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Abstract. We give a general framework for the treatment of perturbations of types and structures in

continuous logic, allowing to specify which parts of the logic may be perturbed. We prove that sepa-

rable, elementarily equivalent structures which are approximately ℵ0-saturated up to arbitrarily small
perturbations are isomorphic up to arbitrarily small perturbations (where the notion of perturbation

is part of the data). As a corollary, we obtain a Ryll-Nardzewski style characterisation of complete

theories all of whose separable models are isomorphic up to arbitrarily small perturbations.

Introduction

In this paper we define what we call perturbation systems and study their basic properties. These
are objects which formalise the intuitive notion of allowing chosen parts of a metric structure to be
perturbed by arbitrarily small amounts.

One motivation for this notion comes from an unpublished result of C. Ward Henson, consisting of
a Ryll-Nardzewski style characterisation of complete continuous theories of pure Banach spaces which
are separably categorical up to arbitrarily small perturbation of the norm (but not of the underlying
linear structure). Seeking a general framework in which such results can be proved, we develop a general
formalism for the consideration of metric structures and types up to small perturbations, which gives
rise in particular to a notion of categoricity up to perturbation. In Theorem 3.5 we give a general
Ryll-Nardzewski style characterisation of complete countable continuous theories which are separably
categorical up to arbitrarily small perturbation, where the precise notion of perturbation is part of the
given data alongside the theory. One convenient way of specifying a “perturbation system” p is via the
perturbation distance dp between types, where dp(p, q) ∈ [0,∞] measures by how much a model needs
to be perturbed so that a realisation of p may become a realisation of q (and dp(p, q) = ∞ if this is
impossible).

Our criterion for ℵ0-categoricity up to perturbation bears considerable resemblance to the one used
by Henson, as both criteria compare the standard logic topology on a space of types with an appropriate
metric arising from the perturbation system. In Henson’s criterion, the topology is compared directly
to the Banach-Mazur perturbation distance dBM on the space of types of linearly independent tuples of
a Banach space, which he calls S∗n. In the general case considered in Theorem 3.5 we do not have an
analogue of S∗n, so the comparison must take place on the entire type space. This entails an additional
complexity, not present in Henson’s criterion, in that the topology must be compared to an appropriate
combination of the perturbation metric dp with the standard distance d. A result based on Henson’s
criterion appears in a subsequent paper [Ben], where we deal with further complications caused by the
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fact that a Banach space is an unbounded structure whose unit ball is not preserved by a non trivial
Banach-Mazur perturbation.

A second motivation comes from some open problems concerning the automorphism group of the
separable model of an ℵ0-categorical continuous theory. Such problems could be addressed from a model-
theoretic point of view as questions concerning the theory TA (i.e., T with a generic automorphism, or
even several non commuting ones). Just as the underlying metric of a continuous structure induces a
natural metric on the space of types, it also induces one on its automorphism group, namely the metric
of uniform convergence (if the structure is discrete, so are the induced metrics, so they simply do not
arise as interesting objects in the classical discrete setting). The model theoretic counterpart of the
consideration of small metric neighbourhoods of an automorphism is the consideration of (M,σ) � TA
up to small perturbations of σ. While the present paper does not contain any results in this direction,
this did serve well as an example towards the general setting, and in fact was at the origin of the author’s
interest in perturbations.

A common feature of these two instances is that only part of the structure is allowed to be perturbed
while the rest is kept untouched. In the first case, the norm is perturbed while the linear structure
is untouched, while in the second it is only the automorphism that we perturb (and not the original
structure). Thus a “notion of perturbation” should say what parts of the structure can be perturbed,
and in what way. Also, in order to state a Ryll-Nardzewski style result concerning perturbations we
need to consider on the one hand perturbations of (separable) models, and on the other perturbations
of types.

In Section 1 we compare these two notions (perturbations of structures and of types): requiring them
to be compatible yields the notion of a perturbation radius. In order to speak of “arbitrarily small
perturbation” we need to consider a system of perturbation radii decreasing to the zero perturbation,
which with some natural additional properties yields the notion of a perturbation system.

In Section 2 we study a variant of the notion of approximate ℵ0-saturation which takes into account
a perturbation system, and show that separable models which are saturated in this sense are also
isomorphic up to small perturbation.

In Section 3 we prove the main result (Theorem 3.5) and discuss various directions in which it may
and may not be further generalised (Theorem 3.15 vs. Example 3.11).

In Section 4 we conclude with a few questions concerning perturbations of automorphisms.

Notation is mostly standard. We use a, b, c, . . . to denote members of structures, and use x, y, z,
. . . to denote variables. Bar notation is used for (usually finite) tuples, and uppercase letters are used for
sets. We also write ā ∈ A to say that ā is a tuple consisting of members of A, i.e., ā ∈ An where n = |ā|.

We work in the framework of continuous first order logic, as developed in [BU]. Most of the time we
work within the context of a fixed continuous theory T in a language L. We always assume that T is
closed under logical consequences. In particular, |T | = |L|+ ℵ0 and T is countable if and only if L is.

For a general survey of the model theory of metric structures we refer the reader to [BBHU08].

1. Perturbations

1.1. Perturbation pre-radii. We start by formalising the notion of allowing structures and types to
be perturbed “by this much”. We start by defining perturbation pre-radii, which tell us which types can
be changed into which:

Definition 1.1. A perturbation pre-radius ρ (for a fixed theory T ) is a family of closed subsets {ρn ⊆
Sn(T )2} containing the diagonals. If X ⊆ Sn(T ), then the ρ-neighbourhood around X is defined as:

Xρ = {q : (∃p ∈ X) (p, q) ∈ ρn}.
Notice that if X is closed then so is Xρ.
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Remark 1.2. A predecessor of sorts to this definition exists in José Iovino’s notion of a uniform structure
on the type spaces of a positive bounded theory [Iov99]. Specifically, a uniform structure in Iovino’s
sense can be generated by vicinities which are given by perturbation pre-radii (although the definition
of a pre-radius does not appear in Iovino’s work). Specific perturbation systems (see Definition 1.23
below) of importance, such as the Banach-Mazur system, occur as uniform structures in Iovino’s work.

We wish to consider mappings which perturb structures: they need not be elementary, and are merely
required to respect the perturbation pre-radius.

Definition 1.3. (i) Let ρ be a perturbation pre-radius, M,N � T . A partial ρ-perturbation from
M into N is a partial mapping f : M 99K N such that for every ā ∈ dom(f):

tpN (f(ā)) ∈ tpM (ā)ρ.

If f is total then it is a ρ-perturbation of M into N . The set of all ρ-perturbations of M into
N is denoted Pertρ(M,N).

(ii) If f ∈ Pertρ(M,N) is bijective, and f−1 ∈ Pertρ(N,M), we say that f : M → N is a ρ-bi-
perturbation, in symbols f ∈ BiPertρ(M,N).

(iii) We say that two perturbation pre-radii ρ and ρ′ are equivalent, in symbols ρ ∼ ρ′, if
Pertρ(M,N) = Pertρ′(M,N) for all M,N � T . We say they are bi-equivalent, in symbols
ρ ≈ ρ′, if BiPertρ(M,N) = BiPertρ′(M,N) for all M,N � T .

Note that ρ ∼ ρ′ =⇒ ρ ≈ ρ′.
(iv) If ρ and ρ′ are two perturbation pre-radii, we write ρ ≤ ρ′ to mean that ρn ⊆ ρ′n for all n (i.e.,

ρ is stricter than ρ′).

Lemma 1.4. For every perturbation pre-radius ρ there exists a minimal perturbation pre-radius equiv-
alent to ρ, denoted 〈ρ〉, and a minimal perturbation pre-radius bi-equivalent to ρ, denoted JρK.

If ρ = 〈ρ〉 we say that ρ is reduced. If ρ = JρK we say that ρ is bi-reduced.

Proof. One just verifies that 〈ρ〉 =
⋂
{ρ′ : ρ′ ∼ ρ} and JρK =

⋂
{ρ′ : ρ′ ≈ ρ} are perturbation pre-radii

which are equivalent and bi-equivalent, respectively, to ρ. �1.4

Note that JρK ≤ 〈ρ〉 ≤ ρ, so if ρ is bi-reduced it is reduced.

