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Abstract. In recent work, the authors have established the group configuration theorem for simple
theories, as well as some of its main applications from geometric stability theory, such as the binding

group theorem, or, in the ω-categorical case, the characterization of the forking geometry of a finitely
based non-trivial locally modular regular type as projective geometry over a finite field and the
equivalence of pseudolinearity and local modularity.

The proof necessitated an extension of the model-theoretic framework to include almost hyper-

imaginaries, and the study of polygroups.

1. The stable case

The group configuration theorem, proved in full generality by Hrushovski [Hru02] following ideas of
Zilber [Zil84] is one of the cornerstones of geometric stability theory (see [Pil96] for a comprehensive
exposition); it can be seen as an abstract version of the classical problem of coordinatizing a projective
geometry [vN60] (see also [Tom01]). It states that if some dependence/independence situation (the
group configuration) exists then there is a non-trivial group behind it. More precisely, if a stable
structure contains a 6-tuple (a1, a2, a3, x1, x2, x3) such that

(1) any one of a1, a2, a3 is in the closure of the other two,
(2) xi ∈ cl(aj , xk) for {i, j, k} = {1, 2, 3},
(3) all other triples and all pairs are independent,

then there is a type-definable group acting definably, transitively and faithfully on a type-definable
set equivalent to tp(x1). Here closure can mean algebraic closure, or p-closure for some regular type
p (or in fact more general P -closure, as in [Wag97, Wag01]). The conditions are best visualized in a
diagram, where lines indicate dependence:

a1

a2

a3

x2

x3x1

Note that if we have a group G acting transitively on a set X in a simple theory, we can take two
independent group generic g, h and a set generic x independent of gh and put a1 = g, a2 = h, a3 = hg,
x2 = x, x3 = gx, x1 = hgx, in order to obtain a group configuration.

The proof of the group configuration theorem in the stable case proceeds by replacing the original
elements by interalgebraic ones (over some independent parameters), such that in addition xi and
xj are interdefinable over ak for {i, j, k} = {1, 2, 3}. We then have definable invertible (partial)
functions fjk : lstp(xj) → lstp(xk) defined over ai, such that if the argument x is independent of fi
so is the image fi(x) (generic functions). Using definability of types and stationarity, the relation
“f(x) = f ′(x) for generic x” is a definable equivalence relation, the germ of f , which is compatible
with composition. One can now apply the Weil-Hrushovski group chunk theorem [Hru02] to the set
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of germs of functions f−1 ◦ f ′, where f and f ′ are two independent realisations of lstp(f12), in order
to obtain, a type-definable group acting on lstp(x1).

Perhaps the most important application of the group configuration theorem is the characterisation
of the forking geometry of a non-trivial locally modular regular type p ∈ S(∅) in a stable theory.
Recall that p is k-linear if SUp(Cb(q)) ≤ k for any completion q(x, y) ⊇ p(x) ∪ p(y) of SUp-rank 1;
it is pseudolinear if it is k-linear for some k. Note that k-linearity for k ≥ 2 implies non-triviality,
and 1-linearity is equivalent to local modularity ; a 1-linear type of SU-rank 1 is one-based. A k-linear
non-trivial regular type p gives rise to a group configuration with SUp(xi) = 1 and SUp(ai) ≤ k, and
thus to a group G of SUp-rank ≤ k acting transitively and faithfully on a set X of SUp-rank 1. If p is
not (k− 1)-linear, then SUp(G) = k. However, such transitive actions have been completely classified
by Hrushovski [Hru02] in the stable case: either G is abelian and k = 1, or there is a definable field
and the action is either affine (k = 2) or projective (k = 3). Since a field is not pseudolinear (the
canonical base of a polynomial curve of degree k with independent generic coefficients has rank k), the
latter two cases are impossible, and pseudolinearity implies local modularity. Moreover, the geometry
of a locally modular non-trivial regular type must be that of a locally modular regular group, which
on the connected component is that of a vector space over a division ring, again by a theorem of
Hrushovski [Hru87].

