
CONTINUOUS FIRST ORDER LOGIC FOR UNBOUNDED METRIC
STRUCTURES
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Abstract. We present an adaptation of continuous first order logic to unbounded metric structures.

This has the advantage of being closer in spirit to C. Ward Henson’s logic for Banach space structures
than the unit ball approach (which has been the common approach so far to Banach space structures

in continuous logic), as well as of applying in situations where the unit ball approach does not apply

(i.e., when the unit ball is not a definable set).
We also introduce the process of single point emboundment (closely related to the topological single

point compactification), allowing to bring unbounded structures back into the setting of bounded

continuous first order logic.
Together with results from [Benc] regarding perturbations of bounded metric structures, we prove a

Ryll-Nardzewski style characterisation of theories of Banach spaces which are separably categorical up

to small perturbation of the norm. This last result is motivated by an unpublished result of Henson.

Introduction

Continuous first order logic is an extension of classical first order logic, introduced in [BU] as a
model theoretic formalism for metric structures. It is convenient to consider that continuous logic also
extends C. Ward Henson’s logic for Banach space structures (see for example [HI02]), even though this
statement is obviously false: continuous first order logic deals exclusively with bounded metric structures,
immediately excluding Banach spaces from the picture. This is a technical hurdle which is relatively
easy to overcome. What one usually does (e.g., in [BU, Example 4.5] and the discussion that follows
it) is decompose a Banach space into a multi-sorted structure, with one sort for, say, each closed ball of
radius n ∈ N. One may further rescale all such sorts into the sort of the unit ball, which therefore suffices
as a single sorted structure. The passage between Banach space structures in Henson’s logic and unit
ball structures in continuous logic preserves such notions as elementary classes, elementary extensions,
type-definability of subsets of the unit ball, etc. This approach has allowed so far to translate almost
every model theoretic question regarding Banach space structures to continuous logic.

The unit ball approach suffers nonetheless from several drawbacks. One drawback, which served as
our original motivation, comes to light in the context of perturbations of metric structures introduced in
[Benc]. Specifically, we wish to consider the notion of perturbation of the norm of a Banach space arising
from the Banach-Mazur distance. However, any linear isomorphism of Banach spaces which respects the
unit ball is necessarily isometric, precluding any possibility of a non trivial Banach-Mazur perturbation.
Another drawback of the unit ball approach, also remedied by the tools introduced in the present paper,
is that in some unbounded metric structures the unit ball is not a definable set (even though it is always
type-definable), so naming it as a sort (and quantifying over it) adds undesired structure. For example,
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this is the case with complete metric valued fields (i.e., of fields equipped with a complete non trivial
multiplicative valuation in R), considered in detail in [Benb].

In the present paper we replace the unit ball approach with the formalism of unbounded continu-
ous first order logic, directly applicable to unbounded metric structures and in particular to Banach
space structures. Using some technical definitions introduced in Section 1, the syntax and semantics of
unbounded logic are defined in Section 2. In Section 3 we prove  Loś’s Theorem for unbounded logic,
and deduce from it a Compactness Theorem inside bounded sets. It follows that the type space of an
unbounded theory is locally compact. In Section 4 we show that unbounded continuous first order logic
has the same expressive power as Henson’s logic of positive bounded formulae.

In order to be able to apply to unbounded structures tools which are already developed in the context
of standard (i.e., bounded) continuous logic, we introduce in Section 5 the process of emboundment.
Trough the addition of a single point at infinity, to each unbounded metric structure we associate a
bounded one, to which established tools apply. This method is used in Section 6 to adapt the framework
of perturbations, developed in [Benc] for bounded structures, to unbounded ones. In particular, The-
orem 6.9 asserts that the Ryll-Nardzewski style characterisation of ℵ0-categoricity up to perturbation
[Benc, Theorem 3.5] holds for unbounded metric structures as well.

As an application, we prove in Section 7 a Ryll-Nardzewski style characterisation of theories of Banach
spaces which are ℵ0-categorical up to arbitrarily small perturbation of the norm. This result is motivated
by an unpublished result of Henson, whom we thank for the permission to include it in the present paper.

Notation is mostly standard. We use a, b, c, . . . to denote members of structures, and use x, y, z,
. . . to denote variables. Bar notation is used for (usually finite) tuples, and uppercase letters are used
for sets. We also write ā ∈ A to say that ā is a tuple consisting of members of A, i.e., ā ∈ An where
n = |ā|. When T is an L-theory (whether bounded or unbounded) we always assume that T is closed
under logical consequences. In particular, |T | = |L| + ℵ0 and T is countable if and only if L is. We
shall assume familiarity with (bounded) continuous first order logic, as developed in [BU]. For the parts
dealing with perturbations, familiarity with [Benc] is assumed as well. For a general survey of the model
theory of metric structures we refer the reader to [BBHU08].

1. Gauged spaces

We would like to allow unbounded structures, while at the same time keeping some control over the
behaviour of bounded parts thereof. The “bounded parts” of a structure are given by means of a gauge.

Definition 1.1. Let (X, d) be a metric space, ν : X → R any function. We define Xν≤r = {x ∈
X : ν(x) ≤ r} and similarly Xν≥r, Xν<r, etc.

(i) We call Xν≤r and Xν<r the closed and open ν-balls of radius r in X, respectively.
(ii) We say that ν is a gauge on (X, d), and call the triplet (X, d, ν) a (ν-)gauged space if ν is

1-Lipschitz in d and every ν-ball (of finite radius) is bounded in d.
Note that this implies that the bounded subsets of (X, d) are precisely those contained in some ν-ball.

Remark 1.2. We could have given a somewhat more general definition, replacing the 1-Lipschitz condition
with the weaker condition that the gauge ν should be bounded and uniformly continuous on every
bounded set. This does not cause any real loss of generality, since in that case we could define

d′(x, y) = d(x, y) + |ν(x)− ν(y)|.

Then ν is 1-Lipschitz with respect to d′, and the two metrics d and d′ are uniformly equivalent and
induce the same notion of a bounded set.

Definition 1.3. Recall that a (uniform) continuity modulus is a left-continuous increasing function
δ : (0,∞)→ (0,∞) (i.e., δ(ε) = supε<ε′ δ(ε′)).
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We say that a mapping f : (X, dX , νX) → (Y, dY , νY ) between two gauged spaces respects δ under ν
if for all ε > 0:

νX(x), νX(y) < 1
ε ,

dX(x, y) < δ(ε)
=⇒

dY (f(x), f(y)) ≤ ε,
νY (x) ≤ 1

δ(ε) .
(UCν)

We say that f is uniformly continuous under ν if it respects some δ under ν.

While respecting a given δ under ν depends on the choice of ν, the fact that some δ is respected under
ν does not.

Lemma 1.4. Let X and Y be gauged spaces, f : X → Y a mapping. Then
(i) Let δ : (0,∞) → (0,∞) be any mapping, and assume that f respects δ under ν in the sense of

(UCν). Define δ′(ε) = ε ∧ sup0<ε′<ε δ(ε′). Then δ′ ≤ id is a continuity modulus and f respects
δ′ under ν as well. (If we used sup alone we could obtain infinite values, whence the need for
truncation at ε.)

(ii) A mapping f : X → Y between gauged spaces is uniformly continuous under ν if and only if it
restriction to every bounded set is uniformly continuous and bounded.

Proof. Easy. �1.4

Definition 1.5. A Cartesian product of gauged metric spaces X =
∏
i<nXi is equipped with a gauged

metric structure as follows:

d(x̄, ȳ) =
∨
i<n

d(xi, yi), ν(x̄) =
∨
i<n

ν(xi).(1)

In particular, if n = 0 then X = {∗} and d(∗, ∗) = ν(∗) = 0.
We also identify R+ with the gauged space (R+, |x− y|, |x|).

Lemma 1.6. Let X, Y , and so on, denote gauged spaces.
(i) The projection mapping X × Y → X respects the identity uniformly under ν.

(ii) Let fi : X → Yi, i < n, be mappings between gauged spaces, each respecting δfi under ν. Then
f̄ : X →

∏
Yi respects the continuity modulus δf̄ =

∧
i<n δfi under ν. In addition, if δfi ≤ id

for all (indeed, for some) i < n then δf̄ ≤ id as well.
(iii) Let X, Y and Z be gauged spaces. Assume that f : X → Y and g : Y → Z respect continuity

moduli δf and δg, respectively, under ν. Assume moreover that δf , δg ≤ id. Then h = g◦f : X →
Z respects the continuity modulus δh = δf ◦δg ◦δf under ν. In particular, δh ≤ id is a continuity
modulus.

(iv) Let X and Y be gauged spaces, and let f : X×Y → R+ and g : Y → R+ mappings which respect
δf and δg under ν, respectively. Assume also that f is eventually equal to g, namely that there
exists a constant C such that f(x, y) = g(y) whenever ν(x) ≥ C. Define

h1(y) = sup
x∈X

f(x, y), h′1(y) = g(y) ∨ sup
x∈X

f(x, y),

h2(y) = inf
x∈X

f(x, y), h′2(y) = g(y) ∧ inf
x∈X

f(x, y),

δh(ε) = δg(ε) ∧ δf (ε ∧ 1
C ).