Definition 1.5. Let ρ, ρ′ be perturbation pre-radii. We define their composition as the pre-radius ρ′ ◦ ρ
defined by:

(ρ′ ◦ ρ)n = {(p, q) : ∃r (p, r) ∈ ρn and (r, q) ∈ ρ′n}.

It may be convenient to think of a perturbation pre-radius as the graphs of a family multi-valued
mappings ρn : Sn(T )→ Sn(T ). In this case, our notion of composition above is indeed the composition
of multi-valued mappings.

Notice that we also obtain a composition mapping for perturbations:

◦ : Pertρ(M,N)× Pertρ′(N,L)→ Pertρ◦ρ′(M,L).

The minimal perturbation pre-radius is id = {idn : n ∈ N}, where idn is the diagonal of Sn(T ), i.e.,
the graph of the identity mapping. It is bi-reduced, ρ ◦ id = id ◦ρ = ρ for all ρ, and an id-perturbation
is synonymous with an elementary embedding.

1.2. Perturbation radii. A perturbation pre-radius imposes a family of conditions saying which types
may be perturbed to which. We may further require these conditions to be compatible with one another:

Definition 1.6. A perturbation radius is a pre-radius ρ satisfying that for any two types (p, q) ∈ ρn there
exist models M and N and a ρ-perturbation f : M → N sending some realisation of p to a realisation
of q.
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Notice that the identity perturbation pre-radius is a perturbation radius.
We now try to break down the notion of a perturbation radius into several technical properties and

see what each of them means.
For our purposes, a (uniform) continuity modulus is a mapping δ : (0,∞)→ (0,∞) which is increasing

and left-continuous. (In other words, this is a mapping satisfying δ(ε) = supε′<ε δ(ε′). This additional
property does not play any role at this stage, but is harmless to assume.) A mapping between metric
spaces f : (X, d)→ (X ′, d′) respects δ if for all ε > 0 and all x, y ∈ X:

d(x, y) < δ(ε) =⇒ d′(f(x), f(y)) ≤ ε.
Such a mapping f is uniformly continuous if and only if it respects some uniform continuity modulus.

Definition 1.7. Let ρ be a perturbation pre-radius.
(i) We say that ρ respects equality if

[x = y]ρ = [x = y].

(I.e., if (p, q) ∈ ρ2, p � x = y, then q � x = y as well).
(ii) We say that ρ respects a continuity modulus δ if every ρ-perturbation does.
(iii) We say that ρ is uniformly continuous if it respects some continuity modulus δ.
(iv) We say that ρ respects a continuity modulus δ trivially if for all ε > 0:

[d(x, y) < δ(ε)]ρ ⊆ [d(x, y) ≤ ε].

Lemma 1.8. A perturbation pre-radius ρ respects equality if and only if there exists a continuity modulus
δ which ρ respects trivially.

Proof. Assume first that ρ respects δ trivially. For every ε > 0 we have δ(ε) > 0, whereby [x = y] ⊆
[d(x, y) < δ(ε)] and thus [x = y]ρ ⊆ [d(x, y) ≤ ε]. Therefore [x = y]ρ ⊆

⋂
ε>0[d(x, y) ≤ ε] = [x = y]. As

the other inclusion is always true, we obtain equality.
Conversely, assume that ρ respects no δ trivially. Then there exists some ε > 0 such that for all

δ > 0 there is some pair (pδ, qδ) ∈ ρ2 such that pδ ∈ [d(x, y) < δ] and qδ ∈ [d(x, y) > ε]. Since S2(T )2

is compact this sequence has an accumulation point (p, q) as δ goes to 0. Since ρ2 is closed we have
(p, q) ∈ ρ2, and clearly (p, q) ∈ [x = y]× [d(x, y) ≥ ε] as well, so [x = y]ρ 6= [x = y]. �1.8

Lemma 1.9. Let ρ be a perturbation pre-radius and δ a continuity modulus. If ρ respects δ trivially
then it respects δ. Conversely, if ρ respects δ then 〈ρ〉 respects δ trivially.

In particular, if ρ is reduced then it respects δ if and only if it respects it trivially.

Proof. The first statement is straightforward. For the converse, let:

Xδ =
{

(p, q) ∈ S2(T ) : (∀ε > 0)(d(x, y)p < δ(ε)→ d(x, y)q ≤ ε)
}

=
⋂
ε>0

(
[d(x, y) ≥ δ(ε)]× S2(T ) ∪ S2(T )× [d(x, y) ≤ ε]

)
.

Let ρ′ be obtained from ρ by replacing ρ2 with ρ2∩Xδ. Notice that the identity mapping of any model of
T is a ρ-perturbation and must therefore respect δ, so Xδ contains the diagonal and ρ′ is a perturbation
pre-radius. Clearly ρ′ ∼ ρ, so 〈ρ′〉 = 〈ρ〉, and ρ′ respects δ trivially, whereby so does 〈ρ〉. �1.9

Note that if ρ is uniformly continuous, M,N � T , and A ⊆ M , then any partial ρ-perturbation
f : A → M is uniformly continuous. It therefore extends uniquely to a mapping f̄ : Ā → M . As ρ is
given by closed sets, the completion f̄ is also a ρ-perturbation.

Lemma 1.10. A perturbation pre-radius ρ is a perturbation radius if and only if it is uniformly contin-
uous and reduced.
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Proof. Left to right is easy. For right to left, consider the family F = {(f,M,N) : M,N � T, f ∈
Pertρ(M,N)}. Since ρ is uniformly continuous, ultra-products of families of triplets in F exist, and
since ρ as a perturbation pre-radius consists of closed sets, F is closed under ultra-products. Define ρF
by:

ρF,n = {(tp(ā), tp(b̄)) : (f,M,N) ∈ F , ā ∈Mn, b̄ = f(ā)}.
Since F is closed under ultra-products and contains all the identity mappings, ρF is a perturbation
pre-radius. It clearly satisfies ρF ≤ ρ, ρF ∼ ρ, and as ρ is reduced we conclude that ρF = ρ.

On the other hand, it is clear from the construction of ρF that it is a perturbation radius. �1.10

Proposition 1.11. A perturbation pre-radius ρ is equivalent to a perturbation radius if and only if it is
uniformly continuous, in which case 〈ρ〉 is the unique perturbation radius equivalent to ρ.

Proof. Immediate from Lemma 1.10. �1.11

Recall that if p(x̄, ȳ) is a partial type, then the property ∃ȳ p(x̄, ȳ) (where the existential quantifier
varies over a sufficiently saturated elementary extension) is also definable by a partial type.

Definition 1.12. A perturbation pre-radius ρ respects the existential quantifier ∃ if for every partial
type p(x̄, ȳ):

[∃ȳ p(x̄, ȳ)]ρ = [∃ȳ pρ(x̄, ȳ)].

Lemma 1.13. A perturbation pre-radius ρ respects ∃ if and only if for every two sufficiently saturated
models M,N � T , tuples ā ∈Mn, b̄ ∈ Nn, and c ∈M :

tp(b̄) ∈ tp(ā)ρ ⇐⇒ (∃d ∈ N)
(
tp(b̄d) ∈ tp(āc)ρ

)
.

Proof. Easy. �1.13

If σ is an n-permutation, it acts on Sn(T ) by σ∗(p(x<n)) = p(xσ−1(0), . . . , xσ−1(n−1)) (so σ∗(tp(a<n)) =
tp(aσ(0), . . . , aσ(n−1))).

Definition 1.14. A perturbation pre-radius ρ is permutation-invariant if for every n, and every per-
mutation σ on n elements, ρn is invariant under the action of σ. In other words, for every p, q ∈ Sn(T ):

(p, q) ∈ ρn ⇐⇒ (σ∗(p), σ∗(q)) ∈ ρn.

Proposition 1.15. Let ρ be a perturbation pre-radius. Then the following are equivalent:
(i) ρ is a perturbation radius.
(ii) ρ respects =, ∃ and is permutation-invariant.

