ON THEORIES OF RANDOM VARIABLES

ITAT BEN YAACOV

AssTrACT. Nous étudions des théories d’espaces de variables aléatoires : en un premier temps, nous
considérons les variables aléatoires & valeurs dans l’intervalle [0, 1], puis & valeur dans des structures
meétriques quelconques, généralisant la procédure d’aléatoirisation de structures classiques due a Keisler.
Nous démontrons des résultats de préservation et de non-préservation de propriétés modéle-théoriques
par cette construction :

(i) L’aléatoirisée d’une structure ou théorie stable est stable.

(ii) L’aléatoirisée d’une structure ou théorie simple instable n’est pas simple.
Nous démontrons également que dans la structure aléatoirisée, tout type est un type de Lascar.

We study theories of spaces of random variables: first, we consider random variables with values in the
interval [0, 1], then with values in an arbitrary metric structure, generalising Keisler’s randomisation of
classical structures. We prove preservation and non-preservation results for model theoretic properties
under this construction:

(i) The randomisation of a stable structure is stable.

(ii) The randomisation of a simple unstable structure is not simple.
We also prove that in the randomised structure, every type is a Lascar type.

INTRODUCTION

Mathematical structures arising in the theory of probabilities are among the most natural examples
for metric structures which admit a model theoretic treatment, albeit not in the strict setting of classical
first order logic. Examples include the treatment of adapted spaces by Keisler & Fajardo [FK02], in
which no logic of any kind appears explicitly (even though many model theoretic notions, such as types,
do appear). Another example, which is the main topic of the present paper, is Keisler’s randomisation
construction [Kei99], in which one considers spaces of random variables whose values lie in some given
structures. The randomisation construction was originally set up in the formalism of classical first order
logic, representing the probability space underlying the randomisation by its probability algebra, namely,
the Boolean algebra of events up to null measure (defined abstractly, a probability algebra is a measure
algebra of total mass one, see Fremlin [Fre04]). We consider that this formalism was not entirely adequate
for the purpose, since the class of probability algebras is not elementary in classical first order logic, a
fact which restricts considerably what can be done or proved (for example, the randomised structure
interprets an atomless Boolean algebra, and can therefore be neither dependent nor simple). To the best
of our knowledge, the first model theoretic treatment of a probabilistic structure in which notions such
as stability and model theoretic independence were considered was carried out by the author in [Ben06],
for the class of probability algebras, in the formalism of compact abstract theories. While this latter
formalism was adequate, in the sense that it did allow one to show that probability algebras are stable
and that the model theoretic independence coincides with the probabilistic one, it was quite cumbersome,
and soon to become obsolete.

Continuous first order logic is a relatively new formalism, at least in its present form, proposed by
Alexander Usvyatsov and the author [BUIL0] for model theoretic treatment of (classes of) complete metric
structures. For example, we observe there that the class of probability algebras is elementary, its theory
admitting a simple set of axioms, and that the theory of atomless probability algebras admits quantifier
elimination, thus simplifying considerably many of the technical considerations contained in [BenO6].
Viewing probability algebras as metric structures in this fashion, rather than as classical structures,
allowed Keisler and the author [BK09| to present the randomisation as a metric structure, and we
contend that this metric randomisation is the “correct” one. Arguments to this effect include several
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preservation results which would be false in the formalism of [Kei99]. For example, in [BK09| we prove
that if a structure is stable then so is its randomisation, while preservation of dependence was proved
by the author in [Ben09al]. Another argument, both @sthetic and practical, is that types in the metric
randomisation are very natural objects, namely regular Borel probability measures on the space of types
of the original theory, also referred to nowadays as Keisler measures [Kei87|, and which turn out to be
particularly useful for the study of dependent theories, e.g., in [HPPOS].

We still find the current state of knowledge, and existing treatment, of randomisation, wanting on
several points. First, since the randomisation of a discrete structure (or theory) necessarily produces a
metric one, the question of randomising metric structures arises quite naturally. In fact, it is quite easy
to construct the randomisation of a metric structure (or theory) indirectly, by letting its type spaces be
the spaces of regular Borel probability measures as mentioned above, a fact which was used in [Ben09a
to point out that the preservation of dependence holds for the randomisation of metric structures as well,
even though the latter had not yet been formally defined. However, the point of view of theories as type
spaces, while a personal favourite of the author (see for example [Ben03al), is far from being universally
accepted, creating the need for an “ordinary” construction of the randomisation of a metric structure,
with a natural language, axioms, and all. A second point is that the treatment of randomisation in [BK09|
relies greatly on [Kei99], many times referring to it for proofs, even though some fundamental aspects of
the set-up are different, requiring the reader to continually verify that the arguments do transfer.

The aim of the present paper is to remedy these shortcomings by providing a self-contained treatment
of randomisation in the metric setting, and show (or point out) that the preservation results of [BK09,
Ben09a] hold in the metric setting as well. In addition, we turn the preservation of dependence into a
dichotomy by showing that if 7" is not dependent then its randomisation 7% cannot even be simple, and
in fact has TP,. We also improve a corollary of the preservation of stability of [BK09], namely that in
randomised stable structures types over sets are Lascar types, proving the same for arbitrary randomised
structures. As a minor point, we simplify the language (and theory), and rather than name in £® (the
randomisation language) the randomisation [¢] of each £-formula ¢, we name the function symbols and
the randomisations of the relation symbols of £ alone.

The paper is organised as follows. In Section [I] we consider formal deductions in propositional con-
tinuous logic, after Rose, Rosser and Church. These are used in Section [2| to give axioms for the theory
of spaces [0, 1]-valued random variables, which play the role played by probability algebras in [BK09].
Model theoretic properties of this theory are deduced from those of the theory of probability algebras,
with which it is biinterpretable. In Section [3] we define and study the randomisations of metric struc-
tures, namely spaces of random variables whose values lie in metric structures. We give axioms for the
theory of these random structures, prove quantifier elimination in the appropriate language, characterise
types and so on. We also prove a version of Y.o§’s Theorem for randomisations, in which the ultra-filter
is replaced with an arbitrary integration functional. In Section [d] we prove several preservation and non
preservation results. In Section [5] we prove that in random structures, types over sets are Lascar types,
so in the stable case they are stationary.

1. ON RESULTS OF ROSE, ROSSER AND CHANG

In the late 1950s Rose and Rosser [RR58| proved the completeness of a proof system for Lukasiewicz’s
many-valued propositional logic, subsequently improved and simplified by Chang [Cha58bl [Cha58al
Cha59]. This logic is very close to propositional continuous logic. Syntactically, the notation is quite
different, partially stemming from the fact we identify True with 0, rather than with 1. Also, the con-
nective % does not exist in Lukasiewicz’s logic. Semantically, we only allow the standard unit interval
[0,1] as a set of truth values, while some fuzzy logicians allow non-standard extensions thereof (namely,
they allow infinitesimal truth values). We should therefore be careful in how we use their results.

In these references, Propositional Lukasiewicz Logic is presented using Polish (prefix) notation, without
parentheses. A formula is either an atomic proposition, C'py or N, where ¢ and 1 are simpler formulae.
We shall prefer to use the notation of continuous logic, replacing Cpy with ¢ = ¢ and N¢ with —p.

Definition 1.1. Let So = {P;: i € I} be a set distinct symbols, which we view as atomic proposition.
Let S be freely generated from Sy with the formal binary operation — and unary operation —. Then S
is a fiukasiewicz logic.

Definition 1.2. Let S be a Lukasiewicz logic.
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(i) For every map vg: So — [0,1], let v: S — [0,1] be the unique map extending vy such that

v(p =) =v(p) = v(Y) and v(—p) = 1 — v(p). We call v the truth assignment defined by vy,
and v(p) is the truth value of .

(ii) If v(p) = v(v) for every truth assignment v, we say that ¢ and ¢ are equivalent, and write
p =1.

(iii) If v(p) = 0 we say that v is a model of ¢, in symbols v E p. If ¥ C S, then v E ¥ if v F ¢ for
all p € 3. We say that ¢ (or X) is satisfiable if it has a model.

(iv) Let ¥ C S and p € S. We say that X entails ¢, or that ¢ is a logical consequence of 3, if every
model of ¥ is a model of . This is denoted X F ¢.

When we wish to make the ambient logic explicit we may write Fs, =s, and so on.

Notation 1.3. (i) We shall follow the convention that =, like —, binds from left to right, and
define ¥ —~ np by induction on n:
Y= 0p =1, Y=(nt+le=v-=np=p=(Y=np) =g

(ii) We use 1 as abbreviation for —(pg + ¢o), where g is any formula.
(iii) We also define

pAY=¢=(p=1), PV ==(2p Ay,
observing that v(¢ A ¢) = minwv(p),v(y) and v(e V ) = maxv(yp), v(¢) for all v.

Remark 1.4. Logical implication in FLukasiewicz logic can be infinitary by nature. Indeed, let ¢, =
1+2(1=nP). Then ¢, = 0if and only if 1 = nP > 1, i.e., if and only if P < 5--. Letting ¥ = {¢n }nen
we have X F P even though there is no finite ¥y C X such that X F P.

Let S be a Lukasiewicz logic generated by {P;: i € I}, and ¢ € S. Then the truth assignments to
S are in bijection with [0,1]7, and every formula ¢ € S can be identified with a continuous function
95: [07 1]I - [O, 1] by @(U) = U(QD)
Lemma 1.5. Let S be a Lukasiewicz logic, and assume that X C S has no model. Then there are
n,m € N and p; € ¥ for i <m such that E 1=~ npg~ ... =~ nwm,_1.
Proof. For every n,m € N and ¢ € ¥, let ¢, 3 = 1 =npg~...=npm,_1, and assume that I ¢, ; for all
n and @. In particular, for all n,m and ¢ € ™ there is v such that v(¢s,,3) > 0, whereby Y~ v(;) < 5
and thus v(¢y,z) > 5. Call this v, 5. Note that if n < n’ and ¢ C @' then vy & (¢n,5) > 5 as well. Since
[0,1]7 is compact, we obtain an accumulation point v € [0,1]! such that v(¢,,) > 1 for all n,m € N

and @ € ¥™. It follows that v(p) = 0 for all ¢ € X. u

The proof of Lemma m only uses the presence of the connectives — and — (the latter in order to
obtain 1) in the language, and the fact that the evaluation ¢: v — v(p) is continuous for all ¢. Thus,
if we allowed additional continuous functions f: [0,1]™ — [0, 1] as connectives in Definition e.g., the
unary connective %: x = 3, the same proof would hold.

Let us now consider formal deductions in Lukasiewicz logic. Recall that by Notation p A is
abbreviation for ¢ = (¢ = ) (which would be At in the notation of [RR58]). Thus, the four axiom

schemes which, according to [RR58, [Cha58b], form a complete deduction system, are:

(A1) Y=o
(A2) (p=¢)=(p=2) =¥ ~9)
(A3) (P AY) = (P Ay
(A4) (p =) = (¢ = —p)
While Modus Ponens becomes:
Y=
(MP) 0

A deduction sequence from a set of premises ¥ in this deduction system is a sequence of formulae,
each of which is either a premise (i.e., a member of ¥), an axiom (i.e., an instance of Al-4, where ¢, v
and p can be any formulae), or is deduced by Modus Ponens from two earlier formulae in the sequence.
We say that ¢ is deducible from X, in symbols ¥ F ¢ (or ¥ kg ¢ if we wish to be explicit) if there exists
a deduction sequence from ¥ containing ¢. Soundness of this deduction system (i.e., X F ¢ = X F ¢)
is easy to verify. A subset ¥ C S is contradictory if ¥+ ¢ for all ¢ € S. Otherwise it is consistent. The
completeness result we referred to can be now stated as:
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Fact 1.6 ([RR58| [Cha’9]). Let S be a Lukasiewicz logic, and ¢ € S. Then E ¢ if and only if F ¢.

Proposition 1.7. Let S be a Lukasiewicz logic, and let X C S. Then X is consistent if and only if it
has a model.

Proof. One direction is by soundness. For the other, assume that > has no model. Then by Lemma [1.5

there are n and ¢; € ¥ such that letting ¢ = 1 = ngg = ... = ng,,—1 we have k1. By Fact [L.6] we have
F 1, and by Modus Ponens ¥ - 1. By Fact we also have F ¢ = 1 for every formula ¢, so ¥ - ¢ and
Y is contradictory. -,

Unfortunately, this is not quite what we need, and we shall require the following modifications:

(i) We wish to allow non-free logics, i.e., logics which are not necessarily freely generated from a set
of atomic propositions. In particular, such logics need not be well-founded (i.e., we may have
an infinite sequence {¢, }nen such that each ;7 is a “proper sub-formula” of ;).

(if) The set of connectives {—, =} is not full in the sense of [BUL0]. We should therefore like to
introduce an additional unary connective, denoted %, which consists of multiplying the truth
value by one half.

Definition 1.8. A continuous propositional logic is a non empty structure (S, —, %, ~), where = is a
binary function symbol and —, % are unary function symbols.

A homomorphism of continuous propositional logics is a map which respects —, % and —-.

A truth assignment to a continuous propositional logic S is a homomorphism v: § — [0,1], where
[0,1] is equipped with the natural interpretation of the connectives. Models and logical entailment are
defined in the same manner as above.

We say that S is free (over Sp) if there exists a subset Sy C S such that S if freely generated from
So by the connectives {—, %,4}. In that case every map vp: So — [0,1] extends to a unique truth
assignment.

1
2
(A5) 3¢ = (9= 39)

(A6) (0~ 39) = 3¢

Formal deductions in the sense of continuous propositional logic are defined as earlier, allowing A1-6 as
logical axiom schemes.

