MODULAR FUNCTIONALS AND PERTURBATIONS OF NAKANO
SPACES

ITAI BEN YAACOV

ABSTRACT. We settle several questions regarding the model theory of Nakano spaces
left open by the PhD thesis of Pedro Poitevin [Poi06].

We start by studying isometric Banach lattice embeddings of Nakano spaces, showing
that in dimension two and above such embeddings have a particularly simple and rigid
form.

We use this to show show that in the Banach lattice language the modular functional
is definable and that complete theories of atomless Nakano spaces are model complete.
We also show that up to arbitrarily small perturbations of the exponent Nakano spaces
are Np-categorical and Ny-stable. In particular they are stable.

INTRODUCTION

Nakano spaces are a generalisation of L, function spaces in which the exponent p is
allowed to vary as a measurable function of the underlying measure space. The PhD
thesis of Pedro Poitevin [Poi06] studies Nakano spaces as Banach lattices from a model
theoretic standpoint. More specifically, he viewed Nakano spaces as continuous metric
structures (in the sense of continuous logic, see [BU]) in the language of Banach lattices,
possibly augmented by a predicate symbol © for the modular functional, showed that
natural classes of such structures are elementary in the sense of continuous first order
logic, and studied properties of their theories.

In the present paper we propose to answer a few questions left open by Poitevin.

e First, Poitevin studies Nakano spaces in two natural languages: that of Banach
lattices, and the same augmented with an additional predicate symbol for the
modular functional. It is natural to ask whether these languages are truly dis-
tinct, i.e., whether adding the modular functional adds new structure.

e Even if the naming of the modular functional does not add structure, it does
give quantifier elimination in atomless Nakano spaces. While it is clear that
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without it quantifier elimination is impossible, it is natural to ask whether model
completeness is.

e Poitevin showed that the theory of atomless Nakano space where the exponent
function is bounded away from one is stable. What about the general case?

e Similarly, if the exponent is constant, i.e., if we are dealing with classical atomless
L, spaces, it is known (see [BBH]) that the theory of these spaces is Ny-categorical
and Wy-stable. On the other hand, it is quite easy to verify complete theories
of atomless Nakano spaces are non Ny-categorical and non RNg-stable once the
essential range of the exponent is infinite. It is therefore natural to ask whether,
up to small perturbations of the exponent, a complete theory of atomless Nakano
spaces is Ng-categorical and Ng-stable. A positive answer would mean that the
theory of atomless Nakano spaces is stable settling the previous item as well.

In this paper we answer all of these questions positively (where a negative answer to
the first question is considered positive). It is organised as follows:

Section [1] consist purely of functional analysis, and requires no familiarity with model
theory. After a few general definitions we study mappings between vector lattices of
measurable functions and then more specifically between Nakano spaces. Our main
result is:

Theorem. Let 0: Ly (X, B, 1) — Loy (Y, €, v) be a Banach lattice isometric embedding
of Nakano spaces of dimension at least two. Then up to a measure density change on'Y
and identification between subsets of X and of Y (and thus between measurable functions
on X and on'Y ) 0 is merely an extension by zeros from X toY O X. In particular

p=qlx and pp = v]g.

It follows that such embeddings respect the modular functional and extend the essential
range of the exponent function.

In Section [2 we expose the model theoretic setting for the paper. In particular, we
quote the main results of Poitevin’s PhD thesis [Poi06].

In Section 3| we prove our main model theoretic results:

Theorem. The modular functional is definable in every Nakano Banach lattice (i.e.,
naming it in the language does not add structure). Moreover, it is uniformly definable in

the class of Nakano spaces of dimension at least two, and in fact both sup-definable and
inf-definable there.

Theorem. The theory of atomless Nakano spaces with a fized essential range for the
exponent function is model complete in the Banach lattice language.

In Section 4| we study perturbations of the exponent function, showing that small
perturbations thereof yield small perturbations of the structures. Up to such perturba-
tions the theory of atomless Nakano spaces is Ng-stable, and every completion thereof is
No-categorical. In particular all Nakano space are stable.
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Appendix [A consist of the adaptation to continuous logic of a few classical model
theoretic results and tools used in this paper.

Finally, Appendix Bl contains some approximation results for the modular functional
which were used in earlier versions of this paper to be superseded later by Theorem [1.10,
but which nonetheless might be useful.

1. SOME FUNCTIONAL ANALYSIS

1.1. Nakano spaces. Let (X, 1) be an arbitrary measure space, and let Lo(X, B, 1)
be the space of all measurable functions f: X — R up to equality a.e. (Since we wish
to consider function spaces as Banach lattices it will be easier to consider the case of
real-valued functions.)

Let p: X — [1,00) be an essentially bounded measurable function. We define the
modular functional ©p.y: Lo(X,B, n) — [0, 00] by:

Ou(f) = [ 17
We define the corresponding Nakano space as:
Ly (X, B, 1) = {f € Lo(X,B, p): Op(y(f) < oo}

If f € Ly)(X,DB, 1) then there exists a unique number ¢ > 0 such that ©,.)(f/c) = 1,
and we define || f|| = || f||,() = ¢. This is a norm, making L,.y(X,*B, 1) a Banach space.
With the point-wise minimum and maximum operations it is a Banach lattice.

Remark. In the literature ©,. is usually merely referred to as the modular. Being par-
ticularly sensitive regarding parts of speech we shall nonetheless refer to it throughout
as the modular functional.

1.2. Strictly localisable spaces. In this paper we shall consider the class of Nakano
spaces from a model-theoretic point of view. This means we shall have to admit arbitrarily
large Nakano spaces (e.g., k-saturated for arbitrarily big x) and therefore arbitrarily
large measure spaces. In particular, we cannot restrict our attention to o-finite measure
spaces. In order to avoid pathologies which may arise with arbitrary measure spaces we
shall require a weaker assumption. Recall from [Fre03]:

Definition 1.1. A measure space (X,B, u) is strictly localisable if it can be expressed
as a disjoint union of measure spaces of finite measure, i.e., if X admits a partition as

U,e; Xi such that:
(i) Foralli € I: X; € B and p(X;) < oo.
(ii) For all A C X: A € B if and only if AN X; € B for all i € I, in which case
n(A) =2 AN X;).

In this case the family {X,};,c; witnesses that (X, u) is strictly localisable.
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For example every o-finite measure space is strictly localisable. On the other hand, if
(X, B, 1) is an arbitrary measure space we can find a maximal family X = { X, },c; C B of
almost disjoint sets with 0 < pu(X;) < oo. Let (X', B, 1) = [[,,(Xi, Blx,, 1lx,), where
the disjoint union of measure spaces is defined precisely so that the result is strictly
localisable. We also have an obvious mapping 0: Lo(X,B, ) — Lo(X',B’, /). This
does not lose any information that interests us: in particular, 6 restricts to an isometric
isomorphism of Nakano spaces 6: L, (X, B, 1) — Loy (X', B, 1t').

We may therefore allow ourselves:

Convention 1.2. In this paper every measure space is assumed to be strictly localisable.

Let us state a few very easy facts concerning strictly localisable measure spaces. The
following is immediate:

Fact 1.3. Let X = {X;}icr witness that (X,B,u) is strictly localisable. If X' =
{X5}jes © B is another partition of X refining X, splitting each X; into at most count-
ably many subsets, then X' is a witness as well.

The Radon-Nikodym Theorem is classically stated for finite measure spaces, with vari-
ous occurrences in the literature in which the finiteness requirement on the ambient space
is relaxed. See for example [Fre03, Corollaries 232F,G]. These are corollaries to [Fre03,
Theorem 232E], which allows an arbitrary ambient measure space at the cost of an ad-
ditional concept, that of a truly continuous functional. Another generalisation appears
in [Fre04, Theorem 327D], but again the smaller measure is assumed there to be finite.
We shall require a different generalisation of the Radon-Nikodym Theorem in which all
finiteness requirements are replaced with strict localisability.

Let (X, B) be a measurable space and let 1 and v be two measures on (X, B). Assume
also that v(X) < oco. Then v is said to be absolutely continuous with respect to p, in
symbols v < p, if for every € > 0 there exists 6 > 0 such that u(4) < 6 = v(4) < ¢
for every A € 8. Equivalently, if u(A) =0 = v(A) =0 for every A € B.

In the general case, i.e., when v is not required to be finite, we shall use the notation
v < i to mean that p and v are both strictly localisable with a common witness { X };er,
and that v is absolutely continuous with respect to p on each X;. It follows directly from
this definition that if v < p and p(A) = 0 for some A € B then v(A) = 0 as well,
so v is absolutely continuous with respect to p on every set of finite v-measure. This
has two important consequences. First, if v < p then every common witness of strict
localisability for both p and v also witnesses that v < u. Second, in case v(X) < oo,
the definition of ¥ < p given in this paragraph coincides with the classical definition
appearing in the previous paragraph.

Fact 1.4. Let (X,B, 1) be a measure space (strictly localisable, by our convention) and
let L§(X,B, 1) denote the set of positive functions in Lo(X,B, ).
(i) Let ¢ € Li(X,B, ), and for A € B define v.(A) = [ (du. Then v, is a measure
and ve < .
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(ii) Conversely, every measure v < p on (X,B) is of the form v = v for a unique
(up to equality p-a.e.) ¢ € L§(X,B,u), and we write { = g—;, the Radon-
Nikodym derivative of v with respect to p. In this case we also have [ fdv =
ffg—; dp for every f € Lg (X, B, u).

In particular, we obtain a bijection between {v: v < u} and L{(X,B, ).

Proof. For the first item, let {X;};,c; witness that p is strictly localisable. We may
assume that in addition ¢ is bounded on each X;, for if not, we may split each X; into
Xin ={r € X;:n <({(xr) <n+1} for n € N. Then {X,};c; also witnesses that v, is
strictly localisable and it is clear that v, < p.

For the converse, let {X;};c; witness that v < pu. We may apply the classical Radon-
Nikodym theorem on each X;, obtaining a measurable function ¢(;: X; — R* for alli € I,
and define ¢: X — R™ so that [y, = ¢;. Then ¢ is measurable and

/deZZ/XZ_deZZ/Xifgduz/f(d#

for f € Lg (X, %, ). In particular v(A) = [, (du for all A € B, which determines ¢ up
to equality p-a.e. u,

Let us say that two measures  and v on (X, B) are equivalent if p < v and v < p. In
this case each is obtained from the other by a mere density change and the corresponding
Nakano spaces are naturally isomorphic.

Fact 1.5. Let u and v be two equivalent measures on (X,B), and let p: X — [1,7] be
measurable. Let (N,0) = Ly (X, B, 1) and (N',0") = Ly, (X,B,v) be the correspond-

ing Nakano spaces with their modular functionals. For f € N define D, ,f = (Z—’:)l/pf.