(iii) Whenever M,N � T , ā ∈Mn, b̄ ∈ Nn, and tp(b̄) ∈ tp(ā)ρ, there exist an elementary extension
N ′ � N and a ρ-perturbation f : M → N ′ sending ā to b̄.

Proof. (i) =⇒ (ii). Straightforward.
(ii) =⇒ (iii). Let ā ∈ M and b̄ ∈ N be such that b̄ � tp(ā)ρ. Let N ′ � N realise every type of finite

tuples over finite tuples in N .
Since ρ respects ∃ and N ′ is sufficiently saturated, for every c̄ ∈ M there is d̄ ∈ N ′ such that b̄d̄ �

tp(āc̄)ρ. Since ρ respects equality, (ai 7→ bi) ∪ (cj 7→ dj) is a well-defined mapping, call it f : M 99K N ′.
Since ρ respects ∃ and is permutation-invariant, f is a partial ρ-perturbation.

Let I be the family of all partial ρ-perturbations f : M 99K N ′ where dom(f) is finite containing ā,
and f(ā) = b̄. For any tuple c̄ ∈ M , let Jc̄ = {f ∈ I : c̄ ⊆ dom(f)}, and let F ⊆ P(I) be the filter
generated by the Jc̄. By the argument above F is a proper filter, and therefore extends to an ultra-filter
U .

Let N ′′ = N ′
U . Let g : M → N ′′ be given by g =

∏
f∈I f/U . In other words, for every c ∈ M we

define g(c) ∈ N ′′ to be [cf : f ∈ I] ∈ N ′′, where cf = f(c) if c ∈ dom(f): since J{c} is a large set, we



6 ITAÏ BEN YAACOV

need not care about cf for other values of f . Identifying N ′ with its diagonal embedding in N ′′ we have
N � N ′ � N ′′, and clearly g(ā) = b̄.

Finally, for every (finite) tuple c̄ ∈ M we have g(c̄) = [c̄f : f ∈ I], where c̄f = f(c̄) for every f
in the large set Jc̄. Since tp(c̄f ) ∈ tp(c̄)ρ for all f ∈ Jc̄, and tp(c̄)ρ is a closed set, we must have
tp(g(c̄)) ∈ tp(c̄)ρ.

We conclude that g : M → N ′′ is a ρ-perturbation as required.
(iii) =⇒ (i). Clear. �1.15

It follows that the composition of perturbation radii is again one:

Lemma 1.16. If ρ, ρ′ are perturbation radii then ρ′ ◦ ρ is a perturbation radius as well.

Proof. Assume that q ∈ pρ′◦ρ. Then there is a type r ∈ pρ such that q ∈ rρ′ . Let ā � p in M . Then
there is a model N and ρ-perturbation f : M → N such that f(ā) � r, and a ρ′-perturbation g : N → L
such that g ◦ f(ā) � q. �1.16

Recall from [Ben03] that the type-space functor of T is a contra-variant functor from N to topological
spaces, sending an object n ∈ N to Sn(T ), and a mapping σ : n→ m to the mapping

σ∗ : Sm(T ) → Sn(T )
tp(ai : i < m) 7→ tp(aσ(i) : i < n).

We obtain the following elegant characterisation of perturbation radii:

Lemma 1.17. A perturbation pre-radius ρ is a perturbation radius if and only if for every n,m ∈ N
and mapping σ : n→ m, the induced mapping σ∗ : Sm(T )→ Sn(T ) satisfies that for all p ∈ Sm(T ):

σ∗(pρ) = σ∗(p)ρ.

Viewing ρ as the family of graphs of multi-valued mappings, we could write this property more simply
as σ∗ ◦ ρm = ρn ◦ σ∗. Thus a perturbation pre-radius is a perturbation radius if and only if it commutes
with the type-space functor structure on {Sn(T ) : n ∈ N}.

Proof. Assume that ρ is a perturbation radius, and let σ : n → m be a mapping. Let p ∈ Sm(T ),
q ∈ Sn(T ), and let a<m ∈ M realise p. Then each of q ∈ σ∗(pρ) and q ∈ σ∗(p)ρ is equivalent to the
existence of a ρ-perturbation g : M → N such that q = tp(g(aσ(i)) : i < n).

Conversely, assume that σ∗(pρ) = σ∗(p)ρ for all σ : n → m and p ∈ Sm(T ). When restricted to the
special case where σ : 2→ 1 is the unique such mapping, this is equivalent to ρ preserving equality; when
restricted to the family of inclusions n ↪→ n+1, this is equivalent to ρ preserving ∃; and when restricted to
the permutations of the natural numbers, this is equivalent to ρ being permutation-invariant. Therefore
ρ is a perturbation radius by Proposition 1.15. �1.17

Definition 1.18. We say that a perturbation radius (or pre-radius) is symmetric if q ∈ pρ ⇐⇒ p ∈ qρ.

Lemma 1.19. Assume that ρ is a symmetric perturbation radius, and let f ∈ Pertρ(M,N). Then there
exist elementary extensions M ′ �M , N ′ � N , and a bi-perturbation f ′ ∈ BiPert(M ′, N ′) extending f .

Proof. Since ρ is symmetric then f−1 : f(M) → M is a partial ρ-perturbation, and since ρ is a pertur-
bation radius, we may extend f−1 to a ρ-perturbation g : N → M ′ � M . Proceeding this way we may
thus construct two elementary chains (Mi : i ∈ N) and (Ni : i ∈ N) such that M0 = M , N0 = N , and
two sequences of ρ-perturbations fi : Mi → Ni and gi : Ni →Mi+1 such that f0 = f , gi ◦ fi = idMi

, and
fi+1 ◦ gi = idNi

. Then at the limit we obtain Mω � M and Nω � N , ρ-perturbations fω : Mω → Nω
and gω : Nω →Mω such that gω = f−1

ω . Thus every ρ-perturbation can be extended by a back-and-forth
argument to a ρ-bi-perturbation fω ∈ BiPertρ(Mω, Nω). �1.19
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Lemma 1.20. A perturbation pre-radius ρ is a symmetric perturbation radius if and only if it is uni-
formly continuous and bi-reduced.

Proof. If ρ is bi-reduced then it is reduced and symmetric, so one direction is by Lemma 1.10. For the
other, assume ρ is a symmetric perturbation radius. Let f ∈ Pertρ(M,N), and let f ′ ∈ BiPertρ(M ′, N ′)
extend it as in Lemma 1.19. Then f ′ ∈ BiPertJρK(M ′, N ′) by definition, whereby f ′ ∈ PertJρK(M ′, N ′)
and f ∈ PertJρK(M,N). Therefore JρK ∼ ρ, and as both are reduced they are equal. �1.20

Proposition 1.21. A perturbation pre-radius ρ is bi-equivalent to a symmetric perturbation radius if
and only if it is uniformly continuous, in which case JρK is the unique symmetric perturbation radius
bi-equivalent to ρ.

Proof. Immediate from Lemma 1.20. �1.21

Finally, we may find the following observation useful:

Lemma 1.22. Let ρi be symmetric uniformly continuous perturbation pre-radii such that ρ1 ◦ ρ0 ≤ ρ2.
Then Jρ1K ◦ Jρ0K ≤ Jρ2K.

Proof. Let M0,M1 � T and f ∈ PertJρ1K◦Jρ0K(M0,M1). Then every restriction of f to a finite set can
be decomposed by definition into a partial Jρ0K-perturbation followed by a partial Jρ1K-perturbation.
We can glue these together by an ultra-product argument to obtain M ′i � Mi for i < 2 and M ′2 � T ,
such that f extends to f ′ : M ′0 →M ′1, which in turn decomposes into a Jρ0K-perturbation g′ : M ′0 →M ′2
followed by a Jρ1K-perturbation h′ : M ′2 →M ′1.