The new connective 3 requires two more axioms:

Lemma 1.9. For every continuous propositional logic S (not necessarily free), v, € S, X C S and
n € N:
(i) Fo=¢.
(i) F (=)= (1 =n( =),
(i) If X, = 1 is contradictory then X+ b — .
Proof. (i) In Lukasiewicz logic we have E P — P, and by Fact F P =~ P. By substitution of ¢
for P we get a deduction for ¢ ~ ¢ in S.
(ii) Same argument.
(iii) If ¥, = v is contradictory then it is has no model. By the proof of Proposition there is
n € N such that ¥ - 1 = n(p = ). Therefore ¥ F ¢ = ¢. I

Theorem 1.10. Let S be a continuous propositional logic, not necessarily free, and let ¥ C S. Then %
is comsistent if and only if it is satisfiable.

Proof. Let ST be the Lukasiewicz logic freely generated by {P,: ¢ € S}, and let:
S ={P., ~ —P,,~P, =~ P,: p € S}
U{Ppwy = (Pp = Py), (Pp = Py) =~ Poey: 0,0 € S}

Py =P P - Py
Ui %w w*%w’ w*%w %@ v €S}

> ={P,: peT}UN{.
Assume that %/ has a model v/. Define v: S — [0,1] by v(¢) = v/ (P,). Since v/ F Eg, v is a truth
assignment in the sense of S, and is clearly a model of 3.

Thus, if ¥ has no model, neither does /. By Proposition %7/ is contradictory. Thus, for every
Y € S we have X2/ - P,,. Take any deduction sequence witnessing this, replacing every atomic proposition
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P, with ¢. If a formula was obtained from previous ones using Modus Ponens, the same holds after this
translation. Premises from ¥/ become translated to one of several cases:
(i) Premises of the form P, for ¢ € ¥ are replaced with ¢ € X.
(ii) Premises of the first two kinds from z{j are replaced with something of the form ¢ = ¢, which
we know is deducible without premises.
(iii) Premises of the last kind from Eg are translated to instances of the axioms schemes A5-6.

We conclude that X F ¢ for all ¥ € S, and X is contradictory. The other direction is by easy soundness.
L IBT)

Let 27" be abbreviation for 5 --- 1 (n times), where 1 is still as per Notation sov(27") =27
for any truth assignment v.

Corollary 1.11. Let S be a continuous propositional logic, not necessarily free, ¥ C S and p € S. Then
Y E @ if and only if X+ ¢ = 27" for all n.

Proof. Right to left is clear, so assume that ¥ E ¢. Then ¥ U{2™" = ¢} is non-satisfiable, and therefore
contradictory by Theorem By Lemma Yhp=27" [ TR

Remark 1.12. With some more effort, one can prove that if S is free and ¥ is finite, then ¥ F ¢ if and
only if X F . This can be shown to fail if we drop either additional hypothesis, and in any case will not
be required for our present purposes.

These completeness results are extended to the full continuous first order logic in [BP10]. We conclude
with a word regarding the semantics of continuous propositional logics.

Definition 1.13. Let S be a continuous propositional logic. Its Stone space is defined to be the set
S = Hom(S, [0,1]), namely the space of truth assignments to S. We equip S with the induced topology
as a subset of [0,1]® (i.e., with the point-wise convergence topology).

For each ¢ € S we define a function ¢: S — [0,1] by @(v) = v(ep).

Proposition 1.14. Let S be a continuous propositional logic, S its Stone space, and let 0s denote the
map ¢ — Q.
(i) The space S is compact and Hausdorff.
(ii) 0s € Horn(S7 C’(g, [0, 1])) In particular, each ¢ is continuous.
(iii) For ¢, € S we have 0s(p) = 0s(¥) if and only if p = 1.
(iv) The image of Os is dense in the uniform convergence topology on C(S, [0,1]).

Moreover, the properties characterise the pair (g, 0s) up to a unique homeomorphism.

Proof. That the image is dense is a direct application of a variant of the Stone-Weierstrass theorem
proved in [BUIL0, Proposition 1.4]. The other properties are immediate from the construction.

We are left with showing uniqueness. Indeed, assume that X is a compact Hausdorfl space and
0: S — C(X,[0,1]) satisfies all the properties above. Define (: X — S by ((z)(¢) = 0(¢)(z). Thus ( is
the unique map satisfying 0s(¢)o( = 0(p), and we need to show that it is a homeomorphism. Continuity
is immediate. The image of 6 is dense in uniform convergence and therefore separates points, so ( is
injective. Since X is compact and Hausdorff ¢ must be a topological embedding. In order to see that ¢
is surjective it will be enough to show that its image is dense. So let U C S be a non empty open set,
which must contain a non empty set of the form {v € S: f(v) > 0} for some f € C(S,[0,1]). For n big
enough there is vy € S such that f(vo) > 2~"+1. By density find ¢, € S such that ||@o — flleo < 27
and let ¢ = g — 2" € S. Then {v € S: v(p) > 0} C U and vy(p) # 0. Since ¢ # 0 there is z € X
such that {(x)(¢) = 0(p)(x) # 0, i.e., {(x) € U. This concludes the proof. IRV

2. THE THEORY OF [0, 1]-VALUED RANDOM VARIABLES

From this point and through the end of this paper, we switch to the setting of continuous first order
logic. This means that structures, formulae, theory and so on, unless explicitly qualified otherwise,
should be understood in the sense of [BUIL0] (or [BBHUO0S]).

Let (2, #, 1) be a probability space. In [Ben06] we considered such a space via its probability algebra
7 , namely the Boolean algebra of events .# modulo null measure difference. Equivalently, the probability
algebra .# can be viewed as the space of {0, 1}-valued random variables (up to equality a.e.). Here we
shall consider a very similar object, namely the space of [0, 1]-valued random variables. This space will be
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denoted L*((2,.%, n), [0,1]), or simply L*(.%, [0, 1]), where we consider that the measure y is implicitly
part of the structure of .%. We equip this space with the natural interpretation of the connectives —, %
and ~ (e.g., (X ~Y)(w) = X(w) =~ Y(w)), as well as with the L! distance d(X,Y) = E[|X — Y]], for

which it is a complete metric space. It is thus naturally a structure in the random variable language
ERV - {O ) 25 _}
Throughout, we shall use 1 as an abbreviation for =0 and E(z) as an abbreviation for d(x,0). The

intended interpretation of E(x) is the expectation. Notice that by definition, if M is any £ gy -structure
and a € M then a = 0 < d(a,0) =0 <= E(a) = 0.

2.1. The theories RV and ARV. We shall use the results of Section [I] to give axioms for the theory
of [0, 1]-valued random variables equipped with the L' metric, in the language Lgy given above.

The term algebra Try of Lgy is a free propositional continuous logic (freely generated by the variables
of the language together with the symbol 0). Similarly, forgetting everything but the operations —, = and
~, any Lpy-structure M is a (ordinarily, non-free) continuous propositional logic. Translatlng proofs
from Try to M we have Frp,, 7 = b 7(a) for all @ € M.

We define the theory RV to consist of the following axioms. In each axiom we quantify universally
on all free variables. Keep in mind also that = A y is abbreviation for z = (x - y).

(RV1) E(r) = ( ~y)+E(ynr)

(RV2) E(1) =

(RV3) d(x y):E(a:— y)+ E(y =~ x)

(RV4) =0 whenever b, T

ARYV is defined by adding the following axiom:

(ARV) irylf (E(yAﬁy) VIE(yAT) — @

):0.

Lemma 2.1. Let M be a model of RV1. Then for every a,b € M:
E(a) — E(b) < E(a = b) < E(a).
In particular M respects Modus Ponens: if b=0 and a -~ b= 0 then a = 0.

Proof. Axiom RV1 implies first that E(a) > E(a—b). But then E(b) > E(b+(b+a)) = E(bAa) whereby
E(a) — E(b) < E(a) — E(bAa) = E(a = b). Modus Ponens follows. D%

Thus, modulo RV1, the axiom scheme RV4 is equivalent to the finite set:
RV4.1) (x=y)=x=0

(

(RV4.2) (@+2)+(@=y)~(y=2) =0

(RV4.3) (xAy)=(ynz)=0

(RV4.4) (x=y)=(~y=-z)=0

(RV4.5) lr=(z=32)=0

(RV4.6) (x=32)~12=0

Furthermore, modulo RV1, RV3 and RV4.1-4, axioms RV4.5-6 are further equivalent to:
(RV5) lr=z-+1iz

Indeed, left to right is by RV3. Axioms RV1 and RV4.1-4 imply that z ~ z = 0 (by Fact [1.6), giving
right to left.
The following is fairly obvious:

Fact 2.2. Let (Q,.%,p) be a probability space and let M = L'(Z,[0,1]). Then M E RV, and if
(Q,.Z, 1) is atomless then M E ARV

We now aim to prove the converse of Fact

Lemma 2.3. Let M E RV, a,b€ M. Then:
(i) d(a,a=b) = E(a Ab) < E(b). In particular, a = 0 = a.
(ii) @~ a=0. In particular, the meaning of 1 here agrees with Notation [1.5(ii).
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(ili) a =~ 2a = }a, 2a=a =0 and E(3a) = $E(a).

(iv) Define by induction 2° =1 (i.e., 2° = =0) and 2-("+1) =
27",

(V) a=0<=tFpa<=Fra.

(Vi) a=b<=a=pmD.

Proof. (i) From RV4 we have (a = b) - a = 0 and using RV3 we obtain d(a,a = b) = E(a A b). By

RV1 E(a Ab) < E(b). The rest follows.

(if) This was already observed earlier, using Fact

(iii) That 3a = a = $a was observed above (RV5). It follows that a A 2a = 3a, so 3a ~a = 0 by
RV1 (with z = 1a, y = a). Again by RV1 (now with z = a, y = $a) we obtain E(a) = 2E(%a).

(iv) Immediate from the previous item.

(v) Assume that -4 a. Then by RV1 (which implies Modus Ponens) and RV4.1-6 we have a = 0.
Thus a = 0 <= Fq a. The implication - a = F ¢ a is by soundness. Finally assume that
Ea a. Then for all n we have g a = 27", whereby a = 27" = 0. Thus E(a) = E(a A27") <
E(27™) = 27", for arbitrary n. It follows that F(a) =0, i.e., that a = 0.

(vi) Assume that a = b, i.e., that Foq a = b and Foq b= a. Be the previous item a~b=b-+a =0
whereby a = b. -

127", Then for alln € N: E(27") =

Let M be the Stone space of M, viewed as a continuous propositional logic, and let O, : M —

C(M, [0,1]) be as in Proposition Recall the notation & = 0xq(a). By Lemma and Proposi-
tion O is injective.

The space C (/W7 [0,1]) is naturally equipped with the supremum metric, denoted ||f — g||co. We aim
to show now that d™ is an L' distance, i.e., that for an appropriate measure we have d™(a,b) = ||a—bl|,
which need not be equal to [|@—b||s. Nonetheless, we can relate the two metrics as follows (we essentially
say that L>-convergence of random variables implies L!-convergence).

Lemma 2.4. Assume that {a, }nen € M is such that {a, }nen C C(M,[0,1]) is a Cauchy sequence in

—

the supremum metric. Then {a,}nen converges in M and lim a,, = lim a,,.

Proof. By assumption, for every k < w there is N}, such that for all ||a,, — || < 27% for all n,m < Nj..
Therefore (@, = a,,) -~ 27 = 0, and since 0,4 is injective: a, = a,, ~27% = 0. Thus E(a, = a,,) =
E((an ~ am) A27%) < E(27F) = 27%. Similarly E(a,, = a,) < 27%, whereby d(a,,a,,) < 27**1. Since
M is a (complete) L-structure, it contains a limit a.

Now fix n > N;, and let m — oo. Then a,, — a, and therefore a,, -~ a, ~2~% — a = a,, ~ 27%. Thus
a-=a, ~27% =0, and by a similar argument a,, -~ a =~ 2% = 0. We have thus shown that a, — a
uniformly as desired. L

Corollary 2.5. The map Op: M — C(M,[0,1]) is bijective.

Proof. We already know it is injective, and by Proposition [I.14] its image is dense. By the previous
lemma its image is complete, so it is onto. -

We shall identify M with C'(M, [0, 1]).

Lemma 2.6. Foralla,bc M andr c¢ R":
(i) Ifa+be M (ie., ||a+bdle <1) then E(a+b) = E(a) + E(b).
(il) If ra e M (i.e., r|allcc < 1) then E(ra) = rE(a).

Proof. (i) Let c=a+b. Then ¢ = b =a and b~ ¢ = 0, whereby:
E(c)=E(c=b+EMb=(b+c))=FE(a)+ E(b—=0)=E(a)+ E(b).

(ii) For integer r this follows from the previous item, and the rational case follows. If r, — r

then r,a — ra in C'(M,0,1]) and a fortiori in M, so the general case follows by continuity of
E. W6

Theorem 2.7. Let M = RV, M its Stone space and Op: M — C’(/,\\/l/7 [0,1]) as in Proposition m
(i) As a topological space, M is compact and Hausdorff.

(ii) The map Op: M — C(M,[0,1]) is bijective and respects the operations —, % and = (i.e., it is

an isomorphism of continuous propositional logics).
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(iii) There ezists a regular Borel probability measure p on M such that the natural map

Pu: C(Mv, [0,1]) — L(u,[0,1)) is bijective as well, and the composition p, o Op: M —
LY (u, [0,1]) is an isomorphism of Lgy -structures.

Moreover, these properties characterise (M, u,0x() up to a unique measure preserving homeomorphism.

Proof. The first two properties are already known. By Lemma [2.6] we can extend E by linearity from
C(M,]0,1]) to C(M,R), yielding a positive linear functional. By the Riesz Representation Theorem
[Rud66, Theorem 2.14] there exists a unique regular Borel measure p on M such that E(f) = | fdp.
Since F(1) =1, p is a probability measure.

The map M — L'(p,[0,1]) is isometric and in particular injective. Its image is dense (continuous
functions are always dense in the L! space of a regular Borel measure). Moreover, since M is a complete
metric space the image must be all of L*(y, [0,1]), whence the last item.