The second application, for simple theories, of the group configuration occurs at a point where it
is not necessary in the stable context. Recall that if p is a type over A and π a partial type over
A, then p is π-internal if for any a |= p there is B |⌣A

a and a tuple c̄ of realizations of π such that

a ∈ dcl(ABc̄). On the other hand, p is almost foreign to π if any realisation of p is independent over
A of any realisation of π. The binding group theorem, again first proved by Zilber [Zil80] in the ω-
categorical context and generalized by Hrushovski [Hru02], states that if a strong type p is π-internal
and almost orthogonal to πω, then the group aut(p/A ∪ π) of permutations of the realizations of p
induced by automorphisms fixing A and all realizations of π is type-definable and acts transitively
on p. Note that for regular p we can then use the classification of all possible actions; in particular
we see that at most 3 parameters from p are needed to witness internality; moreover, if aut(p/A ∪ π)
is not abelian, there is an interpretable field. The original proof by Hrushovski again used germs
of generic functions; Poizat [Poi87] gave a direct interpretation of the group, which however relies
heavily on stationarity of types and does not generalize to simple theories. Worse still: adding a
generic bipartite graph between p and π will destroy aut(p/A∪ π) while preserving independence. So
in order to understand internality and almost foreignness, we shall have to look for a different group.

2. The group configuration theorem for simple structures

We shall follow the terminology of [Wag00]. In particular, the class of a modulo an equivalence
relation (or even just a reflexive symmetric relation) E will be denoted by aE . Throughout, we shall
assume that the ambient theory is simple.

2.1. Germs. In a stable theory, the germ of a generic function f was defined as its class modulo
the relation “f and g agree on some x |⌣ fg ”. If tp(x) is stationary, this is indeed an equivalence
relation, which is definable by definability of types; note that the germ of f is equal to Cb(x, f(x)/f).
In a simple theory, it is a priory only type-definable (whence the immediate need to consider hy-
perimaginaries); for non-stationary tp(x) it need not be transitive. Moreover, contrary to the sta-
ble case, there is no reason why f(x) should be in dcl(x,Cb(x, f(x)/f)): the theory only yields
f(x) ∈ bdd(x,Cb(x, f(x)/f)). We are thus lead to consider multifunctions.

Definition 1. A partial type π(x) over A has definable independence if for any partial type π′(y)
over A the set π(x) ∧ π′(y) ∧ x |⌣A

y is type-definable.

Remark 1. A complete type has definable independence. More generally, if π(x) and π′(y) have
definable independence, so does π(x) ∧ π′(y) ∧ x |⌣ y; if π(x) has definable independence and π′(x) ⊢
π(x), then π′ has definable independence.

Definition 2. A partial type π(x, y, z) is an invertible generic action if

(1) Func(π) = π ↾x and Arg(π) = π ↾y have definable independence,
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(2) π implies that x, y, z are pairwise independent,
(3) if f |= Func(π), for any y there are at most boundedly many z, and for any z there are at

most boundedly many y, such that |= π(f, y, z).

We also say that a partial generic action is:

• complete if π(f, x, y) is a (consistent) Lascar strong type over f for every f |= Func(π),
• reduced if it is complete and for any f |= Func(π) we have f = Cb(π(f, x, y)).

Remark 2. (1) If π is an invertible complete reduced generic action, so is π−1(x, y, z) = π(x, z, y).
(2) The second part of condition (3) means that π (resp. any f |= Func(π)) is invertible.
(3) If π is not complete, we can construct its completion π as follows: Let E(xyz, x′y′z′) be the

type-definable equivalence relation stating that x = x′ and there are x-indiscernible sequences
(yizi : i < ω) and (y′iz

′

i : i < ω) with yz = y0z0, y
′z′ = y′0z

′

0 and y1z1 = y′1z
′

1. This uniformly
type-defines the equivalence relation “x = x′ and lstp(yz/x) = lstp(y′z′/x′)”; putting x =
(xyz)E , we obtain that x ∈ bdd(x). Define π(x, y′, z′) as ∃x′ [π(x′, y′, z′) ∧ (x′y′z′)E = x]; if
fab |= π and p = lstp(ab/f), we write fp for (fab)E . Then |= π(fp, a