Since JρiK are symmetric perturbation radii, we may use a back-and-forth argument as in the proof
of Lemma 1.19 to construct extensions M ′′i � M ′i for i < 3 and g′′ ∈ BiPertJρ0K(M ′′0 ,M

′′
2 ), h′′ ∈

BiPertJρ1K(M ′′2 ,M
′′
1 ). It follows that f ′′ = h′′ ◦ g′′ ∈ Pertρ2(M ′′0 ,M

′′
1 ) is bijective. Since ρ2 is assumed to

be symmetric, f ′′ is a ρ2-bi-perturbation and therefore a Jρ2K-perturbation.
This shows that Jρ1K ◦ Jρ0K ≤ Jρ2K. �1.22

1.3. Perturbation systems. A single perturbation radius gives us certain leverage at perturbing types.
But our goal is not to study perturbations by a single perturbation radius, but rather by “arbitrarily
small” perturbation radii, where the notion of a small perturbation radius depends on the context. We
formalise this through the notion of a perturbation system:

Let R0 denote the family of perturbation pre-radii, and R denote the family of perturbation radii.

Definition 1.23. A perturbation pre-system is a mapping p : R+ → R0 satisfying:
(i) Downward continuity: If εn ↘ ε then p(ε) =

⋂
p(εn).

(ii) Symmetry: p(ε) is symmetric for all ε.
(iii) Triangle inequality: p(ε) ◦ p(ε′) ≤ p(ε+ ε′).
(iv) Strictness: p(0) = id.

If in addition its range lies in R, then p : R+ → R is a perturbation system.

Given a perturbation (pre-)system p, we may define the perturbation distance between two types
p, q ∈ Sn(T ) as:

dp,n(p, q) = dp(p, q) = inf{ε ≥ 0: (p, q) ∈ pn(ε)}.
Notice that by strictness and the triangle inequality this is indeed a [0,∞]-valued metric, where infinite
distance means that neither type can be perturbed into the other.

Lemma 1.24. Let p be a perturbation pre-system. Then the family of metrics (dp,n : n ∈ N) has the
following properties:

(i) For every n, the set {(p, q, ε) ∈ Sn(T )2 × R+ : dp,n(p, q) ≤ ε} is closed.
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(ii) If p is a perturbation system, then for every n,m ∈ N and mapping σ : n → m, the induced
mapping σ∗ : Sm(T )→ Sn(T ) satisfies for all p ∈ Sm(T ) and q ∈ Sn(T ):

dp,m(p, (σ∗)−1(q)) = dp,n(σ∗(p), q).

(Here we follow the convention that dp,m(p,∅) = inf ∅ =∞.)

Conversely, given a family of metrics with values in [0,∞] satisfying the first property, and defining
pn(ε) = {(p, q) ∈ Sn(T )2 : dp,n(p, q) ≤ ε}, we obtain that p is a perturbation pre-system, and it is a
perturbation system if and only if the second property is satisfied as well.

Proof. This is merely a reformulation:
– Symmetry, triangle inequality and strictness correspond to each dp,n being a metric;
– Downward continuity corresponds to the set {(p, q, ε) ∈ Sn(T )2×R+ : dp,n(p, q) ≤ ε} being closed; and
– Each of the p(ε) being a perturbation radius corresponds to dp,m(p, (f∗)−1(q)) = dp,n(f∗(p), q), by
Lemma 1.17. �1.24

We say that two perturbation systems p and p′ are equivalent if the perturbation metrics dp and dp′

are uniformly equivalent on each Sn(T ).
We say that a perturbation pre-system p respects equality if p(ε) does for all ε > 0. In this case, by

Proposition 1.21 we can define Jp(ε)K = JpK(ε) to be the symmetric perturbation radius generated by
p(ε). By Lemma 1.22, JpK satisfies the triangle inequality. One can verify that JpK satisfies downward
continuity, and it is clearly symmetric and strict, so it is a perturbation system. As expected, we call
JpK the perturbation system generated by p.

1.4. A few natural examples (and a non-example). If L consists of finitely many predicate symbols,
a natural perturbation system for L is the one allowing to perturb all symbols by “a little”. In order to
construct it we first define a perturbation pre-system p by letting p(ε) be the (symmetric) perturbation
pre-radius allowing the distance symbol d to change by a multiplicative factor of e±ε, and every other
symbol to change by ±ε. Then p respects equality, and thus generates a perturbation system JpK.
Similarly, if L is an expansion of L0 by finitely many symbols, we might want to require that all symbols
of L0 be preserved precisely, while allowing the new symbols to be perturbed as in the previous case.

A particularly interesting example of the latter kind is the case of adding a generic automorphism
to a stable continuous theory. Consider for example the case of infinite dimensional Hilbert spaces: If
σ, σ′ ∈ U(H), then (H,σ′) is obtained from (H,σ) by a small perturbation of the automorphism (which
keeps the underlying Hilbert space unmodified) if and only if the operator norm ‖σ−σ′‖ is small. Thus
the notion of perturbation brings into the realm of model theory the uniform convergence topology on
automorphism groups of structures. We shall say a little more about this in the last section.

In case of a classical (i.e., discrete) first order theory T in a finite language, there are no non trivial
perturbation systems. Indeed, let p be a perturbation system, and let P be an n-ary predicate symbol.
Let

XP = ([P (x̄)]× [¬P (ȳ)]) ∪ ([¬P (x̄)]× [P (ȳ)]) ⊆ Sn(T )2.

Then XP ∩ pn(0) = ∅, but X is compact, so there is εP > 0 such that XP ∩ pn(εP ) = ∅. Replacing
function symbols with their graphs we may assume the language is purely relational, and as we assumed
the language to be finite we have can define ε0 = min{εP : P ∈ L} > 0. By the construction every
p(ε0)-perturbation is an elementary mapping, that is to say that a small enough perturbation, according
to p, is not a perturbation at all. Another way of sating this is that p is equivalent to the identity
perturbation system. In short, structures in a finite discrete language cannot really be perturbed. The
same argument holds if we have a pair of languages L0 ⊆ L, where we only allow to perturb symbols in
Lr L0 which are finite in number.
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Thus, the notion of perturbation is a new feature of continuous logic which essentially does not exist
in discrete logic.

This last statement is of course not 100% correct, as there was a finiteness assumption. Indeed,
let L = {Ei : i ∈ N} and let T be the theory saying that each Ei is an equivalence relation with two
equivalence classes, and every intersection of finitely many equivalence classes of distinct Ei’s is infinite.
This is a classical example of a theory which is not ℵ0-categorical, but every restriction of T to a finite
sub-language is. For ε > 0, let p(ε) be the symmetric perturbation radius generated by requiring Ei
to be fixed for all i < 1/ε, and p(0) = id. Then p is a perturbation system, and “a model of T up to
a small p-perturbation” is the same as “a model of T restricted to a finite sub-language”. Thus T is
p-ℵ0-categorical in the sense of Section 2 below.

2. Saturation up to perturbation

In this section, p denotes a perturbation system for a theory T .

Notation 2.1. If p(x) is any partial type and ε ≥ 0 then p(xε) denotes the partial type

∃x′ (p(x′) ∧ d(x, x′) ≤ ε).

We define p(xε, yδ, . . .) similarly. We follow the convention that the metric on finite tuples is the
supermum metric, so if x̄ is a (finite) tuple of variables then p(x̄ε) means p(xε0, x

ε
1, . . .).

This notation can (and will) be used in conjunction with previous notation. If p(x̄) is a partial type
and ρ a perturbation radius then pρ(x̄) is also a partial type, so we can make sense of pρ(x̄ε): ā � pρ(x̄ε)
if and only if there exists a tuple b̄ (in a sufficiently saturated model containing ā) such that d(ā, b̄) ≤ ε
and b̄ � pρ. Similarly, ā � p(x̄ε)ρ if and only if there are b̄ and c̄ such that b̄ � p, d(b̄, c̄) ≤ ε, and
tp(ā) ∈ tp(c̄)ε. The difference between the two examples is that in the first we first perturb p and then
allow the realisation to move a little, while in the second we do it the other way around. Since ρ is
uniformly continuous, this does not make much difference, as for all ε > 0 and δ = δρ(ε) > 0:

[pρ(x̄δ)] ⊆ [p(x̄ε)]ρ, [p(x̄δ)]ρ ⊆ [pρ(x̄ε)].