The uniqueness of M as a topological space verifying the first two properties follows from Proposi-
tion and Lemma The Riesz Representation Theorem then yields the uniqueness of . Mo 7

We may refer to (Mv , i) (viewed as a topological space equipped with a Borel measure) as the Stone
space of M or say that M is based on (M, ).

Corollary 2.8. Let M be an Lgy-structure. Then:

(i) The structure M is a model of RV if and only if it is isomorphic to some L*(.%,[0,1]).
(i) A structure of the form L*(Z,[0,1]) is a model of ARV if and only if (Q,.F, 1) is an atomless
probability space.

Corollary 2.9. Let M E RV be based on (M, w). Then every Borel function M = [0,1] is equal almost
everywhere to a unique continuous function.

2.2. Interpreting random variables in events and vice versa. In the previous section we attached
to every probability space (£2,.%, u) the space L*(.#,[0,1]) of [0, 1]-valued random variables and axioma-
tised the class of metric structures arising in this manner. While we cannot quite recover the original
space Q from L'(.Z,[0,1]) we do consider that L'(.Z,[0,1]) retains all the pertinent information

An alternative approach to coding a probability space in a metric structure goes through its probability
algebra, namely the space of {0, 1}-valued random variables. It can be constructed directly as the Boolean
algebra quotient .# = .7 /.%, where .%; is the ideal of null measure sets. In addition to the Boolean
algebra structure, it is equipped with the induced measure function p:.# — [0,1] and the metric
d(a,b) = p(aAb) (in fact, the measure p is superfluous and can be recovered as p(x) = d(x,0)). The
metric is always complete, so a probability algebra is a structure in the language Lp, = {0,1,N,U, -, u}.

Let us define the theory Pr to consist of the following axioms, quantified universally:

(Bool) The theory of Boolean algebras: (x Ny)¢=z°Uy°,...
(Pr1) u(1) =1
(Pr2) () + ply) =z Uy) + pleNy)
(P13) d(z,y) = p(zy).
The theory APr (atomless probability algebras) consists of PAg along with:
(APr) supinf |u(y A z) — M(;)‘ =0

z Y

Fact 2.10. The class of probability algebras is elementary, axiomatised by Pr. The class of atomless
probability algebras is elementary as well, aziomatised by APr.

Moreover, the theory APr eliminates quantifiers (it is the model completion of Pr). It is Xo-categorical
(there is a unique complete separable atomless probability algebra), and admits no compact model, whereby
it is complete. It is Ng-stable and its notion of independence coincides with probabilistic independence.
All types over sets (in the real sort) are stationary.

Proof. Most of this is shown in [BUIL0, Example 4.3]. The fact regarding stability and independence
were shown in [Ben06] in the setting of compact abstract theories. The arguments carry nonetheless to
models of APr in continuous logic. DT
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We wish to show that these two ways of coding a probability space in a metric structure are equivalent.
Specifically we shall show that for any probability space (Q2,.%#, 1), the probability algebra % and the
space L'(Z,[0,1]) of [0, 1]-valued random variables are (uniformly) interpretable in one another.

Proposition 2.11. Let M be a model of RV, say M = L'(%,[0,1]). Then the Lp,-structure F is
quantifier-free definable in M in a manner which does not depend on Q). More precisely:

(i) We may identify an event a € .F with its characteristic function 1, € M. This identifies F with
the subset L'(.#,{0,1}) C M consisting of all {0, 1}-valued random variables over (0, F, ).

(ii) Under the identification of the previous item, .7 is a quantifier-free definable subset of M,
that is, the predicate d(z,.%) is quantifier-free definable in M. Moreover, the Boolean algebra
operations of .F are definable by terms in M, and the predicates of . (measure and distance)
are quantifier-free definable in M.

(See the first section of [BenlQ) for facts regarding definable sets in continuous logic.)

Proof. The first item is a standard fact. For the second item, let g € L*(.Z,[0,1]), and let a = {g > 1}
(i.e., a = {w: g(w) > 1}). Then:

d(g,.7) = d(g,1.) = E(g A —g).

Given a,b € .# we have 1,0 = -1, and 14 = 14 = 1;, from which the rest of the Boolean algebra
structure can be recovered. In addition d7 (a,b) = d™(14,1;) and u(a) = E(1,). PSR

Since .7 is (uniformly) definable we may quantify over it. Thus, modulo the theory RV, axiom ARV
can be written more elegantly as:

(ARV') inf |[E(yAx)— @ =0.
YyeESF

The converse is a little more technical, since the interpretation of L'(.%,[0,1]) in the structure .#
will necessarily be in an imaginary sort. A similar interpretation of the space of [0, co]-valued random
variables in a hyperimaginary sort has already been discussed in [Ben06l Section 3]. The result we
prove here is a little stronger and easier to work with, using the notion of an imaginary sort in a metric
structure, introduced in [BU10], Section 5.

Let D = {k/2": n € N,0 < k < 2"} denote the set of all dyadic fractions in |0,1[, D’ = DU {0,1}.
For r € D', let n(r) be the least n such that 2"r is an integer (so n(0) = 0, and for r # 0, n = n(r)
is unique such that 2" is an odd integer). We shall now construct by induction on n(r) a family of
Lp-terms (7,)reps in a sequence of distinct variables X = (2, )rep. We start with 7o = 1 and 7 = 0.
If n(r) =m > 0 then n(r £27™) < m and we define:

Ty = (IT U 7.7‘72*7”) N Tr42—m.

We may write such a term as 7,.(X), where it is understood that only a finite subset of X appears in 7,.
Let .7 be a probability algebra. Let (as)sep C % be any sequence of events, and let b, = 7,(as)sep-
Then the sequence (b,)rcp is necessarily decreasing, and if the original sequence (as)sep is decreasing
then the two sequences coincide.

Let us also define:

on(y, X) = Y 27" u(y N 7)), ¢ = lime,.
k<2n

Since 0 < ¢, — Y41 < 27"=1 the limit exists uniformly and ¢ is an £p,-definable predicate.

Proposition 2.12. Let (Q, %, 1) be a probability space, M = LYZ,00,1]). Let %, be the sort of
canonical parameters for instances p(y, X) over % . For each random variable f € M, let f. = {f <r}
forr € D and let f € F, be the canonical parameter of ©(y, f;)reD-

(i) For every event c € F : o(c, f) = (¢, fr)rep = fc f.
(i) The map f — f is a bijection between M and Fp.
(iii) Identifying M with .Z in this manner, the Lry -structure on M is definable in .Z in a manner
which does not depend on €.
Moreover, if we compose this interpretation of L*(.F,[0,1]) in F with the definition of % in L*(Z,[0,1])
discussed in Proposition |2.11] above in either order, there is a definable bijection between the original
structure and its interpreted copy in a manner which is uniform in ).



10 ITAI BEN YAACOV

Proof. For the first item, the sequence (f.)rcp is decreasing so 7(fs)sep = fr- It follows that
|90n( fr reD — f f| <27 n and QO(J: fr reD — f f

We now show the second item. To see that f — f is injective assume that f = g. By the previous
item this means that f f= f g for every ¢ € #, whereby f = g. To see it is surjective let p(z, A) be
any instance of ¢. Define:

b, =1,.(A) € F reD,
fo=> 2"y, €M neN.
k<2n

One readily checks that d(fn, frm) < 27 min(n,m) 5o the sequence f, converges to a limit g € M with
d(fn,g) < 27" For every event ¢ € .F we have @, (c,A) = [ fn. It follows that |¢,(c, A) — [ g] <27
and therefore ¢(c, A) = [ g. In other words, § is a canonical parameter for p(z, A).

Let us now prove the third item. In order to prove that (f,g) — ]“/:/g is definable it is enough to
show that we can define the predicate ¢ (x, f= g) uniformly from f and §. Indeed:

w(w,f/:/g)=/z(f*g)=sgp [/myf*/myg]

=sup [o(e Ny, /) = o0y 9)].

foon Jrefo i

It follows that all the connectives which one can construct from these primitives are definable, and in
particular (x,y) — |z — y|. Thus the distance d(f,g) = ¢ (1, |f — g|) is definable.
We leave the moreover part to the reader. | PRD

Similarly:

The intrinsic distance on the imaginary sort j}, is by definition:

/b(ffg)

The distance d,, is easily verified to be uniformly equivalent to the L' metric on the space of [0, 1]-valued
random variables. This is a special case of the general fact that any two definable distance functions on
a sort are uniformly equivalent. At the cost of additional technical complexity we could have arranged to
recover L!'(.Z,[0,1]) on an imaginary sort in which the intrinsic distance is already the one coming from
L'. Indeed, we could have defined a formula v (y, z, 2, )rep such that ¢(b, ¢, fr)rep = [, f + [,

obtaining further down the road:
/(f—g)+/ (g—f)’ =l =gl
b [aN]

dy(f,g) = sup
b,ceF

2.3. Additional properties of RV and ARV. Models of RV admits quantifier-free definable contin-

uous functional calculus.

dy(f,9) = sup

beF

=max(||f = gll1, g = fll1)-

Lemma 2.13. If §: [0,1]° — [0,1] is a continuous function, then the function f v~ 6o (f) is uniformly
quantifier-free definable in models of RV . By “quantifier-free definable” we mean that for every definable
predicate P(y,z), the definable predicate P(y,0 o (%)) is definable with the same quantifier complexity.
Specifically, d(y, 0 o (Z)) is quantifier-free definable.

Proof. We can uniformly approximate 6 by a sequence of terms 7,,(Z) in —, %, =, in which case P(y,6 o

() = lim P(g, 7,,(Z)) uniformly. m

For example, the predicates E(zP) or E(|x — y[P) are definable for every p € [1, 0], and thus the
LP distance ||z — y||, = E(|z — y|P)!/P is definable as well, all the definitions being quantifier-free and
uniform.

For A C L'(.7,[0,1]), let 0(A) C .# denote the minimal o-sub-algebra by which every member of A
is measurable, i.e., such that A C L!(c(A),[0,1]) (For this to be entirely well-defined we may require
o(A) to contain the null measure ideal of %.)
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Lemma 2.14. Let M be a model of RV, say M = L*(%,[0,1]). Then for every o-sub-algebra F, C .7,
the space L'(F',[0,1]) is a sub-structure of M. Conversely, every sub-structure N' C M arises in this
manner as L'(c(N),[0,1]).

Proof. The first assertion is clear, so we prove the converse. It is also clear that N C L(a(N),[0,1]).
Let f € N, and define mnf = f+ ... + f (m times). Then mf € N, and as m — oo we have
mf — 1gpsoy in L', so 1iy50y € N. Since N is complete and closed under — and -, it follows that
14 € N for every A € o(N). Considering finite sums of the form ($)*14, 44 (3)¥14,_, we see that
every simple function in L'(o(NN),[0,1]) whose range consists solely of dyadic fractions belongs to N.

Using the completeness of N one last time we may conclude that L!(o(N),[0,1]) € N. PRV

Lemma 2.15. Let M and N be two models of RV, say M = L'(Z,[0,1]), N' = L' (,[0,1]). Then
two (-tuples f € M* and g € N have the same quantifier-free type in Lry if and only if they have the
same joint distribution as random variables.

Proof. Assume that f =9/ g. By the previous Lemma we have E(6 o (f)) = E(0 o (g)) for every
continuous function 6: [0,1]° — [0, 1], which is enough in order to conclude that f and g have the
same joint distribution. Conversely, assume that f and g have the same joint distribution. Then
E(1(f)) = E(1(g)) for every term 7(Z). It follows that f =9/ g. 5

Let .Z, denote the set of atoms in .#, which we may enumerate as {A4;: i € I}. Then I is necessarily
countable and every f € L'(.%,[0,1]) can be written uniquely as fo + ..., a;14,, where fy is over the
atomless part and «; € [0,1].

icl

Lemma 2.16. The set Z, U{0} is uniformly definable in Z. In LY(Z,[0,1]), both the sets F, U {0}
(i.e., {La: Ae F,}U{0}) and {ala: a €[0,1], A € F,} are uniformly definable.

Proof. For the first assertion let ¢(z) be the Lp,-formula sup, (u(z Ny) A p(z \ y)). If Ais an atom
or zero then clearly p(A) = 0. If A is an event which is not an atom then the nearest atom to A is
the biggest atom in A (or any of them if there are several of largest measure, or 0 if A contains no
atoms). Let us construct a partition of A into two events A; and Ay by assigning the atoms in A (if any)
sequentially to A; or to A, whichever has so far the lesser measure, and by splitting the atomless part
of A equally between A; and As. If B C A is an atom of greatest measure (or zero if there are none)
then |u(A1) — p(A2)| < p(B) and:

p(A) = p(Ar) A p(A2) > 5u(A) = 5(B) = 5u(A N B)
= 1d(A, 7, U{0}).

Thus .%, U {0} is definable. -
For the second assertion, .#,U{0} is relatively definable in .# which is in turn definable in L'(.Z, [0,1]),
so F, U {0} is definable in L'(.Z,[0,1]). We may therefore quantify over .%, U {0}, and define:
tp(x) =  inf /\ d(z, %IA) .

AeZ,U{0} .,
Then lim ¢,, defines the distance to the last set. i

If follows that for each n, the set of events which can be written as the union of at most n atoms is
definable, as is the set of all finite sums ), ala, where each A; is an atom (or zero). These definitions
cannot be uniform in n, though. Indeed, an easy ultra-product argument shows that the set of all atomic
events (i.e., which are unions of atoms) cannot be definable or even type-definable, and similarly for the
set of all random variables whose support is atomic.

The atoms of a probability space always belong to the algebraic closure of the empty set (to the
definable closure if no other atom has the same measure). They are therefore rather uninteresting from
a model theoretic point of view, and we shall mostly consider atomless probability spaces.