Then D,,,f € N and D,,,,: (N,0O) ~ (N',0’) is an (isometric) isomorphism.

Proof. One calculates:

O (Duud) = [ (111" o

- [uriza
= [P dn=e).

It follows that f € N = D, f € N'. In addition to ©, D,,, clearly also respects the
linear and lattice structures, and therefore the norm, and admits an inverse D, ,,. W5

1.3. Mappings between function space lattices. For the following results we shall
be considering two measure spaces (X, B, u) and (Y, €, v), as well as a partial mapping
0: Lo(X,B,u) --» Lo(Y, €, v). Its domain L C Lo(X,B, i) is a vector subspace which
contains all characteristic functions of finite measure sets. For example, L could be a
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Nakano space Ly.)(X, B, ;1) or just the space of simple functions on X with finite measure
support. Assuming that 6 sends characteristic functions to characteristic functions, we
shall allow ourselves the following abuse of notation: if A € 8 has finite measure and
0(xa) = xB, B € € then we write A = B (even though this is only defined up to null
measure). In particular, instead of writing 6(x ) we write xga.

Lemma 1.6. Let L C Lo(X,B, 1) be a vector subspace which contains all characteristic
functions of finite measure sets and let 0: L — Lo(Y, &, v) be a linear mapping respect-
ing point-wise countable suprema when those exist in L, and which in addition sends
characteristic functions to characteristic functions.

Then 0 extends to a unique vector lattice homomorphism 0: Lo(X,B, 1) — Lo(Y, €, v)
which respects countable suprema. Moreover, for every Borel function p: R™ — R which
fizes zero (i.e., which sends 0 € R™ to 0 € R) and every tuple f € Lo(X,B,u) we have

A — —

O(po f)=pol(0f)
Proof. Let us write Ly for Lo(X,B, 1), and let L be its positive cone.

Let us first consider the case where p(X), v(Y) < co. In this case L contains all simple
measurable functions. For f € L and 0 < k € N define f®(z) = % A k, where [r]
denotes the least integer greater than r. Thus f*) 7 f point-wise and f*) € L for all
k. We then have no choice but to define 8 as follows:

éf:é(\/ f<k>> =\/ os® for f e LT,

keN keN
Of =0(f" —f)=0ft—af for general f € L.
We now need to make sure this verifies all the requirements.

First of all we need to check that if f € L} then 6f = Vyen 0F® exists, i.e., that it is
finite a.e. Let Ay = {f > k} ={2 € X: f(x) > k}. Then the sequence {x4,} decreases
to zero, whereby {xs4,} decrease to zero as well. We have f (k+tm) <k + my 4, Whereby
Ofk+m) <k + myga,, so 0f 5™ < k outside §Ay, for all m. Thus éf < k outside 6 Ay,
and we can conclude that 6 f € Lo(Y, €, v). Since 6 respects countable suprema, 0 agrees
with 6 on LT.

We claim that 6 respects countable suprema on L. Indeed, assume that Vnen fm
exists for f,, € L{. Notice that in general \/, [an] = [V,, am], whereby

(k)
é(\/ fm> /o (\/ fm> - \/e(\/ ffé”) =) =\ it
meN keN meN keN meN meN,keEN meN

If f =3 cnfm where fo, € LE, fiu A frr = 0 for m # m’ then 6(f,) A O(frr) = 0 as

well and 0(f) = 0(V,, fu) =V, 0(fn) = 2, 0(f). )
Next we claim that if A C (0,00)" is a Borel set and f € (Lg)™ then 6{f(z) € A} =

{6f(y) € A}. Indeed, for a single f we have 6f = QA(\/tEQJr tX(r>1) = Viegr tX0{r>1)
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whereby {6f >t} = 0{f > t}. Our claim follows for the case A = (ty, 50)X. .. X (t,_1,00).
On the other hand we have

z {fm c UAm} = ol (@) € A},

{éﬂy) e UAm} — 107 (w) € An},
0{F(x) € (0.00)" ~ A} = 8F > 0} ~ 9 (x) € A},
{67(y) € (0,00)" ~ A} = 6{f > 0} ~ {6](y) € A}.
We may thus climb up the Borel hierarchy and prove the claim for all Borel A.

Assume now that f(z) € (0,00)" U {0} for all + € X and that ¢ > 0. Letting
Ay ={z € (0,00)": p(x) > t}:

0{po f>t}=0{f e A} ={0f € A} = {¢o (0f) > t},

whereby é(gp of)=po (éf) For general f, let S = {1,0,—1}" . {0}, and for s € S let
A, = {r € X: sgn(f) = s}. On each A, we may drop those f;’s which are constantly
zero and replace those which are negative with their absolute value, making the necessary
modifications to ¢, obtaining by the previous argument

Blp o (xa.f)) = wo (B(xa.f)).
whereby:

Opof)=> Bpo(xaf) =) wo(l = o (0f)
ses seS
Finally, for general ¢ we can split it to the positive and negative part and then put
them back together by linearity. Among other things, this holds when ¢ is +, V, A, or
multiplication by scalar. Thus 0 is a vector lattice homomorphism. It follows that 0
agrees with 6 on all of L. This concludes the case where both X and Y have finite total
measure.

Now let us consider the case where X is an arbitrary measure space. Let {X;}ic; C
B be a maximal family of almost disjoint sets of finite non zero measure such that
in addition f(xx,) # 0. Since v(Y) is assumed finite such a family must be at most
countable, so we can write it as { Xy }ren. Let X' = J Xj. Then for every f € L we have
O(f) = 0(fxx) = > . 0(fxx,) (verify first for f > 0 and then extend by linearity), so
we may restrict to each Xy, reducing to the case already considered, then checking that
0(f) = 2 0(fxx, ) works.

Finally, if (Y, €, v) is merely strictly localisable then let this be witnessed by {Y;}icr.
Then we can first extend 0; = xy,0: L — (Y3, €[y, v]y,) to 6; and then obtain 6 by
gluing. .1.6
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Lemma 1.7. Continue with previous assumptions, and add that if p(A) < oo then
v(0A) = u(A). Then for every function f € L(X,B,pn): [ fdu= [6fdv.

Proof. This holds by assumption for characteristic functions of finite measure sets, from
which we deduce it for simple positive functions, positive functions and finally general
functions. m

1.4. Embeddings of Nakano Banach lattices. We now prove the main functional
analysis results of this paper.

Lemma 1.8. Let N = Ly (X,B, ) and N' = Ly (Y, €, v) be two Nakano spaces, and
let 6: N — N' be an isometric embedding of Banach lattices which sends characteristic
functions to characteristic functions. Assume furthermore that dim N > 2. Then:

(i) 6(p) = axox-
(ii) For all finite measure A € B: v(0A) = pu(A).

Proof. First of all the hypotheses of Lemma 1.6] are verified with N = L, so 6 exists. Let
Yy = 60X € € be the support of the range of 6.

Cy={y €Yy Oply) < qly)},
Cy ={y € Yo: Oply) > q(y)},

C=CUC={yeYy: Oply) #qly)}

Then C,C5,C € € and we need to show that v(C) = 0. Let A, B € B be such that
0 < u(A), u(B) < oo. For t € [0,1], let

o) e )

=XAl 7 XB\ —7 05y )
F\ A "\u(B)
t O\ #w 1—t\ %
=000 =0 (55) ™ 0 ()

Then O(f;) =1 = ||fill =1 = ||g:|| = 1 = ©'(¢:) = 1. In other words:

0= [ (i) w0+ [, (i) o0

Substituting t = 0 and ¢ = 1 we see that in particular v(A) and v(B) are both positive
and finite. We may therefore differentiate under the integral sign for ¢ € (0, 1), obtaining:

d q t it q
0=—0(g :/ ~ < ) dl/+/ — dv
dt (90) oanc 1(A)fp \ 1(A) oa~c p(A)0p

1—t\an "
_/ q _ ( )6 dy—/ a — dv
onc u(B)op \ 1(B) oB~C [(B)0p
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If v(0ANCs) > 0 then lim;_o £6’(g;) = +00 # 0 which is impossible, so ¥(#ANCy) = 0,
and considering ¢t — 1 we see that v(#B N Cy) = 0 as well. We may therefore substitute
=0 and ¢t = 1 and obtain:

0:/ Ty
9A~C ((A)0p
—/ qA(1>0p dl/—/ quy
onc w(B)op \ (D) oB~C 1(B)0p

a4
:/ 4 . ( 1 )Gp dy+/ q — dv
panc u(A)dp \ 1(A) 9A~C 1(A)0p

[
R— = I/’
o5~ W(B)bp

/eAmc u(j)ép (M(lA)> . e /eBmc M(;)ép (u(lB)) o v

This is only possible if both are zero, i.e., if (AN C) =v(@BNC) = 0.

We have shown that v(0ANC) =v(@BNC) =0 for every A, B € 9B disjoint of finite
non zero measure. If N had dimension < 1 this would be vacuous, but as we assume that
it has dimension > 2 we have in fact v(#A N C) = 0 for all A € B such that p(A) < co.
It follows that v(C) = v(Yy N C) =0, i.e., that ép = qXv,-

Now let A € 9B be of finite non zero measure, h = p(A)~*/?@) Then O(h) = 1 =
1=0'(0(h)) =v(0A)/u(A). L

Remark. A special case of this result was independently obtained at the same time by
Poitevin and Raynaud [PR, Lemma 6.1].

whereby

The technical assumption that 6 sends characteristic functions to such (i.e., acts on
measurable sets) is easy to obtain via a density change:

Lemma 1.9. Let N = L, (X,B,u) and N' = Ly (Y,&,v) be two Nakano spaces,
and let : N — N’ be an isometric embedding of Banach lattices. Then there is a
measure A on (Y, &), equivalent to v, such that D,y 06: N — N" = L,y(Y, €, \) sends
characteristic functions to characteristic functions, where D, x: N' — N" is the density
change isomorphism from Fact 1.5l

Proof. Let {X;}ier € B and {Y;}c; C € witness that X and Y are strictly localisable.
Possibly replacing them with refinements as in Fact [1.3 we may assume that I C J and
that for ¢ € I the set Y; is the support of #(xx,). Define (: Y — R* by

C=_00xx)"+ > Xy

i€l jeINI
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This function is measurable and non zero a.e., allowing us to define another measure A
by d\ = (dv. Then v and A are equivalent measures, and D, ) 0 §(xx,) = Xy;. Since this
is an embedding of Banach lattices it follows that it sends every characteristic function
to a characteristic function. I

Putting everything together we obtain:

Theorem 1.10. Let N = Ly,)(X,B, ) and N' = Ly (Y, €, v) be two Nakano spaces,
dim N > 2, and let 0: N — N’ be an isometric embedding of Banach lattices. Then up
to a measure density change on Y :

(i) 0 sends characteristic functions to such.
(ii) Op = qx;x-
(iii) For all finite measure A: v(0A) = u(A).