′, b′) iff |= π(f, a′, b′) and
lstp(a′b′/f) = p (so π is complete). Finally, if f |= Func(π), put

f = {(fab)E :|= π(f, a, b)} = {fp : p = lstp(ab/f) for some ab |= π(f, x, y)},

the bounded set of completions of f .
(4) If π is complete but not reduced, we can construct its reduction π̄ as follows: If f, g |= Func(π),

define f ∼0 g if π(f, x, y) and π(g, x, y) have a common non-forking extension. Since π
is complete, this type-definable relation is generically transitive, and its two-step iterate is
a type-definable equivalence relation E by [Wag00, Lemma 3.3.1]. Putting f̄ = fE and
π̄(x̄, y, z) = ∃x′ [π(x, y, z)∧E(x, x′)], we obtain |= π̄(f̄ , a, b) iff |= π(f, a, b) and f̄ = Cb(ab/f)

(so π̄ is reduced). We put f̂ = {f̄ ′ : f ′ ∈ f}. Reduced functions are called germs, and we
denote Germ(π) = Func(π̄).

(5) We have only required that π(f, y, z) be a Lascar strong type for any f |= Func(π). If π(x, a, z)
or π(x, y, b) is a Lascar strong type for any a |= Arg(π) and b |= Val(π) = π ↾z, we say that
π is strong on the left (resp. right). Clearly, we may apply the completion process also to the
argument and value variables in π, and strengthen any invertible complete reduced generic
action.

Definition 3. A hyperimaginary a is quasi-finite if it is in the definable closure of a finite real tuple.

Remark 3. If π is an invertible complete reduced generic action on quasi-finite sorts, the completion
and strengthening processes preserve quasi-finiteness: If |= π(f, a, b), then f = bdd(f) ∩ dcl(fab),
a = bdd(a) ∩ dcl(fab), and b = bdd(b) ∩ dcl(fab). Moreover, as Cb(p) ∈ dcl(A) for any type p over
A which is Lascar strong, reduction preserves quasi-finiteness as well.

Definition 4. If π and π′ are two invertible complete reduced generic actions with Val(π) = Arg(π′),
their composition π′ ◦ π is defined as the reduction of the completion of x |⌣ x′ ∧ ∃u [u |⌣ xx′ ∧
π(x, y, u) ∧ π′(x′, u, z) ] .

Lemma 1. [Ben02, Proposition 2.8] The composition of two invertible complete reduced generic ac-
tions is again an invertible complete reduced action. For independent f |= Germ(π) and g |= Germ(π′)

any h ∈ ĝ ◦ f is in Germ(π′ ◦ π).

Definition 5. A composition π′ ◦ π of two invertible complete reduced generic actions is generic if

for independent f ∈ Germ(π) and g ∈ Germ(π′) any h ∈ ĝ ◦ f is independent of f and of g.

Theorem 2. [Ben02, Corollary 4.8] Let C = (a1a2a3x1x2x3) be a group configuration with respect
to bdd(−). Put x′i = bdd(xi) ∩ dcl(C), and a′i = Cb(x′jx

′

k/ai) for {i, j, k} = {1, 2, 3}. Then π =
lstp(a′ix

′

jx
′

k) is an invertible complete reduced generic action which is left and right strong, and the

composition π−1 ◦ π is generic.

The proof is analogous to the stable case, except that we don’t have to worry about replacing
bounded by definable closure. In fact, if the original configuration is merely with respect to p-closure
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for some regular type p, we find A |⌣C such that C is a group configuration with respect to bdd(−)
over A ; if C is quasi-finite, we can choose A quasi-finite.

Definition 6. An invertible complete reduced generic action π is a generic multi-chunk if Arg(π) is
a Lascar strong type, and π = π−1 = π ◦ π.

Note that in this case Arg(π) = Val(π).

Theorem 3. [Ben02, Corollary 3.8] Let π be an invertible complete reduced generic action which is
strong on the left, and such that Germ(π) and Arg(π) are Lascar string types. If the composition
π̂ = π−1 ◦ π is generic, then π̂ is a generic multi-chunk.

Theorem 4. [Ben02, Theorem 3.9] Let π be a generic multi-chunk, and P = Germ(π). Then com-
position π ◦ π = π induces a hyperdefinable multifunction ∗ : P × P → P , which is defined up to a
bounded non-zero number of possible values, satisfying

(1) Generic independence: If f |⌣ g and h ∈ f ∗ g, then h |⌣ f and h |⌣ g.
(2) Generic associativity: If f, g, h ∈ P are independent, then (f ∗ g) ∗ h = f ∗ (g ∗ h) (as

sets).
(3) Generic inverse: For any f |⌣ g we have h ∈ f ∗ g iff f ∈ h ∗ g−1 iff g ∈ f−1 ∗ h.