Then hi, h′i : Y → R+ are well defined (i.e., the supremum is always finite) and respect δh under
ν. Moreover, if either δf ≤ id or δg ≤ id then δh ≤ id.

Proof. The first two items are easy.
For the third item we only prove that δh is respected under ν. Indeed, let ε > 0, x, y ∈ X, and

assume that ν(x), ν(y) < 1
ε and d(x, y) < δh(ε). By the left continuity assumption there are s, t such
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that: d(x, y) < δf (s), s < δg(t), t < δf (ε). In particular s < t < ε. Using our hypotheses we obtain from
top to bottom:

d(x, y) < δf (s), ν(x), ν(y) < 1
ε <

1
s ,

d
(
f(x), f(y)

)
≤ s < δg(t), ν ◦ f(x), ν ◦ f(y) ≤ 1

δf (ε) <
1
t ,

d
(
h(x), h(y)

)
≤ t < ε, ν ◦ h(x), ν ◦ h(y) ≤ 1

δg(t) <
1
s .

In addition, s could have been chosen arbitrarily close to δg ◦ δf (ε) whereby ν ◦ h(x) ≤ 1
δg◦δf (ε) ≤

1
δf◦δg◦δf (ε) = 1

δh(ε) , as desired.
For the fourth item, the existence of h1 and h′1 follows from the fact that for a fixed y, the function

x 7→ f(x, y) is bounded on bounded sets and eventually constant. We show that h1 respects δh under
ν, a similar argument applies to the other functions. Let y1, y2 ∈ Y , and assume that ν(yi) < 1

ε ,
d(y1, y2) < δh(ε). Let r = ε ∧ 1

C , so ν(yi) < 1
r and d(y1, y2) < δg(ε) ∧ δf (r). We may choose a point

x ∈ X such that f(x, y1) is arbitrarily close to h1(y1). There are two cases to consider:

I. ν(x) ≥ C
f(x, y1) = g(y1) ≤ 1

δg(ε) ≤
1

δh(ε) ,

|f(x, y1)− f(x, y2)| = |g(y1)− g(y2)| ≤ ε,

II. ν(x) < C ≤ 1
r

f(x, y1) ≤ 1
δf (r) ≤

1
δh(ε) ,

|f(x, y1)− f(x, y2)| ≤ r ≤ ε.

Either way we obtain that h1(y1) ≤ 1
δh(ε) and that h1(y1) ≤ h1(y2) + ε, which is enough.

If there exists x ∈ X such that ν(x) ≥ C then h1 = h′1. If not then when dealing with h′1 we need to
consider the possibility that h′1(y1) = g(y1), which is treated identically to case I. The functions h2 and
h′2 are treated analogously. �1.6

2. Unbounded continuous logic

We turn to define a R+-valued variant of continuous logic which can accommodate unbounded metric
structures. We shall refer to this logic as unbounded continuous logic. The [0, 1]-valued (or, more
generally, bounded) continuous logic defined in [BU] will be referred to here as standard or bounded.

Definition 2.1. An unbounded continuous signature L consists of the following data:
(i) A set of relation (or predicate) symbols and of function symbols, each equipped with its arity

(zero-ary function symbols are also called constant symbols).
(ii) For each n-ary symbol s, a continuity modulus δs : (0,∞)→ (0,∞).
(iii) For each sort S, a distinguished binary predicate symbol dS called the distance symbol, as well as

a distinguished unary predicate symbol νS called the gauge symbol. The subscript S is usually
omitted.

We usually write down a signature merely by listing its non distinguished symbols.

Definition 2.2. Let L be an unbounded signature, and for the sake of simplicity let us assume it is
single-sorted. An (unbounded) L-structure is a complete metric gauged space (M,d, ν) = (M,dM , νM ),
possibly empty, equipped with interpretation of the symbols:

(i) The interpretation of an n-ary function symbol f is a mapping fM : Mn → M which respects
δf under ν.

(ii) The interpretation of an n-ary predicate symbol P is a mapping PM : Mn → R+ which respects
δP under ν.
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For this purpose we view Mn with a gauged space (Mn, d, ν) as per Definition 1.5. Similarly, R+ admits
a standard gauge structure (R+, d, id).

Thus, restricted to a ν-ball, everything is bounded and uniformly continuous as in bounded continuous
logic, and closed ν-balls are metrically closed and therefore complete.

Remark 2.3. If the language contains a constant symbol 0 then the formula ν′(x) = d(x, 0) can act as
an alternative gauge. Indeed, if r ∈ R+ then Mν′≤r ⊆Mν≤r+ν(0), since ν is 1-Lipschitz, and conversely
Mν≤r ⊆Mν′≤βd(r,ν(0)) by definition of an unbounded structure. Thus we can pass between ν-balls and
ν′-balls in a way which depends only on L.

In most cases, ν will indeed be equal to d(x, 0).

A standard continuity modulus for an n-ary symbol, when n > 0, is the function x 7→ x
n . If a symbol

s is 1-Lipschitz is each argument and ν(x) = d(x, 0) then s indeed respects the standard continuity
modulus under ν. For a zero-ary symbol the standard continuity modulus is the identity.

Example 2.4. Let L be a standard (i.e., [0, 1]-valued) continuous signature as defined in [BU]. In that
case we chose to equip each n-ary symbol s with individual continuity moduli δs,i, i < n, one for each
argument. Let L′ be the unbounded signature obtained from L by adding a gauge symbol νS for each
sort S, and by setting δs(x) = 1 ∧

∧
i δs,i(

x
n ) (for zero-ary s let δs = 1). Then every L-structure M can

be naturally viewed as an unbounded L′-structure by interpreting all gauges as the constant 0. If L
admits a constant symbol 0 then interpreting ν(x) = d(x, 0) works as well.

Example 2.5 (Banach spaces). We would like to view Banach spaces as unbounded structures. Let
L = {0,+,mr : r ∈ Q}, where mr is unary scalar multiplication by r. We view ‖x‖ as shorthand for
d(x, 0), and take it to be the gauge. Let δmr (x) = |r|x and let all other continuity moduli be standard.
Then every real Banach space is naturally an (unbounded) L-structure.

This can be extended to additional structure on the Banach space. For example a complex Banach
space also has a function symbol for multiplication by i, while a Banach lattice is given by binary function
symbols ∨, ∧ (again with standard continuity moduli).

Example 2.6 (Naming constants). Let L be an unbounded signature, M and L-structure. Let A ⊆ M .
We define L(A) as L∪A, where each a ∈ A is viewed as a new constant symbol. We equip each symbol
a with the uniform continuity modulus δa = id∧ 1

ν(a) . Then for every ε > 0 we have ν(a) ≤ 1
δa(ε) , and

we may render M an L(A)-structure by interpreting aM = a.

We now define the syntax of continuous logic. A term is defined, as usual, as either being a variable
or a composition of a function symbol with simpler terms. Similarly, an atomic formula is a composition
of a predicate symbol with terms. Connectives are continuous functions from (R+)n to R+, or any
convenient family of such functions which is dense in the compact-open topology, i.e., in the topology of
uniform convergence on every compact set. We shall use the system {1, x−. y, x+y, x/2} which generates
such a dense set through composition. While alternative systems may be legitimate, we shall always
require the presence of 1 and −. in what follows. We point out that as functions from (R+)n → R+, all
the basic connectives we chose respect their respective standard continuity moduli (according to their
arity). As one may expect, every combination of formulae by connectives is a formula.

On the other hand, care is needed when defining quantified formulae. First, supx ϕ could be infinite.
Second, even if ϕ is bounded, we still need a uniform rate of convergence for supν(x)<C ϕ → supx ϕ as
C →∞, or else we may run into trouble with compactness as well as with uniform continuity under ν.
In Henson’s logic of positive bounded formulae [HI02], where the truth values are True/False, one gets
around this by restricting quantifiers to bounded balls (and then again, one needs to play around with
the radii of the balls when considering approximations). If we tried to do the same thing with continuous
quantifiers we could again run into trouble if, say, supν(x)<r ϕ < supν(x)≤r ϕ. We shall follow a different
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path, looking for the simplest syntactic conditions on a formula ϕ that ensure that infx ϕ and supx ϕ
are semantically legitimate. This approach will allow us nonetheless to recover approximate versions of
bounded quantifiers later on.

Definition 2.7. We define formulae by induction, and at the same time we define whether a formula is
syntactically eventually constant in a variable x and/or bounded.

• Atomic formulae are defined as above.
– If ϕ is atomic and x does not appear in ϕ, then ϕ is eventually constant in x.
– No atomic formula is bounded.
• A combination of formulae by connectives is a formula.

– If all the components are bounded (respectively, eventually constant in x) then so is the
compound formula.
– If ϕ is bounded then ϕ−. ψ is bounded for any ψ and ϕ−. ν(x) is eventually constant in x.
• If ϕ is eventually constant in x then infx ϕ and supx ϕ are formulae (but not otherwise).

– If ϕ is bounded (respectively, eventually constant in a variable y) then so are supx ϕ and
infx ϕ. In particular, supx ϕ and infx ϕ are eventually constant in x.