Proof. Immediate from Lemma 1.9 and Lemma L IRT

Corollary 1.11. Let (N,©) = L,y(X,B, ), (N',0") = Ly (Y, €, v) be two Nakano
spaces, dAim N > 2, and let 6: N — N’ be an embedding of Banach lattices. Then 0
respects the modular functional: © = © o 6.

Proof. According to Fact [1.5/ a density change on Y does not alter ©’. Thus we may
assume that 6 is as in the conclusion of Theorem [1.10. By Lemma [1.7] we then obtain
for all f € N:

0 o b(f) = / 6(f)|7 dv = / 6(F)|P d = / 6(1f17) dv = / P dj = O(f).
-1.11

Corollary 1.12. Let (N,0) = L, (X, B, u) and (N',0") = Ly, (Y, €, v) be two Nakano
spaces, dim N > 2, and let 0: N — N’ be an embedding of Banach lattices. Then
ess rngp C ess rngq. If the band generated by 6(N) in N’ is all of N’ (so in particular,
if 0 is an isomorphism) then ess rTng p = ess rngq.

Proof. The density change does not modify p and thus neither its range, so again we may
assume that ¢ is as in the conclusion of Theorem [1.10. It is also not difficult to see that
ess rng p = ess rng Op \ {0} C ess rng g. If the band generated by 0(N) in N’ is all of N
then /X =Y and q= ép. u

In the case where 6 is an isomorphism this has already been proved by Poitevin [Poi06,
Proposition 3.4.4].

2. MODEL THEORY OF NAKANO SPACES

2.1. The model theoretic setting. We assume familiarity with the general setting of
continuous first order logic, as exposed in [BU] or [BBHUO0S8]. Since continuous logic
only allows bounded metric structures we cannot treat Banach spaces directly. The
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two standard solutions for this are either to consider a Banach space as a multi-sorted
structure, with a sort for B(0,n) (the closed ball of radius n) for each n, or to restrict
our consideration to the first of these sorts, i.e., the closed unit ball. (There exists also
a third solution which we shall not consider here, namely to treat the entire Banach
lattice as an unbounded metric structure, see [Benb].) While Poitevin chose to use the
former we consider the latter to be preferable, so a few words regarding the difference in
approaches is in order.

The unit ball of a Banach space is, first of all, a complete convex space, i.e., a complete
metric space equipped with a convex combination operation from an ambient Banach
space. Such structures were characterised by Machado [Mac73] in a language containing
all convex combinations, and this characterisation can be expressed in continuous logic.
There are advantages to a minimalistic language, though, so we prefer to work in a lan-
guage consisting of a single function symbol % Convex combinations with coefficients
of the form 2% can be obtained as more complex terms in this language, and arbitrary
convex combinations with real coefficients are obtained as limits (as our structures are by
definition complete), so this language is quite sufficient. While it follows from Machado’s
work that an axiomatisation of unit balls of Banach spaces exists in this language, it
seems preferable to put an explicit axiomatisation of this kind on record along with a
complete (outline of a) proof.

Let T,,, consist of the following axioms:

(ID) Y [% = 37] ) i.e., sgp [d (%,ZL’)] — 0’
(PRM)  Vayat [3 (52 +5) = 3 (52 + 5] ete.
(HOM) nyz |:d (:E—2&-Z7 y-;z) _ d(ﬂgay):| )

we shall usually be interested in subsets of Banach spaces which are not only convex,
but also contain zero and are symmetric around it (i.e., —z exists for all ). The unit
ball is such a space, but is not the only interesting one (another one is the unit ball of a
von Neumann algebra with a normalised finite trace 7: it is a proper subset of the unit
ball of the Hilbert spaces with inner product (z,y) = 7(z*y)). The natural language for
such symmetric convex spaces is

£Bs = {07 ) x_—gya || ’ ||}

we shall use “5¥ as shorthand for w Since we wish to admit the unit ball of a Banach
space as a structure in this language we shall interpret the distinguished distance symbol

as half the usual distance d(z,y) = ||*5¥||, noticing the latter is an atomic formula. We
define T}, (for symmetric convex) as T, along with:
(SYM) Ve 552 = 0]

(NORM) Va [d(x,0) = §||=|]
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Finally, we define Tgs, the theory of (unit balls of) Banach spaces as T, along with
(FULL)  Va3y [[|z]| > 1 or ¥ =1] e, sgpirylf [(3 = |lz|) Ad(E2,2)] =0

Theorem 2.1. (i) The models of Tw,, are precisely complete convexr subsets of di-
ameter < 1 of Banach spaces.
(ii) The models of Ty. are precisely complete conver subsets of unit balls of Banach
spaces which are symmetric around zero.
(iii) The models of Tgs are precisely closed unit balls of Banach spaces.

Proof. For each of the assertions it is clear that all the said structures are models, so we
prove the converse. we shall start by examining the case of T,,,, reducing it to that of
Tse.

From the axioms we can deduce commutativity and a variant of the triangle inequality:

(conp =g (a0 = (B ) o

(TRID) () S d (5 ) s a (e — e

Now let C'F T,,,. Let C — C be the set of all formal differences x — y for x,y € C,

and define do(x — o',y — ') = d(%y/7 %z/) This is a pseudo-metric. Indeed, symmetry

and reflexivity are clear, and for transitivity one checks:
A5, 25 = 2a (5 (55 25 4 (52 + )

Sy (e n) 3 (2 7))

<W) d (z+y y+m ) +d <y+z z+y’>

2

Thus do(z — y, z — t) = 0 defines an equivalence ~ relation on C' — C, and dj induces a
metric on C_ = (C' — C) / ~=A{[xr —vy|: z,y € C}. Tt is straightforward to verify that
w = [zt — 2] 0 = [z—z] and —[z—y] = [y— 2] are well defined and render C_
a model of Ty,. Flnally, if o € C is any fixed element then z — [x — x¢] is an embedding
of C'in C_ which respects convex combination and shrinks distances by a factor of 2. It
follows that if we prove that C'_ embeds in a Banach space, so does C'. We thus reduced
the first assertion to the second.

We now work modulo ... First, observe that d(z,y) = 2d(*5%, %) = 2d(%5%,0) =
|52 ||. Thus the relation between the distance and the norm is as expected

A similar reasoning shows that Hy = 0 implies d(y, —x) = Qd(%ﬂ,%) =0, so

y = —x. It follows that —(—z) = = and that —22¥ = =LY (since 1 (T2 + =2) =
1 (z—x — _ 040 __
() =5 =0)

Fix a model S E T,.. For x € S, let us define %1: = %io, and by induction we can

further define 27"x for all n. If there is y such that z = %y then y is unique (indeed,
if z were another such element then 0 = d(z,z) = 3d(y,2) so y = z), and we may
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unambiguously write y = 2z. If 2% exists we write it as x + y. It follows from the
definition that  +0 = x and 2 4+ (—z) = 0. By definition we have %(x + y) = oy
(provided that x + y exists), and applying the permutation axiom we get x4+ 2y = Hy,
from which it follows that (—z) = —%x and %(x +y) =3+ 3y (provided T+ y exists).

From the commutativity of ‘”—'2”’ it follows that  +y = y + x, by which we mean that
one exists if and only if the other does, in which case they are equal. Similarly, by the
permutation axioms, if z+y and y+z exist then (z+y)+2z = x+(y+2). This means we can
write something like ), _, x; unambiguously, without having to specify either parentheses
or order, as long as we know that for every subset w C k the partial sum ), x; exists
in some order and with some organisation of the parentheses. In particular, this means
that >, ki27™x; always makes sense for n; € N, k; € Z satisfying Y 27" |k;| < 1,
and that sums and differences of such expressions behave as expected (in particular:
27ty 4 271y = 271y, Tt follows that k27" (2Mx) = (k€)2_”_mx.

It follows directly from the axioms that [|iz|| = 2d(32,0) = 1 - 2d(z,0) = 3||z||. We
obtain [|z| = 2d(0,z) = 2 ||%%| = || -], and 1fx+y exists then H:U—i—yH = 2d(z+y,0) <

2d(z+y,y)+2d(y,0) =2 H%H +2||%2]| = l|=|| + |ly|l- By induction on n one proves

first that ||27"z| = 27"||z||, and then that for all 0 < k < 2": ||k27"z| = k27"||z|. It
follows that || >, k27" || <277 Y7 |kl

Thus for every o € [—1, 1] we can define ax as a limit of k,27"x. We obtain that > o;z;
always makes sense if Y |o;| < 1, a(fz) = (af)z, (o + B)x = ax + fx (provided that
la+6| < 1), a(z+y) = ax+ay (provided that z+y exists), and ||az|| = |al||z|]. We also
have d(ax, o) = || %52 = |o |52 || = |eld(z, ), so in particular ax = ay = z =y
for |a| # 0.

We can now define By = R*? x S, and define (a,x) ~ (8,y) if ;%3
straightforward to verify using results from the previous paragraph that ~ is an equiv-
alence relation, and that the following operations are well defined on B = By/~ and
render it a normed vector space over R:

L = (Hﬁy It is

[af3, x] 6>0
Bla,z] =< [—aB,—z] B<0
[1,0] =0

a 5

[a,x]+[ﬁ,y] = |a+ 0,

lfev, 2]l = all].

T +
a+ 0 a—i—ﬁy

Our structure S embeds in the unit ball of B via z — [1, z].
The last assertion now follows immediately. P9
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When dealing with models of Tz; we allow ourselves to omit the halving operation

when no ambiguity may arise. Thus, for example, we write z 4+ y + 2 = ¢t + w instead of

1(z 4 ytzy _ ltdw
2(2—1- 2)—2 5, and so on.

We shall now extend this to Banach lattices. We recall a few definitions from [Mey91]:

Definition 2.2. (i) An ordered vector space (F,<) is a vector space E equipped
with a partial ordering <, over an ordered field (k, <), satisfying

v<u <<— v+w<utw <<= av<au

for all v,u,w € F and o € k>°.

(ii) An ordered vector space is a vector lattice (or a Riesz space) if it is a lattice, i.e.,
if every two v,u € E admit a least upper bound (or join) v V u and a greatest
lower bound (or meet) v A u. In this case we write |v| = v V (—v), vt = v V0,
v~ =(—v) V0.

(iii) A normed vector lattice is a vector lattice over R, equipped with a norm satisfying
o] < ful = [[v]] < [Jul]-

(iv) A Banach lattice is a complete normed vector lattice.

We shall consider (unit balls of) Banach lattices in a language augmented with a
1-Lipschitz function symbol:

Lp = Lps U{|-[}.

