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Abstract. It is well-known that a topological group can be represented as a group of isometries of

a reflexive Banach space if and only if its topology is induced by weakly almost periodic functions

(see [Sht94], [Meg01b] and [Meg07]). We show that for a metrisable group this is equivalent to the
property that its metric is uniformly equivalent to a stable metric in the sense of Krivine and Maurey

(see [KM81]). This result is used to give a partial negative answer to a problem of Megrelishvili.

!
a

This version corrects an erratum in the published paper. The only essential change is a strengthening
of the notion of uniformly equivalent pre-metrics. !

a

1. Introduction

In this paper we shall show that, for a topological group G equipped left-invariant metric, the topology
of G is induced by weakly almost periodic functions if and only if its metric is uniformly equivalent to
a stable one. This result allows to give simple proofs that several classical Banach spaces cannot be
represented as isometries of a reflexive Banach space.

We start by introducing some definitions and terminology. Let G be a topological group and let Cb(G)
denote the algebra of continuous, bounded, complex-valued functions on G equipped with the supremum
norm.

Definition 1.1. A function f ∈ Cb(G) is said to be weakly almost periodic if the set of left translates
{fx : x ∈ G} (where fx(y) = f(xy)) is a relatively weakly compact subset of Cb(G).

The set of all weakly almost periodic functions on G forms a closed subalgebra of Cb(G) which we
shall denote by WAP(G). The functions in WAP(G) can be characterised by the following criterion due
to Grothendieck (see [Gro52] for a proof):

Fact 1.2 (Grothendieck’s Criterion). A function f ∈ Cb(G) is weakly almost periodic if and only if for
all sequences (sn)n, (tm)m in G, we have

lim
n→∞

lim
m→∞

f(sntm) = lim
m→∞

lim
n→∞

f(sntm)

whenever the limits exist. Equivalently, f ∈WAP(G) if and only if for all sequences (sn)n, (tm)m in G
and ultrafilters U , V on N we have

lim
n,U

lim
m,V

f(sntm) = lim
m,V

lim
n,U

f(sntm).

We recall that, given a countable set {xn : n ∈ N} in a topological space and an ultrafilter U on N, we
write limn,U xn = L if for every neighbourhood N of L the set {n ∈ N : xn ∈ N} belongs to U .
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2 ITAÏ BEN YAACOV, ALEXANDER BERENSTEIN, AND STEFANO FERRI

It is a classical result due to A. I. Shtern (see [Sht94]) that every compact semitopological group (and
so a fortiori every compact topological group) can be represented as a group of isometries of a reflexive
Banach space equipped with the weak operator topology. We recall that the weak operator topology
on the space B(E) of all continuous linear endomorphisms of a Banach space E is the weak topology
induced by the maps ψv,f (T ) = 〈f, Tv〉; where v ∈ E, f ∈ E∗, and 〈·, ·〉 is the duality pairing between
E and E∗.

Another classical result states that the weak operator topology on the unitary group of a Hilbert
space coincides with its strong operator topology (the strong topology on B(E) is defined as the weak
topology induced by the maps ρv(T ) = T (v), v ∈ E). The same result is true for the isometry group of
any reflexive Banach space (see [Meg01b]).

Moreover, on a compact semitopological semigroup every function on Cb(G) is weakly almost periodic.
The following theorem (see [Sht94], [Meg01b] and [Meg02]) relates the richness of the algebra WAP(G)
to the property that G can be embedded into the isometry group of a reflexive Banach space.

Fact 1.3. Let G be a topological group. Then there is a topological isomorphism of G into the isometry
group of a reflexive Banach space with the weak (or the strong) operator topology if and only if the
topology of G is induced by WAP(G), that is if and only if WAP(G) separates the identity e of G from
every closed subset not containing e.

If a group satisfies the two equivalent properties of the previous theorem it is said to be reflexively
representable.

When G is locally compact, the left regular representation λ(g)(f(x)) = f(g−1x), g ∈ G, f ∈ Lp(G,µ),
p ≥ 2, where µ is the left Haar measure, establishes a topological isomorphism of G into the isometry
group of the reflexive Banach space Lp(G). Locally compact groups are therefore reflexively representable
(it can also be proved directly that locally compact groups have enough weakly almost periodic functions
to separate points from closed sets). On the opposite extreme we find the group H+[0, 1] of all orientation
preserving homeomorphisms of the interval [0, 1] with the topology of uniform convergence on compact
subsets. It was proved by Megrelishvili ([Meg01a]) that this group has no nonconstant weakly almost
periodic function.