Notice that the formula 1, being a combination of no formulae, is bounded and eventually constant in
every variable. Similarly, every dyadic number r = k

2m = ( 1
2 )m(1 + · · ·+ 1) can be viewed as a formula,

and is syntactically bounded and constant as such. It follows that for every formula ϕ, the formula
ϕ ∧ r = r −. (r −. ϕ) is syntactically bounded.

The qualitative syntactic properties of boundedness and eventual constancy can be translated to
quantitative information.

Definition 2.8. For every syntactically bounded formula ϕ we extract a syntactic bound Bϕ as follows:

ϕ = θ(ψ̄), ψi bounded: Bϕ = sup
x̄∈

Q
[0,Bψi ]

θ(x̄),

ϕ = ψ −. χ, or sup
x
ψ, or inf

x
ψ, ψ bounded: Bϕ = Bψ.

Notice that no ambiguity arises for ψ −. χ when both ψ and χ are syntactically bounded.
Similarly, for a formula ϕ(x, ȳ) which is syntactically eventually constant in x we extract a syntactic

constancy threshold Cϕ,x ∈ R+ and a formula ϕ(∞, ȳ), whose free variables lie among ȳ, and which is
intended to agree with ϕ(x, ȳ) once ν(x) ≥ Cϕ,x.

x not free in ϕ: ϕ(∞, ȳ) = ϕ, Cϕ,x = 0,

ϕ = θ(ψ̄), ψi e.c. in x: ϕ(∞, ȳ) = θ
(
ψ(∞, ȳ)

)
, Cϕ,x =

∨
Cψi,x,

ϕ = ψ −. ν(x), ψ bounded: ϕ(∞, ȳ) = 0, Cϕ,x = Bψ,

ϕ = sup
z
ψ, ψ e.c. in x 6= z: ϕ(∞, ȳ) = sup

z
ψ(∞, z, ȳ), Cϕ,x = Cψ,x.

Again, when cases overlap the definitions agree.

The definition of the semantics can be somewhat delicate. The model for the definition is an un-
bounded structure M in which elements of arbitrarily high gauge exist (e.g., a non trivial Banach
space). In this case the definition is entirely straightforward, namely

(f τ̄)M (ā) = fM ◦ τ̄M (ā) ∈M, (P τ̄)M (ā) = PM ◦ τ̄M (ā) ∈ R+,

θ(ϕ̄)M (ā) = θ
(
ϕ̄M (ā)

)
(where θ is a connective),(

inf
x
ϕ(x, ā)

)M = inf
b∈M

ϕM (b, ā), idem for sup .(Q)
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Let us state some properties of this model situation, for the time being without proof. First, the
interpretation of every term and formula is uniformly continuous under ν (essentially by Lemma 1.6).
Second, if ϕ is syntactically bounded then it is bounded byBϕ. Third, if ϕ(x, ȳ) is syntactically eventually
constant in x then ϕ(x, ȳ) = ϕ(∞, ȳ) whenever ν(x) ≥ Cϕ,x. In this case, ϕ(x, ā) is bounded for every
ā, so the interpretation of the quantifiers makes sense and the following holds:(

inf
x
ϕ(x, ā)

)M = inf
b∈M∪{∞}

ϕM (b, ā), idem for sup .(Q∞)

However, we must also take into account structures in which elements of arbitrarily high gauge need
not exist. In order for ultra-products to behave reasonably, i.e., in order for  Loś’s Theorem to hold, the
definition of quantifier semantics in the general case must follow (Q∞) and not (Q). This is illustrated
in Remark 3.2 below.

Definition 2.9. Let M be an L structure. Then terms, atomic formulae and connectives are interpreted
naturally, by composition. Quantifiers are interpreted according to (Q∞), where ϕ(∞, ā) is understood
as per Definition 2.8.

Theorem 2.10. Let M be an L-structure. Then:
(i) All formulae are interpreted as R+-valued functions on Cartesian powers of M . In particular,

in the interpretation of quantified formulae in M all the suprema are finite.
(ii) Every term τ and every formula ϕ are uniformly continuous under ν.

(iii) If a formula ϕ is syntactically constant then ϕM (ā) ≤ Bϕ for all ā ∈M .
(iv) If a formula ϕ(x, ȳ) is syntactically eventually constant in x then ϕ(b, ā) = ϕ(∞, ā) whenever

ν(b) ≥ Cϕ,x.

Proof. We prove this by induction on the complexity of terms and formulae. We observe that if ϕ(x, ȳ)
is syntactically eventually constant in x then ϕ(∞, ȳ) is of lesser or equal complexity. Thus, when
treating supx ϕ and infx ϕ, we may use the induction hypotheses both for ϕ(x, ȳ) and for ϕ(∞, ȳ). We
may assume that all the continuity moduli of symbols lie below the identity, and construct as we go
continuity moduli below the identity for each term and formula.

The induction step itself now follows immediately from the definitions, the induction hypotheses and
Lemma 1.6. �2.10

We leave it as an exercise to the reader to check that with our choice of connectives, every formula
is equivalent to one in prenex normal form (one needs to make sure in particular that the natural
transformations towards a prenex form do not violate the restrictions on quantification imposed in
Definition 2.7).

It will be convenient later on to have some analogue of the restricted quantifier supν(x)≤r ϕ (which
is not part of our language). Let us assume that ϕ is syntactically bounded and let k = dBϕe, namely
the least integer syntactic bound for ϕ. We observe that for a dyadic r, the formula ϕ −. (ν(x) −. r) is
equivalent to (ϕ + (ν(x) ∧ r)) −. ν(x) which is syntactically bounded and eventually constant in x. It
follows that for every natural m > 0 the formula ϕ−. m(ν(x)−. r) is equivalent to one which is syntactically
bounded and eventually constant in x. Let 0 < r < r′, and find the least m such that we can write
r ≤ s = `2−m < (`+ 1)2−m ≤ r′, and choose the least possible s. Define:

ϕ↓x≤r,r
′

= ϕ−. k2m(ν(x)−. s), sup
x

r,r′ϕ = sup
x
ϕ↓x≤r,r

′
,

ϕ↑x≤r,r
′

= k −. (k −. ϕ)↓x≤r,r
′
, inf

x

r,r′ϕ = inf
x
ϕ↑x≤r,r

′
.

Both formulae on the left are syntactically bounded and eventually constant in x, so the expressions on
the right are indeed formulae. By construction we always have ϕ↓x≤r,r

′
≤ ϕ, and in addition ϕ↓x≤r,r

′
= ϕ
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when ν(x) ≤ r and ϕ↓x≤r,r
′

= 0 when ν(x) ≥ r′. Thus supν(x)≤r ϕ ≤ supr,r
′

x ϕ ≤ supν(x)<r′ ϕ. Similarly,

infν(x)≤r ϕ ≥ infr,r
′

x ϕ ≥ infν(x)<r′ ϕ.
We may further extend these abbreviations to the case where ϕ is not syntactically bounded by

truncating it at 1, defining ϕ↓x≤r,r
′

= (ϕ ∧ 1)↓x≤r,r
′

(and proceeding as above). This will only be used
in conditions of the form supr,r

′

x infs,s
′

y . . . ϕ = 0, whose satisfaction does not depend on our particular
choice of constant at which we truncate.

3.  Loś’s Theorem, compactness and theories

Let L be an unbounded signature, {Mi : i ∈ I} a family of L-structures and U an ultra-filter on I.
Let I0 = {i : Mi 6= ∅}. If I0 ∈ U define

N0 =

{
(ai) ∈

∏
i∈I0

Mi : lim
U
νMi(ai) <∞

}
,

otherwise N0 = ∅. Alternatively, one may introduce a new formal element ∞ with ν(∞) = +∞, and
define

N0 =

{
(ai) ∈

∏
i∈I

(
Mi ∪ {∞}

)
: lim

U
νMi(ai) <∞

}
.

Under this definition a member (ai) ∈ N0 can have few (according to U ) coordinates which are equal
to ∞ and which may be ignored in the definitions that follow. Either approach leads to the same
construction.

For a function symbol f or predicate symbol P , and arguments (ai), (bi), . . . ∈ N0, define:

fN0
(
(ai), (bi), . . .

)
= (fMi(ai, bi, . . .)),

PN0
(
(ai), (bi), . . .

)
= lim

U
PMi(ai, bi, . . .).

Note that by definition of N0, the values of PMi(ai, bi, . . .) are bounded on a large set of indexes, so
limU PMi(ai, bi, . . .) ∈ R+. It is now straightforward verification that N0 is an L-pre-structure, i.e.,
that it verifies all the properties of a structure with the exception that dN0 might be a pseudo-metric
and needs not be complete. Let N = N̂0 be the associated L-structure, obtained by dividing by the
zero distance equivalence relation and passing to the metric completion. We call N the ultra-product of
{Mi : i ∈ I} modulo U , denoted

∏
Mi/U . The image in N of (ai) ∈ N0 will be denoted [ai]. (Compare

with the construction of ultra-products of Banach spaces in [HI02] and of bounded continuous structures
in [BU].)

Theorem 3.1 ( Loś’s Theorem). For every formula ϕ(x̄) and [ai], [bi], . . . ∈
∏
Mi/U :

ϕ([ai], [bi], . . .)
Q
Mi/U = lim

U
ϕ(ai, bi, . . .)Mi .

