable representative, a quick calculation yields that
there are at most |K|ℵ0 spheres, and therefore types, over K. Thus the theory is stable.

On the other hand, for every 0 < r < r′ < 1, every ball of radius r′ contains |K| many distinct balls of
radius r. Thus a re�nement of our earlier calculation yields that there exist precisely |K|ℵ0 distinct spheres
of radius r. The distance between any two such spheres is at least r, so the theory is not super-stable. �2.10

Remark 2.11. Here we assume the reader has some familiarity with the notion of perturbations of metric
structures and its uses, as introduced in [Ben08b], or, in a somewhat simpler fashion, in [Ben08c]. Exten-
sions of perturbations to types over parameters, and λ-stability up to perturbation, are also discussed in
[Ben08c]. For example, it is shown in [BB09] that the theory of atomless probability algebras with a generic
automorphism, even though it is strictly stable, is ℵ0-stable up to arbitrarily small perturbations of the
automorphism.
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Omitting many details, let us consider a theory T and a set of parameters A ⊆M � T . We de�ne L(A)
to consist of the base language L together with, for each a ∈ A, a unary predicate Pa(x) for the distance
d(a, x). Thus �a model of T containing A� is essentially the same as a model of T (A) = ThL(A)(M), and
types over A are just types of T (A) over ∅. Roughly speaking, a perturbation of a model of T (A) consists
of modifying the interpretation of the symbols of L (usually with some small uniform bound on the extent
of the modi�cation, prescribed by a perturbation system), in such a manner that the end result is again a
model of T (A), and that the predicates Pa, representing the parameters, remain unchanged.

In ACVMF , when A = K is a model, a 1-type tp(b/K) is entirely determined by the map a 7→ Pa(b),
so a perturbation cannot change 1-types over K at all (even if it does change, to some small extent, the
distance and/or algebraic structure of an extension of K containing the realisation).

It follows that even up to perturbation, in the sense of the articles cited above, ACMV F is strictly stable,
i.e., λ-stable up to perturbation only when λ = λℵ0 .

The same argument does not work for ACMV FZ, since there a strictly decreasing sequence of radii
must necessarily go to zero, and it follows that the theory is ℵ0-stable. This is hardly surprising, since
equal characteristic models of ACMV FZ are just something of the form K = k((X)). They are therefore
interpretable in the valuation ring k[[X]] which is in turn interpretable (as a metric structure) in k, a plain
strongly minimal algebraically closed �eld.

It is an easy fact that if the union of two disjoint type-de�nable sets is de�nable then each of the two sets
is de�nable as well. The following is a useful extension of this fact.

Lemma 2.12. Let X and Y be two type-de�nable sets such that both X ∪Y and X ∩Y are de�nable. Then
X and Y are de�nable as well.

Proof. It will be enough to show that X is de�nable, and for this, it will be enough to show that for every
ε > 0, the ε-neighbourhood B(X, ε) contains a logical neighbourhood of X.

Since Y is type-de�nable and X ∩ Y de�nable, the properties d(x, Y ) ≤ δ and d(x,X ∩ Y ) ≥ ε are type-
de�nable. By compactness there exists δ > 0 such that

(
x ∈ X and d(x,X ∩ Y ) ≥ ε and d(x, Y ) ≤ δ

)
is

contradictory. We may further assume that δ ≤ ε. We claim that the desired neighbourhood of X is the
given by the property (

d(x, Y ) > δ and d(x,X ∪ Y ) < δ
)
or d(x,X ∩ Y ) < ε.

Indeed, this is an open property, and it holds for every x ∈ X by choice of δ. Assume this property holds
for x. If d(x,X ∩ Y ) < ε then d(x,X) < ε as well. Otherwise, d(x,X ∪ Y ) < δ and d(x, Y ) > δ imply that
d(x,X) < δ ≤ ε, and the proof is complete. �2.12

The following generalises the fact that a de�nable image of a de�nable set is de�nable.

Lemma 2.13. Let X be a de�nable set, Y and Z ⊆ X type-de�nable sets, and let f : X r Z → Y be a
bijection. Assume furthermore that f is de�nable, in the sense that there exists a type-de�nable set R ⊆ X×Y
such that R ∩

(
(X r Z)× Y

)
is the graph of f . Then Y is de�nable as well.