Fact 1.4. Let G be a topological group, f ∈WAP(G). Then f is both right and left uniformly continuous,
meaning that for every ε > 0 there exists a neighbourhood e ∈ U such that |f(x)−f(xg)|, |f(x)−f(gx)| < ε
for every x ∈ G, g ∈ U .

Proof. [Usp02], discussion following Theorem 5.3. �1.4

We pass now to the definition of a stable metric.

Definition 1.5. We say that a metric d(x, y) is stable if for all bounded sequences (sn)n, (tm)m in G
(meaning there is an M such that d(e, sn) ≤M , d(e, tm) ≤M for all n and all m), and for all ultrafilters
U , V on N we have

lim
n,U

lim
m,V

d(sn, tm) = lim
m,V

lim
n,U

d(sn, tm).

Thus, a bounded left-invariant metric d on a group G is stable if and only if the function f(x) = d(e, x)
is weakly almost periodic. If G is the additive group of a Banach space E, this is further equivalent to
E being stable in the sense of Krivine and Maurey [KM81].

In what follows we shall study the relation between stable metrics and reflexive representability for
metrisable groups. In particular, we shall prove that for metrisable groups, being reflexively representable
is the same as having their metric uniformly equivalent to a stable one.

The strategy of the proof will be to construct a stable pre-metric (defined below) using a Urysohn
technique and then to compose it with a suitable function to make it a stable metric. In the next section
we shall concentrate only on how to construct this function.
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2. Correction of triangle deficiency

In this section we isolate a tool which has already been used by the first author in [Ben05, Ben]. This
tool allows one to extract, by a continuous manipulation, a metric from a pre-metric, namely, from a
binary function which would be a metric if not for the fact that it fails the triangle inequality (modulo
the additional assumption of local continuity).

Recall that a function f from a topological space X to R is upper semi-continuous if for every t the
set {x ∈ X : f(x) < t} is open in X. Equivalently, if whenever f(x) < t there exists a neighbourhood U
of x such that f�U < t.

Definition 2.1. Let g : (R+)2 → R+ be a symmetric, weakly increasing (i.e., non decreasing) function,
satisfying g(0, v) ≤ v for all v.

(i) We say that g is a strong TD function if in addition it is upper semi-continuous.
(ii) We say that g is a TD function if we only know that for every v < t there is δ > 0 such that

g(δ, v + δ) < t.

Notice that a weakly increasing function g : (R+)2 → R+ is upper semi-continuous if and only if
whenever g(u, v) < t there is δ > 0 such that g(u + δ, v + δ) < t. Thus strong TD implies TD.
Conversely, every TD function gives rise to a strong TD function as follows.

Lemma 2.2. Assume g is a TD function and let

g̃(u, v) = inf{g(u′, v′) : u′ > u, v′ > v}.
Then g̃ is a strong TD function and g ≤ g̃.

Proof. Clearly g̃ is symmetric and weakly increasing. Moreover, if g̃(u, v) < t there must exist by
definition δ > 0 such that g(u + 2δ, v + 2δ) < t, whence g̃

(
u + δ, v + δ

)
< t. Thus g is upper semi-

continuous. By assumption, for every v < t there is δ > 0 such that g(δ, v + δ) < t =⇒ g̃(0, v) < t.
Thus g̃(0, v) ≤ v, as desired. The inequality g ≤ g̃ follows directly from the assumption that g is weakly
increasing. �2.2

Definition 2.3. A pre-metric on a space X is a function h : X2 → R+ satisfying:

(i) Reflexivity: h(x, y) = 0⇐⇒ x = y.
(ii) Symmetry: h(x, y) = h(y, x).

We say that a pre-metric is locally continuous if for every ε > 0 there is δ > 0 such that:

h(x, y) < δ =⇒ |h(x, z)− h(y, z)| < ε.

We say that two pre-metrics h1 and h2 are uniformly equivalent if for every ε > 0 there is δ > 0 such
that:

hi(x, y) < δ =⇒ |hj(x, z)− hj(y, z)| < ε i, j ∈ {1, 2}.

Notice that a pre-metric is locally continuous if and only if it uniformly equivalent to itself, and that
if hi is actually a metric then we may replace the condition |hi(x, z)− hi(y, z)| < ε with hi(x, y) < ε.