We shall call such a structure 〈P, ∗〉 a generic polygroup chunk. It almost satisfies the hypothesis
of the Weil-Hrushovski group chunk theorem [Wag00, Theorem 4.7.1], only that multiplication is
many-valued.

2.2. Almost hyperimaginaries. In order to deal with many-valued multiplication, one has to ex-
tend the logic to include a special sort of ultra-imaginaries.

Definition 7. Let (I,≤) be a directed partial order, and X a sort (real, imaginary, or hyperimagi-
nary).

(1) An equivalence relation on X is invariant if it is automorphism-invariant. A class modulo an
invariant equivalence relation is called an ultraimaginary.

(2) A graded equivalence relation (g.e.r.) R =
∨

I Ri = RI on X is the union of reflexive sym-
metric type-definable relations (Ri : i ∈ I) on X satisfying:
(a) If i ≤ j then Rj is coarser than Ri.
(b) For every i, j there is k ≥ i, j with xRiyRjz =⇒ xRkz.

(3) An invariant equivalence relation R is almost type-definable if there is a type-definable sym-
metric and reflexive relation R′ finer than R such that any R-class can be covered by boundedly
many R′-classes. If in addition R is graded and R′ is finer than some Ri, then we say that it
is gradedly almost type-definable (above i).

(4) A class modulo a (graded) invariant equivalence relation is called a (graded) ultraimaginary.
A class modulo a (gradedly) almost type-definable equivalence relation is called a (graded)
almost hyperimaginary.

(5) Let R = RI and R′ = R′

J be g.e.r.’s on sorts X and Y respectively, f(x, y) a type-definable
relation on X × Y , and put f(x) = {y ∈ Y :|= f(x, y)}.
(a) f defines a gradedly type-definable partial multi-map f̄ : X/R→ Y/R′, if

(i) there is some R′

0 such that for every x ∈ X there is a bounded set of elements
yα ∈ f(x) with f(x) ⊆

⋃
α yαR′

0

, and

(ii) for every i ∈ I there is j ∈ J such that f(xRi
) ⊆ f(x)R′

j
for every x ∈ X.

(b) If in the above we need at most a single yα, then f defines a gradedly type-definable
partial map.

(c) If in addition f(x) 6= ∅ for every x ∈ X, then f defines a gradedly type-definable total
multi-map or map, as the case may be.

(6) Two gradedly type-definable multi-maps f̄ and f̄ ′ are gradedly equal if there is i such that
f(x) ⊆ f ′(x)Ri

and f ′(x) ⊆ f(x)Ri
for every x ∈ X.

Remark 4. (1) It is easy to see that every ultraimaginary can be graded, and every almost
type definable graded equivalence relation is equivalent to a gradedly almost type-definable
equivalence relation.
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(2) If a graded equivalence relation R is on a hyperimaginary sort modulo some type-definable
equivalence relation E, one can incorporate E into R and assume that R lives on real tuples.

Definition 8. Two ultraimaginaries aR and bR have the same (Lascar strong) type over a hyperimag-
inary c if there are representatives which do.
They are independent over c, denoted aR |⌣c

bR, if they have representatives which are.

Clearly, this coincides with the definitions for hyperimaginaries. Moreover, two ultraimaginaries
have the same type (Lascar strong type) over c if and only if they are conjugate under a (strong)
c-automorphism. Independence is particularly well-behaved for almost hyperimaginaries.

Lemma 5. [BTW04, Lemma 1.8] The following are equivalent:

(1) R is an (I-gradedly) almost type-definable equivalent relation.
(2) There is a type-definable reflexive symmetric relation R′ finer than R (finer than some Ri),

such that whenever aR |⌣c
b for some hyperimaginaries b, c, then there is a′R′a with a′ |⌣c

b.

(3) There are a cardinal κ and a type-definable reflexive symmetric relation R′ finer than R (finer
than some Ri), such that within an R-class there are no κ disjoint R′-classes.

(4) There are a cardinal κ and a type-definable reflexive symmetric relation R′′ finer than R (finer
than some Ri), such that among any κ R-equivalent elements there are necessarily two which
satisfy R′′.