Proof. Since Y is type-de�nable, the property d(y, Y ) ≤ r is type de�nable. It will therefore be enough to
show that d(y, Y ) ≥ r is a type-de�nable property for all r. Let π(x) be the partial type de�ning Z, and
let ϕ ∈ π. For each x ∈ X, either f(x) is well de�ned or ϕ(x) = 0, so either way d(y, f(x)) ∧ ϕ(x) is well
de�ned, and we claim that it is a de�nable predicate. Indeed, d(y, f(x)) ∧ ϕ(x) ≥ s if and only if there
exists w such that R(x,w) and d(y, w) ∧ ϕ(x) ≥ s, and similarly for ≤ s. Since X is de�nable, we obtain a
de�nable predicate

ψϕ(y) = inf
x∈X

[
r −. d(y, f(x))

]
∧ ϕ(x).

We conclude by observing that d(y, Y ) ≥ r is de�ned by the partial type {ψϕ}ϕ∈π. �2.13

Recall:

Fact 2.14 (Noether's Normalisation Lemma). Let A be an integral domain, �nitely generated over a �eld
k. Then there exist algebraically independent elements x0, . . . , xd−1 ∈ A such that A is integral over
k[x0, . . . , xd−1].
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Moreover, if k is in�nite and A = k[y0, . . . , yn−1] then each xi can be taken to be a k-linear combination
of the yj.

Let V be a projective variety of dimension d de�ned over an in�nite �eld k. Let y = [y0 : . . . : yn] be a
generic point of V . Let x0, . . . , xd be a transcendence basis for k[ȳ] consisting of k-linear combinations of ȳ,
as per Noether's Normalisation Lemma. Then [x0 : . . . : xd : y0 : . . . : yn] is the generic point of a projective
variety isomorphic to V .

Proposition 2.15. Let KP1 � ACMV F . Then every Zariski closed set V ⊆ KPn is de�nable.

Proof. Since a �nite union of de�nable sets is de�nable, we may assume that V is a variety, say of dimension
d. Clearly every algebraic morphism is de�nable, and recall that the image of a de�nable set by a de�nable
mapping is de�nable as well. It follows that we may replace V with any isomorphic projective variety.
Therefore, using Noether's Normalisation Lemma we may assume that the homogeneous prime ideal de�ning
V is I(V ) ⊆ K[X0, . . . , Xd, Y0, . . . , Yn−1], where K[X̄] ∩ I(V ) = 0 and for each j < n there exists a
homogeneous polynomial fj ∈ I(V )∩K[X̄, Yj ] which is monic in Yj . Possibly replacing V with an isomorphic
variety we may further assume that all the coe�cients in each fj have value ≤ 1. Thus we may express
|fj(x0, . . . , xd, xd+j+1)| as an atomic formula ‖fj(x)‖ in the free variable x = [x0 : . . . : xn] ∈ Pn and with
parameters in K. We may further assume that all the fj have common degree m.

As a �rst approximation, let J = 〈fj〉j<n ⊆ I(V ) be the generated homogeneous ideal, and let us show
that V (J) is de�nable. Clearly V (J) is the zero set of the formula

∨
j<n ‖fj(x)‖, and it will be enough to

show that d(x, V (J)) ≤
∨
j<n ‖fj(x)‖ 1

m . So let us �x x ∈ Pn. For j < n, let

gj(Yj) = fj(x0, . . . , xd, Yj) =
∏
k<m

(Yj − γkj ) ∈ K[Yj ]

We may assume that for each j < n, the root γ0
j = γj is closest to xd+j+1 among all the roots of gj . Let

y = [x0 : . . . : xd : γ0 : . . . : γn−1] =
[
x0

s : . . . : xd

s : γ0

s : . . . : γn−1

s

]
∈ V (J),

where s is chosen of maximal value among x0, . . . , xd, γ0, . . . , γn−1. A quick calculation yields, for i ≤ d and
j < n,

|xiyd+j+1 − xd+j+1yi| = |xi

s ||γj − xd+j+1| ≤ |gj(xd+j+1)| 1
m = ‖fj(x)‖ 1

m ,

and for i, j < n,

|xd+i+1yd+j+1 − xd+j+1yd+i+1| = | 1s ||γjxd+i+1 − γixd+j+1|
≤ |γjs ||xd+i+1 − γi| ∨ |γis ||γj − xd+i+1|

≤ (‖fi(x)‖ ∨ ‖fj(x)‖) 1
m .