A metric is always a pre-metric, and two metrics are uniformly equivalent as pre-metrics if and only
if each is uniformly continuous with respect to the other. A pre-metric h is a metric if and only if it
satisfies the triangle inequality. To every pre-metric h we may attach a function which measures its
triangle deficiency (TD):

TDh(u, v) = sup{h(x, z) : x, y, z ∈ X,h(x, y) ≤ u, h(y, z) ≤ v}.

Indeed, h satisfies the triangle inequality if and only if TDh(u, v) ≤ u+ v.

Lemma 2.4. Let h be a locally continuous pre-metric on X. Then TDh is a TD function.
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Proof. Clearly TDh is symmetric, weakly increasing and satisfies TDh(0, v) ≤ v. It remains to show
that for every v < t there is δ > 0 such that TDh(δ, v + δ) < t. By local continuity there is δ > 0 such
that h(x, y) < δ =⇒ |h(x, z)− h(y, z)| < t−v

2 for all x, y, z ∈ X. We may also assume that δ < t−v
2 .

Assume now that h(x, y) ≤ δ and h(y, z) ≤ v + δ < t+v
2 . By choice of δ we have h(x, z) < h(y, z) +

t−v
2 < t. Thus TDh(δ, v + δ) < t, as desired. �2.4

Definition 2.5. A correction function for g : (R+)2 → R+ is a continuous weakly increasing function
f : R+ → R+ satisfying:

(i) f(t) = 0⇐⇒ t = 0.
(ii) f ◦ g(u, v) ≤ f(u) + f(v).

Lemma 2.6. Let X be a space, h a locally continuous pre-metric on X and f a correction function for
TDh. Then d1 = f ◦ h is a metric on X, uniformly equivalent to h.

Proof. To see that f ◦h is a metric all we need to check is the triangle inequality. Let x, y, z ∈ X and let
u = h(x, y), v = h(y, z), w = h(x, z). Then w ≤ TDh(u, v), whereby f(w) ≤ f ◦TDh(u, v) ≤ f(u)+f(v),
as desired.

Now let ε > 0. The correction function f is continuous and thus uniformly continuous on the compact
[0, 1], so there exists δ > 0 such that t < δ =⇒ f(t) < ε. Conversely, f(ε) > 0 and f(t) < f(ε) =⇒ t < ε.
Thus h and f ◦ h are uniformly equivalent. �2.6

Lemma 2.7. Let g be a TD function. Then there exists a correction function f for g.

Proof. Let g be a TD function and let g̃ be as in Lemma 2.2. Then g̃ is strong TD and g ≤ g̃. If we g̃
admits a correction function f then f ◦ g ≤ f ◦ g̃, whereby f is a correction function for g as well. It is
therefore enough to prove that every strong TD function g admits a correction function.

Let D =
{

k
2n : n ∈ N, 0 < k ≤ 2n

}
be the set of dyadic numbers in ]0, 1]. We shall proceed with a

Urysohn style construction of f , choosing open sets Uq ⊆ R+ for q ∈ D satisfying Uq ⊆ {t : f(t) < q} ⊆
{t : f(t) ≤ q} ⊆ Uq′ where q < q′. Since we wish f to be weakly increasing, each such open set will be of
the form [0, rq[. It is therefore enough to choose the right end-points {rq}q∈D. We proceed as in [Ben05,
Lemma 2.19], so that for all q, q′ ∈ D we have:

(a) 0 < rq ≤ q,
(b) If q < q′ then rq < rq′ and g(rq, rq′−q) < rq′ .

We choose rq for q = k
2n ∈ D by induction on n. For n = 0 we choose r1 = 1, noticing that all the

requirements hold. Assume now that rq has already been chosen for all q ∈ Dn = { k
2n : 0 < k ≤ 2n},

and we wish to choose rq for q ∈ Dn+1 rDn, i.e., for q = k
2n+1 , 0 < k < 2n+1 odd. It will be convenient

to write q− = q − 1
2n+1 and q+ = q + 1

2n+1 , noticing that q+ ∈ Dn and q− ∈ Dn ∪ {0}.
In case q ≥ 3

2n+1 we have q± ∈ Dn. Let:

sq,q′ = sup{s ≤ 1: g(s, rq′) < rq−+q′}, q′ ∈ Dn ∩ [0, 1− q−](1)

sq = min{q, rq+ , sq,q′ : q′ ∈ Dn ∩ [0, 1− q−]},

rq =
rq− + sq

2
.