Proof. Mostly as for bounded logic. The only significant difference is in the treatment of quantifiers,
which we sketch below.

If limU infx ϕ(x, ai, . . .)Mi < r then there is a large set on which infx ϕ(x, ai, . . .)Mi < r and we can
find witnesses bi there (possibly the formal infinity) such that ϕ(bi, ai, . . .)Mi < r. If ν(bi) ≤ Cϕ,x on a
large set then ν([bi]) ≤ Cϕ,x, so in particular [bi] belongs to the ultra-product and

inf
x
ϕ(x, [ai], . . .) ≤ ϕ([bi], [ai], . . .) = lim

U
ϕ(bi, ai, . . .) ≤ r.

If, on the other hand, bi =∞ or ν(bi) ≥ Cϕ,x on a large set then

inf
x
ϕ(x, [ai], . . .) ≤ ϕ(∞, [ai], . . .) = lim

U
ϕ(∞, ai, . . .) = lim

U
ϕ(bi, ai, . . .) ≤ r.
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Conversely, assume that infx ϕ(x, [ai], . . .) < r. Then again, either there is [bi] such that ϕ([bi], [ai], . . .) <
r or ϕ(∞, [ai], . . .) < r, and in either case limU infx ϕ(x, ai, . . .) ≤ r. �3.1

Remark 3.2.  Loś’s Theorem might fail if our semantic interpretation did not take the value at infinity
into account. For example, consider the sentence ϕ = infx(1−. ν(x)). Let Mn be the structure consisting
of two points, ν(an,0) = 0, ν(an,1) = n. Then the ultra-product contains a single point a0 = [an, 0],
ν(a0) = 0, and we would have ϕMn = 0 for all n ≥ 1 and yet ϕ

Q
Mn/U = 1.

Worse still, ifMn consisted only of an,1 then
∏
Mi/U would be empty, making the näıve interpretation

of quantifiers meaningless. An empty ultra-product can also be obtained with unbounded structures,
for example Mn = E r B(n) where E is a Banach space and B(n) is its open ball of radius n. (These
and other pathological examples were pointed out to the originally over-optimistic author by C. Ward
Henson.)

Definition 3.3. Say that a family of conditions Σ = {ϕi ≤ ri : i ∈ λ} is approximately finitely satisfiable
if for every finite w ⊆ λ and ε > 0, the family Σ0 = {ϕi ≤ ri + ε : i ∈ w} is satisfiable.

Corollary 3.4. If a set of sentential conditions (i.e., conditions without free variables) is approximately
finitely satisfied in a family of structures, then it is satisfied in some ultra-product of these structures.

Proof. Standard. �3.4

Corollary 3.5 (Bounded compactness for unbounded continuous logic). Let L be an unbounded signa-
ture, r ∈ R+, and let Σ be a family of conditions in the free variables x<n. Then Σ∪ {ν(xi) ≤ r : i < n}
is satisfiable of and only if it is approximately finitely satisfiable.

As usual, a theory is a set of sentential conditions. The complete theory of a structure M , elementary
equivalence and elementary embeddings are defined as usual.

Corollary 3.6. Two structures M and N are elementarily equivalent if and only if M embeds elemen-
tarily into an ultra-power of N .

Proof. One direction is clear. For the other we observe that if M and N are elementarily equivalent,
then the elementary diagram of M is approximately finitely satisfiable in N . Indeed, let ā ∈M and say
that ϕ(ā) = 0. Let also ε > 0 and r = ν(ā). Then N � infr,r+εx̄ ϕ(x̄) = 0, so there are b̄ ∈ N such that
ν(b̄) < r + ε and ϕ(b̄) < ε. �3.6

We could prove an analogue of the Shelah-Keisler theorem that if N and M are elementarily equivalent
then they have isomorphic ultra-powers. We give a more elementary proof of a lesser result, which will
suffice just as well later on.

Lemma 3.7. (i) Two models M and N are elementarily equivalent if and only if there are se-
quences M = M0 � M1 � . . . and N = N0 � N1 � . . . where each Mn+1 (Nn+1) is an
ultra-power of Mn (Nn) and

⋃
n∈N Mn '

⋃
n∈N Nn (so their completions are isomorphic as

well).
(ii) A class of structures K is elementary if and only if it is closed under elementary equivalence

and ultra-products.

Proof. For the first item, right to left by the elementary chain lemma, which is proved as usual. For left
to right, assume that M ≡ N . Then there is an ultra-power N1 = NU and an elementary embedding
f0 : M → N1. Then (M,M) ≡ (N1, f0(M)) (in a language with all elements of M named) so there
exists an ultra-power M1 = MU ′ and an elementary embedding g0 : N1 →M1 such that g0 ◦ f0 = idM .
Proceed in this manner to obtain the sequences.

The second item is standard. �3.7
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It is easily verified that any theory is logically equivalent to one which only consists of conditions of
the form ϕ = 0. A universal theory is one which only consists of conditions of the form supx̄ ϕ(x̄) = 0
where ϕ is quantifier-free (and syntactically bounded and eventually constant in each xi). Observe that:

• For any formula ϕ we can express ∀x̄ ϕ(x̄) = 0 by the universal axiom scheme supn,n+1
x̄ ϕ(x̄) = 0.

• If t and s are terms we can express ∀x̄ t = s by ∀x̄ d(t, s) = 0.
• If ϕ and ψ are formulae we can express ∀x̄ ϕ ≥ ψ by ∀x̄ ψ −. ϕ = 0.

Example 3.8. We can continue Example 2.5 and give the (universal) theory of the class of Banach spaces:

〈Universal equational axioms of a vector space.〉
∀x s‖x‖ ≤ ‖mr(x)‖ ≤ s′‖x‖ s, s′ dyadic, s ≤ |r| ≤ s′

∀xy ‖x+ y‖ ≤ ‖x‖+ ‖y‖
∀xy d(x, y) = ‖x+m−1(y)‖.

More generally, it will be convenient to write(
sup
x

r inf
y

s . . . ϕ
)

= 0, or even ∀<rx ∃≤sy . . .
(
ϕ = 0

)
for the axiom scheme

sup
x

r−ε,rinf
y

s,s+ε . . . ϕ = 0, ε > 0.

Notice that in the ∀∃ notation, the universal quantifier holds literally, while the existential quantifiers
holds in an approximate sense, with respect to the quantification radius as well as with respect to the
value of ϕ (which may both be slightly bigger than s or 0, respectively.)

Example 3.9 (Measure algebras). Let L = {0,∨,∧,r}, where 0 is a constant symbol, ∨,∧,r are binary
function symbols. We use µ(x) as shorthand for d(x, 0), and take it to be the gauge. All the continuity
moduli are standard.

The universal theory of measure algebras (which are the topic of [Fre04]) consists of:

〈Universal equational axioms of relatively complemented distributive lattices〉,
∀xy µ(x) + µ(y) = µ(x ∧ y) + µ(x ∨ y),

µ(0) = 0,

∀xy d(x, y) = µ(xr y) + µ(y r x).

We can further say that a measure algebra is atomless by the axiom scheme:

∀<nx ∃≤ny |µ(x ∧ y)− µ(x)/2| = 0, n ∈ N.

Example 3.10 (Replacing a function with its graph). Let L be an unbounded signature, f ∈ L an n-ary
function symbol. We define its graph to be the (n + 1)-ary predicate Gf (x̄, y) = d(f(x̄), y). Since it is
defined by a formula it respects a continuity modulus under ν uniformly in all L-structures, and we may
add it to the language. The axiom scheme ∀x̄y Gf (x̄, y) = d(f(x̄), y) is universal.

We may further drop f from the language. Indeed, we observe that a predicate Gf is the graph of
a function f with continuity modulus δf if and only if the following theory holds. The second axiom
ensures that in the third axiom there actually exists a unique y = f(x̄) such that Gf (x̄, y) = 0. Then
the first two axioms imply that Gf is the graph of f , and the two last axioms together ensure that f
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respects δf under ν.

∀x̄, y, z Gf (x̄, y) ≤ Gf (x̄, z) + d(y, z)

∀x̄, y, z d(y, z) ≤ Gf (x̄, y) +Gf (x̄, z)

∀<ε
−1
x̄ ∃≤δf (ε)−1

y Gf (x̄, y) = 0 ε > 0

∀<ε
−1
x̄ȳ ∀<δf (ε)−1+1z

(
δf (ε)−. d(x̄, ȳ)

)
∧
(
Gf (x̄, z)−. Gf (ȳ, z)−. ε

)
= 0 ε > 0

Types and type spaces are defined more or less as usual:

Definition 3.11. Fix an unbounded signature L.
(i) Given an n-tuple ā, we define its type p(x̄) = tp(ā) as usual as the set of all L-conditions in

the variables x<n satisfied by ā. The type p(x̄) determines the value of ϕ(ā) for every formula
ϕ, and we may write ϕp = ϕ(x̄)p(x̄) = ϕ(ā).

(ii) A complete n-type (in L) is the type of some n-tuple. By Corollary 3.5, this is the same
as a maximal finitely consistent set of conditions p(x<n) such that for some r ≥ 0 we have
ν(xi) ≤ r ∈ p for all i < n.