Thus d(x, V (J)) ≤ d(x, y) ≤
∨
j<n ‖fj(x)‖ 1

m , as desired.

By construction, V (J) is of dimension ≤ d, and can be decomposed as V (J) = V ∪W where W ⊆ Pn is
a Zariski closed as well and dim(V ∩W ) < d. By induction on the dimension we may assume already known
that V ∩W is de�nable. We may now apply Lemma 2.12 and conclude that V is de�nable. �2.15

Corollary 2.16. Every complete variety is interpretable in ACMV F .

Proof. By Chow's Lemma, if W is a complete variety then it is the image of a projective variety V by a
morphism. In other words, it is a de�nable quotient of a de�nable set, and therefore interpretable. �2.16

In particular, this means that a complete variety W is endowed with the quotient structure it inherits
from the de�nable set V . This does not depend on the choice of V .

Question 2.17. Characterise all de�nable sets over K. Notice that since every compact set is de�nable,
there are de�nable sets which are not projective varieties, e.g., any set of the form {an}n ∪ {0} where
|an| → 0. More generally, every metrisable totally disconnected compact space can be embedded in KP1,
and a characterisation of de�nable sets will have to allow for them.

Let {Vα}α∈A be a family of projective varieties, and assume that for every ε > 0 there is a �nite A0 ⊆ A
such that

⋃
α∈A Vα is contained in the ε-neighbourhood of

⋃
α∈A0

Vα. Then X =
⋃
α∈A Vα is a de�nable set.

Every Zariski closed set and every compact set are of this form. Are there any other de�nable sets?
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Question 2.18. Let A be any semi-normed ring. Let LP(A) consist of a constant symbol in the sort P1 for
each member of A, and let ACMV F (A) be the LP(A)-theory consisting of ACMV F along with axioms
saying that 1 = 1A, a+b = (a+A b), a·b = (a·A b) and |a| ≤ |a|A (i.e., ‖a‖ ≤ |a|A if |a|A < 1 and ‖a∗‖ ≥ |a|−1

A

otherwise).
Assuming that I ⊆ A[X0, . . . , Xn] is a homogeneous ideal, is V (I) uniformly de�nable in ACMV F (A)?

3. Real closed and ordered metric valued fields

We shall now seek to understand the metric valued analogue of the theory of real closed �elds. First of all,
we observe that the class of metric valued �elds which are, as pure �elds, formally real, is not elementary.
Indeed, such �elds can be constructed with 1 + a2 of arbitrarily small (non zero) valuation, and in an ultra-
product we would obtain 1 + a2 = 0. Thus |1 + x2| must be bounded away from zero, which, in a real closed
�eld (and more generally, in a �eld where a sum of squares is a square), implies |1 + x2| ≥ 1.

De�nition 3.1. We say that a valued �eld (K, |·|) is a formally real valued �eld, or that that |·| is a formally
real valuation on K, if its residue �eld is formally real. If in addition K is real closed (as a pure �eld) then
we say that it is a real closed valued �eld.

We recall that a �eld ordering (possibly partial) is one in which sums and products of positive elements,
as well as all squares, are positive. A valued �eld ordering is one in which, in addition, the valuation ring is
convex.

Lemma 3.2. Let (K, |·|) be a valued �eld. Then the following are equivalent.

(i) The valued �eld (K, |·|) is formally real (as a valued �eld).
(ii) For all x0, . . . , xn−1 ∈ K: ∣∣∣∑x2

i

∣∣∣ =
∨
|xi|2.

(iii) For all x0, . . . , xn−1 ∈ K: ∣∣∣1 +
∑

x2
i

∣∣∣ ≥ 1.

Similarly, a �eld K equipped with a valuation |·| and an ordering ≤ is an ordered valued �eld if and only if
for every x, y ≥ 0: |x+ y| = |x| ∨ |y|.

Proof. Easy. �3.2

A formally real valued �eld is formally real as a plain �eld, and conversely, a �eld K is formally real if
and only if the trivial valuation on K is formally real.