We thus get a “first-order” characterisation of independence for almost hyperimaginaries:

Lemma 6. [BTW04, Lemma 1.9] Assume that R′ witnesses that R is almost type-definable. Write
p(x, y) = tp(ab/c), p′(x, y) = p(xR′ , y(R′2)). Then aR |⌣c

bR if and only if p′(x, b) does not divide over
c.

Independence for ultraimaginaries satisfies symmetry, a suitable form (since we do not consider
types over ultraimaginaries) of transitivity, local character, extension, and the Independence Theorem.
For almost hyperimaginaries, we also have local character.

Definition 9. An equational polystructure is given by a theory whose language is purely functional
apart from a binary relation ∈, without equality, and whose axioms are universal quantifications over
formulas of the form

∧
xi ∈ τi →

∨
yj ∈ σj where τi and σj are terms. The interpretation, however, is

that every function is multi-valued, and everything on the right-hand side of a ∈ symbol is considered
as a set (variables being singletons).
An ultradefinable equational structure S in a given theory is given by a definable set S0, some I-
g.e.r. R on S0 such that S = S0/R, and for each n-ary function symbol f a gradedly definable map
f̄S : (S0/R)

n → S0/R, such that:

• For every axiom (
∧
xn ∈ τn →

∨
ym ∈ σm) and every i ∈ I there is j ∈ I, such that for every

substitution of elements from S for the variables in the axiom, if the conditions hold up to Ri

(that is, for every n there is x′n ∈i xn such that x′n ∈ τn), then one of the conclusions holds
up to Rj .

Remark 5. We have formulated the definitions for one-sorted structures, the adaptations needed for
many-sorted ones, such as polyspaces, being obvious.

Example 1. A polygroup [Cor93] is a structure with a binary multifunction · and a unary multi-
function −1, satisfying:

(1) u ∈ (x · y) · z ↔ u ∈ x · (y · z),
(2) z ∈ x · y−1 ↔ x ∈ z · y,
(3) z ∈ x−1 · y ↔ y ∈ x · z.

A polygroup with identity carries in addition a 0-ary multifunction e satisfying:

4. z ∈ x · e↔ z ∈ x,
5. z ∈ e · x↔ z ∈ x.

Example 2. Let G be a group, and H a (not necessarily normal) subgroup. The double coset space
G//H is a polygroup with the multioperation HaH ∗HbH := {HahbH : h ∈ H}.
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Example 3. A projective geometry is an incidence system (P,L, I) consisting of a set of points P , a
set of lines L and an incidence relation I ⊆ P × L satisfying the following axioms:

(1) any line contains at least three points;
(2) two distinct points a, b are contained in a unique line denoted by L(a, b);
(3) if a, b, c, d are distinct points and L(a, b) intersects L(c, d), then L(a, c) must intersect L(b, d)

(Pasch axiom).

Let P ′ := P ∪ {e}, where e is not in P , and define:

- for a 6= b ∈ P , a ◦ b := L(a, b) \ {a, b};
- for a ∈ P , if any line contains exactly three points, put a ◦ a := {e}, otherwise a ◦ a := {a, e};
- for a ∈ P ′, e ◦ a = a ◦ e := {a}.

Then it is easily verified that (P ′, ◦) is a polygroup.

2.3. Generic types. Let P = P0 = P0/RI be a gradedly almost hyperdefinable polygroup. Generic
types and elements of P are defined in analogy to the hyperdefinable case [Pil96, Pil98, Wag01].

Definition 10. A generic element of P is an element gR such that whenever gR |⌣ h for h ∈ P0 and
k ∈ h · g, then kR |⌣ h.

The basic theory of generics holds with this definition.

Lemma 7. [BTW04, Lemma 2.13]

(1) Let gR be a generic element of P , and assume that hR |⌣ gR and kR ∈ hR · gR. Then kR is
generic.

(2) If gR ∈ P is generic, then so is g−1
R .

(3) If gR ∈ P is generic, then whenever h |⌣ gR for h ∈ P0 and k ∈ g · h, we have kR |⌣ h.