Theorem 2.17. (i) The theory ARV is complete and No-categorical.
(ii) The theory ARV eliminates quantifiers.
(iii) The universal part of ARV is RV, and ARV is the model completion of RV .
(iv) If M = LY(#,[0,1]) F ARV and A C M then dcl(A) = acl(A) = L' (a(A),[0,1]) C M.
(v) Two tuples f and g have the same type over a set A (all in a model of ARV ) if and only if they
have the same joint conditional distribution over o(A).
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(vi) The theory ARV is Ng-stable, independence coinciding with probabilistic independence, i.e.:
Al ,C <+ 0a(4) J/U(B) o(C). Moreover, types over any sets in the home sort (i.e., not over

imaginary elements) are stationary.

Proof. Categoricity and completeness of ARV follow from the analogous properties for APr.

Assume that f and § are two /-tuples in models of ARV, f =9/ §. By Lemma - 2.15 they have the
same joint distribution. For every (r,i) € D x £ define events ay; = {f; < r}, b, = {g; < r}. The
joint distribution implies that (a;)(ri)epxe =4/ (bri)(riyeDxe, and since APr eliminates quantifiers:
(ari)(riyepxe = (bri)(riyeDxe- Under the interpretation of Propositionwe have f; € dcl((am-)TeD),
gi € del((bri)ren), so f = g. In other words, the quantifier-free type of a type determines its type,
whence quantifier elimination.

The theory RV is universal and all its models embed in models of ARV | whereby RV = ARV4y. Since
ARV eliminates quantifiers it is the model completion of its universal part.

Let now M = L'(#,[0,1]) E ARV, and let A C M. By Lemma [2.14 .14 (A) (the sub-structure
generated by A in M) is L'(o(A),[0,1]). Identifying .# with its definable copy in ./\/l we obtain (A) =
(0(A)) = L'(0(A),[0,1]) and dcl(A ) = dcl(o(4)) 2 LY(o(A),[0,1]). On the other hand, o(A) is a
complete sub-algebra of .%# E APr and therefore definably and even algebraically closed there. By
our biinterpretability result, o(A) is relatively algebraically closed in the definable copy of .# in M.
Therefore, if g € acl(A) = acl(o(A)) then o(g) C o(A), i.e., g € L'(c(4),0,1]).

Let us identify .# with its definable copy in M, and let &7 = o(A). By the previous item we have
tp(f/A) = tp(f/«). When & = {ag,...,a,_1} is finite sub-algebra, it is easy to verify that the joint
conditional distribution of f over .« is the same as the joint distribution of the (n +m)-tuple f,1;. The
result for types over infinite algebras follows.

Stability and the characterisation of independence for ARV follow from the analogous properties for
APr via biinterpretability. m

3. KEISLER RANDOMISATION

In this section we use earlier results to extends H. Jerome Keisler’s notion of a randomisation of a
classical structure, or of a classical theory, to continuous ones. For the original constructions we refer
the reader to [Kei99, BK09]. Throughout, we work with a fixed continuous signature £. For the sake of
simplicity we shall assume that £ is single-sorted, but everything we do can be carried out in a multi
sorted setting.

3.1. Randomisation. We shall want to consider some notion of probability integration of functions
on a space (), which is going to be additive, although not always o-additive (i.e., possibly failing the
Monotone Convergence Theorem and its consequences). We do this by replacing the usual measure space
apparatus with an abstract integration functional.

Definition 3.1. A finitely additive probability integration space, or simply an integration space, is
triplet (Q, .o/, F) where Q is any set, o/ C [0,1] is non empty and closed under the connectives —,
and =, and E: & — [0,1] satisfies E(1) =1 and E(X +Y) = E(X)+ E(Y) whenever X, Y and X +V
are all in 7.

In this case we also say that FE is a finitely additive probability integration functional, or simply an
integration functional, on <.

= o

Fact 3.2. Let (Q,.7,p) be a probability space. Let o7 C [0,1] consist of all % -measurable functions
and let E: of — [0,1] be integration du. Then (Q, o/, F) is an integration space.

Similarly if % is a mere Boolean algebra, u is additive, and </ consists of all simple & -measurable
functions.

Lemma 3.3. Let (0, &7, E) be an integration space Equip of with the distance d(X,Y) = E(|X —Y).
Then E(X) =d(X,0) for all X € & and (#/,0,, 5,~,d) is a pre-model of RV .

Proof. Indeed, d(X,0) = E(|X]) = E(X). Now RV1,2 follows from the hypothesis and the fact that
X =(X=Y)4+(XAY). RV3 holds by definition. It follows from the hypothesis that F(0) = 2FE(0) = 0,
whence RV4. ;s

727

In this situation we shall say that (<7, E) is a pre-model of RV, or that E renders </ a pre-model of
RV. If E renders o a pre-model of ARV then we say that (Q, .o, E) is atomless.
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Let Q be an arbitrary set and let # = #q = { M }uecq be a family of L-structures. The product
[[-#4 = ]l cq M. consists of all functions a: @ — (J M, which satisfy a(w) € M, for all w € Q.
Function symbols and terms of £ are interpreted naturally on [[.#. For an L-formula ¢(Z) we define

(p(@) € QO (p(a)): w ™M (aw).

Definition 3.4. Let Q be a set, #q = {My}weq a family of L-structures. Let also M C [[.#,
o C[0,1]% and E: & — [0,1]. We say that (M, .«7, E) is a randomisation based on .#q, if
(i) The triplet (Q, o7, E) is an integration space.
(if) The subset M C [][.# is non empty, closed under function symbols, and (P(a)) € & for every
n-ary predicate symbol P € £ and a € M".
We equip M with the pseudo-metric d(a,b) = E{d(a,b)) and &/ with the L' pseudo-metric d(X,Y) =
B(X V)
We may choose to consider E as part of the structure on 7, in which case the randomisation is
denoted by the pair (M, «7) alone.
If (Q,.#,p) is a probability space, every X € &7 is .Z-measurable and E[X| = [ X du then we say
that (M, /) is based on the random family .# (o, # ,) (and then we almost always omit £ from the
notation).

The randomisation signature £ is defined as follows:

e The sorts of £ include the sorts of £, referred to as main sorts, plus a new auxiliary sort.

e Every function symbol of £ is present in £?, between the corresponding main sorts. It is
equipped with the same uniform continuity moduli as in L.

e For every predicate symbol P of £, L contains a function symbol [P] from the corresponding
main sorts into the auxiliary sort. It is equipped with the same uniform continuity moduli as
Pin L.

e The auxiliary sort is equipped with the signature Lgy .

A randomisation (M, .«/) admits a natural interpretation as an L£®-pre-structure (M, .o7). The corre-
sponding structure will be denoted (M, &), and the canonical map [-]: (M, &) — (M, o). We also
say that the randomisation (M, .«7) is a representation of the structure (M, o).

Ezample 3.5. A special case of a randomisation is when M = [[.# (i.e., the set of all sections from
into ), @ = [0,1]%, U is an ultra-filter on 2, and FEy: [0,1]® — [0,1] is the integration functional
corresponding to limits modulo U, i.e., Ey(X) = lim,_y X (w). In this case o = [0,1] and M can be
identified with the ultra-product [[,, ..

Definition 3.6. We say that a randomisation (M, &) is full if for every a,b € M and X € «/, there is
a function ¢ € M satisfying:

a(w) X(w) =1,
c(w) = ¢ b(w) X(w) =0,
anything otherwise.

We shall sometimes write ¢ = (X, a, b), even though there is no uniqueness here.
We say that (M, o) is atomless if </ is a pre-model of ARV (i.e., if (Q, o7, E) is atomless).

Ezample 3.7 (Randomisation of a single structure). Let M be a structure, (£2,.%, 1) an atomless prob-
ability space. Let M, C M consist of all functions a:  — M which take at most countably many
values in M, each on a measurable set. Define 7. C [0,1]* similarly, equipping it with integration with
respect to p. Then (M., <) is a full atomless randomisation.

Assume now that (9, %, u) is merely a finitely additive probability space, namely that & is a mere
Boolean algebra and p is finitely additive. Let My C M and Ay C [0, 1]Q consist of functions which
take at most finitely many values, each on a measurable set. Again, (My, /) is an atomless, full
randomisation.

If (Q,%,u) is a true (i.e., o-additive) probability space then both constructions are possible and
(Mg, o) C (M, 9). It is not difficult to check that they have the same completion (.K\/lf,sz?\) =
(ﬂc,@. In particular, ,;z/f;: oy = LY(7,[0,1]).

Moreover, the resulting structure only depends on &/ = L'(.%,[0,1]), and we denote it by (M, .&7)
(or just M“).



14 ITAI BEN YAACOV

3.2. The randomisation theory. Our first task is to axiomatise the class of Lf-structures which can
be obtained from full atomless randomisations (and in particular show that it is elementary). We shall
use x, 9, . .. to denote variables of £, x,y, ... to denote the corresponding variables in the main sort of L%
and U, V,... to denote variables in the auxiliary sort of £%. For simplicity of notation, an £®-structure
(M, o7) may be denoted by M alone. In this case, the auxiliary sort will be denoted by &/ and we
may write somewhat informally M = (M, &™), When @™ E RV we shall refer to the probability
algebra of @M as FM (so ™M = LY (FM,[0,1])).

The “base theory” for randomisation, which will be denoted by 7%, consists of the theory RV for the
auxiliary sort along with the following additional axioms (we recall that a = b= ¢ = (a = b) = ¢):

(R1y) (07.4() = LA V) A ([ (&%, 5), (K y, D] =€) =0
(R1p) (6p4(0) = Il y)]) A ([P x,5)] = [P(K.3,5)] = ) =0
(R2) d(x,y) = E[d(x,y)]

(R3) 51611; iIzlf E[([[d()gz)]] AU)V ([d(y,z)] A ﬁU)}

In axiom R1, §, ; denotes the uniform continuity modulus of the symbol s with respect to its ith argument,
with |X’| = ¢ and |y'| = ns —i— 1. In axiom R3, % denotes the probability algebra of the auxiliary sort,
over which, modulo RV, we may quantify.

The role of axiom R1 is to ensure that the values of [P(a)](w), f(a)(w) only depends on a(w) and
respect the uniform continuity moduli prescribed by £. Axiom R2 is straightforward, requiring the
distance in the main sort of be the expectation of the random variable associated to £-distance. Axiom
R3 is a gluing property, corresponding to fullness of a randomisation. It can be informally stated as

(R3") (vVxy)(VU € Z)(3z) ([[d(x, 2] AU = [dy,2)] AU = o),

where the existential quantifier is understood to hold in the approximate sense. We prove in Lemma [3.10]
below that it actually holds in the precise sense.

Lemma 3.8. Let (M, <) be a randomisation. Then (M, <) is a pre-model of RV (in the auziliary
sort) and of R1,2. If (M, &) is full then (M, <) is a pre-model of T*.

Proof. All we have to show is that if (M, .o/) is full then (M, &) verifies R3, or equivalently, (.//\\/l, b@/fj
does. However, we chose to write R3 using a quantifier over a definable set, a construct which need not
have the apparent semantics in a pre-structure such as (M, /), and we find ourselves forced to work
with (X\/l, ,52?3 (Indeed, since & is a mere pre-model of RV, the algebra of characteristic functions in &/
may well be trivial.)

Let .Z denote the probability algebra of o and let A € j\, a,b € M. First, choose X € & and
a’,b’ € M such that [a’] and [b’] are very close to 14, a and b, respectively. Define (recalling that for
te€0,1] and n € N, nt = (nt) A 1):

Y =2(X ~1/4) € &,
c=(y,a,b)eM (by fullness),
W= ([d@,c)]AY) Vv ([db,c)]A-Y) € o.
For every w € Q we have Y'(w) € {0,1} = W(w) = 0, or in other words, W(w) # 0 = 0 < Y(w) <
1=1/4 < X(w) < 3/4. Thus W < (4X)A(4-X). Having chosen our approximations good enough (we

allow ourselves to skip the detailed epsilon chase here), we see that [W] < (4[X]) A (4-[X]) is arbitrarily
close to 0 and [Y] close to 1 4. We conclude that ([d(a, [c])] A A) V ([d(b, [c])] A =A) can be arbitrarily

close to 0 in ;a/f: which is what we needed to prove. s

In order to prove a converse we need to construct, for every model M E Tf® a corresponding
randomisation.

Definition 3.9. Assume (M, /) E T Let (Q,u) = (QM, ™) be the Stone space of 7 as per
Theorem Then we say that (M, .«) is based on (0, ).

We recall that 2 is a compact Hausdorff topological space, i is a regular Borel probability measure
and we may identify &/ = C(Q,[0,1]) = L* (11, [0, 1]). Under this identification [, X du = E(X) for all
Xed.
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For each w € Q we define an L-pre-structure My ,,. Its underlying set is My, = M and the interpre-
tations of the symbols are inherited naturally from M.

fMow = fM. M M,  PMow(a) = [P(a)](w) € [0,1].

Notice that axiom R1, implies that [d(x,y)] = [d(x,2)] < [d(y,z)] and axiom R2 implies [d(x,x)] = 0.
Symmetry of [d(x,y)] and the usual form of the triangle inequality follow, so d*°« is a pseudo-metric
for every w. Other instances of axiom R1 imply that M ., respects uniform continuity moduli prescribed
by £. Thus My, is indeed an L-pre-structure. The structure associated to My, will be denoted M,,.
Let .# denote the family { M, },cq and let a,, denote the image of a in M,,.

Assume that a,b € M are distinct. Then E[d(a,b)] > 0, whereby [d(a, b)](w) > 0 for some w € Q.
Thus a, # b, and the maps w — a,, w — b, are distinct. In other words, we may identify a € M
with the map a: w — a,. Viewed in this manner we have M C [[ .#. By construction, if f € L is a
function symbol then its coordinate-wise action on M as a subset, of [].# coincides with fM. Similarly,
if P € L is a predicate symbol then (P(a)) = (w — PM«(a(w))) = [P(a)] € «/. We have thus identified
(M, o) with a randomisation base on (€, ). This randomisation is called the canonical representation

of (M, o).