Lemma 3.3. Let (K, |·|) be a complete valued �eld. Then the following are equivalent.

(i) The valued �eld (K, |·|) is real closed (as a valued �eld).
(ii) The valued �eld (K, |·|) is formally real (as a valued �eld) and maximal as such among its algebraic

valued �eld extensions.

Proof. One direction is immediate. For the other, we already know that (K, |·|) is a formally real valued
�eld, and it is left to show that it is real closed as a pure �eld. Indeed, let K1/K be any proper algebraic
�eld extension, which we may assume to be �nite. We may then equip K1 with an extension of the valuation
(which is moreover unique since K is complete). Let k1/k denote the corresponding residue �eld extension.
Then (K1, |·|) is not formally real, whereby k1 is not formally real. On the other hand, k1/k is an algebraic
extension, so k1 is algebraically closed. Since (K1, |·|) is complete, as a �nite extension of a complete valued
�eld, by Hensel's Lemma we have i ∈ K1, and in particular K1 is not formally real. This completes the
proof. �3.3

Lemma 3.4. (i) A real closed valued �eld admits a unique ordering (as a valued �eld), namely its
unique ordering as a pure real closed �eld: x ≥ 0 if and only if x is a square.

(ii) Every formally real valued �eld embeds in a real closed valued �eld.
(iii) A valued �eld (K, |·|) is formally real if and only if it admits an ordering (as a valued �eld).

12



Proof. For the �rst item, all we need to check is that valuation ring is convex in the unique �eld ordering,
which is more or less immediate from the de�nition. The second item follows from Lemma 3.3. For the third
and last item, one direction follows from the previous item, the other directly from the de�nitions. �3.4

In order to express in LP1 that the valuation is formally real one needs to take into account the homogeni-
sation, yielding ∥∥∥∑x2

i

∥∥∥ =
∨
‖xi‖2

∏
j 6=i

‖x∗j‖2.(FR)

Working in the projective space Pn one can express this slightly more elegantly as∥∥∥∑x2
i

∥∥∥ = 1,(FR')

where the sum is now over the homogeneous coordinates of a single point x.

De�nition 3.5. We de�ne FRMV F , the theory of formally real metric valued �elds, to consist of MV F
along with the axiom (FR). We de�ne RCMV F , the theory of real closed metric valued �elds, to consist,
in addition, of the axioms

∃y ‖y‖ = 1
2 ,

∃y ‖x2 − y4‖,

∃y

∥∥∥∥∥∥y2n+1 +
∑
i≤2n

xiy
i

∥∥∥∥∥∥ .
As in the discussion following the de�nition of ACMV F , the existential quanti�ers are approximate, but

in the case of the second and third axiom they imply exact existence.

Proposition 3.6. Models of FRMV F (RCMV F ) are the projective lines over complete formally real (real
closed and non trivial) valued �elds.

Ordered metric valued �elds will be considered in an expanded language LoP1 ⊇ LP1 which we now
de�ne. First, we wish to introduce a predicate 〈〈x〉〉, equal to zero if and only if x is positive or zero. Since
∞ is neither strictly positive not strictly negative, and may be arbitrarily close both to positive and to
negative �eld elements, we require 〈〈∞〉〉 = 0. One natural de�nition (which later turns out to be correct) is
〈〈x〉〉 = ‖x‖∧‖x∗‖ for negative x, so in particular we have a natural identity 〈〈x〉〉 = 〈〈x−1〉〉. Since our language
contains no function symbols, it will be convenient to go further and add, for each polynomial P ∈ Z[X̄], a
predicate

〈〈P (x̄)〉〉 =

{
0 P (x̄) ≥ 0,

‖P (x̄)‖ ∧ ‖P ∗(x̄)‖ otherwise.

In particular, if any xi is equal to ∞ and degXi
P > 0 then 〈〈P (x̄)〉〉 = 0 by the �otherwise� clause. Using

the assumption that K is an ordered valued �eld one veri�es that all the new predicates are 1-Lipschitz. In
what follows, it will be convenient to keep in mind that ‖P‖ ∧ ‖P ∗‖ =

(
|P | ∧ 1

)
‖P ∗‖.