Using the function symbol | - | we may define other common expressions which have the
intended interpretations in Banach lattices:

+_ et — _ lol==

T =" r =9
z\/y_l(ery_i_{xfy‘) z/\y_l(ery_ :Efy’)
2 2 2 2 ) 2 2 2 2 :

On the other hand we cannot expect to define x V y or x A y without halving since the
unit ball of a Banach lattice need not be closed under these operations.

We define Tg; to consist of T, along with the following axioms. We shall follow the
convention (which will be justified later) that > 0 is shorthand for = = |z|.

(BL1) lazx| = |||z a € [—1,1] dyadic
(BL2) lw\;\yl >0

(BL3) el = |[lzt]| < [|l=] + I}

(BL4) 2t =2t

(BL3) -+ () + () 20

(Some halving is omitted from BL3,5.)

Theorem 2.3. If (E, <) is a Banach lattice then the unit ball of E is closed under the
absolute value operation | - | and as a Lpg-structure is a model of Tg;. Conversely, every
model of Ty is the unit ball of a Banach lattice, where the absolute value operation is
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extended to the entire Banach space by |x| = and the order is recovered by

r<y<=zc—y=|r—y.

Proof. The first statement is immediate so we only prove the converse. If (Ey,|-|) E Tp
then E is the unit ball of a Banach space E. By BL1 we may extend the absolute value
operation to all of E as in the statement of the Theorem and have |ax| = |a||z| for all
a € R,z € E. By BL2 ||z| + |y|| = |z| + |y|.

Define a relation < on E as in the statement. Clearly z —z = 0 = |0 whereby = < x.
Ifz<y<zthen0=|z—y|+|y—=z|and by BL3 ||z —y|| <0,ie,z=y. lfx <y <z
then z —x = |y — x| + |z — y| whereby z — 2z = |z — z|, i.e., * < 2. Thus < is an
ordering and it is now clear that it renders E an ordered vector space. In particular,
x > 0 <= x = |z|, justifying our notation.

Define z Vy = xTer+ |’”—;y , = ETJ“y+ ‘%! Then zVy—x = (%)Jr, and by BL4
xVy > x. The inequalities  Vy > y and x,y > x Ay are proved similarly. Assume now
that z > z,y. Then (35%)” = %(2 — )~ and similarly for z — y, and by BL5 z > z V y.
Thus x V y is the join of z and y. It is not difficult to check that z Ay = —((—z) V (—y))
is the meet of z and y, so (E, <) is a Riesz space. Immediate calculations also reveal
that [z| =2V (—z), 2T =2 V0,2~ = (—x) V0.

Finally, if |z| < |y, applying BL3 to |z| and |y| — |z| we obtain ||z|| = |||z < |[ly||| =
|ly||. This completes the proof. m;

There is nothing sacred in our choice of language, and some may prefer to name the
operations ¥, 24 instead of the absolute value, thus working in L, = Lp,U{5Y, 2041}
We have seen that &2, 2% can be written as terms using |- |, so every atomic £’;-formula
can be translated to an atomlc L pg-formula. The converse is not true, but we may still
write \xl # An easy induction on the complexity of terms yields that every atomic
L - formula can be expressed as an atomic L'g-formula up to a multiplicative factor of
the form 2%, and therefore as a quantifier-free £,-formula. We may therefore say that the
two languages are quantifier-free interpretable in one another. By Theorem model
theoretic properties such as axiomatisability, quantifier elimination, model completeness,
and so on, transfer from any class of Banach lattices viewed as structures in one language
to the same class viewed as structures in the other. One could also formalise Banach
lattices by naming the operation x* (or z7), and the same argument would hold.

Since we are dealing specifically with Nakano spaces, we may consider them in the
language £9, = Lp U {©} where © will interpret the modular functional. However,
there is a small caveat here: the modular functional ©,. is indeed uniformly continuous
on the unit ball of L,.(X, B, 1), but its precise umform continuity modulus depends on

the essential bound of the exponent function p.

Convention 2.4. We fix here, once and for all, a uniform bound 1 < r < oo on p.
Thus all Nakano spaces considered henceforth will be of the form L, (X,®B, u) where
p: X — [1,7].
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Let K C [1,r] be compact. we shall consider the following classes of structures:
NR = {L£$,-structures isomorphic to some (L, (X, DB, 11), O,()) with ess mgp = K},
Nk ={Nl,,: N e N2}
= {Lps-structures isomorphic to some L, (X, B, u) with ess rngp = K},
NSK = U{NIC}),: @ #+ K' C K compact},
= {L£$,-structures isomorphic to some (L, (X, B, 1), O,.)) with ess mgp C K},
Neg = U{NK/: @ # K' C K compact} = {N[, : N € NSK}
= {Lps-structures isomorphic to some L, (X, B, u) with ess rngp C K},

(Of course, strictly speaking, these are the classes of the unit balls rather than of entire
spaces.)

Given the uniform bound we fixed before, the largest classes we may consider are
Nepe and N§, ), respectively.

Fact 2.5. Fach of the classes N2, N, N8 and Nck is elementary.

Proof. This is just [Poi06, Proposition 3.8.2]. While the case of NSK is not mentioned
there explicitly all the ingredients are there (in particular, as each class of the form N2
is closed under ultraroots, so are classes of the form NSK) m

We may impose additional requirement, such as the dimension being greater than 1, or
the lattice (equivalently, the underlying measure space) being atomless. These are first
order conditions as well. For the first one we would like to say that there are functions
x and y such that ||z|| = ||y|| =1 and |z| A |y| = 0, i.e.:

inf =l v =yl v [l + yl = e = yl]| = 0.
Similarly, atomlessness is expressible by:
supint]ly)| = 1] v |1 — lo — 29| = 0.
The classes of Nakano spaces of dimension at least 2 will be denoted 2Ny, 2N/, etc.
The classes of atomless Nakano spaces will be denoted ANy, ANR, etc.
Fact 2.6. Assume L, (X, B, ) € 2Nk (€ 2Nck ). Then ess mgp =K (C K ).

Proof. This is a consequence of [Poi06, Proposition 3.4.4], which can be also obtained as
a special case of Corollary [1.12. s,

Fact 2.7. The theory Th(ANPR) eliminates quantifiers. It follows that it is complete, as
18 Th(.ANK) .

Proof. [Poi06, Theorem 3.9.4]. -,
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Fact 2.8. Let K C (1,00) be compact (so min K > 1). Then the theory Th(AN) is
stable.

Proof. [Poi06, Theorem 3.10.9]. W

In fact, we are cheating here a little, as Poitevin proved his results in a somewhat
different language. He follows the approach described in the paragraphs following [BU,
Example 4.5], viewing a Banach space N as multi-sorted structure consisting of a sort
N,, = B(0,m) for each 0 < m < w. The corresponding language for Banach lattices,
which we may denote here by Lp;,, consists of the obvious embedding mappings between
sorts, plus multiplication by (say, rational) scalars and the binary operations +, A and V
going from sorts or pairs of sorts to an appropriate target sort (e.g., +: Ny, X N — Ny,
or %x: N; — Nj). The predicate symbols norm and distance can have values greater
than one, but they are still bounded on each sort and thus still fit in the framework of
continuous logic. Similarly, one can define £%l,w as Lp,, along with a predicate symbol
© on each sort, and again in every Nakano space © is uniformly continuous and bounded
on each sort.

It will be convenient to notice that even in this approach, multiple sorts are not re-
quired. Since all the sorts N,, of a Banach space stand in a natural bijection with the
unit ball sort N; via dilation z — 2 we may interpret the entire language Lp; . on
the single sort N;. Thus, for example, instead of +: N,, x N — N,,, we would have

Fmk: N1 x Ni — Ny sending (£, %) — Tf;?{c Viewing N; as itself, rather than as a scaled

copy of Ny,, Ni or Ny, 1, obtain the convex combination operation = 4,y =

mx+ky

m+k ° In

particular, z +; 1y = %ﬂ’

Viewed in this way, Lp; (£9;) is a sub-language of Lz, (ﬁ%lw). It is also fairly
immediate to check that every atomic Lp; -formula agrees (in any Banach lattice) with
a quantifier-free Lp;-formula. Thus Lp; and Lp;, are quantifier-free bi-interpretable,
in the sense of Appendix|A.2, on the class of Banach lattices. By Theorem [A.9, model
theoretic properties such as elementarity, model completeness, quantifier elimination, and
so on, transfer between classes of Banach lattices formalised in Lp; and in Lp;,,. (The
reader may worry that in the single sorted versions of £z, and £, we may construct terms
and formulae which do not come from the multi-sorted version due to sort discrepancy,
for example the term =+, (y +4+ 2) where k # ¢ + t. This term, however, agrees with
the “legitimate” term @ +,(044) k(e+¢) (Y +rere 2) in every Banach lattice. In this fashion
we can translate every term or quantifier-free formula of Lp;,, to one which would make
sense in the multi-sorted version, so this is not a true problem.)

Let us now consider the case of L, C L%, . The language L3, contains for every
m a predicate symbol ©,,: N — R*, 0,,(z) = ©(mz) (the range of ©,, is bounded
and the bound depends only on r and m), while £, only contains the first one of those,
© = ©;. Unlike the predicates for norm and distance on /N,, which are homogeneous and
can therefore be recovered from their counterparts on N; by simple dilation, in order to
recover O, from ©O; a little more work is required. Our argument here is very close to
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the proof of [Poi06, Lemma 3.4.1]. Let us first recall a version of the Stone-Weierstrass
Density Theorem:

Fact 2.9. Let X be a compact Hausdorff space and let of C C(X,R) be a sub-algebra
which separates points and vanishes nowhere (i.e., for each x € X there is f € o/ such

that f(x) #0). Then o is dense in C(X,R).

Lemma 2.10. For every 0 < m € N there exists a quantifier-free £LS,-definable predicate
©m(x) which coincides with v — O(mv) on the unit ball of every Nakano space N =
Ly (X, B, 1) (with ess rng(p) C [1,7]).

Proof. Let o/ C C([1,r],R) consist of all functions of the form f(z) = >, ax27%,
where n € N and a;, € R. Then o/ satisfies the assumptions of the Stone-Weierstrass
Density Theorem cited above, and is therefore dense in C([0, 1], R).

Let us fix ¢ > 0. By the previous paragraph there is a function of the form
f(x) = >, 27" € o/ which is e-close to g(z) = m® on [1,r]. Then ¢, (v) =
> ien O(27") is a quantifier-free definable predicate in £$,.