Lemma 3.10. Let M E T ab e M and A € F™M. Then there exists (a unique) c = (A,a,b) € M
which is equal to a over A and to b elsewhere:

[d(a, )] A A = [d(b,c)] A—A = 0.

Identifying (M., &/’™™) with its canonical representation based on 0, A is identified with a (unique) clopen
set A C Q) and we have:

() = a(w) weA,
) {b(w) wée A

Proof. By axiom R3, for every ¢ > 0, there is c. such that:
B|([d(a, c.)] A A) V ([d(b, c)] A ~4) | <.

Passing to the canonical representation it is easy to check that d(c.,c./) < e +¢’ for any €, > 0. Thus
(Ce)e—so+ 18 a Cauchy sequence whose limit ¢ = (A, a, b) is as desired. Uniqueness is clear. ;.

Theorem 3.11. An LE-structure is a model of TE® if and only if it has a full representation, i.e., if
and only if it is isomorphic to a structure (.x\/l, VQ;'\) associated to a full randomisation (M, ).

Moreover, let (M, <) be a model of TR*. Then the canonical representation of (M, o) is full, and
as an LT -pre-structure it is isomorphic to (M, 7). In particular, the LT -pre-structure associated to the
canonical representation is already a structure.

Proof. One direction is Lemma so it is enough to prove the moreover part. It is clear that the
identity map is an isomorphism between the structure (M, «7) and the pre-structure associated to the
canonical representation, so all that is left to show is that the latter is full.

Let a,b € M, X € «. The set {X < 1} C Q is Borel and therefore equal outside a null measure set
to some clopen set U C €). We now have

X=1xs1p <3 = X-=1y
Lixsi;p~X <3 = 1ly=X<

Thus ¢ = (U, a,b) will do as (X, a,b). __ERE

From now on we shall identify a model of T** with its canonical representation whenever that is
convenient and without further mention.

3.3. Quantifiers. It is a classical fact that o/ = L'(%,[0,1]) is a complete lattice. More precisely,
let A C o/ be any subset. We may assume that A4 is closed under A. Let r = inf{E(X): X € A}
and let (X,)nen C A satisfy E(X,,) — r. By hypothesis E(X,, A X,;,) > r whereby d(X,, X;,) <
|E(X,) —r| + |E(Xy) — r|. The sequence (X,,)nen is therefore Cauchy and its limit is inf A.

Let now (M, &) be a model of T,



16 ITAI BEN YAACOV

Definition 3.12. Let (M, &) E T, t: M"™ — o/ a function. We say that ¢ is local if it is always true
that:

t(...,{(4,a,b),...)=¢t(...,a,.. )ANA+1(...,b,...) A—A.
For a function t: M"*t! — & we define infy ¢(X,y): M"™ — & by
infy t(a,y) = inf{t(a,b): be M} € &.

Lemma 3.13. Let t(X,y) be a uniformly definable local function in models of T* from the main sort
into the auziliary sort. Then the function s(X) = infy t(X,y) is uniformly definable and local as well,
and T implies that:

inf, d(infy t(x,y),t(x,2)) = 0.
Moreover, for every a in a model of TR* and ¢ > 0 there is b such that:
t(a,b) <infyt(a,y)+e
(Similarly for supy, t.)

Proof. It follows directly from the definition that if ¢ is local then so is infy ¢ (no definability is needed
here).

We start by proving the moreover part. Let (M, /) F T#% a € M". Following the discussion of
the completeness of the lattice structure on <7 there is a sequence {c,},en such that inf, t(a,y) =
inf,, t(a, c,). Let us define a sequence {b,,} by:

bO = Co, b’rL+1 = <{t(a7 bn) - t<5> C’nJrl) > E}7Cn+17b’n>‘

In other words, when passing from b,, to b, ;1 we use ¢, 1 only where this means a decrease of more
than ¢, and elsewhere keep b,,.

Clearly >, p{t(a,b,) — t(a,co41) > e} < 1/e. By construction, d(by,b,1) < p{t(a,by,) —
t(a,cnt1) > €}, so the sequence {b,} converges to some b. Since ¢ is local, we have ¢(a,b) < t(a, c,) +¢,
whence t(a,b) < infy t(a,y) + ¢, as desired.

We can now prove the first assertion. Indeed, it follows from the moreover part that the graph of
infy ¢ is uniformly definable as:

sup, B(X = t(a,z)) =0,

X =inf, t(a
infy (a’y) < {insz(t(a7Z) - X) = 0.

Once we know that infy f is definable, the sentence in the second assertion is expressible, and holds true
by the moreover part. __ERE}

We now proceed to define by induction, for every L-formula ¢(Z), a TF*%-definable local function
[p(X)] to the auxiliary sort, in the followmg natural manner:

o Atomic formulae: [P(T)] = [P] o (7) is a term, the composition of the function symbol [P]
with the L-terms 7, which are also £%-terms. These are local by Theorem
e Connectives: [ ~ ] = [¢] = [¢], and so on. Locality is clear.
e Quantifiers: [inf, p(X,y)] = infy[p(X,y)], [sup, ¢(X,y)] = supy[p(%,y)]. Locality follows
from Lemma
Our somewhat minimalist approach differs from that of Keisler, who introduces a function symbol
[p(X)] for every L-formula ¢ (see [Kei99, BK09]). Keisler’s Boolean Azioms and Fullness Aziom are
valid in our setting by definition of [¢] (using Lemma for fullness). Keisler’s Distance Axziom for
the main sort is our R2. While not entirely equivalent, Keisler’s Fvent Aziom corresponds to our axiom
R3. (More precisely, Keisler’s Event Axiom is equivalent to R3 plus Supy d(x,y) = 1. We do not find
it necessary or desirable to assume the latter.) Other axioms related to the auxiliary sort, with the
exception of atomlessness, are coded in RV. We shall add atomlessness later on, when it is needed for
Theorem We are left with the Validity Azioms which we also claim follow from 7.

Theorem 3.14. Let (M, /) be a model of TE* which we identify as usual with its canonical repre-
sentation, based on (2, ). Then for every formula (T) and tuple a of the appropriate length we have
(p(a)) = [p(a)] as functions on Q (and not merely up to a null measure set).
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Proof. We prove by induction on ¢. If ¢ is atomic this is known by construction and the induction
step for connectives is immediate. We are left with the case of a formula inf, p(z,7). First of all, by
construction, we have:

(inf, o(x,a)) = infs{(<p(b,é)): b€ M},
inf, p(z,a)] = infx[p(x,a)] = inf" {[p(b,a)]: b € M}.
Here inf® means the simple, or point-wise, infimum of functions on Q. By definition [inf, ¢(z,a)] <
[¢(b,a)] for all b, and by the induction hypothesis for ¢ we have [inf, p(z,a)] < {¢(b,a)). It follows
that [inf, ¢(z,a)] < (inf, ¢(x,a)). Conversely, by Lemma [3.13] for every € > 0 there exists b such that
[inf; p(z,a)] + & > [p(b,a)]. Using the induction hypothesis again we obtain:
[inf, p(z,a)] + € > {@(b,a)) > (inf, p(z,a)).

Equality follows. Wy

Corollary 3.15. Let M F TR and assume its canonical representation is based on the family A4 =
{My}wea- Then for every L-sentence p:

ME[p]=0 <= MyEqp foralweq.
Proof. Immediate from the fact that [¢] = () on Q. u;

Definition 3.16. Let T be a set of L-sentences. We define its randomisation 77 to be the £F-theory
consisting of the base theory along with the translation of T (Keisler’s Transfer Azioms):

T =Tg* U {[¢] = 0}per-
Corollary 3.17. Let T be arbitrary set of sentences, p a sentence. Then T I ¢ <= TT I o] = 0.
Proof. Immediate. __EL
Corollary 3.18 (Keisler’s Validity Aziom). Assume ¢ is a valid L-sentence. Then T =[] = 0.
3.4. A variant of Lo$’s Theorem.

Theorem 3.19 (Los’s Theorem for randomisation). Let .#q be a family of structures, M =[] .4, and
let E be an integration functional on o/ = [0,1]. Let (./\/;l,m/f\) denote the structure associated to the
randomisation (M, ).

Then (M, /) is full and for every formula ¢(T) and every a € M"™:

[(p(@)] = [¢(aD]-

Proof. Fullness is immediate. We claim that [(inf, ¢(a,y))] = infpem[{p(a,b))] for every formula

»(Z,y) and every a € M", where the infimum on the right hand side is in the sense of the lattice .
Indeed, the inequality < is immediate. For > observe that using the Axiom of Choice, for every ¢ > 0
we can find b € M such that (inf, ¢(a,y)) + > (p(a, b)), whereby [{inf, p(a,y))] + > [{¢(a, b))].

We now prove the main assertion. First of all, we may replace ¢ with an equivalent formula .
Indeed, on the left hand side we have immediately {p(a)) = (¥(a)). For the right hand side, we have
Tl —[]] = [|l¢—|], whereby T - [¢] = [1/]. We may therefore assume that ¢ is in prenex form. We
now proceed by induction on the number of quantifiers. If ¢ is quantifier-free then [{p(a))] = [¢([a])]
by construction. For the induction step, recall that

[inf, ¢([al,y)] = infy[#([al.y)] = inf [p([a],b)] = inf [o((a], [b])]-
beM M
We conclude using the claim and the induction hypothesis. | PT

Let us go back to the ultra-product example (Example , where M = [[ 4 and M= I, #. By
construction Efinf, p([a],y)] = infpem E[p([a], [b])]. One also always has E[-¢([a])] = —E[e([a])],
E[3¢([a])] = $E[¢([a))]. Since E = FEy is given by an ultra-filter, we have moreover E[¢([a])~v([a])] =
E[e([a])] = E[v([a])]- Thus the truth value of ¢([a]) in the ultra-product is precisely F¢([a])] in the
sense of the randomised structure. Now the last item of Theorem [3.19]yields the classical version of Lo§’s
Theorem:

p((a]) = Bu[(p(@))] =lim p(a(w)).
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Let us pursue a little further this analogy with classical ultra-products. Classical ultra-product con-
structions consist of fixing a family .Z and a filter F on ) with certain desired properties, then extending
this filter to an ultra-filter and taking the ultra-product. A filter on Q can be viewed as a partial 0/1
measure: some sets have measure zero, some measure one, and for some the measure is not known. The
[0, 1]-valued analogue is a partial integration functional on [0, 1]

Definition 3.20. A partial integration space is a triplet (Q, %, Fo) where Q is a set, 2% C [0, 1] is any
subset, and Ey: 4 — [0, 1] is a functional satisfying that for every finite sequence {(X;, m;)}ice C X Z
and k € Z:

In this case we say that Ey is a partial integration functional.
Clearly every integration functional is a partial integration functional. Conversely,

Fact 3.21. Let (Q, o, Eg) be a partial integration space. Then Ey can be extended to a total integration
functional E on o/ = [0,1]%, rendering (Q, o/, E) a (total) integration space.

Moreover, if (0, 4, Eo) is an integration space, and atomless as such, then (Q, <7, E) is atomless as
well.

Proof. See [BK09, Section 5]. W

Definition 3.22. A partial randomisation based on a family .Zq is a triplet (M, o, Ey) satisfying
all the properties of an ordinary (total) randomisation, with the exception that we do not require that
(P(a)) € o%. We say that a partial randomisation is atomless if (<%, Ey) E ARV

By Fact [3.21| we may extend Fj to an integration functional E on & = [0, 1]*. We say that the (full)
randomisation (M, &) = (M, </, E) is a totalisation of (M, <%, Fy) and that the associated structure
(K\/l, 4293 is a structure associated to (M, %, Ep). (It is an associated structure rather than the associated
structure because of the arbitrary choices involved.)

Definition 3.23. We recall that a random family of structures .4 # ,, consists of a family of structures
Ma = { M }weq indexed by a probability space (2, %, 1). To every such random family we associate a
natural partial randomisation (M, o, Ey) where M = [[ .# and (Q, o, Ey) is the integration space of
F-measurable functions on Q. It is atomless if and only if (Q2,.%, i) is an atomless probability space.

If (M, @ is a structure associated to (M, o, Fy) then we also say that it is a structure associated
to the random family .Z(q # -

Corollary 3.24. Let .#q 7 ) be a random family of structures and let (M, .o/) be an associated
structure. Then for every a in [[.# and every formula ©(Z), if {p(a)) € [0,1]? is .F-measurable then

Elp([a)]™M = / (o(@)) du

Proof. Immediate from Theorem [3.19] and the construction. [ PO

This can be improved to construct extensions containing elements with desired properties.

Definition 3.25. An embedding o: (M, &) — (M, ) will be called a [-]-embedding if o[¢(a)]™ =
[e(ca)]™ for every a € M™ and formula ¢(7).

Definition 3.26. A morphism of integration spaces 7: (', &', E') — (Q, </, F) is a projection 7: ' —
Q such that X owr € &’ and E'(X om) = E(X) for all X € «7.
Corollary 3.27. Let (M, o) F TE® with canonical representation (M, /) based on M, 7 1); 80 1N
particular o = C(,[0,1]).

Let w: (Y, 9, Ey) — (2,4, E) be a morphism of integration spaces and let M, = {M/,}eq be
a family of elementary extensions My < M!,. Set M' =[] .#,, &' = |0, 1%, and for a € M and
X € o define

ca=aorm=(w — a(rw')) e M/, cX=Xomed

Let (./\//?,,;/7’) be an associated structure to the partial randomisation (M, <), E(), and let
[o]: (M, ) — (M’,;i’) be the map a — [oa], X — [0X]. Then
(1) The map [o] is a [-]-embedding.
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(ii) For every a in [[.#" and every ¢(Z), if (p(a)) € < then

Elp(a)]™ = Ej(p(a)).