Definition 2.2. A structure M is p-approximately ℵ0-saturated if for every finite tuple ā ∈ M , type
p(x, ā) ∈ S1(ā) and ε > 0, the partial type pp(ε)(xε, āε) is realised in M .

Notice that when b ∈ M realises pp(ε)(xε, āε), the witnesses may possibly be outside M . In other
words, M � pp(ε)(bε, āε) only means that there exist b′, ā′ in some elementary extension of M such that
d(b, b′), d(ā, ā′) ≤ ε and � pp(ε)(b′, ā′).

Lemma 2.3. The definition of p-approximate ℵ0-saturation, which was given in terms of approximate
realisation of 1-types, implies the same property for n-types, for any natural n.

Proof. Let M be p-approximately ℵ0-saturated. We proceed by induction on n. For n = 0 there is
nothing to prove, so we assume for n and prove for n+ 1.

So let p(x≤n, ā) ∈ Sn+1(ā) for some finite tuple ā ∈ M , where p(x≤n, ȳ) is a complete type without
parameters, and let ε > 0. We need to find in M a realisation for pp(ε)(xε≤n, ā

ε).
First, find δ > 0 such that [d(x, y) ≤ δ]p(ε) ⊆ [d(x, y) ≤ ε/2], so in particular, δ ≤ ε/2. Let

q(x<n, ȳ) = p(x≤n, ȳ)�(x<n,ȳ). By the induction hypothesis we can realise qp(δ)(xδ<n, ā
δ) in M . In

other words, we can find b<n ∈ M and b′<n, ā
′ possibly outside M such that d(b′<nā

′, b<nā) ≤ δ and
� qp(ε/2)(b′<n, ā

′). Since p(ε/2) is a perturbation radius we can find b′n (still, possibly outside M) such
that � pp(ε/2)(b′≤n, ā

′). Thus in particular:

� pp(ε/2)(b′n, b
δ
<n, ā

δ).
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Let r(x) = tp(b′n/b<n, ā). Using p-approximate ℵ0-saturation, find bn ∈ M such that �
rp(ε/2)(bε/2n , b

ε/2
<n , ā

ε/2). That is to say that there exist d≤n, c̄ (possibly outside M) such that

d(b≤nā, d≤n, c̄) ≤ ε/2,

� rp(ε/2)(d≤n, c̄),

From which we conclude that:

� pp(ε/2)(dn, dδ<n, c̄
δ)p(ε/2),

� pp(ε)(dn, d
ε/2
<n , c̄

ε/2),

� pp(ε)(bε/2n , bε<n, ā
ε),

� pp(ε)(bε≤n, ā
ε). �2.3

Remark 2.4. Lemma 2.3 can be restated as saying that if a structure M is p-approximately ℵ0-saturated
then it is still so after the adjunction of the sort of n-tuples (namely a sort for Mn, equipped with the
supremum metric). It follows that p-approximate ℵ0-saturation is not affected by the adjunction of the
sort of ℵ0 -tuples (with the metric d

(
(an)n∈N, (bn)n∈N

)
=
∑

2−n−1d(an, bn)), or of any imaginary sort
(with the natural metric). Thus the following results can be extended to ℵ0-tuples and imaginary sorts
as well.

Lemma 2.5. Assume that M is p-approximately ℵ0-saturated. Then for every finite tuple ā ∈M , type
p(x̄, ā) ∈ Sn(ā) and ε > 0, pp(ε)(x̄, āε) is realised in M .

Proof. By Lemma 2.3 we may assume that x and a are singletons.
Let εi = (1− 2−i)ε, and choose δi > 0 small enough so that:

(i) δi ≤ 2−i−2ε.
(ii) [d(x, y) ≤ δi]p(ε) ⊆ [d(x, y) ≤ 2−i].

(iii) [d(x, y) ≤ εi]p(δi) ⊆ [d(x, y) ≤ εi + 2−i−2ε].
Notice that the second is possible since p(ε) is uniformly continuous. The third is possible by a com-
pactness argument using the facts that [d(x, y) ≤ εi+2−i−2ε] contains a neighbourhood of [d(x, y) ≤ εi],
and

[d(x, y) ≤ εi] = [d(x, y) ≤ εi]p(0) =
⋂
δ>0

[d(x, y) ≤ εi]p(δ).

Let us also agree that δ−1 =∞.
We now choose a sequence bi ∈M such that � pp(εi)(bδi−1

i , aεi):
– Since δ−1 =∞ and p(x, a) is consistent, any b0 ∈M will do.
– Let bi be given. Then in an elementary extension of M there exists c such that d(c, bi) ≤ δi−1 and
� pp(εi)(c, aεi). Let q(x, y, z) = tp(c, bi, a). By the saturation assumption there exists bi+1 ∈ M such
that � qp(δi)(bδi

i+1, b
δi
i , a

δi). We know that q(x, y, z) ` pp(εi)(x, zεi), so:

qp(δi)(x, y, z) ` pp(εi+δi)(x, zεi+2−i−2ε) ` pp(εi+1)(x, zεi+2−i−2
)

qp(δi)(xδi , yδi , zδi) ` pp(εi+1)(xδi , zεi+2−i−2ε+δi) ` pp(εi+1)(xδi , zεi+1).

Thus � pp(εi+1)(bδi
i+1, a

εi+1) as required.
We also know that q(x, y, z) ` d(x, y) ≤ δi−1. It follows that qp(δi)(x, y, z) ` d(x, y) ≤ 2−i+1 (except

when i = 0), so d(bi, bi+1) ≤ 2−i+1 + 2δi ≤ 2−i−1(4 + ε), so (bi : i ∈ N) is a Cauchy sequence in M and
therefore converges to some b ∈ M . For all i < j ∈ N we have � pp(ε)(bδi

j , a
ε), so � pp(ε)(bδi , aε) for all

i ∈ N, and as δi → 0 we conclude that � pp(ε)(b, aε), as required. �2.5
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Proposition 2.6. Assume that M is p-approximately ℵ0-saturated. Then for every finite tuple ā ∈M ,
type p(x̄, ā) ∈ Sn(ā) and ε > 0 there are b̄, ā′ ∈M such that:

(i) d(ā, ā′) ≤ ε.
(ii) � pp(ε)(b̄, ā′).

Proof. Let

q(x̄, ȳ, ā) := p(x̄, ȳ) ∧ ȳ = ā.

By Step II there are b̄, ā′ ∈ M such that � qp(ε)(b̄, ā′, āε). Since q(x̄, ȳ, z̄) implies that ȳ = z̄, so does
qp(ε), so � p(b̄, ā′) and d(ā′, ā) ≤ ε, as required. �2.6

Proposition 2.7. Any two elementarily equivalent separable p-approximately ℵ0-saturated structures
are p-isomorphic.

Proof. Let M ≡ N be two separable p-approximately ℵ0-saturated models, and let ε > 0 be given. Let
M0 = {ai : i ∈ N} and N0 = {bi : i ∈ N} be countable dense subsets of M and N , respectively.

Define for convenience εi = (1 − 2−i)ε for all i ∈ N. As p(ε) is uniformly continuous, we may also
choose δi > 0 such that [d(x, y) ≤ δi]p(ε) ⊆ [d(x, y) ≤ 2−i−1] (so in particular, δi ≤ 2−i−1).

We construct a sequence of mappings fi : Ai → N and gi : Bi → M , where Ai ⊆ M and Bi ⊆ N are
finite, such that:

(i) A0 = B0 = ∅, and for i > 0:

Ai+1 = a≤i ∪Ai ∪ gi(Bi)
Bi+1 = b≤i ∪Bi ∪ fi+1(Ai+1).

(ii) For all c ∈ Ai: d(c, gi ◦ fi(c)) ≤ δi.
(iii) For all c ∈ Bi: d(c, fi+1 ◦ gi(c)) ≤ δi.
(iv) For each i, fi is a p(ε2i)-perturbation and gi is a p(ε2i+1)-one.