Now assume that v € N = Ly)(X,B, i), ||v|| < 1. Passing to |v| we may assume that
v > 0 and up to a density change we may assume that v = x4 for some A € B. Then
|lv|| < 1 implies that u(A) < 1. Consider the restriction p[,: A — [1,7], and let v be
the image measure of u[, under this mapping. For every o > 0 we have

@(ow):/o/’(m) d,u:/ a® dv,
A [1,7]

whereby
|©(mv) — e (v)] = m*dv — Z/ 27k dy
[1,r] k<n (1,r]
< [ @ oWl <ena <<
1,r
Since this can be done for every € > 0 the statement is proved. DB

Thus £$, and E%l,w are also quantifier-free bi-interpretable for Nakano spaces, so ax-
iomatisability, quantifier elimination and so on transfer between the two formalisms.
This also means that once we show that the modular functional of a Nakano space is
L p-definable in the unit ball (e.g., Theorem , it follows that it is Lp;-definable on
the m-ball for every m.

3. DEFINABILITY OF THE MODULAR FUNCTIONAL

This section contains the main model theoretic results of this paper. We start with
the definability result.
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Theorem 3.1. The modular functional © is uniformly Lp;-definable in 2/\/?[1,7“]. More-
over, it is both uniformly inf-definable and sup-definable and can be used to axiomatise
2/\/'8177,] modulo the azioms for 2Ncp .

More precisely:

(i) There exists a Lp-definable predicate po(x) such that (N,0) F O(z) = peo(x)
for all (N,©) € QNS[l’r}.

(ii) There quantifier-free Lp-formulae ¥, (x,y,) and xn(x,Zz,) such that in all
Nakano spaces of dimension at least two:

O(z) = po(x) = lim infy ¥, (z,7,) = lim sup; xn(z,Z,),

each of the limits converging uniformly and at a uniform rate.

(i) The theory Th(QNS[l’T]) is equivalent to Th(2Ncp ) U {O(z) = peo(z)}.

Proof. By Corollary [1.11 every N € 2Nc[1,,) admits at most one expansion to (N,0) €
2./\/'?[177,]. As these are elementary classes, one can apply Theorem |A.1] (Beth’s theorem
for continuous logic) in order to obtain pg.

Using Corollary [1.11) again we see that e is constant in 2Ncp . (see Definition A 2).
By Theorem A 4 it is both inf-definable and sup-definable there.

The last item is immediate. s

Corollary 3.2. For a fized compact K C [1,r]|, the modular functional is uniformly
L p;-definable in /\/}(?.
In particular the modular functional is Lp;-definable in every Nakano Banach lattice.

Proof. If K = {po} is a single point, we have O(f) = || f|[*°. Otherwise N2 = 2N2 C
2./\/'81’7,] and we can apply Theorem [3.1. n.,

We have shown that naming the modular functional does not add structure. Still, in
the case of an atomless Nakano space naming © does give something, namely quantifier
elimination. It is clear that without © quantifier elimination would be impossible: the
complete £9,-type of a function contains, among other information, the essential range of
p on its support, and there is no way of recovering this information from the quantifier-free
Lp-type of a single positive function, as it is determined by its norm alone.

A next-best would be to obtain model completeness. Indeed, all the work for obtaining
it is already done.

Theorem 3.3. For every compact K C [1,r] the (theory of the) class ANy is model
complete.

Proof. Follows from Corollary 1.11 and the quantifier elimination in ANR. s

The next and last result of this section is quite quick and straightforward to prove for
a person who is quite familiar with the notion of a measure algebra and understands that
Theorem [1.10/ is actually a result about measure algebras rather than about measure
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spaces. Having intentionally avoided all mention of measure algebras so far, a longer
approach is required, presenting this somewhat different point of view. We introduce
measure algebras in a very sketchy fashion, as an abstract version of a (strictly localisable)
measure space. For a comprehensive treatment we refer the reader to [Fre04].

Let (X,,u) be a measure space. Let B, C B be the lattice of finite measure
sets. As an algebraic structure, (B;,U,N,\) is a relatively complemented distribu-
tive lattice (and if it contains a maximal element then it is a Boolean algebra). The
measure p: By — R induces a pseudo-metric d(z,y) = p(zAy) on By. The ker-
nel of this pseudo-metric, namely the equivalence relation d(z,y) = 0, is compatible
with the algebraic structure, yielding a quotient relatively complemented distributive
lattice (@,m,u, ). The measure function g induces an additive “measure function”
fi:B — Rt and d(z,y) = fa(zAy) is a metric on B, with respect to which the op-
erations N, U, \ are 1-Lipschitz. Moreover, it follows from o-additivity of the original
measure that B is a complete metric space. For the purpose of the discussion that
follows, we call (%B,U, N, N, i) the measure algebra associated to (X, DB, u).

Conversely, let (€,U,N,~\,v) be an abstract measure algebra, namely a relatively
complemented distributive lattice where v: € — R* is additive, such that in addition
d(z,y) = v(zAy) is a complete metric on €. Assume first that € contains a maximal ele-
ment 1, i.e., that € is a Boolean algebra. Let € be its Stone space. For x € €let £ C € be
the corresponding clopen set, and define 7)(Z) = v(x). Then Carathéodory’s Extension
Theorem applies and we may extend 7y uniquely to a regular Borel measure 7 on €. It is
now easy to check that (€, U, N, \,v) is the measure algebra associated to the measure
space (€, ) (equipped with the Borel o-algebra). In the general case let {a;};e; C €
be a maximal disjoint family of non-zero members. For each i let €; = {bN a;}pee be
the restriction of € to a;. Restriction the other operations we obtain a measure algebra
(€;,U,N, N\, ;) with a maximal element a;, so the previous argument works. The disjoint
union [T, I(Ei, ;) is a strictly localisable measure space, and it is not difficult to check
that its measure algebra is (canonically identified with) €.

Definition 3.4. Let @ > 0 be an ordinal, {V;};«, an increasing chain of members of
2Ncp1, (as usual, all inclusions are assumed to be isometric).

A compatible presentation for this sequence is a sequence of presentations N; =
Ly, ()(Xi, B, p1;) such that each inclusion N; C N; sends characteristic functions to char-
acteristic functions.

Lemma 3.5. Let a > 0 be a limit ordinal, {N;};<o an increasing chain of members of
ZNQ[LT]. Let N; = L, (y(X5,Bi, i), @ < a, be a compatible presentation for this sequence.
Let Ny = U, Ni in the sense of continuous logic, namely the metric completion of the
set-theoretic union. Then N, € 2N§[1,T] as well.

Moreover, there exists a presentation No = Ly, (y(X;, By, p;) which extends the original

compatible presentation to one for the sequence {N;}i<q, and ess rngp, = J, ess rng p;
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Proof. For i < « let B; be the measure algebra associated to the measure space
(X, B, 11;). The compatibility assumption tells us precisely that for i < j < «, the
embedding N; C NN; induces an embedding 9B, C B; which respects the algebraic struc-

ture as well as the measure. We may therefore define € = J,_, B, (i.c., the completion
of the union). Since the algebraic (lattice) operations as well as the measure function
are uniformly continuous, they extend uniquely to €, rendering it an abstract measure
algebra. By the discussion above we may identify it with the measure algebra B, of
some measure space (Xq, Ba, fla)-

For each i < j < «, the embedding B; C %j induces a partial mapping
Lo(Xi, By, 11;) --» Lo(X;, B, p;) defined on the space of simple functions. By Lemma/l.6|
this extends uniquely to a total mapplng 02] LO(XZ, B, 1;) — Lo(X;,B,, ;). Moreover,
fori < j < k < a we have 0, ik © 92; =0, ik and 9@3 v, coincides with the inclusion N; C Nj.

By Theorem [1.10 we have Gwpl = Xoy,x.Pi whence 0;ap; 6, x, = Qjapj g, x, for
1 < j < a. It is also not difficult to check that X, = UKO& émXi up to null mea-
sure (more precisely, that every finite measure A € B, is contained, up to arbitrarily
small measure, by some HAMXZ-), so there exists a unique measurable p,: X, — [1,7]
such that émpz- = X4, x,Pa for all © < «, and its essential range is as stated. Let
N = Lp.()(Xa;Ba, fta). We obtain embeddings 6, , In,: Ni — N. Moreover, every
characteristic function of a finite measure set in N/ is arbitrarily well approximated by
members of the set union [J, 0;.o(N;) (by construction of €). It follows that the image
of the set union is dense, whence we get an isomorphism N, = N/, = L, ()(Xa, Ba, fa)
which respects characterlstlc functions, as desired. m;

Theorem 3.6. The (theories of the) classes N, Ncx, N, N, and similarly with
prefizes 2 and A, are all inductive.

Proof. Tt is immediate from the previous Lemma that 2Ncx and 2N are inductive.
It follows that Ncg and N&y are inductive, since every infinite increasing chain in this
classes has a tail in 2NCK_ or in 2./\/§)K Since the atomlessness axiom is inductive,
the classes ANcg and ANEy are inductive. The same reasoning works for K instead
of C K. (Of course, for ANy and AN 2 inductiveness follows directly from model
completeness). LB

4. PERTURBATIONS OF THE EXPONENT

Intuitively, a small change to the exponent function p should not change the structure
of a Nakano space by too much. We formalise this intuitive idea, showing that small
perturbations of the exponent form indeed a perturbation system in the sense of [Benb].
We show that up to such perturbations, every complete theory of Nakano spaces is No-
categorical and Ny-stable. In case p is constant (i.e., K is a singleton), we already know
(see, e.g., [BBH]) that the theory is Ny-stable and Wy-categorical without perturbation.
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Indeed, no perturbation of p is possible in this case, so it is a special case of what we
prove below.

4.1. Preliminary computations. We seek bounds for 1+ +* in terms of (14 ~)*, and
for 1 —~® in terms of (1 — v)*®, where v € [0,1] and s € [1/r,r]. The function ﬁ is
well behaved, 1 e Contlnuous as a function of two variables, and will not cause trouble.
The function ~— 7y is badly behaved near y = 1, so we shall only use it for v € [0, 5]. For
In(1—+*)
In(1—7) ’
for the time being, only defined for v € (0,1) and s > 0. We calculate its limit as v — 1

for a fixed s > 0 making several uses of ’'Hopital’s rule (marked with *):

- )s

7 € [3,1] we shall have to consider another function, namely ¢ (v, s) = which is,

lmfml—f):”m{ﬂfﬂﬂ vﬁ*:hm8¢*ﬂ—v)
y—1 In(1 —7) =1 —(1 =)t =1 1=
) (S _ 1) —2 52,75—1 —53
="1 = — =1
0 —gys—1 —5

It is therefore natural to extend ¢ by ¢(1,s) = 1. This function is continuous in each

variable for s > 0 and v € (0, 1], and we wish to show that it is continuous as a function

of two variables. In fact, all we need is to show it is continuous on [1, 1] x [1,7].
Assume v € (0,1), s € [1,r]. A straightforward verification leads to:

n(1=47) _ In(1-~?)
(i —7) = (-7 =

whereby:
=) | I{l-197)
In(1—~) In(1—~)
Thus lim,_; lf ((11__7;)) = 1 uniformly for s € [1,r], and ¢(v,s) is indeed continuous on
[5:1] x [1,7].
We now define for 1 < s <r:
, In(1 —~*) 1
Ay, =inf § ————= Ly <=
s = {sln(l—’y) TE [2’ )} s’
B =sup{ 220 0.4t € [1/s, 5
s p (1 . 'Y)t et )91 ) )
14+
Bl = : 1, te |l
s { i ealee s,

B, = max{B;, Bf}.