Proof. For the first item it is easy to check that [o] is indeed an embedding. In order to see that [o]
is a [-]-embedding let a € M™ and let ¢(z) be a formula. Then (p(a)) = [p(a)] € & C [0,1] by
Theorem |3.14} so

[ole(@)]] = [o{e(@)] = [{¢(0a))] = [¢(oa])].

The second item is an immediate consequence of Theorem [3.19 ;.

3.5. Quantifier elimination and types. Let T consist of T,%% along with the atomlessness axiom
ARV. In other words, T consists of the theory ARV for the auxiliary sort plus axioms R1-3. Similarly,
we define TH = TR* + ARV = TE U {[¢] = 0}per-

Ezample 3.28. Let M E T and let (Q,.%, 1) be any atomless probability space. Let (M, <) be an
associated structure to the constant random family .%o # ,) = {M}uecq. Then (M,) E TR by
Corollary and « is atomless, whereby (M, <) F TE.

Lemma 3.29. Every model (M, o/) £ TR admits a []-embedding o: (M, /) — (M, &) £ TE,
In particular, T and T are companions (which, as in classical logic, means that every model of one
embeds in a model of the other, or equivalently, that the two theories have the same universal consequences
sup;z ¢ for quantifier-free ¢).

Proof. Let ([0,1],%, ) denote the Lebesgue measure on [0,1]. Apply Corollary to (O, F", i) =
(Q, 7, 1) x ([0,1],%8,A) and M, , = M,. The resulting embedding o: (M, o) — (MY 7Y) is a
[]-embedding and <! is atomless. If ¢ € T is a sentence then [o]™M' = o[g]™ = 60 = 0. Thus
(M, ') E TR as desired. [ P

Let us now fix an L-theory T. As usual, S,,(7") (or sometimes Sz(7")) denotes the space of n-types of
T. Similarly, S,,(T®) (or Sx(TF)) denotes the space of n-types of the LE-theory T%.

Let us fix some additional notation. For a compact Hausdorff space X, let R(X) denote the space of
regular Borel probability measures on X. For ¢ € C(X,C) and p € R(X) let (p, ) = [ ¢ dp and equip
R(X) with the weak topology, namely ps — p if (@, p1s) — (@, p) for all p. It is a classical (and easy)
fact that this renders 28(X) a compact Hausdorff space as well.

Let p(X) € S,,(T7). Tt is not difficult to verify (e.g., using the Riesz Representation Theorem) that
there exists a unique regular Borel probability measure v, € 2R(S,(T)) characterised by the identity
EleX)]P = (p,vp) for every L-formula ¢(Z). The map p — vp is continuous by definition of the
topology on R(S,(T)).

We next claim that p — v} is surjective. Indeed, let u € (S, (T)). For each p € S,(T") choose a
model M,, and a realisation a, € M;’ of p (we do not assume that T is complete so M, may have to vary
with p). Let (M, .«/) be a structure associated to the random family .# = s, (1),.) = {Mp}pes.(1)-
Let a € [[.# be given by a(p) = a,. By Corollary for every formula ¢(Z):

Ele([a))] = E[{e(a))] = (o, 1)
In particular, if ¢ € T is a sentence then Ep] = 0, so (M, o) E TF*, By Lemma we can embed
(M, ) in a model (M*, ') E TE, and if p = tp™' (@) then v, = p. We argued above for types in
finitely many variables, but in exactly the same manner we associate to each p € S;(T%) a regular Borel

probability measure v, € R(S7(T)) and this map is surjective, for an arbitrary index set I.
For quantifier elimination we shall require the following fact from [BV75].

Fact 3.30. Let S be any set, (2, F,u) an atomless probability space. For each x € S let us be given
a weight w, > 0 and an event C, € F. For T C S let wr = ) cpwse, Cr = J,cp Cx. Then the
following are equivalent:

(i) For allT C S: p(Cr) > wr.

(ii) There exists a disjoint family {D,}secs such that D, C C, and pu(D,) = w,.
If wg =1 then {D,}zes is a partition of Q (up to null measure).
Lemma 3.31. Let (M, /) T{ be Ro-saturated, a € M", and let vg be an abbreviation for vy,(). Let
0: Sn11(L) = Sp(L) be the restriction to the first n variables. Then:

(i) For every b € M, v; is the image measure of vay under 6.
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(ii) Conversely, let n € R(Sn+1(L)) by such that its image measure under 6 is vs. Then there is
b € M such that n = vap.

Proof. The first item is immediate. For the second, it is enough to show that for every finite family
©i(Z,y), i <, and for every € > 0, there is b € M such that |(;,n) — E[¢i(a,b)]| < e for i < £.

Let S = {s;};<k be a partition of [0, 1]¢ into finitely many Borel subsets diam(s;) < e. For j <k let
wj = n{@ € s;}. Choose also t; € s; and let 1; = \/,_, |¢i — t;4|. Notice that

(pism ij il < ij diam(s;)

i<k i<k

Let C; € .Z be the event {[inf,;(a,y)] < e}. Following the notations of Fact [3.30, we claim that
w(Cr) > wr for all T C k. Indeed, notice that {p € s;} C 67 1{y; < e}, whereby:

wr =Y n{ees;y=n|Jleest | <n| oy <}

JeT JeT JeT

Utwy <} | = m(Cr).

JjeT
By Fact there are events D; C C; such that wp = p(Dr) for all T C k. Since the total weight
is one, {D,};<k is a partition. By Lemma and saturation of M there are b; € M such that
[inf, ¥;(a,y)] = [¥;(a,b;)]. Notice that:

llei(ab;) = t;illlp; < [infv;(a,y)J1c, <e.

Let b = (Do, bg, (D1,by,...)), ie., b(w) = b;(w) when w € D;. Now:

ij i — Elpi(a,b)] <Z‘7UJ gi—E [[‘Pz(a b)ﬂlD)|

j<k i<k

=2 ‘E{(tm — [i(a, bj)]])lpj]

i<k

< B | S|t - [pstab)l[1n, | <=

j<k
Thus |(¢i,n) — E[pi(a, b)]| < 2¢, which is good enough. [ P
Theorem 3.32. (i) The theories of the form TT (and in particular T§) eliminate quantifiers in

the main sort down to formulae of the form E[o(X)].
(ii) The map p — vp defined by (¢, vp) = E[¢]P induces a homeomorphism Sx(T®) ~ D‘i(Si(T)).
(iii) Let f:n — m be any map. Let f*: S, (T) — Sn(T) be the map tp(ag,...,am—1) —
tp(ag(0y, - - -+ apn_1)) and similarly f*f: Sy, (TH) — S, (TH). Let 5 R(Sm(T)) — R(Sn(T))
be the image measure map corresponding to f* Then the following diagram commutes:

~

S (TH) — R(S;n(T))
f*,R f*
S.(TR) = R(S.(T))

(iv) The completions of T® are in bijection with regular Borel probability measures on the space of
completions of T. In particular, if T is complete then so is T™.

Proof. The first item follows from Lemma [3.31] via a standard back-and-forth argument. For the second
item, we have already seen that the map p — v is continuous and surjective. From the first item it
follows that it is injective. Since both spaces are compact and Hausdorff, it is a homeomorphism. The
third item is easily verified. The last item is a special case of the second item for O-types. PPy
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Corollary 3.33. Assume that T eliminates quantifiers. Then so does T, and it is the model completion
of TRe_ If T is merely model complete then TT is model complete as well, and is the model companion
of T,

Proof. The case where T eliminates quantifiers is easy. The case where T is model complete requires
a bit more attention to details which we leave to the reader (see [Ben09b, Appendix A] for basic facts
regarding model completeness in continuous logic). | P

We have described formulae and types on the main sort. In order to handle the auxiliary sort, add to
L a sort Sy 1) for the set [0, 1], equipped with the tautological predicate id: S,1; — [0, 1] and with the
usual distance d(r,s) = |id(r) — id(s)|. This is a compact structure and therefore the unique model of
its theory, and adding it to models of T" as a new sort does not add any structure on the original sorts.
Call the resulting signature £, and the corresponding theory T'. It is easy to check that 7', eliminates
quantifiers if T' does. Passing to Tf, [id] is an isometric bijection between the main sort S[Ig’” of Tf’
and the auxiliary sort, so questions about types and definability in the auxiliary sort can be settled by

applying Theorem to the sort S[Ig 1

Corollary 3.34. Every L®-definable predicate on the auziliary sort of T, possibly with parameters a
from the main sorts, is equivalent to one in the pure language of the auxiliary sort and with parameters
n

o(a) = o ([p@)]), ez, . € 7.

Consequently, the auxiliary sort is stable and stably embedded in models of TT, and if X is a tuple in
the auziliary sort then

tp(X/a) = tp(X/o(a)).

Proof. We may assume that 7" eliminates quantifiers, in which case so does 7', and therefore Tf. It is
therefore enough to show that for a tuple of variables r in the sort S[Ig 1] and for any possible additional
parameters a, any atomic formula in ¥ and a is equivalent to a formula entirely in S[lg 1] possibly using
parameters in [id]~!(c(a)). Given the minimalistic structure we put on Spg ), such an atomic formula
can either involve precisely one free variable r; or some of the parameters but no free variable. In the
first case we have [id(r;)] which is as desired. In the second we have [¢(a)] where ¢(Z) is an atomic
L-formula. In this case let X = [id] ™! o [p(a)] € S[lgyl], so [p(a)] = [id(X)], and the latter is again as
desired. s,

3.6. Types in 7% when T is incomplete. Theorem m provides us with a complete description
of types in T, whether T is complete or not. In various situations we shall encounter later on, this
description turns out to be much more useful when T is complete. What follows here is a brief discussion
of the general case and a reduction of sorts to the special case of a complete theory.

Let T be an incomplete theory and let p € S,, (7). By Theoremwe may identify p with a regular
Borel probability measure vy, € R(S,(T)). Let @, = L' ((Sh(T),vp), [0,1]) and let (Qp, p1p) be its Stone
space. We have a natural identification of C({2p, [0, 1]) with %, so in particular every n-ary L-formula
©(7) gives rise to a continuous function ¢: S,(T) — [0,1] with image @, € 4, = C(Qp,[0,1]). Thus
for every w € Q we may define a complete type mpw € S,(T) by ¢™* = P (w). We obtain a map
Tp: (Qp, tp) = (Sn(T), vp) which is continuous and sends pp to vp (as an image measure). It follows
that the image of 7, is precisely the support of vy, there, i.e., the smallest closed measure one set. This
discussion holds in particular when n = 0, i.e., when T = p € So(T'®) is a completion of T'®.

Let now T be a completion of T® and p(x) € S,(T). There is a natural £gy-inclusion oy C 78
giving rise to a projection (Qp, p) — (Qr, pr) where pr is the image of pp. As in [BK09, Section 5] this
projection gives rise to a conditional expectation map E[-|T]: 24, — </r. In particular, to every formula
¢(7) we associated @, which in turn gets sent to E[7,|T] € or = C(Qr,[0,1]). Let us fix w € Qp. It is
not difficult to check that ¢ — E[@,|T](w) is an integration functional on S,,(7"). Therefore there exists
a unique type p., € S, (T%) verifying for all p(z):

Elp]* = (¢, vp.,) = E[@p| T](w).
The map w — p,, has the following properties:
(i) It is determined by p (in particular, the completion T is determined by p).
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(ii) Conversely, it determines p as follows:
Bl = | Bl dun(e).
Qr

(iii) Let mp: Q1 — So(T) be as in the previous paragraph, associating to each w € Qr a completion
mrw of T. Then p,, € Sn((ﬂTw)R).

(iv) The map w > p,, is continuous in the appropriate weak topology. Specifically, for every formula
©(Z) the map w +— (@, vp,) is continuous on Q.

We therefore write
P= / Pw dﬂT (W),
Qr

saying this is an integral of a continuous family. (Conversely, every integral of a continuous or even
measurable family of T%-types gives rise to a T -type.)

A special case of this situation is a type over parameters. Let (M, /) ETF, A C M and p € S,,(A).
Let us enumerate A = {a, }oer. Let A = {aq taer be a set of new constant symbols and let L4 = LU A.
Even if T is a complete L-theory it is incomplete as an £ 4-theory. We view (M, &) as an LE-structure
naming A by A. It is then the model of a complete L5-theory T and p € S,,(T). Each w € Qr gives rise to
an L 4-completion mrw of T'. In other words, each w determines, so to speak, the L-type of the constants
A. Let A,, be an actual set in a model of T realising this type. Then p,, € R(S, (mTw)) = R(Sn(Aw)).

4. PRESERVATION AND NON-PRESERVATION RESULTS

4.1. Categoricity. The theory ARV is Wy-categorical but not uncountably categorical, so this is the
most we can hope for from TF. We shall use the following criterion for Ro-categoricity.

Fact 4.1 (Ryll-Nardzewski Theorem for metric structures). A complete countable theory T is Ng-
categorical if and only if S, (T) is metrically compact for all n, if and only if the logic topology on
Sn(T) coincides with the metric for all n.

Proof. This was originally stated and proved by C. Ward Henson for Banach space structures. For the
proof in continuous logic see [BUQT, Fact 1.14]. Notice that it is customary to exclude the case of a
complete theory with a compact model (which is its unique model) from the definition of Ry-categoricity,
as well as from the statement of this theorem, but the theorem holds as stated if we do not. .

Theorem 4.2. Assume T is a complete Ro-categorical theory in a countable language. Then so it TT.

Proof. Tt is enough to show that S, (T) is totally bounded, i.e., that it can be covered by finitely many
e-balls for every € > 0. Let us therefore fix € > 0. By assumption we can cover S, (T) with finitely many
e-balls, say S,(T) = U, B(pi,e). Fix N > % and let R = {m € N*: > m; = N}. Then R is finite,
and for every m € R we may define p;, = > Zp; € S, (TH). Let also C; = B(p;, €) Ui B(pj.e), so
Sn(T) = U, C; is a partition of S,,(T) into a finite disjoint union of Borel sets of diameter < .