We start with f0 = ∅, which is 0-as we assume that M ≡ N .
Assume that fi is given. ThenAi is given, and is finite by the induction hypothesis, and this determines

Bi which is also finite. Fix enumerations for Ai and Bi as finite tuples, and let p(x̄, ȳ) = tpN (Bi, f(Ai)).
As fi is a p(ε2i)-perturbation, there is a type q(x̄, ȳ) ∈ pp(ε2i) such that q(x̄, Ai) is consistent. By

p-approximate ℵ0-saturation of M there are tuples B′i, A
′
i ⊆ M such that d(Ai, A′i) ≤ δi and M �

q(B′i, A
′
i)

p(2−2i−1ε). Then gi : Bi 7→ B′i is p(ε2i+1)-elementary, so it will do.
We construct fi+1 from gi similarly.
We now have for all c ∈ Ai:

d(c, gi ◦ fi(c)) ≤ δi =⇒ d(fi+1(c), fi+1 ◦ gi ◦ fi(c)) ≤ 2−i−1

=⇒ d(fi+1(c), fi(c)) ≤ 2−i.

Therefore the sequence of mappings fi converges to a mapping f : A → N , where A =
⋃
Ai. As fi

is an p(ε)-perturbation for all i so is f . As M0 ⊆ A we have Ā = M , so f extends uniquely to a
p(ε)-perturbation f̄ : M → N . An p(ε)-perturbation ḡ : N →M is constructed similarly.

Finally, for i < j ∈ N choose k ≥ j such that 2−k+2 ≤ δj . Then:

d(ai, ḡ ◦ f̄(ai)) ≤ d(ai, ḡ ◦ fk(ai)) + 2−j

≤ d(ai, gk+1 ◦ fk(ai)) + 2−j+1 + 2−j

≤ 2−j + 2−j+1 + 2−j ≤ 2−j+2.

By letting j →∞ we see that ḡ◦f̄ is the identity on M0, and therefore on M . Similarly f̄ ◦ḡ = idN . �2.7
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3. Categoricty up to perturbation

We now turn to the proof of a Ryll-Nardzewski style characterisation of separable categoricity up so
small perturbations. As usual, T denotes a theory and p a perturbation system for T .

Definition 3.1. Let κ ≥ |T | be a cardinal (recall that |T | = |L| + ℵ0). We say that a theory T is
p-κ-categorical if it has a model of density character κ, and in addition every two models M,N � T of
density character κ are p-isomorphic.

For the purpose of this definition we consider the density character of a finite set to be ℵ0. In
particular, the complete theory of a compact, or finite, structure, will be considered ℵ0-categorical, and
therefore p-ℵ0-categorical for all p.

Remark 3.2. It is not difficult to verify a general converse to Proposition 2.7, i.e., that if p is a pertur-
bation system and M and N are p-isomorphic then M ≡ N . Thus Vaught’s Test holds just as well for
perturbed categoricity: if T has no compact models and is p-κ-categorical for some κ ≥ |T | then T is
complete.

Convention 3.3. For the rest of this section we assume that T admits non compact models.

Lemma 3.4. A complete countable theory T is p-ℵ0-categorical if and only if all separable models of T
are p-approximately ℵ0-saturated.

Proof. Right to left follows from 2.7.
Conversely, assume that T is p-ℵ0-categorical, and let M � T be separable. Let ā ∈ Mn, q(x̄) =

tp(ā), and let q(y, ā) ∈ S1(ā), where q(y, x̄) ∈ Sn+1(T ) is a complete pure type. Let also ε > 0, and
δ = δρ(ε) > 0.

By the downward Löwenheim-Skolem theorem there exists a separable model N � T such that for
every n-tuple b̄ ∈ N , if b̄ satisfies pp(ε/2) then qp(ε/2)(y, b̄δ) is realised in N . By assumption there exists
a p(ε/2)-isomorphism f : M → N . Then b̄ = f(ā) � pp(ε/2), and let c ∈ N be such that � qp(ε/2)(c, b̄δ).
Letting d = f−1(c) we get � qp(ε)(d, āε).

Thus M is p-approximately ℵ0-saturated. �3.4

We observe that if p is a perturbation system, then the topology on Sn(T ) induced by dp is finer
than the logic topology. Indeed, if U is a neighbourhood of p, then

⋂
ε>0 p

p(ε) = {p} ⊆ U , and by
compactness we must have pp(ε) ⊆ U for some ε > 0. In fact, dp is usually too fine to be used directly for
characterising ℵ0-categoricity. For example, in case of the identity perturbation (i.e., no perturbation
allowed at all), dp,n is a discrete metric (with values in {0,∞}), while the standard Ryll-Nardzewski
theorem for continuous logic does consider a much coarser topology, namely that induced by the metric
d. We therefore need to take both metrics into account.

Theorem 3.5. Let T be a complete countable theory, p a perturbation system for T . Then the following
are equivalent:

(i) The theory T is p-ℵ0-categorical.
(ii) For every n ∈ N, finite ā, p ∈ Sn(ā) and ε > 0, the set [pp(ε)(x̄ε, āε)] has non empty interior in

Sn(ā).
(iii) Same restricted to n = 1.

Proof. (i) =⇒ (ii). Assume there is some finite tuple ā, n ∈ N and p(x̄, ā) ∈ Sn(ā), such that for
some ε > 0 the set [pp(ε)(x̄ε, āε)] has empty interior in Sn(ā). Then it is nowhere dense in Sn(ā), and can
be omitted in a dense subset of some separable model (M, ā) � Tā. Therefore [pp(ε)(x̄, āε)] is omitted in
M , which is therefore not p-approximately ℵ0-saturated. Therefore T cannot be p-ℵ0-categorical.

(ii) =⇒ (iii). Clear.
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(iii) =⇒ (i). We show that every M � T is p-approximately ℵ0-saturated. Indeed, let ā ∈ M be a
finite tuple and p(x, ā) ∈ S1(T ). As [pp(ε)(xε, āε)] has non empty interior in Sn(ā) is must be realised in
M . �3.5

We may wish to combine the two metrics in a single one. While one may try to achieve this through
various general approaches for the combination of two metrics, the specific situation in which we find
ourselves suggests a specific construction as the “natural” one.

Fix m ∈ N, and let Lc̄ = L ∪ {ci : i < m}, where each ci is a new distinct constant symbol. Let Tc̄
be the (incomplete) Lc̄-theory generated by T . We extend p into a perturbation system pc̄ for Tc̄ by
allowing the new constant symbols to move a little. It is more convenient to think in terms of a relational
language, in which each of the constants ci is represented by a unary predicate giving the distance to ci.
We therefore define p0

c̄(ε) to be the perturbation pre-radius which, for p, q ∈ Sn(Tc̄), allows to perturb p
to q if and only if:

(i) q�L ∈ (p�L)p(ε); and:
(ii) For all i < m and j < n: |d(xj , ci)p − d(xj , ci)q| ≤ ε.

It is easy to verify that p0
c̄ is a uniformly continuous perturbation pre-system, which generates a pertur-

bation system pc̄ = Jp0
c̄K. Thus pc̄ can be roughly described as allowing to perturb models of T according

to p, and to move the new constants (i.e., change the distance to them) a little as well. If c̄ = ∅ we
changed nothing: p∅ = p.

By definition of the bi-reduct J·K, we have for all ε > 0, and (M, ā), (N, b̄) � Tc̄:

BiPertp0
c̄(ε)((M, ā), (N, b̄)) = BiPertpc̄(ε)((M, ā), (N, b̄)) ={

f ∈ BiPertp(ε)(M,N) : (∀e ∈M, i < m)
(
|dM (e, ai)− dN (f(e), bi)| ≤ ε

)}
.

The space S0(Tc̄) is the set of completions of Tc̄ and can be naturally identified with Sm(T ). We
define a metric d̃p,m on Sm(T ) as the image of dpc̄

under this identification. Equivalently:

Definition 3.6. For p, q ∈ Sn(T ), we define d̃p(p, q) as the infimum of all ε for which there exist models
M,N � T , ā ∈Mn and b̄ ∈ Nn and a mapping f : M → N such that:

(i) ā � p and b̄ � q.
(ii) f ∈ BiPertp(ε)(M,N).