By continuity of ¢(v,s), and since ¢(y,1) = 1 for all v: lims_; As = limSH1§ = 1.
Similarly lims ., By = 1.
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In particular we have for s € [1,7] and v € [3,1): A, < 31(11(:;)) whereby sAgIn(1—-) >
In(1 —~+*) and thus (1 — )% > 1 —4*.
Lemma 4.1. Let o, € [—=1,1] and 1/s <t < s. Then

| sgn(a)al’ — sgn(B)|8]'] < max {|a — B4, Byla — B|t}.

Proof. We may assume that |o| > |3] by symmetry. We may further assume that o, 5 #
0. Assume first that sgn(a) = —1. Then:

| sgn(a)|al’ —sgn(B)|6]'] = |al'(1 + |8/al")
< lal'Bi(1+18/a])f
= ByJa — .
A similar argument shows that when sgn(af3) =1 and |3/a| < 1/2:
| sgn(a)le|" — sgn(B)|['| < Bila — 5"

Finally, assume sgn(af) = 1 and |5/a| > 1/2. We use the fact that |a| < 1 and
A, < 1/s < 1 imply that |af < |alds:

| sgn(a)|al’ —sgn(B)|8]'| = |af'(1 — [8/al') < |af'(1 —|B/al)
< laf/(1 = [8/a])*
< a1 = [B/al)!
— |a — A,
This completes the proof. m,,
Lemma 4.2. For all v,t € [0,1] : t(1 —7) ++* <1 (where 0° =1).

Proof. This is clear for t € {0,1}. So let ¢ € (0,1), and let f;(y) = ¢t(1 — ) +~". Then
fi(1)=1,and for 0 <y < 1 and t —1 < 0 we have v*~! > 1 whereby:

d
d—ft:—t+t7t‘1>—t+t:0.
Y

Thus fi(7) < 1 for all v € [0, 1]. m,
For 1 <s<rand0 <z <2, define:

(z) xdsls <1
s\T) =
K x5 1<z <2

s (:L') = 217ASBS773 (x)/AS'

Lemma 4.3. As s — 1, the functions ns converge uniformly to the identity. As a
consequence, N, — id uniformly as s — 1.
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Proof. For 7, one verifies uniform convergence separately for x + </ on [0, 1] and for
x +— x* on [1,2]. Uniform convergence of 7, follows. H,

For 1 < s <r, define:
Csl _ Sup{‘sgn (a—&-/@) ‘a—l—ﬁl sgn(a)\alt—gksgn( pIBL | . o, fe[-1,1],t e[l/s, 8]} :
02 = sup{Jz — u(@)]: = € [0,2)},
C, = max{C}, C?}.
Then lim,_,; Cs, = 0.

4.2. Perturbing the exponent.

Definition 4.4. Let (X,B, 1) be a measure space and p,q: X — [1, 7] measurable. We
define &, ,: Lo(X,B, 1n) — Lo(X,B, u) by:

(&af) (@) = sgn(f(x))|f(x)P@/a

Lemma 4.5. We continue with the assumptions of Definition [4.4. Let (N,0) =
(LP(')(X’ B, M)) GP(')> and (N/7 @,) = (LQ(')<X’ B, :u>’ @‘J(')>‘
(i) For each f € Lo(X,B,u) we have O(f) = ©'(&,,f). Thus in particular &,,
sends N into N' and the unit ball of N into the unit ball of N'.
(ii) The mapping &, is bijective, its inverse being &,,. It restricts to a bijection
between N and N', as well as to a bijection between their respective unit balls.
(iii) The mapping &,, commutes with measure density change. More precisely, as-
sume v is another measure on (X,B), equivalent to p, say dv(z) = ((z)du(zx).

Let M = Ly (X,B,v), M" = Ly (X,B,v). Let DI, ,: N — M and D? ,: N' —
M’ be the respectwe density change mappings. Then D 206pq = (g"pqu N —
M.

Proof. For the first item we calculate that:
(Gl = [ 1@ = O(9)
The second item follows. Finally, we calculate:
(D160 )(2) = C(2) Y10 (8, ) ()
= () sgn( £ ()| f () P
:%ma>”pf@mmx””v<wmﬂw
( o

)
= sgn((D4, f)(@)|(D5, ) () P/ate
= (gp,qDﬁ,uf) (x)>

proving the third item. m;
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Proposition 4.6. We continue with the notation and assumptions of Lemma 4.5. As-
sume that s is such that 1/s < q(x)/p(x) < s (for example, we can take s = r).
Then for every f,g € Ny (the unit ball of N): ||&,qf — épq9ll < ns(|f — gll) and
1f = 9ll < sl €p.af — EpaglD)-

Proof. Let f,g € Ni. By Lemma [4.5(iii) we may assume that |f|V |g]|
S €9B, so f(x),g(x) € [-1,1]. Let

he) = [sen(f (@) F@F — sgn(gle)lg()/ )
1= {z € : h(z) < |f(z) — g)| 121}
Sy=8\8C{zeS:h(x)<BJ]f(x)—yg

We observe that as || f],|lg]] < 1 we have u(S) < 2. Observe also that Ayq(z)/s <
q(z)/s < p(x) and that sq(z)/As > sq(z) > p(x). It follows that if ||f — g|| < 1 then:

= xg for some set

(m)‘p(r)/q(aﬁ)} i

If = gl < mllf = gl
@) = | f — gl

< ns(I1f = gll)

Otherwise 1 < ||f — ¢g]| < 2, and:

1f = gl < ny(||f = gl)*™ =
< n(IL.f = gl)?”

Let 7 = f,, La=stal™

| Epaf — Epag h(x )q(x)
S (—a / (@)

/|f o)

We work on each integral separately.

|f(x) — g(x)

p(x) q(x) T

()AL

c=|f - gHQ(l‘)/s

If = gl

A= ||f = gl

|Tf [P du(z) and a = 0,(||f — gl]) = 2" Bans([| f — gl|)/As. Then:

_ p(z)
o)

e ()

sp(x)
5 24(@) du(x) = /51 (21-4: B, )al@)
<5
2 S S1
< 1(Sh) <
= oA\ fg

1—A,
. N(S> ,yAS < 5

21—AS

(|f )ASd ()
ns(Ilf — gll 2/As ) u(Sh)

|f(2) — g(x)["* ) dp(z)
o

If = gllPt S1)

|f () — g(a)]@ <>>&

1f = glP® u(Sh)

As
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And:
B! f(z) — g(a)P@ [ (ABY)T|f(x) — g(x)P@
/s2 i) dule) = / @A By (17 gy )

(@) — gla)P
As
SR M T

du(z) = As(1 = ).

Thus:
C (—gp"’f ; gp"’g) <At A1 -9) <1

We conclude that ||&,,f — &,,9] < a=ns(||f — gll). Since 1/s < p(x)/q(x) < s as well
we have [|f — g[| = [[64p6p.0f — E406pa9ll < Ns([[Epaf — Epagll)- W

Corollary 4.7. The mapping &,,: N1 — Ni is uniformly continuous, the modulus of
uniform continuity depending solely on .

Proof. Define A, (g) = min { (2A’“_1AT5/BT)T/AT , 1}. Then for all € > 0 we have A, () >
0 and |If = gll < An(e) = Eyaf — Epagll < n

Proposition 4.8. Let &,,: N — N’ be as in Definition 4.4, and let f,g € Ny. Then:

(i) 6p0=0; =&, ,f = gp,q(_f); gp,q(’f‘) = ’gp,qﬂ'
(i) |IIf —gll — Lfa@“’p,ql;— &pq9ll| < Cs.
(i) 16,52 — Soal%oat| < 20,

Proof. The first item is clear. For the second we use Proposition 4.6:

|Epaf — Epagll = I1f — gl < s(Ilf —gll) = IIf = gll < Cs,
1f =gl - Héap,qf - gp,ng < ﬁS(Héap,qf - éap,ng) - H@@p,qf - gp,qg” <.

We may assume that | f|V|g| = xs for some measurable set S, so p(.S) < 2. By definition
of Cs we have ‘éap,q%(x) - M(az)‘ < (s for x € S, and we get:

£ g _ épaftépag
S [ 2 < /2—‘1@) dp(z) < M5 <1,
2C, g

The third item follows. W

We now wish to define a perturbation system p for Lp;-structures. We do this by
defining a p(e)-perturbation of structures N and N’ directly as a bijection §: N — N’
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such that for all f,g,h € N:
00 =0,
0(—f) =—0f,
o(f1) = 1011,
d (2.1) - d (232,00 < -,
A= N6f1] < e,

and:

e d(f,9)" < d(0f,09) < ed(f.g9)° .

(While for most symbols we can just allow to “change by €”, we need to take special
care with the distance symbol.) This indeed defines a perturbation system, as it clearly
verifies the following characterisation:

Fact 4.9. Let T be a theory, and assume that for each r € Rt and M, N € Mod(T),
Pert! (M, N) is a set of bijections of M with N satisfying the following properties:
(i) Monotonicity: Pert, (M, N) =, Pert,(M, N).
(i) Non-degenerate reflexivity: Perty(M, N) is the set of isomorphisms of M with
N.
(iii) Symmetry: f € Pert, (M, N) if and only f~ € Pert (N, M).
(iv) Transitivity: if f € Pert,.(M,N) and g € Pert (N, L) then go f € Pert,, (M, L).
(v) Uniform continuity: for each r € R*, all members of Pert,. (M, N), where M, N
vary over all models of T, satisfy a common modulus of uniform continuity.
(vi) Ultraproducts: If f; € Pertl(M;, N;) for i € I, and % is an ultrafilter on I
then 1, fi € Pert.([1, Mi,I1, Ni). (Note that T[], f; exists by the uniform
continuity assumption).
(vil) Elementary substructures: If f € Pert.(M,N), My =X M, and No = f(My) < N
then f1,, € Pert,. (Mo, Ny).

Then there exists a unique perturbation system p for T such that Pert.(M,N) =
Perty (M, N) for all v, M and N.

Proof. [Ben08, Theorem 4.4]. W,

Recall that given two n-types p, ¢ we say that d,(p,q) < ¢ if there are Lpg-structures
N, N" and an e-perturbation : N — N’ sending a realisation of p to one of q.

