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ABSTRACT.

1. THE CASE OF A GENERAL THEORY

Let M be a classical structure (although everything we say can be generalised to
the case of a continuous structure). Let also &/ be an atomless measure algebra. Let
(M ® )y be the LE-pre-structure defined as follows. The domain consists of all formal
finite sums ) ., m; ® e;, also written m ® € or simply me, where m; € M and e =
(€;)i<n € & is a partition of the identity. If ¢’ is any other event then we identify m ® e
with (m, m)®(eNe’,ex¢). In other words, we identify members of (M ® .o7), with other
members obtained by refinement of the partition. The reader will not find it difficult to
check that the definitions that follow are compatible with this identification. We then
define:

flavebwe,...) = (fla,b;,...)) ®e,
[Pavebee,...)] =\/{e: Plaibi,..)} €.

We notice that the distance symbol interprets a metric on (M® 47 ), whose completion
we call M ® o/. We observe that if M F T then M ® o/ F T*. In addition, the original
structure M can be viewed as a subset, a sub-structure in fact, of M® .2/ viam — m®1.

Let p be an n-ary measure over M. In the sense of M ® &7 it is a type over the subset
M, but this is not a type over a model in the sense of T%. Nonetheless, ;i admits a
natural extension to the model M ® o7. This natural extension is denoted p ® o7, and
is defined by letting, for every L-formula ¢:

P [gp (f, Z miei>]u®d = Z Ple;)P* [o(Z, m;)].

This is only defined for formulae over the parameter set (M ® &)y and the extended by
continuity to the whole structure.

This note answers a few questions about the relation between measures and random types, raised
(among others) by Pierre Simon.
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Assume now that p is Borel definable over A C M. In other words, assume that for
every L-formula ¢(Z,9), |y| = m, there is a Borel function D,p: S,,(A) — [0,1] such
that P*[p(Z,b)] = D,p(b) (i.e., = Dp(tp(b/A)).) If M realises every type over A then
the Borel definition of p over A is unique. We say that p is locally Borel definable if every
function D, factors via Sz(A), i.e., if D,p(b) depends only on the @-type tps(b/A). In
this case, it is enough to have M realise every local type over A for the definition of u
to be unique. If the defining functions are continuous, namely, are definable predicates,
then they are uniquely determined by p without any saturation hypothesis for M, and
we say that yu is definable. If M is any model of T# containing M (e.g., if M = M ® <7
then we can extend p to a complete type over M, denoted p[™:

1) Plela D)™ = [ Do) dtp(b/4),

where tp(b/A) is viewed as a Borel probability measure on S,,(A). In the case of M® 7,
the natural extension y ® o and the extension by definition p[®“ coincide.

Recall that a type p(Z) over a model M is finitely satisfiable in a sub-model My < M if
it lies in the topological closure in S,,(M) of the set of types realised in My. In continuous
logic, this is equivalent to saying that for every formula ¢(z) with parameters in M, if
©P = 0 then there is @ € My such that p(a) < 1. This is further equivalent to saying
that for every formula ¢(Z) with parameters in M, and every € > 0 there is a € M
such that |p(a) — ¢P| < e. In the case of randomised structures we need to be careful
with this definition, since not every £ formula is of the form P[] for an L-formula ¢:
we only know that every £ formula can be approximated arbitrarily well by continuous
combinations of formulae of the form P[p]. Thus, a type p over M E T% is finitely
realised in a sub-model My < M if and only if, for every finite family of L-formulae
vi(z,y), i < m, every parameter b € M (or in some fixed dense subset of M), and for
every € > 0, there is a € M, such that

|P[<pi(a, b)|] — IP’[goi(x,b)]p| <&, Vi < m.

Proposition 1.1. Let Mo <M, o = o/, and let p be a measure over M.

(i) We have Mo ® o) 2 M ® .
(ii) The measure i is definable over My if and only if the type p ® < is definable
over M.
(iii) The measure p is finitely satisfied in My if and only if the type p® o is finitely
satisfied in My ® <.