Existence of generic types is proved for polygroups by means of a suitable family of stratified ranks.
For convenience, we give names to certain elements of P0 and I:

(1) We fix 0 ∈ I and an infinite cardinal ν such that every R-class can be covered by ν R0-classes,

and every operation (̄· or −1) has at most ν values.
(2) We choose 1 ∈ I such that (gR0

· h)R0
⊆ (g · h)R1

, and h ∈ [(g−1 · g) · h]R1
for all g, h ∈ P0.

Definition 11. Let k < ω, and ϕ(x, y), ψ(y0, . . . , yk) be formulas. We say that ψ is a k-inconsistency
witness for ϕ if ψ(ȳ) ∧

∧
j<k ϕ(x, yj) is contradictory.

Definition 12. Let ψ be a k-inconsistency witness for ϕ(xR0
, y). We define a local rank DP (−, ϕ, ψ)

with values in ω + 1 on (consistent) partial types (with parameters) extending x ∈ P0:

• DP (π, ϕ, ψ) ≥ n+ 1 if there are a sequence (cℓ : ℓ < ω), any k-subsequence of which satisfies
ψ, and g ∈ P0, such that DP (π(x) ∧ ϕ((g · x)R1

, cℓ), ϕ, ψ) ≥ n for all ℓ < ω.

Lemma 8. [BTW04, Section 2.2] DP (−, ϕ, ψ) takes finite values and is left-translation-invariant.
Moreover, the condition DP (π(x, a), ϕ, ψ) ≥ n is type-definable on the parameter a. The family of
local ranks DP (−, ϕ, ψ) witnesses dividing. Hence generic types exist; they are precisely those who
have the same stratified ranks as P (over ∅). Thus the set g(P ) of all the representatives of generic
elements is a gradedly almost hyperdefinable generic (poly-)group chunk.

This also means that the independence of generic elements is type-definable, using stratified ranks.
For generic chunks, we have:

Lemma 9. [BTW04, Lemma 2.22] Let S = S0/RI be a generic chunk, and let w be some sort. Then
there is a partial type Φ(x,w) such that Φ(a, d) if and only if a ∈ S0 and aR |⌣ d.
Moreover, if R′ is an almost type-definable equivalence relation on w, then there is Φ′(x, y) such that
Φ(a, d) if and only if a ∈ S0 and aR |⌣ dR′ .
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2.4. The core equivalence and blow-up. We shall now deal with the fact that multiplication is
many-valued and that, as in example 3, we can have c, c′ ∈ a∗b with c |⌣ c′. To that end, we shall first
divide out by an almost type-definable equivalence relation with bounded classes, the core equivalence,
and then replace the generic polygroup chunk by a bounded cover. Both processes clearly preserve
rank (if defined). However, as the core equivalence is not type-definable, it is at this stage that we
have to introduce almost hyperimaginaries.

Definition 13. Let S = S0/R be an I-gradedly almost hyperdefinable generic polygroup chunk. For
a, b ∈ S0 and i ∈ I, we say that a ∼i1 b if there is g |⌣ ab such that a, b ∈i g · h for some h. The
n-closure of ∼i1 is ∼in, and ∼ is

∨
in ∼in.

S is coreless if the core equivalence is the same as R, that is for every (i, n) ∈ I × ω there is j ∈ I
such that Rj is coarser than ∼in.

Lemma 10. [BTW04, Lemma 2.28] Let S = S0/R be an I-gradedly almost hyperdefinable polygroup
chunk. Then ∼ is an (I ×ω)-gradedly almost type-definable equivalence relation on S coarser than R,
the core equivalence. Every ∼-class contains boundedly many R-classes.
S0 /∼ is coreless. Any almost hyperdefinable group chunk is coreless.

We now fix an I-gradedly almost hyperdefinable coreless generic polygroup chunk S = 〈S0/R, ·,
−1 〉,

as well as some R0 which witnesses that R is almost type-definable. We shall no longer distinguish
between the multiplication and inverse on S0, and the maps induced on S0/R.

Definition 14. We fix some e ∈ S0, and put S′

0 = {a ∈ S0 : aR |⌣ eR}.

(1) Define S̃0 = {(a, a′, a′′) : a ∈ S′

0, a
′ ∈ e−1 · a and a′′ ∈ a · e} and S̃ = S̃0/R.

a′

''OOOOOOOOOOOOO

e

OO

a
//

a′′
77ooooooooooooo

e

OO

(We follow a tacit understanding that R may also stand for R × R × R, where this is clear
from the context.)