(iii) For all i < n and c ∈M : |dM (c, ai)− dN (f(c), bi)| ≤ ε.

Alternatively, we may wish to restrict pc̄ to a specific completion of Tc̄. Any such completion is of the
form Tā = Th(M, ā), where M � T and ā ∈Mn. Let us denote the restriction of pc̄ to Tā by pā.

Of course, once we have constructed pā, we can construct d̃pā
as above, and it follows immediately

from the definitions that:

Lemma 3.7. The construction p 7→ d̃p commutes with the addition of parameters, in the sense that for
all ā, b̄ and c̄, if |b̄| = |c̄| then:

d̃pā
(tp(b̄/ā), tp(c̄/ā)) = d̃p(tp(b̄, ā), tp(c̄, ā)).

In an arbitrary metric space (X, d), let Bd(x, ε) denote the closed ε-ball around a point x. The
following result characterise the topology defined by d̃p:

Lemma 3.8. Fix n ∈ N and a finite tuple ā ∈ M � T . The metric d̃pā
is coarser (i.e., smaller) on

Sn(ā) than both d and dpā
, and finer than the logic topology.

Also, for every p(x̄, ā) ∈ Sn(ā), the family
{

[pp(ε)(x̄ε, āε)] : ε > 0
}

forms a base of d̃pā
-neighbourhoods

for p(x̄, ā).
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Proof. Let us start by showing that for every ε > 0 there is ε′ > 0 such that:

[pp(ε′)(x̄ε
′
, āε
′
)] ⊆ Bd̃pā

(p(x̄, ā), ε) ⊆ [pp(ε)(x̄ε, āε)].

Let us first consider the case without parameters. The set
{

(q(x, y), q′(x, y)) ∈ S2(T ) : |d(x, y)q −
d(x, y)q

′ | ≥ ε/2
}

is closed and disjoint of the diagonal, so by compactness there is ε′ > 0 such for all
(q, q′) ∈ p2(ε′): |d(x, y)q − d(x, y)q

′ | ≤ ε/2. We may of course assume that ε′ ≤ ε/2, and the first
inclusion follows. The second inclusion is immediate from the definition of d̃p.

The case over parameters ā follows from the case without parameters and the fact that by Lemma 3.7:

Bd̃pā
(p(x̄, ā), ε) =

{
q(x̄, ā) ∈ Sn(ā) : q(x̄, ȳ) ∈ Bd̃p

(p, ε)
}
.

Finally, let K ⊆ Sn(T ) be closed in the logic topology and q /∈ K. Then there is ε > 0 such
that qp(ε) ∩ K = ∅, and since qp(ε) is closed in the logic topology there is also ε′ > 0 such that
[qp(ε)(x̄ε

′
)] ∩ K = ∅. Letting ε′′ = min{ε, ε′} we see that [qp(ε′′)(x̄ε

′′
)] ∩ K = ∅. Therefore K is

d̃p-closed. This shows that d̃p refines the logic topology. It is clearly coarser than both d and dp.
Substituting Tā for T in the last argument we get the case with parameters. �3.8

Thus we can restate Theorem 3.5 as:

Theorem 3.9. Let T be a complete countable theory. Then the following are equivalent:

(i) The theory T is p-ℵ0-categorical.
(ii) For every n ∈ N, finite ā, p ∈ Sn(ā) and ε > 0, the ε-ball Bd̃pā

(p, ε) has non empty interior in
the logic topology on Sn(ā).

(iii) Same restricted to n = 1.

The statement of the result in terms of non empty interior may sound a little weird, as the non per-
turbed Ryll-Nardzewski theorem tells us that T is ℵ0-categorical if and only if the metric d coincides with
the logic topology. In order to explain this apparent discrepancy let us make a few more observations.

First, the coincidence of the logic topology with the metric d̃p is a sufficient condition for T to be
p-ℵ0-categorical. In this case it suffices to check Sn(T ) alone (i.e., no need to consider parameters).

Proposition 3.10. Assume that T is countable and complete, and d̃p coincides with the logic topology
on Sn(T ) for all T . Then T is p-ℵ0-categorical.

Proof. Let M � T , and let ā ∈ M , p(x, ā) ∈ S1(ā), and ε > 0. By assumption Bd̃p
(p(x, ȳ), ε) is a

neighbourhood of p, so there is a formula ϕ(x, ȳ) such that

p ∈ [ϕ = 0] ⊆ [ϕ < 1/2] ⊆ Bd̃p
(p(x, ȳ), ε′) ⊆ [pp(ε)(xε, ȳε)].

Therefore [ϕ(x, ā) < 1/2] is a non empty open subset of S1(ā) (as it contains p(x, ā)), and is therefore
realised in M . Thus pp(ε)(xε, āε) is realised in M . �3.10

We should point out that the consideration of parameters in Theorem 3.5 is unavoidable. Indeed, if
p(x, ā) ∈ S1(ā) and we only assume that Bd̃p

(p(x, ȳ), ε) has non empty interior in Sn+1(T ), which need
not necessarily contain p(x, ȳ), it may happen that no type q(x, ȳ) in this interior is consistent with
r(ȳ) = tp(ā), so pulling up to S1(ā) we may end up with an empty set.

The sufficient condition in Proposition 3.10 seems far more convenient and natural than the one in
Theorem 3.5, and one might hope to show that it is also necessary. The following example shows that this
is impossible. Roughly speaking, this example says that if the “if and only if” variant of Proposition 3.10
were true, we could prove Vaught’s no-two-models theorem, which fails in continuous first order logic.
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Example 3.11. Let T be the theory of atomless Lp-Banach lattices for some fixed p ∈ [1,∞), studied in
[BBH]. It is known that T is ℵ0-categorical, all of its separable models being isomorphic to Lp[0, 1].

Let f be any positive function of norm 1 (this determines tp(f)), say f = χ[0,1], then Tf has precisely
two non isomorphic separable models, namely (Lp[0, 1], χ[0,1]) and (Lp[0, 2], χ[0,1]). (The theory Tf is
ℵ0-categorical up to perturbations of the new constant f , but that’s not what we are looking for). Let g
be another positive function of norm 1 such that f ∧ g = 0 (this determines tp(f, g)). Then again, Tf,g
has precisely two separable models, (Lp[0, 2], χ[0,1], χ[1,2]) and (Lp[0, 3], χ[0,1], χ[1,2]).

Let p be the identity perturbation system for Tf , and thus pg is the perturbation system for Tf,g that
allows to perturb g while preserving all the rest untouched. Then the two models above are pg-isomorphic,
so Tf,g is pg-ℵ0-categorical. Let πn : Sn(Tf,g) → Sn(Tf ) be the reduct projection. As p is the identity
perturbation on Tf , d̃p = d on Sn(Tf ). Therefore, if U ⊆ Sn(Tf ) is d-open then π−1

n (U) ⊆ Sn(Tf,g) is
d̃pg

-open.
But Tf is not ℵ0-categorical, so the metric d defines a non compact topology on Sn(T ), whereby d̃pg

defines a non compact topology on Sn(Tf,g), which in particular cannot coincide with the logic topology,
even though Tf,g is pg-ℵ0-categorical.

One last point arises from a comparison of Theorem 3.5 with the unperturbed Ryll-Nardzewski Theo-
rem for continuous logic. The latter characterises unperturbed ℵ0-categoricity by the coincidence of the
logic topology with the metric, and thus does not seem to be follow as a special case of Theorem 3.5.
To see that it actually does, we need to explore some further properties perturbation metrics may have.

Let us start by recalling properties of the standard metric d on Sn(T ). We observe in [BU] that the
metric d has the following properties:

(i) It refines the logic topology.
(ii) If F = [p(x̄)] ⊆ Sn(T ) is closed, then so is F ε = {p : d(p, F ) ≤ ε} = [p(x̄ε)].
(iii) For every injective σ : n→ m, p ∈ Sn(T ), q ∈ Sm(T ):

d(p, σ∗(q)) = d(σ∗−1(p), q).