Proof. The first item is by quantifier elimination for T%.

For the second item, assume that p is definable over M. Its o-definition I,p(7) is
a continuous My-definable predicate in the sense of 7. Therefore, E[I,p(7)] is an M-
definable predicate in the sense of T% and is the P[¢]-definition of p®.e7. Since T® admits
quantifier elimination down to formulae of the form P[y], we are done. The converse is
easy.
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For the third item we use the characterisation of finite satisfiability given earlier for
My =MyRdh = M = M® /. Since we may restrict ourselves to a dense set of
parameters, we may assume that b=>b® e = Zj<k bje;.

Let s € s™*. Define p4(x,9) = Nicmj<i ©;7(z,y;), where ¢ = ¢, p! = —p. Then
choose a, € My, if possible, such that o, (as,b), i.e., such that o;(as,b;) <= s;; = 0 for
all 4,7. Choose also a partition f = (fs),comr C % such that P[f,] = P*[p,(Z,b)].

We now have a little problem, since we wish f to be independent from €, but it may
well be that no such partition f (with the desired probabilities) exists in .o%. Instead,
we may construct in 2% an independent sequence of partitions (f¢)sen (With the same
probabilities as f = f°). By a superstability argument, each e; is arbitrarily close to
being independent from f¢ for ¢ sufficiently big. Since the tuple € is finite, there exists £
such that

[Ple; A fi] — Plei|PLf]| < ePle;] P[], Vi, s.

We may then replace our original partition f with f*. In other words, we may assume
that f and é are arbitrarily close to being independent.

Notice that by hypothesis, if f, # 0 then a, exists, so the expression a = @ ® f makes
sense an is a member of My ® 7. We then have

Plpi(a, b)] ZIPfS z,b)P| <e,  Vi<m.
{]P[(pi(ah b)] - P[@i(l‘v b)]ﬂ®=ﬂ7/‘ = Z fs A ej Z ]P) 6] 901 :13 b; )}

8,71 8i5=1

=| > Plfinel— Y PlelPlf]
8,71 8i5=1 ENHETES

< ) [Pl Ae] —PlelPIA]] <,
8,1 8i5=1

as desired. I

2. THE CASE OF A DEPENDENT THEORY

Proposition 2.1. Assume Mgy < M are models of a dependent theory T, where M is
weakly saturated over My. Let also p be a measure over M, finitely satisfiable over M.
Finally, let ofy be any atomless probability algebra. Then

(i) The measure j1 admits a unique Borel definition over My, which is moreover
local.
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(i) If M = M @ <, then the extension by definition ™ is approzimately finitely
satisfiable in Mo ® ofy. Conversely, if iM% is approzvimately finitely satisfiable
in Mo ® < then p is finitely satisfiable in M.

Proof. Since p is finitely satisfiable it is invariant over M, and by [HP] it admits a
Borel definition. This definition is unique by the saturation assumption. In fact, finite
satisfiability implies that u is locally invariant, meaning that P*[(Z, b)] depends only on
tp,(b/My). Locally of the Borel definition follows.

For the second item, fix a formula ¢(x, y) and a parameter b € M. Let v = tp;(b/Mo),
viewed as a @¢-measure over My. By [HP, Lemma 4.8], v can be approximated up to
arbitrary € > 0 by an average %Ee < Pe; where p; € Sz(M,) are actual types, identified
with the corresponding Dirac measures. The same can be done simultaneously with
a finite family of formulae ¢;(z,y), ¢ < m, namely fine k& and p, € S;(My) such that
tp;, (b/Mpy) is approximated up to € by %Zkk pels,-

Let @/ > ./, contain an equal k-partition €, independent of .2%,. Let also b, € M realise
pe for each ¢ < k. Then

pi(@, b @ )" — py(z, )" | <6, i< m.
Since we already know that p ® 7 is finitely realised in My ® %, we conclude that so
is ™. m,
Commutativity of the product of a definable measure with a finitely realised measure
(originally proved by Pillay) follows.
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