Lemma 4.10. For every € > 0 there exists s > 1 such that if N = Ly (X,B, n),
N'" = Ly (X, B, 1) and &,,: N — N' is as in Definition 4.4 (so in particular 1/s <
p(x)/q(x) < s for almost all x € X ), then &,, is a p(c)-perturbation.

Proof. By Proposition 4.6, Proposition and the fact that lim,_,; C; = 0. o
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Lemma 4.11. Fiz a compact K C [1,7] and s > 1. Then there is a finite set Ky C [0, 1]
such that for every atomless measure space (X,B,u) andp: X — [1,7] with ess rmg(p) =
K there exists ¢: X — [1,r] such that ess rng(q) = Ky and for almost all x €
1< q(x)/p(x) <s

Proof. By compactness we can cover K with finitely many open intervals [1,7] C
U{(ai,b;): i < n}, with 1 < b;/a; < s. We may assume that K N (a;,b;) # @ for
all i < n. We then define Ky = {b;: i < n}.

Assume now that (X,%B, u) is atomless and p: X — [1,7] satisfies ess rng(p) = K :
We can then split X into a finite disjoint union of positive measure sets X = (J,_,, X
such that the essential range of p; = p[y, is contained in (a;,b;). Define ¢(z) = b; When
x € X;. Then ¢ is as required. | VIR

Fact 4.12. For K consisting of a single point, the theory Th(ANE) is Ro-categorical and
Ng-stable.

Proof. [BBH]. LR
Lemma 4.13. Let K C [1,7] be finite. Then Th(AN¥) is No-categorical and No-stable.

Proof. Let K = {p;: i <n}, py < ... <pp-1. f N = Ly (X, B, u) € ANk then X can
be written as a disjoint union X = J,_,, X; where X; € B, u(X;) > 0 and ply, = p; a.c.
For i < n let N; be the Banach lattice xx,/N. Thus the N; are orthogonal bands in N
and N = €p,_,, N;. Since we can recover © from the norm on each N; we can recover O
on N, and thus we can recover the norm on N. Similarly, as the N; are orthogonal bands
we can recover the lattice structure on N from that of V.

Now, if N is separable (and atomless), each N; is separable and atomless, and thus
uniquely determined by p; up to isomorphism, whereby N is uniquely determined by K.
This proves Ny-categoricity.

Similarly, let N’ < N be a separable elementary sub-model and let N/ = N’ N N;,.
By No-stability of Th(N;), S, (N}) is metrically separable for each i. Now let f =
O ..., f1 € N, and let fJ Yoicn fk where f] € N;. Naming © and using quantifier
elimination we see that tp (f f/N') is umquely determined by (tp™i(fi/N/): i < n), and
we might as well write tp™ (f/N') =, tpYi(fi/N}). It q=3,_,¢s and ¢ = >_,_, .
are two such decompositions then we have d(q,q') < >°,_, d(gi,q}). Thus S}'(N') is
metrically separable. g

We can now conclude:

Theorem 4.14. The theory Th(ANcp,) is p-Ro-stable, and every completion thereof
(which is of the form Th(ANK)) is p-Ro-categorical.

Proof. Combining Lemma [4.10/ and Lemma [4.11 we see that for every ¢ > 0 there is a
finite set K’ C [1,7] such that every separable N, N’ € AN admit p(e/?) perturbations

with separable N,N € ANy, respectively. But N = N’ by Lemma 4 so N and N’
admit a p(e)- perturbatlon.
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Similarly for p-RNy-stability. m, .,
Corollary 4.15. The theory Th(ANcp,,)) is stable.

Proof. By [Ben08, Proposition 4.11] A-p-stability implies stability. (See [Ben08, Sec-
tion 4.3] for more properties and characterisations of Wy-stability up to perturba-
tion.) W

Remark. It is in fact also true that the theory Th(Ny,,;) (i.e., constant p, but possibly
with atoms) is Ng-stable, although this fact is not proved anywhere in the literature at
the time of writing. By the same reasoning, the theory Th(Ncp ) is p-Ro-stable and in
particular stable.

APPENDIX A. SOME BASIC CONTINUOUS MODEL THEORY
A.1. Definability and monotonicity.

Theorem A.1 (Beth’s definability theorem for continuous logic). Let Ly C L be con-
tinuous signatures with the same sorts (i.e., L does not add new sorts on top of those
existing in Lo) and T an L-theory such that every Loy-structure My admits at most a sin-
gle expansion to an L-structure M which is a model of T. Then every symbol in L admits
an explicit Lo-definition in T. That is to say that for every predicate symbol P(Z) € L
is equal in all models of T to some Ly-definable predicate p(Z), and for every function
symbol f(z) € L the predicate d(f(Z),y) is equal in all models of T to some Ly-definable
predicate @ ().

Proof. For convenience we shall assume that the language is single sorted, but the same
proof holds for a many sorted language.

Let P € L be an n-ary function symbol, and consider the mapping 6,: S, (7)) —
Sn(Lop), the latter being the space of all complete n-types in the language Ly. It is known
that 6,, is continuous, and we claim it is injective.

Indeed, let p,p’ € S,,(T) be such that 0,,(p) = 0,,(p') = q. Let M E p(a) and M’ F p/(a’),
so Then tp*o(a) = tp~(a') = q.

Claim. There exists an elementary extension M < M; and an Ly-elementary embedding

M' — M sending a’ to a.

Proof of claim. We need to verify that Th) (M) U The, (M) U {a = a'} is consistent.
But the assumptions on the types tell us precisely that Th.,(M') U {a = @'} is approxi-
mately finitely satisfiable in (M, a). | P

we shall identify M’ as a set with its image in M;, and in particular assume that a = a’.

Claim. Let N and N’ be two L-structures, and assume that N <, N’ (but needn’t even
be an L-substructure). Then there exists N” = N such that N <, N”.

Proof of claim. The assumption N <., N’ implies that Thg,nn(N') is approximately
finitely satisfiable in IV, so Then)(IN) U They vy (N') is consistent. W,
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Using the claim we can extend the pair M’ = M| <., M; to a chain of L-structures
We now construct a sequence of structures M{ <., My =g, M| 2z, M2 =z, M, ... such
that ]\4Z j Mi+1 and Mz/ j M'/—i—l'

Let M, = JM,;, M/, =|JM]. Then both M, and M/ are models of 7" and have the
same Lo-reduct, and are therefore the same. It follows that p = tp™«(a) = tp™+(a) = p'.

Once we have established that 6, is an injective continuous mapping between compact
Hausdorff spaces it is necessarily an embedding (i.e., a homeomorphism with its image).
We may identify the predicate P with a continuous function P: S,(T) — [0,1]. By
Tietze’s extension theorem there exists a continuous function pp: S,(Ly) — [0, 1] such
that P = ¢p o6,. Then pp is the required Ly-definable predicate.

If f is a function symbol, apply the preceding argument to d(f(z),y). H,;

Definition A.2. Let T be a theory, ¢(z) a definable predicate. We say that ¢ is
increasing (decreasing) in T if whenever M C N are both models of T" and a € M we
have p(a)™ < p(a)V (p(@)™ > p(a)™). We say that ¢ is constant in T if it is both
increasing and decreasing in 7.

Definition A.3. A sup-formula is a formula of the form sup;¢(7,7y) where ¢ is
quantifier-free.

A sup-definable predicate is a definable predicate which can be written syntactically
as Flim ¢, (z) where each ¢, is a sup-formula. (See [BU, Definition 3.6] and subsequent
discussion for the definition and properties of the forced limit operation Flim.) Notice
that every such predicate is equal to a uniform limit of sup-formulae.

We make the analogous definitions for inf.

Theorem A.4. Let T be a theory, ¢(Z) a definable predicate. Then ¢ is increasing
(decreasing) in T if and only if ¢ is equivalent modulo T to a sup-definable (inf-definable)
predicate.

Proof. Clearly it suffices to prove the case of increasing definable predicates. Right to
left being immediate, we prove left to right.
Assume therefore that ¢(Z) is increasing in 7. Let W be the collection of all sup-

formulae 1 (Z) = sup; ¢ (Z,y) such that T F ¢(Z) < ¢(7). Notice that the latter means

that T F ¥ (Z,7) < ¢(Z). If for every n < w there is ¥, € ¥ such that T+ (z) = 27" <
(z) then ¢ = Flim1, and we are done. In order to conclude we shall assume the
converse and obtain a contradiction.

We assume then that there is n < w such that T'U {p(z) = () > 27"} is consistent
for all » € W. As W is closed under V and ¢ ~ (p V') > 27" = p =1 > 27" the set
Y =TU{p+1 > 2"},cy is consistent. Let (M, a) be a model for it, and let r = p(a)M.

Let ¥ = T U Diag,(M) U {p(a) < r —27"}. Here Diag,(M) denotes the atomic
diagram of M, namely the family of all conditions of the form x(a) = x(a)* where x(Z)
is an atomic formula and @ € M, so a model of Diag,(M) is a structure in which M is
embedded. If ¥’ were consistent we would get a contradiction to ¢ being increasing, so 3/
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is contradictory. By compactness there exists a quantifier-free formula x(Z,%) and b € M
such that x(a,b)™ = 0 and T U {x(Z,7) = 0} U {o(z) < r — 27"} is contradictory. It
follows there is some m such that TU{x(z,7) < 27" }U{p(z) < r—27"} is contradictory.
Let 7 € (r—27",r) be a dyadic number, and let ¢ = 7/ =2™y. Then v is a quantifier-free
formula, and we claim that 7" - 1;(9?, 7) < (7). indeed, for any model N £ T and any
c,d € N:

@Y 21 = p@N 21 2 Y d)"

@Y < = xEd¥z2" = @Y 20=1d@d".
Thus ¥(z) = sup, ¥(z,y) € ¥, whereby p(a)” ~ ¢(a)” > 27". But x(a,b)” = 0,
so YP(a) > ' eby e(@™ > r'" 4+ 2™ > r, a contradiction. This concludes the
proof. LW

Corollary A.5. A continuous theory T is model complete if and only if every formula
(definable predicate) is equivalent modulo T to an inf-definable predicate.

Proof. Left to right is by Theorem [A.4. For right to left, every formula ¢ is decreasing
in T, and considering —p every formula is increasing as well, and therefore constant in
T, which means precisely that 7" is model complete. H,;

A.2. Interpretations. We turn to treat the issue of passage from one language to an-
other in a structure, which has arisen several times in this paper. We start with a
somewhat watered down notion of a structure being interpretable in another.

Definition A.6 (Interpretation schemes). Let £y and £, be two single sorted signatures.
A (restricted) interpretation scheme ®: Ly — L4 consists of a mapping assigning to every
atomic £;-formula ¢(z) an Ly-definable predicate ¢®(z).