For q′ ∈ Dn ∩ [0, 1 − q−] we have g(rq− , rq′) < rq−+q′ by the induction hypothesis. Since g is upper
semi-continuous we obtain rq− < sq,q′ , and thus rq− < rq < sq ≤ rq+ .
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Let us now consider the case q = 1
2n+1 . For q′ ∈ Dn+1 ∩ [2q, 1] we have already chosen rq′ and we

may define:

sq,0 = sup{s ≤ 1: g(s, 12r2q) < r2q},(2)

sq,q′ = sup{s ≤ 1: g(s, rq′) < rq+q′}, q′ ∈ Dn+1 ∩ [2q, 1− q](3)

sq = min{q, r2q, sq,0, sq,q′ : q′ ∈ Dn+1 ∩ [2q, 1− q]},
rq = 1

2sq.

By assumption on g we have g(0, 12r2q) ≤ 1
2r2q < r2q, whereby sq,0 > 0. Similarly, if q′ ∈ Dn+1∩[2q, 1−q]

then g(0, rq′) ≤ rq′ < rq+q′ , so again sq,q′ > 0. Thus 0 < rq < sq ≤ rq+ .
Let us check that (a) and (b) hold. Indeed, rq < sq ≤ q and rq− < rq < rq+ (where r0 = 0),

ensuring that q 7→ rq is strictly positive and strictly increasing on Dn+1. We are left with checking that
if q, q′ ∈ Dn+1, q < q′, then g(rq, rq′−q) < rq′ . Possibly exchanging q with q′ − q we may assume that
q ∈ Dn+1 rDn. Les us consider cases:

(i) q ≥ 3
2n+1 , q′ − q ∈ Dn. Since rq < sq,q′−q we have by (1):

g(rq, rq′−q) < rq−+(q′−q) < rq′ .

(ii) q ≥ 3
2n+1 , q′ − q ∈ Dn+1 rDn. Since rq < sq,(q′−q)+ we have by (1):

g(rq, rq′−q) ≤ g(rq, r(q′−q)+) < rq−+(q′−q)+ = rq′ .

(iii) q = 1
2n+1 , q′ > 2q. Since rq < sq,q′−q we have by (3):

g(rq, rq′−q) < rq+(q′−q) = rq′ .

(iv) q = 1
2n+1 , q′ = 2q. Since rq < sq,0 and rq ≤ 1

2r2q we have by (2):

g(rq, rq) ≤ g(rq,
1
2r2q) < r2q.

We have thus verified that all the requirement hold and the inductive construction may proceed.
We define f : R+ → [0, 1] by

f(t) = sup{q ∈ D : rq < t} (where sup∅ = 0),

so in particular, f is continuous on the left. Since q 7→ rq is strictly increasing, this definition of f agrees
with

f(t) = inf{q ∈ D : rq > t} (where inf ∅ = 1),

whereby f is also continuous on the right, and thus continuous. It is clear that f is weakly increasing (it
is constant on [1,∞)) and that f(0) = 0. On the other hand, if f(t) = 0 then t < rq ≤ q for all q ∈ D,
so t = 0. Finally, assume that f(u) + f(v) < t. If t > 1 then f ◦ g(u, v) ≤ 1 < t directly. Otherwise,
we have f(u) < t1, f(v) < t2 = t − t1. By definition of f there are q1 < t1 and q2 < t2 in D such that
rq1 > u, rq2 > v. Then:

g(u, v) ≤ g(rq1 , rq2) < rq1+q2 =⇒ f ◦ g(u, v) ≤ q1 + q2 < t.

Thus f ◦ g(u, v) ≤ f(u) + f(v), and f is a correction function for g as desired. �2.7

Theorem 2.8. Let X be a set, h a pre-metric on X. Then h is locally continuous if and only if it is
uniformly equivalent to a metric on X. Moreover, this metric can be taken to be of the form f ◦h where
f : R+ → R+ is continuous.
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Proof. It is easy to check that if h is uniformly equivalent to a metric d on X then it is locally continuous.
Conversely, assume h is locally continuous. Then TDh is a TD function by Lemma 2.4. By Lemma 2.7
there exists a correction function f for TDh. Finally, by Lemma 2.6, f ◦h is a metric uniformly equivalent
to h. �2.8

3. Stability and WAP-functions

We start the section with a lemma which will allow us to consider only bounded metrics in our proofs.

Lemma 3.1. Let G be a metric group with a stable metric d, then δ(x, y) := d(x,y)
1+d(x,y) is also stable.

Proof. Consider now two sequences, call them (an)n and (bm)m, of elements of G and let U and V be
two non-principal ultrafilters on N. We want to show that

lim
n,U

lim
m,V

δ(an, bm) = lim
m,V

lim
n,U

δ(an, bm).