A perturbation metric has all these properties as well, and in fact satisfies the last one also for σ which
is not injective. One last interesting property of (Sn(T ), d) is analogous to the second property:

Lemma 3.12. If U ⊆ Sn(T ) is open, then so is U<ε = {p : d(p, U) < ε}.

Proof. It suffices to show this for a basis of open sets, i.e., for sets of the form U = [ϕ(x̄) < ε]. But then
U<ε = [inf ȳ(ϕ(ȳ) ∨ d(x̄, ȳ)) < ε] is open. �3.12

For lack of a better name, let us call provisionally a metric on a topological space open if it satisfies
the property of Lemma 3.12.

Definition 3.13. Let p be a perturbation system for T .
(i) We say that p is open if dp is open on Sn(T ) for all n.

(ii) We say that p is weakly open if for all ε > 0 and n ∈ N there is δ > 0 such that for every open
set U ⊆ Sn(T ):

U d̃p<δ ⊆
(
U d̃p<ε

)◦
.

(Where U d̃p<δ = {p : d̃p(p, U) < δ}.)

Lemma 3.14. Let p be a perturbation system.
(i) p is weakly open if and only if for every ε > 0 and n ∈ N there is δ > 0 such that for every open

U ⊆ Sn(T ):

Up(δ) ⊆
(
U d̃p<ε

)◦
.
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(ii) If p is open then it is weakly open.
(iii) If d̃p is open on Sn(T ) for all n then p is weakly open.

Proof. (i) For one direction use the fact that Up(δ/2) ⊆ U d̃p<δ. For the other, assume that Up(δ) ⊆(
U d̃p<ε/2

)◦ and δ < ε/2. Then since the metric d is open:

U d̃p<δ ⊆ (Up(δ))d<δ ⊆
((
U d̃p<ε/2

)◦)d<δ ⊆ ((U d̃p<ε/2)d<δ
)◦
⊆
(
U d̃p<ε

)◦
.

(ii) We use the criterion from the previous item:

Up(ε/2) ⊆ Udp<ε =
(
Udp<ε

)◦ ⊆ (U d̃p<ε
)◦
.

(iii) Immediate from the definition. �3.14

Theorem 3.15. Let T be a complete countable theory, p a weakly open perturbation system. Then T is
p-ℵ0-categorical if and only if for every n, d̃p coincides with the logic topology on Sn(T ).

Proof. Right to left is by Proposition 3.10, so we prove left to right.
Assume that T is p-ℵ0-categorical. Fix p ∈ Sn(T ) and ε > 0. Then by definition there is δ > 0 such

that for every open set U ⊆ Sn(T ): U d̃p<δ ⊆
(
U d̃p<ε/2

)◦. We may also assume that δ < ε.
Let U = Bd̃p

(p, δ/2)◦, so U 6= ∅ by Theorem 3.5. Then:

p ∈ U d̃p<δ ⊆
(
U d̃p<ε/2

)◦ ⊆ (Bd̃p
(p, δ/2)d̃p<ε/2

)◦
⊆
(
Bd̃p

(p, ε)
)◦

Therefore Bd̃p
(p, ε) is a logic neighbourhood of p for all p and ε > 0. Since d̃p refines the logic topology,

they must coincide. �3.15

Example 3.16. The identity perturbation system is open.

Corollary 3.17 (Henson’s unperturbed Ryll-Nardzewski Theorem). A complete countable theory T is
ℵ0-categorical if and only if the standard metric d coincides with the logic topology on Sn(T ), for all
n ∈ N.

Proof. Since d̃id = d. �3.17

Example 3.18. Let ā ∈ M � T , and let p = tp(ā) be isolated (i.e., d(x̄, p) is a definable predicate). Let
p be the identity perturbation for T , and pā as above be a perturbation system for Tā allowing to move
the named parameter. Then pā is open.

Proof. Exercise. �3.18

Of course, in Example 3.11 the type of the new parameter tp(g/f) was not isolated.

4. Perturbations of automorphisms

We conclude with a few problems concerning perturbations of automorphisms which motivated the
author’s initial interest in perturbations, and which the author therefore finds worthy of future study.

One such problem comes from the study of the properties of automorphism groups of classical (i.e.,
discrete) countable structures, and in particular of ones whose first order theory is ℵ0-categorical, viewed
as topological groups. Model-theoretic questions of this kind are treated, for example, in [HHLS93], while
more topologically profound questions are studied by Kechris and Rosendal [KR07]. It is natural to ask
whether such of these results can be generalised to the automorphism groups of separable continuous
structures (with a separably categorical theory). A very simple instance would to consider the unitary
group U(H) where H is a separable infinite dimensional Hilbert space. Indeed, U(H) is a polish group
in the point-wise convergence topology, also known as the strong operator topology, but it is quickly
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revealed that U(H) is just way too big for any of the properties that Kechris and Rosendal were looking
for (e.g., existence of ample generics) to hold.

This is definitely not a new phenomenon. We already know that the type space of a continuous theory,
viewed as a pure topological space, is too big. In order to study notions such as superstability, ℵ0-stability,
or even local ϕ-stability, one needs to take an additional metric structure into account, considering points
(types) up to small distance. Such considerations date as far back as Iovino’s definition of λ-stability
and of superstability in Banach space structures [Iov99]. Similarly, the automorphism group of a metric
structure admits a natural metric, namely the metric of uniform convergence (for example, the operator
norm on U(H) is the metric of uniform convergence on the unit ball). In the terminology of [Ben08],
Aut(M) is a topometric group, namely a topological group (in the point-wise convergence topology)
which is at the same time a metric group (in the uniform convergence metric), such that in addition
the distance function d : G2 → R+ is lower semi-continuous in the topology. One can then restate the
question of the existence of ample generics as follows:

Question 4.1. Let M be a separable metric structure, G = Aut(M). Under what assumptions on M can
we find, for each n ∈ N, a tuple ḡ ∈ Gn such that for every ε > 0, the G-conjugacy class of the (metric)
ε-ball around ḡ is (topologically) co-meagre? In other words can we find ḡ such that the metric closure
of the orbit of ḡ is co-meagre? In particular, can one prove this is the case if Th(M) is ℵ0-categorical
and ℵ0-stable?

Considering an automorphism τ ∈ Aut(M) up to small distance in uniform convergence is essentially
the same as considering the structure (M, τ) up to a small perturbation of τ , whence the connection
with the topic of the present paper. For the special case of U(H), a positive answer essentially follows
from [Dav96, Theorem II.5.8]. What about the automorphism group of the unique separable atomless
probability algebra?

Another question leading to similar considerations is raised by Berenstein and Henson [BH]. In this
paper they consider the theory of probability algebras with a generic automorphism, and ask whether
it is superstable (equivalently, supersimple, since they showed that the theory is stable). In classical
first order logic the answer would be positive, by a theorem of Chatzidakis and Pillay [CP98]. Henson’s
and Berenstein’s was question was nonetheless answered negatively by the author, raising the following
natural “second best” question, namely whether the theory of probability algebras with a generic auto-
morphism is superstable up to small perturbations of the automorphism. This was subsequently answered
positively by the author and Berenstein [BB09], where we show moreover that up to perturbations of
the automorphism, the theory is ℵ0-stable.

Question 4.2. Let T be a superstable continuous theory. Let

Tσ = T ∪ {“σ is an automorphism”}.
Assume furthermore that Tσ has a model companion TA. Is TA supersimple up to small perturbations
of σ?

And in fact,

Question 4.3. What should it mean precisely for a theory to be supersimple up to small perturbations?

Regarding the last question it should be pointed out that there are several natural candidates for
the definition of “a is independent up to distance ε from B over A” (denoted usually aε |̂

A
B). While

these notions of approximate independence are not equivalent, they all give rise to the same notion
of supersimplicity (see for example in [Ben06]), and in a stable theory they are further equivalent to
superstability. Superstability and λ-stability up to perturbation are introduced by the author in [Ben08],
and one should seek a notion of supersimplicity up to perturbation which, in stable theories, coincides
with superstability up to perturbation.
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