De�nition 3.7. We de�ne OMV F , the theory of ordered metric valued �elds, to consist of MV F along
with

〈〈P 〉〉 ∧ 〈〈−P 〉〉 = 0(Tot)

〈〈P 〉〉 ∨ 〈〈−P 〉〉 = ‖P‖ ∧ ‖P ∗‖(AS)

〈〈P +Q〉〉‖P ∗Q∗‖ ≤ 〈〈Q〉〉‖P ∗(P +Q)∗‖ ∨ 〈〈P 〉〉‖Q∗(P +Q)∗‖(CA)

〈〈−PQ〉〉 ≥ 〈〈P 〉〉〈〈Q〉〉(CM)

We leave it to the reader to check that if K is an ordered valued �eld then the associated LoP1 -structure
is a model of OMV F , and conversely, that every model of OMV F arises uniquely in this fashion.
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For any �eld K, let SqK = {x2}x∈KP1 ⊆ KP1 (where ∞2 = ∞). For P (X̄) ∈ Z[X̄] we consider the
following de�nable predicate

〈〈P (x̄)〉〉Sq = inf
y
‖P (x̄)− y2‖.

Lemma 3.8. For every model KP1 �MV F we have

〈〈P (x̄)〉〉Sq =

{
0 P (x̄) ∈ Sq,

‖P (x̄)‖ ∧ ‖P ∗(x̄)‖ otherwise.

In particular, if xi =∞ and degXi
P > 0 then 〈〈P (x̄)〉〉Sq = 0.

Proof. Clearly, if x̄ ∈ K and P (x̄) ∈ Sq then 〈〈P (x̄)〉〉Sq = 0. Also, we observe that ‖P (x̄) − 02‖ = ‖P (x̄)‖
and ‖P (x̄) − ∞2‖ = ‖P ∗(x̄)‖. Thus 〈〈P (x̄)〉〉Sq ≤ ‖P (x̄)‖ ∧ ‖P ∗(x̄)‖, and in particular 〈〈P (x̄)〉〉Sq = 0 if
xi = ∞ and degXi

P > 0. It is left to consider the case where x̄ ∈ K and P (x̄) /∈ Sq. Indeed, assume

that 〈〈P (x̄)〉〉Sq < ‖P (x̄)‖ ∧ ‖P ∗(x̄)‖. Then there is z ∈ K∗ such that ‖P (x̄) − z2‖ < ‖P (x̄)‖ ∧ ‖P ∗(x̄)‖, or
equivalently |P (x̄)−z2|‖z∗‖2 < |P (x̄)|∧1. If |z| ≤ 1 then |P (x̄)−z2| < |P (x̄)|, whereby |P (x̄)| = |z2|; and if

|z| > 1 then |P (x̄)−z2| < ‖z∗‖−2 = |z2|, and again |P (x̄)| = |z2|. Either way we get |P (x̄)
z2 −12| < 1 = |P (x̄)

z2 |,
and by Hensel's Lemma, P (x̄) ∈ Sq, contrary to our assumption. �3.8

Lemma 3.9. In any metric valued �eld the set Sq is closed and d(x, Sq) = 〈〈x〉〉Sq. In particular, Sq is
uniformly de�nable across all complete valued �elds.

Proof. It is easy to see that ‖x− z2‖ = d(x, z2) (compare with Lemma 1.9), whereby d(x, Sq) = 〈〈x〉〉Sq. By
Lemma 3.8, if x /∈ Sq then d(x,Sq) = ‖x‖ ∧ ‖x∗‖ > 0, so Sq is closed. �3.9

Proposition 3.10. Let K � RCMV F . Then K admits a unique expansion to a model of OMV F , given
by 〈〈P 〉〉 = 〈〈P 〉〉Sq.

Theorem 3.11. The LoP1-theory ORCMV F = RCMV F ∪ OMV F is complete and admits quanti�er
elimination. The theory RCMV F is model complete.

Proof. Completeness and model completeness follow quite easily from quanti�er elimination, so we only
prove the latter. For this, we shall prove that su�ciently saturated models admit an in�nite back-and-forth.
Using the uniqueness of the real closure of an ordered �eld, and proceeding as in the proof of Theorem 2.4,
we reduce to the case where KP1 and FP1 are two su�ciently saturated models, A ⊆ K and B ⊆ F are
relatively algebraically closed complete sub-�elds, and θ : A→ B is an isomorphism. In particular, A and B
are real closed valued �elds.