Given N ∈ N define UN := {n ∈ N : d(e, an) < N} and VN := {m ∈ N : d(e, bm) < N}. Let also
ε > 0 and let L = 1/ε, so x ≥ L implies x/(1 + x) > 1− ε. We proceed by cases:

Case 1: There is N ∈ N such that UN ∈ U and VN ∈ V.
Since d(x, y) is stable, we get that

lim
n,U

lim
m,V

d(an, bm) = lim
m,V

lim
n,U

d(an, bm).

On the other hand, since f(x) = x/(1 + x) is uniformly continuous, we get

lim
n,U

lim
m,V

δ(an, bm) = lim
n,U

lim
m,V

f(d(an, bm)) = lim
m,V

lim
n,U

f(d(an, bm)) = lim
m,V

lim
n,U

δ(an, bm).

Case 2: There is N ∈ N such that UN ∈ U but that for all M > 0 we have VM /∈ V.
For n ∈ N we have

{m ∈ N : d(an, bm) ≥ L} ⊇ {m ∈ N : d(bm, e) ≥ L+ d(e, an)} ∈ V,

whereby

lim
m,V

δ(an, bm) ∈ [1− ε, 1]

and thus

lim
n,U

lim
m,V

δ(an, bm) ∈ [1− ε, 1].

On the other hand, assume m /∈ VN+L. Then

{n ∈ N : d(an, bm) > L} ⊇ {n ∈ N : d(an, e) < N} ∈ U ,

so

lim
n,U

δ(an, bm) ∈ [1− ε, 1],

and since (VN+L)c ∈ V:

lim
m,V

lim
n,U

δ(an, bm) ∈ [1− ε, 1].

Since ε > 0 is arbitrary, we obtain

lim
n,U

lim
m,V

δ(an, bm) = 1 = lim
m,V

lim
n,U

δ(an, bm).

Case 3: For all N ∈ N we have UN /∈ U and VN /∈ V.
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Just like in the previous case, we show that

lim
n,U

lim
m,V

δ(an, bm) = 1 = lim
m,V

lim
n,U

δ(an, bm). �3.1

We are now ready to prove the main result of our paper, namely, that a metrisable group is reflexive
representable if and only if its metric is uniformly equivalent to a stable metric. We shall prove separately
the two implications.

Chaatit [Cha96] proved that the additive group of any stable separable Banach space can be repre-
sented as a group of isometries of a separable reflexive Banach space. First we show, applying results
by Shtern (Fact 1.3), that any stable group is reflexively representable.

Proposition 3.2. Assume that G is a group equipped with a left-invariant stable metric d. Then G is
reflexively representable.

Proof. By Lemma 3.1 we can assume without loss of generality that d is bounded. By Grothendieck’s
Criterion (Fact 1.2), and since d(x, y) = d(e, x−1y) is a stable distance, the function f(x) = d(e, x) is
weakly almost periodic. Clearly it separates the identity from every closed set not containing it. By
Fact 1.3, G is reflexively representable. �3.2

Conversely,

Theorem 3.3. Let G be a group equipped with a left-invariant metric, and assume that G is reflexively
representable. Then there is a left-invariant stable metric δ on G that is equivalent to d.

Proof. As in the previous result, by Lemma 3.1 we may assume that d is bounded, and using the results
proved in the previous section it suffices to produce a left-invariant stable locally continuous pre-metric
uniformly equivalent to d.

We now construct by induction a sequence of symmetric functions fn : G −→ [0, 1] in WAP(G) (here,
f symmetric means that f(g) = f(g−1) for all g ∈ G) and radii rn > 0 such that the following conditions
hold:

(a) fn�B(e,rn+1) = 0, where B(e, r) denotes the open ball of radius r around e.

(b) fn�GrB(e,rn) = 1,

(c) rn ≤ 2−n.

We start with r0 = 1. Given rn we choose fn and rn+1 as follows. First, by Fact 1.3 and our hy-
pothesis, the algebra WAP(G) separates points from closed sets. Therefore there exists a function
fn : G −→ [0, 1] in WAP(G), such that fn[G r B(e, rn)] = 1 and fn(e) = 0. Possibly replacing fn
with min

(
fn(x), fn(x−1)

)
we may assume that fn is symmetric. Possibly replacing fn with (2fn − 1)+

we may further assume that fn is zero on a neighbourhood of e, and we may choose rn+1 such that
fn�B(e,rn+1) = 0. We may further require that rn+1 ≤ 2−n−1.