(iii) The set of all n-types is denoted Sn. The set of all n-types containing a theory T (equivalently:
realised in models of T ) is denoted Sn(T ).

(iv) For every condition s in the free variables x<n, [s]Sn(T ) (or just [s], if the ambient type space is
clear from the context) denotes the set of types {p ∈ Sn(T ) : s ∈ p}.

(v) The family of all sets of the form [s]Sn(T ) forms a base of closed sets for the logic topology on
Sn(T ). It is easily verified to be Hausdorff.

For each n ∈ N, we can define ν : Sn(T )→ R by ν(p) =
∨
i<n ν(xi)p. With this definition, (Sn(T ), d, ν)

is a gauged space. Applying previous definitions we have:

Sν≤rn (T ) =
⋂
i<n

[
ν(xi) ≤ r

]
=

[(∨
i<n

ν(xi)
)
≤ r

]
.

By Corollary 3.5, Sν≤rn (T ) is compact. If Sn(T ) = Sν≤rn (T ) for some r, then Sn(T ) is compact. Con-
versely, if Sn(T ) is compact for n ≥ 1, then ν is necessarily bounded on models of T , so there is some
r such that T ` supx ν(x) ∧ (r + 1) ≤ r and Sm(T ) = Sν≤rm (T ) for all m ∈ N. In this case all the other
symbols are also bounded in models of T , so up to re-scaling everything into [0, 1] we are in the case of
standard continuous first order logic.

In the non compact case we still have Sn(T ) =
⋃
r Sν≤rn (T ). Thus each p ∈ Sn(T ) there is r such

that p ∈ Sν≤rn (T ), and Sν≤r+1
n (T ) is a compact neighbourhood of p (since it contains the open set

[(
∨
ν(xi)) < r + 1]). Therefore Sn(T ) is locally compact.

4. On the relation with Henson’s positive bounded logic

We sketch out here how unbounded continuous logic generalises, in an appropriate sense, Henson’s
logic of approximate satisfaction of positive bounded formulae in Banach space structures. For this
purpose we assume familiarity with the syntax and semantics of Henson’s logic (see for example [HI02]).

The classical presentation of Henson’s logic involves a purely functional signature LH with a distin-
guished sort for R. There is no harm in assuming that the distinguished sort only appears as the target
sort of some function symbols (otherwise we can add a second copy and a single function symbol for the
identity mapping into the copy, and treat the copy as the distinguished sort). Also, there is no harm in
replacing R with R+.

We can therefore define an unbounded continuous signature L by dropping the distinguished sort and
replacing all function symbols into it with R+-valued predicate symbols. As every sort is assumed to be
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normed, we identify ν with ‖·‖. While a signature in Henson’s logic does not specify continuity moduli,
in every class under consideration each symbol satisfies some continuity modulus uniformly under ‖·‖
which we may use (or else the logic would fail to describe the class). It is a known fact that there exists
a (universal) LH -theory, call it T0, whose models are precisely the structures respecting these continuity
moduli under ‖·‖.

From now on by “structure” we mean a model of T0, or equivalently a L-structure (as these can
be identified). The ambiguity concerning whether a structure is a Henson or unbounded continuous
structure is further justified by the fact that the definitions of isomorphism and ultra-products in either
logic coincide. As we can moreover prove Lemma 3.7 for Henson’s logic just as well, we conclude:

Theorem 4.1. A class of structures K is elementary in Henson’s logic if and only if it is elementary in
unbounded continuous logic.

Recall:

Fact 4.2. Let X =
⋃
n∈N Xn be a topological space where each Xn is closed and Xn+1 is a neighbourhood

of Xn. Then a subset F ⊆ X is closed if and only if F ∩Xn is for all n.

An n-type is the same thing as a complete theory with n new constant symbols (more precisely, a type
p with ν(p) ≤ r corresponds to a complete theory with new constants symbols with continuity moduli
δa ≤ 1

r ).

Corollary 4.3. Two n-tuples in a structure have the same type in one logic if and only if they have the
same type in the other, and this identification induces a homeomorphism SLHn (T0) ' SLn .

Proof. The first statement is by Theorem 4.1. Also, a set X ⊆ S‖·‖≤rn is closed if and only if the class
{(M, ā) : tp(ā) ∈ X} is elementary: the bounds on the norm are needed since we need to impose bounds
on the norms of constant symbols. It follows from Theorem 4.1 that the bijection SLHn (T0) ' SLn is a
homeomorphism when restricted to S‖·‖≤nn . Now use Fact 4.2 and the fact that S‖·‖≤rn is compact and
S‖·‖<rn is open in both topologies to conclude that this is a global homeomorphism. �4.3

This can be restated as:

Corollary 4.4. For every set Σ(x̄) of LH-formulae there exists a set Γ(x̄) of L-conditions, and for every
set Γ(x̄) of L-conditions there exists a set Σ(x̄) of LH-formulae, such that for every structure M and
ā ∈M :

M �A Σ(ā) ⇐⇒ M � Γ(ā).

Remark 4.5. In Henson’s logic, the bounded quantifier ∀≤rx (∃≤rx) mean “for all (there exists) x such
that ‖x‖ ≤ r”. Thus Henson’s logic coincides with unbounded continuous logic of normed structures
where ν = ‖·‖. One may generalise Henson’s logic to allow an arbitrary ν and obtain full equivalence of
the two logics.

For the benefit of the reader who finds this proof a little too obscure, let us give one direction explicitly.
We know that every formula in Henson’s logic is equivalent to one in prenex form

∀≤r0x0∃≤r1x1 . . . ϕ(x̄, ȳ),

where ϕ is a positive Boolean combination of atomic formulae of the form ti(x̄, ȳ) ≥ ri or ti ≤ ri. Every
term ti can be identified with an atomic L-formula, and replacing ti with ti −. ri or with ri −. ti, we may
assume all these atomic formulae are of the form ti ≤ 0. Since (ti ≤ 0) ∧ (tj ≤ 0)⇐⇒ (ti ∨ tj) ≤ 0 and
(ti ≤ 0) ∨ (tj ≤ 0) ⇐⇒ (ti ∧ tj) ≤ 0, we can find a single t such that ϕ(x̄, ȳ) is equivalent to t ≤ 0. We
thus reduced to:

∀≤r0x0 ∃≤r1x1 . . .
(
t(x̄, ȳ) ≤ 0

)
.
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We can view t as a quantifier-free L-formula, in which case the above holds approximately if and only if
the following holds (with the notation preceding Example 3.9):

∀<r0x0 ∃≤r1x1 . . . t(x̄, ȳ) = 0.

Thus the approximate satisfaction of a LH -formula, and therefore of a partial type, are equivalent to
the satisfaction of a partial type in L.

5. Emboundment

As we mentioned earlier, the multi-sorted approach to unbounded structures allows us to reduce
many issues concerning unbounded structures to their well-established analogues in bounded continuous
logic, but this does not work well for perturbations when we wish to perturb ν itself. In addition, if
the bounded balls are not definable in the unbounded structure then their introduction as sorts adds
unexpected structure – this may happen, for example, when considering a field equipped with a valuation
in R as an unbounded metric structure.

We could of course generalise everything we did to the unbounded case, but that would be extremely
tedious to author and reader alike. Instead, we seek a universal reduction of unbounded logic to the more
familiar (and easier to manipulate) bounded one. This reduction goes through a construction which we
call emboundment. Thus, for example, a bounded set X ⊆ Mn in an unbounded structure is said to
be definable (a term we knowingly used above without a definition) if it is definable in the embounded
structure M∞. An easy verification yields that this is equivalent to the predicate d(x̄, X) being definable
in M , i.e., a uniform limit of formulae on every bounded set. (See [Bena] for definable sets in bounded
structures.)

One näıve approach would be to choose a continuous function mapping R+ into [0, 1], say θ(x) =
1 − e−x, and apply it to all the predicate symbols: for every L-structure M we define Mθ as having
the same underlying set, and for every predicate symbol P we define PM

θ

(ā) = θ(PM (ā)). It can be
verified that θ(x + y) ≤ θ(x) + θ(y) for all x, y ≥ 0 (this is true when x = 0, and the partial derivative
with respect to x of the left hand side is smaller). It follows that dM

θ

is a metric:

dM
θ

(a, b) = θ(dM (a, b)) ≤ θ(dM (a, c) + dM (c, b))

≤ θ(dM (a, c)) + θ(dM (c, b)) = dM
θ

(a, b) + dM
θ

(a, b).

Of course dM
θ

needs not be a complete metric, so we obtain new elements when passing to the completion.
Similarly, if T θ = Th{Mθ : M � T}, then we have a natural embdding of Sn(T ) in Sn(T θ), and it can
be verified that the latter is the Stone-Čech compactification of the former. This is essentially the same
thing as allowing ∞ as a legitimate truth value (since θ extends to a homeomorphism [0,∞] → [0, 1]).
As usual with the Stone-Čech compactification, this adds too many new types to be manageable. In
short, this näıve construction does yield bounded structures but it is not at all clear that the structures
(or theories) thus obtained are meaningful. For example, even the following is not clear (to the author),
and one would expect it to be false:

Question 5.1. Is every model of T θ of the form Mθ, where M � T?