Now let c ∈ K r A. Its quanti�er-free type is determined by the value and sign of P (c) as P (X) varies
over A[X]. Since A is real closed, every polynomial decomposes as a product of linear factors X − a and
irreducible quadratic factors (X − a)2 + b, b > 0 (and a, b ∈ A). In the second case we have (c− a)2 + b > 0
and |(c − a)2 + b| = |c − a|2 ∨ b. Thus, the quanti�er-free type of c is determined by the value and sign
of c − a as a varies over A. In order to �nd d ∈ F with the corresponding quanti�er-free type over B, it
is enough to show that for every ε > 0 and every �nite family a0, . . . , an−1 ∈ A there is d ∈ F such that
d ≤ θai ⇐⇒ c ≤ ai and

∣∣|d− θai| − |c− ai|∣∣ < ε. We may assume that ai < ai+1 for i < n− 1.
If c > A then the valuation on A is necessary trivial. In this case we may take d ∈ F to be any positive

element with the same value as c (or at least close enough). The case c < A is treated similarly. Otherwise,
there is i for which ai < ci < ai+1. Translating by ai and dividing by ai+1 we may assume that ai = 0 and
an+1 = 1. It will then be enough to �nd 0 < d < 1 such that

∣∣|d| − |c|∣∣, ∣∣|1 − d| − |1 − c|∣∣ < ε, and the rest
will follow. Possibly replacing c with 1 − c, we may further assume that |c| ≤ |1 − c| = 1. If |c| < 1, just
take for d any positive element whose value is close enough to |c|, and if |c| = 1 choose d so that |d| is close
enough to 1− ε/2. This completes the proof. �3.11

Theorem 3.12. The theory RCMV F is dependent.

Proof. It is enough to show that every formula ϕ(x, ȳ), where x is a single variable, is dependent (this is
shown in [Ben09] along the lines of the proof for classical logic in [Poi85]; a simpli�ed argument appears
in Adler [Adl], and it translates quite e�ortlessly to continuous logic). It is therefore enough to show that
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if (b̄n)n is an indiscernible sequence then
(
ϕ(a, b̄n)

)
n
converges for every a. By quanti�er elimination, we

may assume that ϕ is an atomic LoP1-formula, namely of the form ‖P (x, ȳ)‖ or 〈〈P (x, ȳ)〉〉. Since the type
p = tp(b̄n) is constant, and since every �eld element which is algebraic over b̄n is de�nable over b̄n (because
of the linear ordering), we may express ‖P (x, b̄n)‖ and 〈〈P (x, b̄n)〉〉 as continuous combinations of things of the
form |x− f(b̄n)| and 〈〈x− f(b̄n)〉〉, where f stands for a partial ∅-de�nable function whose domain contains
p (as in the proof of the previous theorem). For each such function, the sequence

(
f(b̄n)

)
n
is indiscernible

as well, so in particular monotone, and it follows that |a− f(b̄n)| and 〈〈a− f(b̄n)〉〉 converge. This completes
the proof. �3.12

Alternatively, we may de�ne LoP to consist of LP augmented with one predicate symbol 〈〈·〉〉 for each sort
Pn, n ≥ 1, interpreted in an ordered valued �eld by

〈〈[a0 : . . . : an]〉〉 =

{
0 a0a1 ≥ 0,

|a0| ∧ |a1| otherwise.

We observe that this does not depend on the choice of representatives (as long as
∨
|ai| = 1, as usual) and

this is compatible with the interpretation of 〈〈x〉〉 on P1 we introduced earlier. One can extend Theorem 1.14,
showing that for an ordered valued �eld K, the LoP1-pre-structure KP1 and the LoP-pre-structure KP are
quanti�er-free biïnterpretable, and this uniformly in K.

References

[Adl] Hans Adler, An introduction to theories without the independence property, Archive for Mathematical Logic, to
appear.