Let M be an Ly-structure. We define ®(M) to be any L£;-structure, should one exist,
equipped with a mapping ¢: M — ®(M) with a dense image, such that for every every
atomic £;-formula ¢(7):

(1) o(1a)®M = p® (@)™ for all a € M.

It is not difficult to check that the pair (<I>(M ), L), if it exists, is unique up to a unique
isomorphism, justifying the notation. By a convenient abuse of notation we shall omit ¢
altogether, identifying a € M with a € ®(M).

We define K2 to be the class of Lo-structures M for which ®(M) exists. More generally,
if K is a class of £i-structures, we define ®1(K) = {M € K*: ®(M) € K}.

By induction on the structure of £;-formulae on extends the mapping ¢ — ¢® from
atomic formulae to arbitrary ones. If ¢ is an L£;-definable predicate it can always be
written as Flim ¢, where ¢, are formulae, and we may then define p® = Flim(y,)?®. It
is straightforward to check that if M € K® then (1) holds for every formula or definable
predicate .
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We qualified this notion of interpretation as “restricted”, since it uses the entire home
sort of the interpreting structure, whereas the tradition notion of interpretation in clas-
sical logic allows the interpretation to take place on an arbitrary definable set. We could
extend the definition by letting the domain of the mapping ¢, rather than be all of M, be
some definable subset X C M", where d(z, X) is given uniformly by a definable predicate
x*(Z) which is also prescribed by ®. Everything we prove here regarding interpretations
goes through with this more general definition. In particular, the class of structures in
which x?® defines the distance to a set (the zero set of x?) is elementary. For details
on definable sets in continuous logic and their properties we refer the reader to [Bena,
Section 1].

Lemma A.7. Let ®: Ly — L; be an interpretation scheme. Then the class K® is
elementary and we may write T* = Th(K®). More generally, if K = Mod(T) is a an
elementary class of Li-structures then ®~1(K) is elementary as well, and we may write

®~(T) = Th(®~1(K)).

Proof. In the case where £; is purely relational, T'® merely consists of axioms expressing
that the predicate symbols respect the uniform continuity moduli prescribed by £;. In
case there are also function symbols we need more axioms (all free variables are quantified
universally):

e Axioms expressing that d(f(Z),y)® respects the uniform continuity moduli of f
in the x and is 1-Lipschitz in y.

e The axioms d(y, 2)® < d(f(z),y)®+d(f(z),2)® and inf, d(f(z),y)® = 0. Notice
that if d(f(Z),y,)® — 0 as n — oo then {y,} is a Cauchy sequence and therefore
admits a limit. Thus for all Z there exists a unique y such that d(f(z),y)® =0,
and for all other z: d(f(Z),2)* = d(y,z)®. We may then legitimately write
y=[%(2).

e Finally, axioms expressing that other atomic formulae are interpreted appropri-
ately. For example, for an atomic formula P(f(z, g(y)),z) we need to say that

P2(f*(z,9%(y)), 2) = P(f(x,9(y)), 2)®, expressed by
inf (d(g(y), w)* v d(f(z,w), )" V[Pt 2)* = P(f(z,9(y)), 2)"]) = 0.

It is relatively straightforward to check that the collection of these axioms does define
the class K.

Assume now that K = Mod(T) is an elementary class of £;-structures and let ®~1(T) =
T® U {¢®},er. Then &~1(K) = Mod(®~1(T')), as desired. LN

Definition A.8 (Composition of interpretation schemes, bi-interpretability). Assume
now that U: £; — L, is another interpretation scheme. We then define an interpretation
scheme W o ®: Ly — Ly by ¢¥°® = (¢¥)? for each atomic Lo-formula ¢. Again it
is straightforward to check that ®~}(K¥Y) C K¥°? and that if M € & 1(KY) then
U(P(M)) =Vod(M).
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Finally, consider interpretation schemes ®: Ly — £; and V: £; — Ly, and a class K
of Lo-structures. Assume that £ C ®~1(KY) and that ¥ o ®(M) = M (with ¢ = idy)
for all M € K. We then say that K and K' = ®(K) = {®(M)}yex are (strongly) bi-
interpretable by (@, ¥). Notice that this is a symmetric notion, namely that in this case
K'C o HK?), K=U(K') and Po U(N) = N for all N € K.

Again, our notion of bi-interpretability is stronger than strictly necessary, and for
many applications it suffices to assume that the mapping ¢: M — Wo ®(M) is uniformly
definable.

Theorem A.9. Let ®: Lo — L1 and V: L1 — Ly be two interpretation schemes, and
let IC and K’ be classes of Lo- and of Ly-structures, respectively. Assume moreover that
KC and K" are bi-interpretable via (®, V).

(i) The class K is elementary if and only if K' is.

(i) Assume that for each atomic L,-formula @, the definable predicate ©* is constant
in K, and similarly that @V is constant in K' for every atomic Lo-formula o.
Then K is model complete (respectively, inductive) if and only if K' is.

(iii) Assume that for each atomic Li-formula @, the definable predicate % is
quantifier-free, and similarly that ©¥ is quantifier-free for every atomic Ly-
formula ¢ (we say that ® and V are quantifier-free, or that K and K' are
quantifier-free bi-interpretable). Then K eliminates quantifiers if and only if
K" does.

Proof. Assume that K = Mod(T'). Let T" be the theory consisting of ¥=(T") along with
all the axioms of the form (7)) = ®¥(Z), where ¢ varies over atomic £;-formulae.
Clearly, if N € K’ then N E T’. Conversely, assume that N £ 7”. Then N £ U~1(T),
so U(N) € K. Thus ® o U(N) € K, and the second group of axioms ensures that
N = ®oVU(N). Thus K’ = Mod(T") is elementary, proving the first item (by symmetry).

For the second item, the assumption tells us that if My C M; are both in K then
O(My) C (M) in K, and similarly in the direction from K’ to K. So assume first
that K is model complete and let Ny € N; in K'. Then ¥(Ny) € ¥(N;) in K, so
U(Ny) = ¥(Ny) and thus Ny = ® o U(Ny) = & o U(N;) = N;. Assume now that
KC is inductive and let {N;};<, be an increasing chain in K'. Then {W(V;)}i<q is an
increasing chain in K, so M = [J¥(V;) € K (this being a union of complete structures,
i.e., the metric completion of the set union). In particular, M O W(N;) for each 7, so
O(M) D PoW(N;) =N, ie, (M) D JN;. We now use the fact that the Ly-definable
predicate dg, (z,y)? is necessarily uniformly continuous, and that the set union of ¥(1V;)
is dense in M (both with respect to dg,) to conclude that the set union of the N; is
dense in ®(M). Considering the complete structure union we have |JN; = ®(M) € K/,
as desired.

We now turn to the last item. The assumption tells us that if ¢ is any quantifier-free
Lo-formula, or even a quantifier-free £y-definable predicate, then ¢¥ is quantifier-free as
well, and similarly in the other direction. Assume K eliminates quantifiers, and let ¢(Z)
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be and £;-formula. Then ©?® is equivalent in K to a quantifier-free definable predicate,
say ¥(7), and ¥ (Z) is quantifier-free as well. It will be enough to show that ¥ coincides
with ¢ in K'. Indeed, let N =P o U(N) € K', a € N. Then

p(@)" = p(a)*™ = ¢®(@)" ™ = y(a)"™ = ¥ (@)".

This completes the proof. LN

APPENDIX B. A CONVERGENCE RATE FOR APPROXIMATIONS OF THE MODULAR
FUNCTIONAL

We conclude with a result that was used in earlier versions of this paper in Section 3,
later superseded by a more direct approach. We chose to keep it here since it is relatively
easy and does provide some uniformity for approximations of Nakano spaces by ones in
which the essential range of p is finite. Such uniformity may come in handy for an explicit
axiomatisation of Nakano spaces, which, at the time of writing, does not yet exist in the
literature.

A naive manner to try to approximate the modular functional is by ©(f) &~ >_ || fx|[P*
where f = > fi consists of cutting the domain of f into chunks such that the exponent
function p(-) is almost constant p; on each chunk. We show here that these approxi-
mations do converge to ©(f) at a uniform rate: the difference is always smaller than
CVA where A is the maximum of diameters of the range of p on the chunks and C is a
constant.

Lemma B.1. Let (N,0) = L, (X,B, 1), and assume that ess tngp C [s,s + €] where
1<s<s+e<r. Let f e N, and assume that ||f|| < 1. Then |O(f) — ||f]]*T¢] <

SIme(f)e(f).
Proof. We may assume that f > 0 and || f|| > 0. Let a = ||f||, so ©(f/a) = 1, and for

all ¢:
¢ = ( [uraran) = [ rraran

Notice that for all z we have s — p(z) < 0 = a*?® > 1 while s + ¢ — p(z) > 0 =
a*te P < 1, so:

o= [ o [ paus [ poran=a
In other words: a*** < ©(f) < a®. It follows that O(f)'*% < a*** < O(f), whereby

O(f) —a*™| < [O(f) —O(f)' =

< Z[me(lew).

as desired. [ o



MODULAR FUNCTIONALS AND PERTURBATIONS OF NAKANO SPACES 35

Lemma B.2. There is a constant C' such that for every 0 < n € N and every sequence
(ar: k < w) such that ar, > 0 and > a, < 1:
ag| In a| C
R« 0ln0 = 0).
k+n — /n’ (Oln )
Proof. At first let us assume that a, < = for all k, noting that 0(z) = —zInz is strictly
increasing on [0, 2.

We may assume that the sequence is ordered so that ay|In ay| is decreasing It follows

that (aj: k < w) is a decreasing sequence. Since Y- a, < 1 we have a < =7 < ¢ for all
k > 2, whereby ax|Inay| < lnkkjll Let Co = > (lknfr’?fﬂ < 00. Then:

ag| In a| In(k + 1) In(k+1) Cy
SRR < —
k+n —;(k+n)(k+1 \/_Z k+1)32  /n

In this calculation we ignored the first two terms of the sum. In addition, in the general
case there may be at most 2 indexes k such that a; > l Together these account for at

most ~- f Thus > a’““na’“' < \Cf where C' = Cj —|— 2 [ A

Lemma B.3. Let (N,0) = L, (X,B, 1) be a Nakano space and let 0 < n < w be fived.
Let € > n(r —1), and for k < € let K), = [2E 25 X = p1(Ky). Let C be the
constant from Lemma|B.2.

Then every f € N can be expressed as f = Y, _,fu where fr = flx, €
Lprxk(.)(Xk,%[Xk,u[Xk). If || fl] £ 1 then we have:

n+k+1
)= DI

k<t
Proof. We have ), _,0O(fr) = O(f) < 1, whereby

I EDY ‘@<fk) — el

k<t k<t

k>2

3\

<3 i Hk) RLCEAICTEN

k<t

= ; . k:| In(O(f)|0(fi) < %7

as desired. s
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