Now let q € S, (TF) be any type. Find a tuple m € R such that E = |[m/N — (vq(C;))i<k|1 is
minimal. We can do this so that at each coordinate the difference is at most %, so F < % < e. We
claim that d(q, ps) < 2e, which will conclude the proof.

Let a € M realise q, and as usual let us identify M with its canonical representation, based on
M- Let Dy = {w € Q: tp(a(w)) € Ci}, so u(D;) = vq(Cy), and Q = |J D; is a partition of 2 into
disjoint Borel sets. We can now choose another such partition @ = |J D} such that each D} is comparable
with D; (i.e., either D; C D; or D C D;) and u(D;) = 5, so u(D;AD;) = |5¢ — vq(C;)|. For each
w € D choose M/, = M,, and b(w) € M/, realising p;. If w € D; N D} then we arrange that in addition
d(b(w), a(w)) < e. Apply Corollary to obtain an elementary extension M’ = M and b € M’ such
that tp(b) = p;s and d(b,a) < e(1 — E) + E < 2¢, as desired. m.

Corollary 4.3. Assume T is a countable theory, possibly incomplete, with countably many completions,
all of which are Xg-categorical. Then every completion of T is Ro-categorical.

Proof. Let {T},}neca, denote the set of completions of T, where o < ®y. The completions of T' are in
bijection with measures on «, namely with sequences A € [0, 1]® such that > A, = 1. Every model M of
such a completion can be identified with a combination >~ \,M,, where M,, E (T,,)¥, and is uniquely
determined by M except where A\, = 0. If M is separable then so is M,, (when A, > 0), whence the
uniqueness of M. m,;
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Of course, in this case T% may admit continuum many completions, and yet it is not too difficult
to see that every completion of (TT)% is still Ry-categorical. On the other hand, the are theories T
with uncountably many completions, all of which are Ng-categorical, such that 77 admits a non No-
categorical completion. Indeed, let 7" be the classical theory saying that there exist precisely 2 elements,
in a language with constants a and b,, for n € N. Using a as reference, a completion of 7" is determined
by whether b,, = @ or not for each n, so the space of completions of T is homeomorphic to 2N, Let T be
the completion of T# saying that [b, = a] are independent events all of measure 3. Let p,, € S1(T) be

the type x = b,,. Then d(pn,pm) = % for all n # m and S;(T) is not metrically compact.

4.2. Stability. For all facts regarding stability in continuous logic, and in particular local stability, we
refer the reader to [BULQ]. For topometric Cantor-Bendixson ranks see [Ben0§].

When proving the preservation of stability in [BK09] we considered ¢-types over arbitrary sets in
models of T and of T, calculating averages over the finite set of non forking extensions of such types.
In doing so we proved not only that the randomisation of a stable theory is stable, but also that in such
a randomised theory all types over sets (in sorts of the original theory) were stationary.

In continuous logic the situation is, at least on the surface, much more complicated. Assume A C M,
p € Sy(A), and let P C S, (M) be the set of non forking extensions of p. Rather than being a finite
set, as in classical logic, P is merely known to be a transitive compact metric space (in the standard
metric on Sy, (M), namely d(q, ¢') = sup{|¢(z,b)? — o(z, b)7|:be M}). By transitive we mean that the
action of the isometry group of P is transitive, which leads to the existence of a canonical probability
measure on P and thus to a canonical notion of an average value of a function on P. With this notion of
average we could, in principle, translate the entire argument of [BK09] to the case where T is continuous.
However, calculating averages over a transitive compact metric space is significantly more involved than
merely averaging over a finite set, rendering the translated argument quite difficult to follow.

We therefore choose to split the argument in two, and at a first time restrict our attention to types
over models, in which case the non forking extension is unique and no averaging is required. In Section
we prove quite independently that for any theory T (stable or not), types in T® coincide with Lascar
types. It follows that if 7" is stable then all types in 7% are stationary.

As in [BK09] we shall use Shelah ranks, this time adapted to continuous logic. Let us fix for the time
being a monster model 9 containing all the parameters under consideration. We define the (k, ¢)-rank
of a partial type m(x), denoted Ry (7, ), and its multiplicity at rank s, denoted My (7, p, s):

(i) If 7 is consistent then Ry (m, ) > 0.
(ii) Having defined when Ry (7, p) > s we define My (7, ¢, s). We say that My(w,p,s) > M if there
are types m(z) C m,(z) for n < M such that for every n < m < M there exists by, for which

7Tn({L') U ﬂ—m(il) l_ ‘(,0(257 bnm) - @(ilv bnm)‘ 2 2_k7

and in addition Ry (m,,p) > s for all i < M.
(iii) If Mg (7, p,s) = oo then Ry(m, ¢) > s+ 1.

It is not difficult to see that if [7], denotes the closed set 7 defines in S, (91), then:

Ry(m, ) = CByo-r([7ly) = CBy ok ([mly),

where CBy. and CB; . are the topometric Cantor-Bendixson ranks defined in [Ben08| Section 3]. (Or
almost: these are the ranks we would obtain if we replaced there “< &” with “< &” and “> €” with “> ¢&”.
Since we consider ranks for all € > 0 this makes no difference.)

Let W denote a possibly infinite tuple of variables, w(x, W) a partial type and k,s € N. Then
Ry (m(x,W), @) > s is a property of W, holding for A (of the appropriate size) if Ry(w(x,A),p) > s.
We may think of Ry (-,¢(x,y)) as a quantifier binding the variable x. Let also Ry(x/W, ) > s be the
property of 2W which holds for aA if Ry (tp(a/A),p) > s.

Fact 4.4. The properties Ry(w(x, W), p) > s and Ri(x/W, @) > s are type-definable (in W and in W,
respectively).

Proof. Both are shown using a standard “there exists a tree such that...” argument. The second can

be deduced from the first since it may be re-written as Ry (2’ =w z, ¢(2’,y)) > s where 2’ is the bound
variable and zW the parameter variables. P
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For a < w let R<yo(m, o) denote the (finite or infinite) sequence (Rk(w,ga))k<a. Given a sequence
o € N® and a partial type 7(x) let

S,(M) @) = {g € S,(M): Ren(q, ) >0}
:{ng(P( ): Ri(q, ) > ()forallk:<a},
[ﬂ]fp”) =[], N SLP(EJJ?)(") = {q €S,(M): Ren(qUm, @) > U}.

We observe that S, (9)(@) and therefore [7‘(]500) are closed sets (either directly or using properties of the
topometric Cantor-Bendixson ranks).

Before going further let us recall (e.g., from Bourbaki [Bou66, Chapter IV.6]) that for a topological
space X, amap f: X — R is upper (respectively, lower) semi-continuous if inf f(A) = inf f(A) (respec-
tively, sup f(A) = sup f(A)) for every non empty A C X. We shall require the following easy classical
result (see for example Katétov [Kat51]).

Fact 4.5. Let X be a compact Hausdorff space.

(i) A function f: X — R is lower semi-continuous if and only if it can be written as the point-wise
supremum of a family of continuous functions on X.

(ii) Assume that f: X — R is lower semi-continuous, g: X — R is upper semi-continuous, and
g < f. Then there is a continuous function h: X — R such that g < h < f.

At this point let us fix ¢ > 0. For a finite sequence o € N<% we define Z, to be the set of all formulae
¢(z,w) such that for any @ € M the diameter of [¢(z,a) < 1](?) C S, (M) is smaller than e (analogous
to 252 as defined in [BK09)).

Lemma 4.6. Let 0 € N*, {(x,w) € Z,. Then there exists a formula éﬁ(y,ﬂ)) such that:

{¢(z, @) < 3} U{Rak(a/ @y, ¢) = o} F & (y, @) — p(,y)] <e.

Proof. Let Y C S, 4(T') consist of all types ¢(x,y,w) for which the left hand side holds. Let X C
Sz,5(T) consist of all types verifying (2, w) < & and Rey(z/w, ) > 0. The restriction map m: Y — X
is surjective.

For p(z,z) € X let a,¢ E p and define

f(p) =max{p(z,y)?: g7 (p)},
f(p) =min{p(z,y)?: g '(p)}.

Let us make a few remarks regarding this definition. Since 7 is surjective the set 7=1(p) is non empty
and compact. The maximum and minimum are therefore attained and f(p) < f(q). Moreover, there
are types (not necessarily uniquely determined) p(z),p(z) € [p(z,¢)](®) such that ¢(z,b)? = f(p) and
¢(z,b)2 = f(p). By hypothesis £(z, 2)P < %, so d(p,p) < € and thus f(p) < f(p) + ¢

Letting p vary over X it is easy to check that f(p) is upper semi-continuous and similarly [ is lower
semi-continuous. Thus there is a continuous function h: X — [0,1] verifying f < h < f+e By
Tietze’s Extension Theorem there exists a continuous function z: S, 4(T) — [0,1] extending h and we
may identify h with a definable predicate é(, (z,w) (or, if we insist on having an actual formula, we take
&, (z,w) to be a formula close enough to h so that f < &,(z,w) < f+eon X).

It is left to show that f,,(y7 w) is as desired. Indeed, assume that a,b,¢ = ¢ € Y. Then f(q[, ;) <

p(a,b) < ?(qu@), whereby
0(a,b) < F(qlp0) < &(a,8) < faly.0) + < plab) +e. .
We now turn to showing that members of =, are, in a sense, plenty enough.

Lemma 4.7. Let M be a model of T, p € S,,(M) a type, and let n = R, (p, ).

(i) Let 9 = M be a very homogeneous and saturated extension and let [p| C S, (M) be defined
as above. Then [p]"" = {q} where q is the unique non forking o-extension of p.

(ii) There are k € N, §(x,w) € Ey;, and ¢ € M such that {(x,¢) € p. Moreover, for any dense
subset My C M we may arrange our choices so that ¢ C M.
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Proof. The argument for the first item essentially appears in [BU10], although the Cantor-Bendixson
ranks used there are different. It goes through the following steps. The set [p]( is topologically
and therefore metrically closed. By construction it is non empty and totally bounded, and therefore
metrically compact. Clearly it is also M-invariant, and it follows that every ¢ € [p] () is definable over
acl®(M) = M. We conclude there is a unique such ¢ which follows the definition of p.

For the second item consider the following partial type over M:

p(x) U p(z’) U {le(z,y) — p(@',y)| > e} U{Rcu(x/My,p) > n} U{R<u(2'/My,p) > n}.

By the first item this type is contradictory. Let us re-write p(x) as p(z, M) where p(z, W) € S, w(T) is
a complete type. Then the following is inconsistent:

p(z, W) Up(a’, W) U{le(z,y) — o(@’,y)] = e} U{Rcu(z/Wy,9) > n} U{Rcu(2'/Wy, ) > n}.
Thus by compactness there are k € N and &y(x, w) € p(z, W) such that the following is inconsistent:

{&(z,w) <277} U{E(’,w) <277} U{lp(z,y) — (2, y)| > €}
U{R<k(z/wy, ¢) > i} U{R<k(z' /Wy, v) > nlk}.

Let &€ = & + - + & (2% many times) and let ¢ C M correspond to @ C W. Then &, k and ¢ are as
desired.

For the moreover part first notice that p is equivalent to its restriction to My (where My C M is any
dense subset), so the argument above holds just as well with Mj in place of M. m,

Lemma 4.8. Let T be any theory in a countable language. Let M = TF be a model based on (2, 1) and
let Mo < M be a countable elementary pre-sub-structure. For w €  let My(w) = {a(w) }aem, € M(w).
Then My(w) = M(w) as L-pre-structures for all w outside a null measure set.

Proof. Let us fix a formula ¢(z,w) and b € My. By Theorem we have sup, ¢(z, b(w))M©) =
[sup, ¢(z, b)]M(w) for all w € 2, where [sup, ¢(x,b)]™™ is viewed as a continuous function Q — [0, 1].
On the other hand we have

[sup, p(z, B)I™M = (sup, [p(x, B)]) ™

= sup™ {[p(a, B)IM": a € Mo | = sup”* {[p(a, B)[M: a € Mo}
Thus we have outside a null measure set
[sup, (2, B)[M () = sup { p(a(w), bw)) ™) a € My | .

There are countably many formulae ¢(z,b) to be considered, so outside a null measure set the Tarski-
Vaught Criterion holds and My(w) < M(w). L

Theorem 4.9. Let p(x,y) be a stable formula for a theory T. Then the formula E[p(x,y)] is stable
for TR, If T is stable the so is T™.

Proof. We may assume that the language of T' is countable (for if not, we may restrict to a sub-language
containing just the symbols appearing in ¢). It will therefore be enough to show that for every separable
model M E T every type p € Sx(M) is E[¢]-definable. For this purpose let a € M’ = M realise p.
Let also My = {c¢,, }nen € M be a dense pre-sub-structure. By Lemma there is a measure one set
Qo C Q such that My(w) < M(w) for all w € Q.

Let T consist of all triplets (o,&,¢) where 0 € N<%, £(z,w) € 2, and ¢ € My with |@| = |¢|. For
(0,&,¢) € T define subsets of 2 as follows:

A ={w: R<|0|(a(w)/Mw,ga) > o},
BJ,E,E = {W €A, f(a(w),é(w)) < 1}

The set A, is closed and each B, is relatively open in A,, so in particular Borel. Moreover, by
Lemma [.7] every w € Qo belongs to some By, ¢ c.

Given all our countability assumptions we may enumerate T = {(¢”,&™,¢™)}men- Let us also write
&™ explicitly as £™(x, w™). By Lemma there is a formula €7, (y,w™) such that

{€7(2,@™) < 1} U{Rejom|(2/@™y, ) 2 0™} F €7 (y,0™) — (2, y)| <e.
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For m € N let Dy, = Bom em em N Upcp, Bor gk o Then {Dp}men is a family of disjoint Borel sets
and p (U Dm) = () = 1. In addition, for all w € D, C Bym ¢m em and b € M we have

€5 (b(w), €™ (W) — p(a(w), b(w))| <&
For each m let X,,, = P[D,,,|F™M] € &/™ and let

P(y) =D E[Xn[ (y,e™)]].