For a better approach, we take a second look on the construction of unbounded logic and its semantics,
as well as on the construction of unbounded ultra-products. Throughout these constructions appeared a
formal infinity element∞, which, while not a member of the structures, was treated for many intents and
purposes as if it were. Indeed, the quantifier semantics included ∞ in the set over which quantification
takes place, and the ultra-product construction could be restated informally as “add ∞, take a usual
ultra-product, then take ∞ out”. In particular, unbounded structures may be formally empty since,
from a practical point of view, they still always contain the ideal point at infinity.
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With this motivation in mind, we seek to equip each unbounded structure M with a new metric,
denoted dM

∞
such that every sequence (an) in M which goes to infinity in the sense that ν(an)→∞, is

Cauchy in dM
∞

, converging to a new element representing the formal infinity. Such a metric is naturally
bounded. Moreover, every predicate on M which is uniformly continuous under ν can be modified to
yield a bounded predicate which is in uniformly continuous in the usual sense with respect to dM

∞
. On

the other hand, this does not work well for function symbols (for example, we cannot give a sense to
∞ +∞ in the emboundment of a Banach space). We shall therefore replace every function symbol in
the language with its graph Gf (x̄, y) = d(f(x̄), y) as in Example 3.10, and assume that the signature L
is purely relational. We then define

L∞ = L ∪ {∞}

where ∞ is a new constant symbol. We may consider L to consist, as a set, of its non distinguished
symbols alone, in which case ν gets dropped (or more precisely, both d and ν are dropped, and then
L∞ is equipped with its own distinguished distance symbol d). Whether or not ν is kept will be of no
essential difference to the construction. We do not specify at this point the uniform continuity moduli,
but we shall show below that such moduli can be chosen that do fit our purpose.

For every L-structure M we define an L∞-structure M∞. Its domain is the set M∪{∞}. For elements
coming from M we interpret the symbols as follows (we recall that d(a,∞) = ν(∞) = ∞, θ(∞) = 1,
and ν(x̄) =

∨
ν(xi)):

dM
∞

(a, b) =
θ ◦ dM (a, b)
eνM (a)∧νM (b)

, PM
∞

(ā) =
θ ◦ PM (ā)
eνM (ā)

, (P 6= d).

So in particular:

dM
∞

(a,∞) = e−ν
M (a), PM

∞
(. . . ,∞, . . .) = 0, (P 6= d).

Notice that if we interpreted dM
∞

as with other symbols we would have dM
∞

(a,∞) = 0 for all a,
and thus not obtain a metric. Conversely, we can reconstruct M from M∞, first recovering νM from
dM
∞

(x,∞) and then recovering dM and PM from dM
∞

and PM
∞

, respectively, using the fact that
θ−1(y) = − ln(1− y).

Let us show that dM
∞

is a metric. The only non trivial property to verify is the triangle inequality,
namely

θ ◦ dM (a, c)
eνM (a)∧νM (c)

≤ θ ◦ dM (a, b)
eνM (a)∧νM (b)

+
θ ◦ dM (b, c)
eνM (b)∧νM (c)

.

If b has the smallest gauge among the three then this follows from the fact that θ ◦dM is a metric, which
we verified earlier. Otherwise we may assume without loss of generality that a has the smallest gauge,
say r. Let t = dM (a, b), s = dM (b, c). Then νM (b) ≤ r + t and dM (a, c) ≤ t + s, and it is enough to
verify that

θ(t+ s)
er

= e−r − e−r−t−s = e−r + e−r−t + e−r−t − e−r−t−s =
θ(t)
er

+
θ(s)
er+t

.

Once we know that d∞ is a metric it is clear that an →∞ in dM
∞

if and only if νM (an)→∞.

Example 5.2. Let M be a bounded structure, and turn it into an unbounded structure M ′ as in Exam-
ple 2.4. Then M ∼= (M ′)∞ r {∞}, so all we did was add a single isolated point with distance 1 to the
original structure.

Lemma 5.3. The gauged space (M,dM , νM ) and the bounded metric space (M,dM
∞

) are related as
follows:
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(i) We have dM ≥ dM∞ on all of M , and the two metrics are uniformly equivalent on every bounded
subset of M (bounded in the sense of M).

(ii) For every r′ > r the ν-ball Mν<r′ contains a uniform dM
∞

-neighbourhood of Mν≤r (of radius
θ(r′−r)
er = e−r − e−r′).

Proof. The inequality dM ≥ dM
∞

is immediate. Let us fix r ≥ 0 and let a ∈ Mν≤r, b ∈ M . Then by
definition dM

∞
(a, b) ≥ θ◦dM (a,b)

er . Thus, for all ε > 0

dM
∞

(a, b) <
θ(ε)
er

=⇒ dM (a, b) < ε,

concluding the proof of the first item. This also proves the third item, since

BdM∞

(
Mν≤r,

θ(r′ − r)
er

)
⊆ Bd(Mν≤r, r′ − r) ⊆Mν<r′ . �5.3

Proposition 5.4. For every L-structure M , M∞ as defined above is an L∞-structure, called the em-
boundment of M . That is to say that M∞ is complete, and that we can complete the definition of L∞
choosing uniform continuity moduli for its symbols which are satisfied in every M∞.

Proof. For completeness, let (an)n∈N be a Cauchy sequence in dM
∞

. If ν(an) → ∞ (where again,
ν(∞) =∞) then an →∞ in d∞. Otherwise, there is r such that an ∈Mν<r infinitely often. Passing to
a sub-sequence, we may assume that the entire sequence fits inside Mν<r. By Lemma 5.3(i) the sequence
is Cauchy in dM and therefore admits a limit in M , which is necessarily also its limit in dM

∞
.

For uniform continuity, let P ∈ L be an (n + 1)-ary predicate symbol. Let ε > 0 be given, and we
wish to find δ > 0 such that for all a, b ∈M∞

dM
∞

(a, b) ≤ δ =⇒ sup
x̄
|P (a, x̄)− P (b, x̄)|M

∞
≤ ε.

First, if ν(a), ν(b) ≥ − ln ε (where ν(∞) = ∞) then the above is satisfied regardless of dM
∞

(a, b).
Otherwise, without loss of generality we have ν(a) < − ln ε. If in addition dM

∞
(a, b) < ε − ε2 then

ν(b) < −2 ln ε by Lemma 5.3(ii). Since PM and νM are uniformly continuous with respect to dM on
Mν<−2 ln ε, so is PM

∞
. By Lemma 5.3(i), P is uniformly continuous with respect to dM

∞
on Mν<−2 ln ε,

whence the existence of δ as desired. �5.4

It is straightforward to verify that the emboundment construction commutes with the ultra-product
construction, since everything is continuous:(∏

Mi/U
)∞

=
∏

M∞i /U .

In particular, all the tuples (ai) such that limU νMi(ai) =∞, which were dropped during the construc-
tion of

∏
Mi/U , satisfy [ai] = [∞Mi ] =∞ in

∏
M∞i /U .

Similarly, emboundment commutes with unions of increasing chains, and by Lemma 3.7 we have
M ≡ N ⇐⇒M∞ ≡ N∞ for any two L-structures M and N . If N ⊆M then working with L(N) we get
N � M ⇐⇒ N∞ � M∞. Similarly, if N ′ � M∞ where N ′ is an L∞-structure then we can recover an
L-structure on N = N ′ r {∞} ⊆M , so N ′ = N∞ and N �M .

Proposition 5.5. Let K be a class of L-structures, and let

K∞ = {M∞ : M ∈ K}.
Then K is elementary if and only if K∞ is.

Proof. Assume K is elementary. Then, by the arguments above, K∞ is closed under ultra-products,
isomorphism and elementary substructures. It is therefore elementary. Similarly for the converse. �5.5
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By Proposition 5.5 we may replace every L-theory T (in unbounded logic) with its emboundment
T∞ = ThL∞(Mod(T )∞), which is a theory in standard bounded logic. By naming constants we further
see that L-types of tuples in M are in bijection with L∞-types of tuples in M∞r{∞} (i.e., in M again,
but this time viewed as a subset of a L∞-structure).

Given a tuple ā ∈ M∞, let w = w(ā) = {i < n : ai 6= ∞}. Then we may identify tpM
∞

(ā) with
the pair (w, tpM (a∈w)). We can therefore express the set of types Sn(T∞) as

⋃
w⊆n{w} × S|w|(T ). For

w ⊆ n, r ∈ R+ and ϕ(x∈w) ∈ L, define:

Vn,w,r,ϕ =

{
(v, q(x∈v)) ∈ Sn(T∞) :

w ⊆ v ⊆ n, ϕq < 1,∧
i∈vrw

ν(xi)q > r

}
.

Given a type (w, p) ∈ Sn(T∞), one can verify that the family of all sets of the form Vn,w,r,ϕ where
ϕp = 0 forms a base of neighbourhoods for (w, p). In particular, the natural inclusion Sn(T ) ↪→ Sn(T∞),
consisting of sending p 7→ (n, p), is an open topological embedding. In case T is complete (so |S0(T )| = 1),
this embedding for n = 1 is a single point compactification of S1(T ) obtained by adding the type at
infinity. We may therefore also refer to T∞ as the compactification of T .