[Art67] Emil Artin, Algebraic numbers and algebraic functions, Gordon and Breach Science Publishers, New York, 1967.
[BB09] Itaï Ben Yaacov and Alexander Berenstein, On perturbations of Hilbert spaces and probability algebras with a

generic automorphism, Journal of Logic and Analysis 1:7 (2009), 1�18, doi:10.4115/jla.2009.1.7, arXiv:0810.4086.
[BBHU08] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model theory for metric

structures, Model theory with Applications to Algebra and Analysis, volume 2 (Zoé Chatzidakis, DugaldMacpher-

son, Anand Pillay, and Alex Wilkie, eds.), London Math Society Lecture Note Series, vol. 350, Cambridge Univer-
sity Press, 2008, pp. 315�427.

[Ben08a] Itaï Ben Yaacov, Continuous �rst order logic for unbounded metric structures, Journal of Mathematical Logic 8

(2008), no. 2, 197�223, doi:10.1142/S0219061308000737, arXiv:0903.4957.
[Ben08b] , On perturbations of continuous structures, Journal of Mathematical Logic 8 (2008), no. 2, 225�249,

doi:10.1142/S0219061308000762, arXiv:0802.4388.
[Ben08c] , Topometric spaces and perturbations of metric structures, Logic and Analysis 1 (2008), no. 3�4, 235�272,

doi:10.1007/s11813-008-0009-x, arXiv:0802.4458.
[Ben09] , Continuous and random Vapnik-Chervonenkis classes, Israel Journal of Mathematics 173 (2009), 309�333,

doi:10.1007/s11856-009-0094-x, arXiv:0802.0068.
[Ben10] , De�nability of groups in ℵ0-stable metric structures, Journal of Symbolic Logic 75 (2010), no. 3, 817�840,

doi:10.2178/jsl/1278682202, arXiv:0802.4286.
[Ber90] Vladimir Berkovich, Spectral theory and analytic geometry over non-Archimedean �elds, Mathematical Surveys and

Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990.
[BU10] Itaï Ben Yaacov and Alexander Usvyatsov, Continuous �rst order logic and local stability, Transactions of the

American Mathematical Society 362 (2010), no. 10, 5213�5259, doi:10.1090/S0002-9947-10-04837-3, arXiv:0801.4303.
[Poi85] Bruno Poizat, Cours de théorie des modèles, Nur al-Mantiq wal-Ma'rifah, Lyon, 1985, Une introduction à la logique

mathématique contemporaine.

Itaï Ben Yaacov, Université Claude Bernard � Lyon 1, Institut Camille Jordan, CNRS UMR 5208, 43

boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

URL: http://math.univ-lyon1.fr/~begnac/

15

http://www.logic.univie.ac.at/~adler/docs/nip.pdf
http://math.univ-lyon1.fr/~begnac/articles/GenAutPert.pdf
http://math.univ-lyon1.fr/~begnac/articles/GenAutPert.pdf
http://dx.doi.org/10.4115/jla.2009.1.7
http://arxiv.org/abs/0810.4086
http://math.univ-lyon1.fr/~begnac/articles/mtfms.pdf
http://math.univ-lyon1.fr/~begnac/articles/mtfms.pdf
http://math.univ-lyon1.fr/~begnac/articles/Unbdd.pdf
http://dx.doi.org/10.1142/S0219061308000737
http://arxiv.org/abs/0903.4957
http://math.univ-lyon1.fr/~begnac/articles/Perturb.pdf
http://dx.doi.org/10.1142/S0219061308000762
http://arxiv.org/abs/0802.4388
http://math.univ-lyon1.fr/~begnac/articles/TopoPert.pdf
http://dx.doi.org/10.1007/s11813-008-0009-x
http://arxiv.org/abs/0802.4458
http://math.univ-lyon1.fr/~begnac/articles/RandomVC.pdf
http://dx.doi.org/10.1007/s11856-009-0094-x
http://arxiv.org/abs/0802.0068
http://math.univ-lyon1.fr/~begnac/articles/DefOSGrp.pdf
http://dx.doi.org/10.2178/jsl/1278682202
http://arxiv.org/abs/0802.4286
http://math.univ-lyon1.fr/~begnac/articles/cfo.pdf
http://dx.doi.org/10.1090/S0002-9947-10-04837-3
http://arxiv.org/abs/0801.4303
http://math.univ-lyon1.fr/~begnac/

	1. The theory of metric valued fields
	2. The theory of algebraically closed metric valued fields
	3. Real closed and ordered metric valued fields
	References