Since > X, = 1 this infinite sum converges uniformly to an M-definable predicate. We now claim that
1) is e-close to a E[¢]-definition for p. Indeed, for b € M we have [£™. (y,c¢™)] € /™, whereby

d(b) =" /D [€m. (b, &™)] dp.
We obtain
[w(b) - Elp(a bl <3 [ & (b.e") ~ pla b du <.

We have shown that the predicate b — E[¢(x, b)]P is arbitrarily well approximated on My, and therefore
on My, by an Mj-definable predicate. It follows that p admits an E[g]-definition. Since this holds for
every type p over a model the formula E[p(x,y)] is stable.

The second assertion follows from the first using quantifier elimination down to formulae of the form
E[¢] (Theorem , since continuous combinations of stable formulae are stable. m,,

4.3. Dependence. Recall that a formula ¢(Z,7) is e-independent in a theory T for some ¢ > 0 one can

find in some model of T an indiscernible sequence (b, )nen and @ such that:
\/ (p(a, Bgn) +e< /\ @(a, ?72”_;,_1).

The formula ¢ is independent if it independent for some & > 0. The theory T is dependent if every
formula is dependent, i.e., if every formula is e-dependent for every € > 0.

Theorem 4.10. A theory T is dependent if and only if its randomisation T is.

Proof. It is immediate to check that if ¢(Z, §) is e-independent in T then E[¢(X,¥)] is e-independent in
TE. The converse is [Ben09al, Theorem 5.3]. [ TR

For the converse, let us extend the so-called TP, to continuous logic:

Definition 4.11. We say that a theory T has the tree property of the second kind, or T'P,, if there exists
a formula (%, ), and in a model of T an array (b, m)n,men, such that:

(i) The sequences I, = (bp,m)men are mutually indiscernible, i.e., each is indiscernible over the
others.
(ii) The sequence of sequences (I,)nenN is indiscernible.
(iii) The set of conditions {p(Z, by, m) = 0}men is inconsistent for one, or equivalently all, n.
(iv) The set of conditions {cp(a‘c,En, #(n)) = O}nen is consistent for one, or equivalently every, map

f:N—=N.

Let us also recall that a theory is simple (Shelah [She80]) if every complete type over a set A does not
divide over a subset Ay C A with |Ag| < |T'|. Shelah [She90|, Chapter II1.7] proves that T'P, implies both
independence and non simplicity (and more), via the study of the relations between associated cardinal
invariants. Since this is proved for classical logic, let us give a quick argument why the same is true in
continuous logic (since there is no treatment of simplicity in continuous logic as such, we refer the reader
to [Ben03b] for a treatment of simplicity in the even larger context of compact abstract theories).

Proposition 4.12. Assume T has TP>. Then T is neither simple nor dependent.

Proof. By compactness we may extend the indiscernible sequence of lines to length x = |T|*, and find
a such that ¢(a,b; o) = 0 for all i < k. Then tp(a/b<y o) divides over every subset of size < |T|, so T
is not simple. By compactness, there exists € > 0 such that {go(a’cﬁn’m) < €}men is inconsistent for all
n € N. Let ¢, = by for even n, and for odd n let &, = b, ,, such that (@, b, ) > ¢. Then J = (&,) is
indiscernible, and along with @ witnesses that 7' is independent. -
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Theorem 4.13. Assume T is independent. Then T has the tree property of the second kind, and is in
particular neither dependent nor simple.

Proof. After a few standard manipulations of the independent formula ¢, we may assume that there is
a model M F T and in there an indiscernible sequence (b,,) as well as a such that ¢(a,bs,) = 0 and
o(a,bams1) = 1. Assuming M to be saturated enough, it follows that for every w C N there exists
. € M such that p(a.,b,) =0 if m € w and = 1 otherwise. Let &/ F ARV and M = M“ £ TF and
let us identify members of M with constant random variables in M. In &/ we may find an array (A, )
of independent events of measure %, which in fact forms an indiscernible set, and by Corollary it is
an indiscernible set over M (the constants). Let us consider the array (b, A m)n,m in M, in which b,
occurs repeatedly throughout the nth line I,, = (b, A, m)m. Then the lines are mutually indiscernible,
and form an indiscernible sequence (I, ).

Consider now the formula ¢ (x,yU) = d([¢(x,y)],U). For n € N and w C n let By, = A, Aﬁf",
where AT = A and AL = —A. By fullness we may construct a,, such that for each w C n, a, = ay
on By, ,, and observe that ¢ (an,b;A;9) = 0 for all i < n. In a saturated elementary extension we may
therefore find a such that ¢(a,b,A,0) = 0 for all n. On the other hand, if ¢(a’,bpAp,0) = 0 then
w(a',bvo’l) = % Thus TR has TP2 .4.13

Question 4.14. Say that a continuous theory T has the strict order property (SOP) if there exists a
formula ¢(Z,y) which defines a continuous pre-ordering with infinite e-chains for some ¢ > 0, i.e.,
satisfies:

e Reflexivity: ¢(a,a) = 0.

e Transitivity: ¢(a,e) < p(a,b) + (b, ).

o Infinite e-chain: There exists £ > 0 and a sequence (@, )nen in a model of T such that:

\/ o(an,am) +¢e < /\ ©(@n, Gm)-
n<m n>m
One can show that T is unstable if and only if it is independent or has the strict order property. Indeed, a
straightforward translation of the proof for classical first order theories, as can be found in Poizat [Poi85],
would work, keeping in mind that every formula of the form ¢(z,2") = sup, (1/}(:5, y) = (o, y)) defines a
continuous pre-ordering, in analogy with formulae of the form Vy (¢(m, y) — (2, y)) in classical logic.

(i) Assume T is independent. Does T has the strict order property?
(ii) Alternatively, is it true that if 7" does not have the strict order property then neither does T%?

Corollary 4.15. Randomisation cannot produce simple unstable theories: if T is simple then it is in
fact stable.

Proof. As in classical logic, the strict order property implies non simplicity, so a simple dependent theory
is stable. L IRE

5. LASCAR TYPES

Definition 5.1. Let a and b be two tuples, possibly infinite, in a structure M. We say that d”(a,b) < 1
if in some (every) sufficiently saturated elementary extension N = M there exists an elementary sub-
structure Ny < N such that a =5, b. We say that d’(a,b) < n if in some (every) sufficiently saturated
elementary extension there exist a9 = a,a1,...,a, = b such that dL(OLI€7 ak4+1) < 1for k <n.

If d¥(a,b) < oo, i.e., if d“(a,b) < n for some n, then we say that a and b have the same Lascar type,
in symbols a =~ b.

The following is by now essentially folklore, and in any case quite easy.

Fact 5.2. (i) For everyn, the relation d”(x,y) < n is a reflezive, symmetric type-definable relation.
(ii) The relation =" is the transitive closure of d*(z,y) < n for any n > 0. It is the finest bounded
automorphism-invariant equivalence relation on the sort in question.
(iii) If d*(a,b) < n in some sufficiently saturated structure M then for every other tuple a’' there
exists b’ such that d”(a’a,b'b) < n.

Definition 5.3. Let (M, .&7) E T®. An o -type in (M, o7) is a complete type over a subset of .7 which
has a unique extension to a type over o/. We define the <7 -type of a € M" to be tp,,(a) = tp(a/o(a)).
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Lemma 5.4. A type p(X) over a subset of &7 is an o -type if and only if it is equivalent to tp(a) for
some a, if and only if it determines [o(a)] for every formula ©(Z). It is then axziomatised by the set of
all conditions of the form [o(X)] = [¢(a)]. Moreover, tp,,(a) = tp,,(b) if and only if, in the canonical
representation, a(w) = b(w) for all w

Proof. Easy, using Corollary ;,

We may therefore write a =, b to say that a and b have the same </-type. Similarly, if p(X) is an
o/-type we may write [p(X)]P € & for the value of [p(X)] as determined by p.

Lemma 5.5. Let T be any theory, (M, <) a sufficiently saturated model of T®. Let a,b € M, a = b.
Then there exists ¢ € M such that d¥(a,c) <1 (so a=lc) and c =4 b.

Proof. Let o C o be the sub-structure generated by [¢] where ¢ varies over all sentences. Then
p C dcl(@) in (M, o). Let @ be the collection of all formulae ¢(x) with the appropriate variable. For
@ € ®let X, = [p(a)] and let X = (X,)peq. Define Y = (Y,)pco = ([¢(b)])pee similarly. Then by
assumption X =Y in (M, o), whereby X =, Y.

Let (M4, ) < (M, &) be a small elementary sub-structure. Then necessarily @4 C <. By our
saturation assumption we may find % C o/ such that o% =4, o4 and o \L% X,Y, both in the sense
of & (as a model of ARV). By Corollary [3.34] we have @% = & in the structure (M, &) so again by
saturation there is My C M such that (Mo, o%) = (M, 94 ), and in particular (M, o%) < (M, o).

By construction we have X =, Y in the sense of ./ and applying Corollaryﬂ again we obtain
X =My, ) Y. Thus d*(X,Y) < 1. By Fact[5 there is ¢ such that d*(aX,cY) < 1. In particular
aX = cY whereby Y,, = [p(c)] for all p(z). Thus ¢ =, b as desired. N

We now turn to consider the case where a =, b. We shall require an additional technical result.

Lemma 5.6. Let Q be a set, 7: Q — Q a bijection. Then there exists an integration functional E on
o = [0,1]% which is moreover invariant under 7: E[X] = E[X o7| for all X € .

Proof. This is a special case of a general fact that if an amenable group G (in our case, (Z,+)) acts on
a space () then 2 admits a G-invariant probability integration functional. |_E

Lemma 5.7. Let T be any theory, (M,o/) E T, Let a,b € M, a =, b. Then d*(a,b) < 1 (so in
particular a = b).

Proof. Let (M, o) be the canonical representation of (M, /), based on .# = {M,}ucq. Then for
every w € Q we have a(w) = b(w) in M., so there exists an elementary extension M/, > M, and
h, € G, = Aut(M)) such that hya(w) = b(w). Let G = [[G,, h = (hy)w € G. LetQ’*QxG
and let 7: Q' — Q be the prOJectlon on the first coordinate. By Fact |3.21] - there exists an integration
functional E; on < = [0,1]* which extends integration of Borel functions. The left action of h on G
is bijective, so [0,1]¢ admits an integration functional Eg which is invariant under the left action of h.
Let o' = [0,1]%, and for X’ € &' define E'[X'] = Elw — Eg[X'(w,-)], which we may also write as
E¥[EL[X'(w, §)]] or simply E[Eg[X]]. Then E’ is easily checked to be an integration functional.

For (w,g) € &' let M{,, -, = M, thus obtaining a family .Zg, = {M[, }weq With Mz = M, .
Let o : My — M, denote this elementary inclusion. For (w,g) = (w,g¢)ceq € ' define 1, 5 =
9w ©0(w,g): My = M (w,g)» Which is another elementary embedding. With M’ =[] .#¢,, we obtain two

maps o,7: M — M’ given by

o
—~
€
=
Nt
o
—
=

(O’C)(w7§) = U(w,g)( 3
(ne)(w, g) = 1,5 (c(w)) = gu(cw)).

We are now in the situation described in Corollary - In partlcular the trlplet (M, &' E') is a
randomisation, and we obtain two [-]-embeddings, [0],[n]: (M, &) — (M’ ﬁ%’), where [oc] and [nc]

are the images in M’ of oc and nc defined above, and [0 X] = [nX] = [X on]. By quantifier elimination
for T% these embeddings are elementary.
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We claim that [ca] =,ng [ob]. Indeed, let ¢ € M, ¢(z, ) any formula, and let X = (¢(ca,nc)) and
Y = (p(ob,7c)), both members of [0,1]%". Fix w € €, and let § € G vary freely. Then:

X(QJ, g) = (p(a(OJ), n(w,g)é(w))
= @(hwa(w)a hwn(w,g)é(w))
= p(b(w), 1,75 W)
=Y (w, hg).
Since E¢ was chosen invariant under the left action of h on G we obtain that Eq[X (w,-)] = Eg[Y (w, )]
for all w, whereby E'[X] = E'[Y]. We obtain
Ele([oal, [ne])] = E'(p(oa, ne)) = E'(¢(ob,ne)) = E[¢([ob], [nc])],

proving our claim. Since [n] is an elementary embedding we have d*([ca],[ob]) < 1, and since [0] is an
elementary embedding we conclude that d”(a,b) < 1. u;

Theorem 5.8. Let T be any theory, (M, o/) E T, a,b € M, and let A C M be any set of parameters.
Then the following are equivalent:
(i) a=k b.
(ii) a=a b.
(iii) d%(a,b) <2, where d% is defined as d*, over parameters in A.

Proof. First of all we may name A in the language (at no point did we assume that T was complete),
so we may assume that A = @. For the implication (ii) = (iii), just apply Lemma [5.5| followed by
Lemma [5.7] The implications (iii) = (i) = (ii) are standard and holds in arbitrary structures. s

Corollary 5.9. Let M ETE, A C M. Let dcl°® denote the definable closure in the sense of (TH)ea,
and similarly for acl®®®. Then dcl®¢®(A) = acl*?T(A) in M.

Notice that even though dcl°?*(A) and acl®*"(A) may contain imaginary elements in the sense 7%,
the set A is required to consist of real elements, i.e., elements coming from sorts of 7.

Corollary 5.10. For every theory T, the theory TT is G-compact, which means that for every set of
parameters A and for every tuple length o, the relation a =% b between tuples of length « is type-definable
over A.

Proof. Since the relation df (z,9) < 2 is type-definable. [
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