Once we are done we define

h(x, y) :=

∞∑
n=0

fn(x−1y)

2n+1
.

We claim that h is a left-invariant stable locally continuous pre-metric uniformly equivalent to d:
– Left invariance, reflexivity h(x, x) = 0 and symmetry h(x, y) = h(y, x) follow immediately from the
construction.
– Stability follows from the fact that h is a uniform limit of functions in WAP(G) which is a norm closed
sub-algebra of Cb(G).
– By Fact 1.4 h is uniformly continuous (with respect to d). Conversely assume that h(x, y) > 2−n.
This means that fm(x−1y) > 0 for some m < n, so x−1y /∈ B(e, rn), i.e., d(x.y) ≥ rn. Thus d and h are
uniformly equivalent, and it follows that h is locally continuous. �3.3
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4. Some applications

In this last section we shall use the characterisation of reflexive representability we just proved to
establish that the additive group of several classical Banach spaces is not reflexively representable.

Megrelishvili in [Meg07], [Meg02] and [Meg01a] and Glasner and Megrelishvili in [GM08, Problem 6.11]
explicitely asked whether it was possible to find an abelian group which is not reflexively representable.
The problem was solved directly in [FG] using a modification of Raynaud’s proof [Ray83] of non uniform
embeddability of c0 into `2. The same result can also be deduced from two facts: the space c0 cannot be
uniformly embedded into a reflexive Banach space (see [Kal07]) and a reflexively representable metric
group always embeds uniformly into a reflexive Banach space (see [Meg01b, Proposition 3.4]). A similar
result also holds for the quasi-reflexive James’ space J : it is not uniformly embeddable into a reflexive
space (see [Kal07]) and thus it is not reflexively representable.

In the light of our results it can now be proved very easily that c0 is not reflexively representable.
Notice that this result also answers Question 6.12 of [Meg07] since we show that there exist quotients
of reflexively representable groups which are not reflexively representable. This because c0 is, as every
separable Banach space, a quotient of `1 which is reflexively representable (in fact, it is even unitarily
representable).

Theorem 4.1. The additive group of the Banach space c0 is not reflexively representable.

Proof. Suppose that c0 is reflexively representable. Then its metric would be uniformly equivalent to a
stable one, which is impossible by [Ray83, Théorème 5.1]. �4.1

We use now our result to prove that Tsirelson’s space T is not reflexively representable. Since T is
reflexive, this gives a partial negative answer to [Meg07, Question 6.9] (see also [Meg02]), as it shows
that there are metrisable groups which are uniformly embedded into a reflexive Banach space (in fact,
additive groups of reflexive Banach spaces) which are not reflexively representable.

Theorem 4.2. Tsirelson’s space T is not reflexively representable.

Proof. By [Ray83, Théorème 4.1], if a Banach space admits a translation invariant stable metric which
is uniformly equivalent to its norm-induced metric, then it contains a copy of `p for some p. Hence
Tsirelson’s space T does not admit such a metric and, since the metric produced in Theorem 3.3 is
clearly translation invariant, Tsirelson’s space is not reflexively representable. �4.2

In a similar way it follows that Tsirelson-like spaces such as Schlumprecht’s space Sf (see [BL00,
Corollary 13.31]) are also not reflexively representable.
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[Ben] Itäı Ben Yaacov, Definability of groups in ℵ0-stable metric structures, submitted, arXiv:0802.4286.
[Ben05] , Uncountable dense categoricity in cats, Journal of Symbolic Logic 70 (2005), no. 3, 829–860.
[BL00] Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathe-

matical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000.
[Cha96] Fouad Chaatit, A representation of stable Banach spaces, Archiv der Mathematik 67 (1996), no. 1, 59–69.

[FG] Stefano Ferri and Jorge Galindo, Embedding a topological group into its WAP-compactification, Studia Mathe-
matica, to appear.

[GM08] Eli Glasner and Michael G. Megrelishvili, Some new algebras of functions on topological groups arising from
G-spaces, Fundamenta Mathematicae 201 (2008), 1–51, arXiv:math/0608575.
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Itäı Ben Yaacov, Université Claude Bernard – Lyon 1, Institut Camille Jordan, 43 boulevard du 11 novem-

bre 1918, 69622 Villeurbanne Cedex, France

URL: http://math.univ-lyon1.fr/~begnac/

Alexander Berenstein, Universidad de los Andes, Departamento de Matemáticas, Carrera 1 # 18A-10,
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