Once we understand types we know what saturation means. Among other things we have:

Lemma 5.6. An L-structure M is approximately ℵ0-saturated if and only if M∞ is.

Proof. Follows from the facts that there is a unique point at infinity, which belongs to M∞, and that in
the neighbourhood of every other point dM and dM

∞
are equivalent. �5.6

Finally, we point out that the theory T is bounded to begin with if and only if the point at infinity
in models of T∞ is isolated, in analogy with what happens when one attempts to add a point at infinity
to a space which is already compact.

6. Perturbations of unbounded structures

We now adapt the framework of perturbation of bounded metric structures to unbounded structures,
essentially by reducing the unbounded case to the bounded one through emboundment. For this purpose
we assume close familiarity with the original development in [Benc]. We fix an unbounded theory T and
its emboundment T∞.

Definition 6.1. A perturbation pre-radius for T is defined as for a bounded theory, i.e., as a family
ρ = {ρn ⊆ Sn(T ) : n ∈ N} containing the diagonals. We define Xρ, Pertρ(M,N), BiPertρ(M,N), 〈ρ〉,
JρK as in [Benc].

Let ρ be a perturbation pre-radius for T . We can always extend it to a perturbation radius ρ∗ for
T∞ by:

ρ∞n =
{

((w, p), (w, q)) ∈ Sn(T∞) : w ⊆ n, (p, q) ∈ ρ|w|
}
.

Clearly, this is a perturbation pre-radius for T∞. Conversely, if ρ′ is a perturbation pre-radius for T∞

then its restriction to S(T ), denoted ρ′�S(T ), is a perturbation pre-radius for T , and as the inclusion
Sn(T ) ⊆ Sn(T∞) is open we have the identity:

ρ∞�S(T ) = ρ.

Also, as every f ∈ Pertρ(M,N) extends to f ∪ (∞ 7→ ∞) ∈ Pertρ∞(M∞, N∞), we also have 〈ρ∞〉�S(T ) ≥
〈ρ〉.

We define perturbation radii for T directly by reduction to T∞:



CONTINUOUS FIRST ORDER LOGIC FOR UNBOUNDED METRIC STRUCTURES 17

Definition 6.2. (i) Let ρ′ be a perturbation pre-radius for T∞. We say that ρ′ separates infinity
if for all f ∈ Pertρ′(M∞, N∞) and a ∈M∞:

a =∞⇐⇒ f(a) =∞.

(ii) A perturbation pre-radius ρ for T is a perturbation radius if ρ∞ is a perturbation radius for T∞

which separates infinity.

Definition 6.3. A perturbation pre-system for T is a decreasing family p of perturbation pre-radii
satisfying downward continuity, symmetry, triangle inequality and strictness as in [Benc, Definition 1.23].
It is a perturbation system if p(ε) is a perturbation radius for all ε, i.e., if p∞ is a perturbation system
separating infinity for T∞.

We turn to characterise perturbation radii as in [Benc], and establish more precisely the relation
between perturbations of T and of T∞.

Definition 6.4. Let ρ a perturbation pre-radius for T .
(i) We say that ρ respects infinity if for all r ∈ R+ there exists r′ ∈ R+ such that

[ν(x) ≥ r′]ρ ⊆ [ν(x) ≥ r] and [ν(x) ≤ r]ρ ⊆ [ν(x) ≤ r′].

(ii) We define when ρ respects equality, respects ∃, or is permutation-invariant as in the bounded
case.

Proposition 6.5. Let ρ be a perturbation pre-radius for T . The the following are equivalent:
(i) ρ is a perturbation radius.

(ii) ρ respects infinity, and for every n,m ∈ N and mapping σ : n → m, the induced mapping
σ∗ : Sm(T )→ Sn(T ) satisfies that for all p ∈ Sm(T ):

σ∗(pρ) = σ∗(p)ρ.

(I.e., σ∗ ◦ ρm = ρn ◦ σ∗ as multi-valued functions).
(iii) ρ respects ∞, =, ∃, and is permutation-invariant.
(iv) ρ∞ separates ∞, respects = and ∃ and is permutation-invariant.

Proof. (i) =⇒ (ii). Assume ρ is a perturbation radius, so ρ∞ is a perturbation radius respecting
infinity. If ρ does not respect infinity, then by definition of ρ∞ we have in ρ∞1 a pair (p, q) where p is the
type of a finite elements and q = tp(∞) or vice versa, contradicting the assumption on ρ∞.

Since ρ∞ is a perturbation radius, for all σ : n → m we have in S(T∞): σ∗ ◦ ρ∞m = ρ∞n ◦ σ∗. As ρ∞

also separates infinity we can restrict this to S(T ) and obtain σ∗ ◦ ρm = ρn ◦ σ∗.
(ii) =⇒ (iii). By restricting to the case where σ is the mapping 2→ 1, n ↪→ n+ 1, or a permutation

of n ∈ N.
(iii) =⇒ (iv). By a mirror-image to the argument above, if ρ respects ∞ then ρ∞ must separate ∞.
We claim that since ρ respects ∞ and ∃ and is permutation-invariant, we have for all n ∈ N:

ρ∞n =
{

((w, p), (w, q)) ∈ Sn(T∞) : w ⊆ n, (p, q) ∈ ρ|w|
}

(i.e., the right hand side is a closed set). Indeed, assume we have pairs ((wi, pi), (wi, qi)) for i ∈ I and U
is an ultra-filter on I, and let ((v, p), (u, q)) = limU ((wi, pi), (wi, qi)). We need to show that v = u and
(p, q) ∈ ρ|v|. First, as there are finitely many possibilities for wi ⊆ n we may assume that wi = w ⊆ n
for all i. Then we might as well assume w = n throughout.

For s ⊆ n, let psi and qsi be the restrictions of pi and qi, respectively, to x∈s. As ρ respect ∃ and is
permutation-invariant, (psi , q

s
i ) ∈ ρ|s|. As ρ respects infinity we have:

k /∈ v ⇐⇒ p
{k}
i →U tp(∞)⇐⇒ q

{k}
i →U tp(∞)⇐⇒ k /∈ u.
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Therefore v = u, and as ρ|v| is closed (p, q) = limU (pvi , q
v
i ) ∈ ρ|v|. This proves our claim.

It is now immediate that as ρ respects = and ∃ and is permutation-invariant, the same holds of ρ∞.
(iv) =⇒ (i). Since then ρ∞ is a perturbation radius. �6.5

Corollary 6.6. Perturbation systems p for T are in a natural one-to-one correspondence with families
{dp,n : n ∈ N}, in which each dp,n is a [0,∞]-valued metric on Sn(T ), and such that:

(i) For every n, the set
{

(p, q, ε) ∈ Sn(T )2 × R+ : dp,n(p, q) ≤ ε
}

is closed.
(ii) For every n,m ∈ N and mapping σ : n→ m, the induced mapping σ∗ : Sm(T )→ Sn(T ) satisfies

for all p ∈ Sm(T ) and q ∈ Sn(T ):

dp,m(p, (f∗)−1(q)) = dp,n(f∗(p), q).

(Here we follow the convention that dp,m(p,∅) = inf ∅ =∞.)
(iii) For every r ∈ R+ there is r′ ∈ R+ such that if p, q ∈ S1(T ) and dp,1(p, q) ≤ r, then

ν(x)p ≥ r′ =⇒ ν(x)q ≥ r
Similarly, perturbation pre-systems are in one-to-one correspondence with families of metrics satisfying
the first condition alone.

Proof. Same as [Benc, Lemma 1.24], where condition (iii) corresponds to the requirement that every
p(ε) respect infinity. �6.6

Let us fix a perturbation system p for T , and let p∞ be the corresponding perturbation system for
T∞. As for plain approximate ℵ0-saturation, we have

Lemma 6.7. A model M � T is p-approximately ℵ0-saturated if and only if M∞ is p∞-approximately
ℵ0-saturated.

Proof. As for Lemma 5.6. �6.7

In particular, and two separable p-approximately ℵ0-saturated models of T must be p-isomorphic.
Similarly:

Lemma 6.8. Two models M,N � T are p-isomorphic if and only if M∞ and N∞ are p∞-isomorphic.
The theory T is p-ℵ0-categorical if and only if T∞ is p∞-ℵ0-categorical.

We conclude that [Benc, Theorem 3.5] holds as stated for unbounded structures:

Theorem 6.9. Let T be a complete countable unbounded theory, p a perturbation system for T . Then
the following are equivalent:

(i) The theory T is p-ℵ0-categorical.
(ii) For every n ∈ N, finite ā, p ∈ Sn(ā) and ε > 0, the set [pp(ε)(x̄ε, āε)] has non empty interior in

Sn(ā).
(iii) Same restricted to n = 1.

Proof. The idea is to reduce to [Benc, Theorem 3.5]. Most of the reduction is in the preceding results:
T is complete if and only if T∞ is, T is p-ℵ0-categorical if and only if T∞ is p∞-ℵ0-categorical, etc. The
last thing to check is that the property

p(x̄, ā) ∈ Sn(ā), ε > 0 =⇒ [pp(ε)(x̄ε, āε)]◦ 6= ∅(∗)
holds for T, p if and only it holds for T∞, p∞.

Indeed, assume first (∗) holds for T∞, p∞. Let ā ∈M � T , p(x̄, ā) ∈ Sn(ā). Then ā can be viewed also
as a tuple in M∞ � T∞, and we can identify p(x̄, ā) with a type p∞(x̄, ā) ∈ SL

∞

n (ā). Then pp(ε)(x̄, ȳ)
and p∞p∞(ε)(x̄, ȳ) coincide more or less by definition, and fit in Sν≤r(T ) for some r ∈ R+. It is not true
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that pp(ε)(x̄ε, ȳε) and p∞p∞(ε)(x̄ε, ȳε) coincide since in the metrics on models of T and T∞ differ. But
as everything fits inside some ν-ball, and the two metrics are uniformly equivalent on every ν-ball, we
can still find ε′ > 0 such that

[p(ε)(x̄ε, ȳε)]◦ ⊇ [p∞p∞(ε′)(x̄ε
′
, ȳε
′
)]◦ 6= ∅.

For the converse, consider a finite tuple ā ∈ M∞ � T∞, and a type p(x̄, ā) ∈ SL
∞

n (ā). As ∞ is
definable in T∞ (it is the unique element satisfying P1(x) = 0, for example) we never need it as a
parameter, so we may assume that ā ∈ M . Assume first that p(x̄, ā) says that all xi are finite as well.
Then in fact p(x̄, ā) ∈ SLn(ā), and we conclude as above by the uniform equivalence of the metric. In the
general case we may need to write p(x̄, ȳ) as (w, q) where w ⊆ |x̄, ȳ|, and q ∈ S|w|(T ). Then q is a type
of finite elements and is taken care of by the previous case, while the infinite coordinates are taken care
of by the fact that ∞ is definable, so [dL

∞
(x,∞) < ε] defines an open set in SL

∞
(ā). �6.9

The discussion at the end of [Benc, Section 3], and in particular the characterisation of p-ℵ0-
categoricity for an open perturbation system p by coincidence of topologies ([Benc, Theorem 3.15]),
can be transferred to an unbounded theory T via reduction to T∞ in precisely the same way.

7. An example: Henson’s categoricity theorem

Let T0 be the (unbounded) theory of pure Banach spaces as given in Example 3.8.

Definition 7.1. Let E and F be Banach spaces (i.e., models of T0). Say that a mapping f : E → F is
an ε-isomorphism if it is an isomorphism of the underlying vector spaces, and satisfies in addition:

∀v ∈ E e−ε‖v‖ ≤ ‖f(v)‖ ≤ eε‖v‖.

Definition 7.2. Let ā ∈ E0 � T0. Define the Banach-Mazur distance between two types p, q ∈ Sn(ā),
denoted dBM,n(p, q), as the minimal ε > 0 such that there exist models (E, ā), (F, ā) � Th(E0, ā), and
tuples b̄ ∈ E, c̄ ∈ F realising p and q, respectively, and an ε-isomorphism f : E → F fixing ā and sending
b̄ to c̄. If no such ε > 0 exists then dBM,n(p, q) =∞.

The following result is very similar to an unpublished result communicated to the author orally by
C. Ward Henson. It is one of the original motivations for the present paper as well as for [Benc].

Corollary 7.3. Let T be a complete theory of Banach spaces with no additional structure (i.e., a
completion of T0). Then the following are equivalent:

(i) If E and F are two separable models of T , then for every ε > 0 there exists an ε-isomorphism
(i.e., a bijective ε-embedding) from E to F .

(ii) For n ∈ N and finite tuple ā ∈ E � T , let S∗n(ā) be the space of types of n-tuples which are
linearly independent over ā. Then every Banach-Mazur ball in S∗n(ā) has non empty interior in
the logic topology on S∗n(ā).

Proof. First we observe that the Banach-Mazur distance defines a perturbation system BM by Corol-
lary 6.6. Therefore, by Theorem 6.9, the first condition is equivalent to the one saying that for all ε > 0
and p(x̄, ā) ∈ Sn(ā): [pBM(ε)(x̄ε, āε)]◦ 6= ∅ in Sn(ā). We need to show that this is equivalent to the
second condition. Since the Banach-Mazur perturbation preserves linear dependencies we may drop su-
perfluous parameters and always assume that the tuple ā is linearly independent. Thus, if p(x̄, ā) ∈ S∗(ā)
then p(x̄, ȳ) ∈ S∗(T ).

Observe also that S∗n(ā) is a dense open subset of Sn(ā) (indeed, it is metrically dense there in the
usual metric on types). It follows that a subset X ⊆ S∗n(ā) has the same interior in Sn(ā) and in S∗n(ā),
so we may simply speak of its interior. Moreover, a subset X ⊆ Sn(ā) has non empty interior if and only
if X ∩ S∗n(ā) has.
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For left to right, let us show that if p ∈ S∗n(T ) and ε > 0 then there exists δ > 0 such that [p(x̄δ)] ⊆
[pBM(ε)]. So let Λ = {λ ∈ Fn :

∑
|λi| = 1}, i.e., the (compact) space of all formal linear combinations of

n variables of ‖ · ‖1-norm 1, and let s = min{‖λ(x̄)‖p(x̄) : λ ∈ Λ} > 0. We claim that δ = sε
2n > 0 will do.

Indeed, let q ∈ [p(x̄δ)]. Let E be a model, b̄, c̄ ∈ E such that b̄ � p, c̄ � q and ‖bi − ci‖ ≤ δ for all
i < n. For i < n define a linear functional ηi : Span(b̄)→ F by ηi (

∑
λjbj) = λi. Then ‖ηi‖ ≤ s−1, and

by the Hahn-Banach Theorem we may extend them to η̃i : E → F such that ‖η̃i‖ ≤ s−1. Define a linear
operator S : E → E by S(x) =

∑
i η̃i(x)(bi − ci). Then a simple calculation shows that S(bi) = bi − ci

and ‖S‖ ≤ ε/2. Assuming ε was small enough to begin with (which we may), I − S is invertible, its
inverse being I + S + S2 + . . .. Finally, for all v ∈ E:

e−ε‖v‖ ≤ (1− ε/2)‖v‖ ≤ ‖v − S(v)‖ ≤ (1 + ε/2)‖v‖ ≤ eε‖v‖.

We conclude that I − S is an ε-automorphism sending b̄ to c̄, so q ∈ pBM(ε).
Re-choosing our numbers we find ε/2 > δ > 0 such that that [p(x̄δ)] ⊆ [pBM(ε/2)(x̄)], so [p(x̄δ)]BM(δ) ⊆

[pBM(ε)(x̄)]. As the former has non empty interior so does the latter (in Sn(T ) as well as when restricted
to S∗n(T )). When considering parameters we have p(x̄, ā) ∈ S∗n(ā) such that p(x̄, ȳ) ∈ S∗n+m(T ), so we find
δ > 0 such that [p(x̄δ, ȳδ)]BM(δ) ⊆ [pBM(ε)(x̄, ȳ)], and thus [p(x̄δ, āδ)]BM(δ) ⊆ [pBM(ε)(x̄, ā)], concluding
as above.

For the other direction, let us show that for all p ∈ Sn(T ) and ε > 0, [pBM(ε)(x̄ε)]◦ 6= ∅. Assume first
that p ∈ S∗n(T ). Then [pBM(ε)]◦ 6= ∅ in S∗n(T ), and therefore in Sn(T ), as S∗n(T ) is open in Sn(T ). In
case p /∈ S∗n(T ) we need to be more delicate. Up to a permutation of the variables we may assume that
p is of the form p(x<m, y<k), where m+ k = n, q(x̄) = p�x̄ ∈ S∗m(T ), and p `

∧
i<k(yi = λi(x̄)) for some

linear combinations λi.
Then we know there is a formula ϕ(x̄) such that ∅ 6= [ϕ < 1/2] ⊆ qBM(ε). Then in Sn(T ) we have:

∅ 6= [ϕ(x̄) < 1/2] ∩
⋂
i<k

[d(yi, λi(x̄)) < ε]

⊆ [pBM(ε)(x̄, ȳε)]

⊆ [pBM(ε)(x̄ε, ȳε)].

Indeed, if p′ ∈ [ϕ(x̄) < 1/2] ∩
⋂
i<k[d(yi, λi(x̄)) < ε], then there is p′′ ∈ [p′(x̄, ȳε)] such that p′�x̄ = p′′�x̄,

and p′′ `
∧
i<k(yi = λi(x̄)). As ϕ(x̄)p

′′
< 1/2, we have p′′�x̄ ∈ qBM(ε). We by variable-invariance we may

find p′′′ ∈ (p′′)BM(ε) such that p′′′�x̄ = q. As the linear structure is left untouched by the Banach-Mazur
perturbation we must have p′′′(x̄, ȳ) `

∧
i<k(yi = λi(x̄)), so in fact p′′′ = p, as required.

The case with parameters is proved identically (with each yi being equal to a linear combination of x̄
and ā). �7.3
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