(2) A triplet ã = (a, a′, a′′) ∈ S̃0 is called a blow-up of a. Conversely, we define the blow-up map

π : S̃0 → S′

0 by π(a, a′, a′′) = a.

(3) Given ãR |⌣e
b̃R, we wish to define ã · b̃. First, we choose c ∈ a · b ∩ (a′′ · b′)R1

, and then

c′ ∈ e−1 · c ∩ (a′ · b)R1
and c′′ ∈ c · e ∩ (a · b′′)R1

, for suitable 1 ∈ I. Set ã · b̃ to be the set of
all c̃ = (c, c′, c′′) obtained in this manner.

b′

��?
??

??
??

a //

a′′ ??�������

!c

44

e

OO

b //

a′

��?
??

??
?? !c′

  
e

OO

a //

c

44
b // a //

c

44

!c′′
22

b′′
??������� b //

e

OO

(4) Recall that the inverse is a gradedly definable map, so it is only defined up to some Ri. Thus,

for ã = (a, a′, a′′) ∈ S̃0, we can define its inverse as:

ã−1 = {(b, b′, b′′) ∈ S̃0 : b ∈ a−1, b′ ∈ a′′
−1
Rj
, b′′ ∈ a′

−1
Rj

}

for j ∈ I big enough to make sure that ã−1 cannot be empty; re-choosing R0 we may assume
that j ≤ 0.

Remark 6. It should be noted that this blow-up is similar to the procedure by which one obtains
a dcl-configuration from an acl-configuration in a stable theory: one adds an independent base point
e, over which any point a is interbounded with its blow-up ã; however, ã contains two independent
points (over ∅) of the original set. A (coordinate of a) point in the product of ã · b̃ is obtained as the
intersection of two lines/products in the original configuration/chunk.
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Theorem 11. [BTW04, Proposition 3.5 and Theorem 3.6] 〈S̃, ·,−1 〉 is an almost hyperdefinable
generic group chunk (with inversion) over e. Moreover, the blow-up map induces a gradedly type-

definable surjective bounded-to-one homomorphism π̄ : S̃ → S′

0/R, such that if aR |⌣e
bR, c ∈ a · b,

and a blow-up c̃ is given, then there are blow-ups ãR |⌣e
b̃R such that c̃R = ãR · b̃R.

2.5. The group chunk theorem. In order to finish the construction, it is now sufficient to prove
an almost hyperdefinable version of the group chunk theorem.

Definition 15. Let 〈S̃0/R, ·,
−1 〉 be an I-gradedly almost hyperdefinable group chunk. We define a

relation R′ =
∨

I R
′

i on S̃
2
0 as follows: We say that (a, b)R′

i(a
′, b′) if there are x, y such that:

(1) xR |⌣ aba′b′ and yR |⌣ aba′b′.
(2) a · xRia

′ · y and b · xRib
′ · y (where ARiB means that aRib for some a ∈ A and b ∈ B).

We write [a, b]i = (a, b)/R′

i, and [a, b] = (a, b)/R′.

Lemma 12. [BTW04, Lemma 4.3] R′ is an I-gradedly almost type-definable equivalence relation.

Theorem 13. [BTW04, Theorem 4.1 and 4.4] Let S̃ = 〈S̃0/R, ·,
−1 〉 be an I-gradedly almost hyper-

definable group chunk, and R′ as above. Then G = S̃2
0/R

′ is a gradedly almost hyperdefinable group,
with product [a, b] · [b, c] = [a, c] and inverse [a, b]−1 = [b, a]. There is a gradedly type-definable map

σ : S̃ → G whose image generates G, and the couple (G, σ) is gradedly unique as such.

If P = P0/R
′′ is a coreless polygroup, and τ : S̃0/R → P0/R

′′ is a gradedly type-definable generic
homomorphism (i.e. τ(a−1) = τ(a)−1, and τ(a · b) ∈ τ(a) · τ(b), gradedly, for any independent

a, b ∈ S̃0) such that every element in the image of τ is generic, then there is a unique gradedly
type-definable homomorphism τ̂ : G → P with τ = τ̂ ◦ σ. Moreover, for every g ∈ G (we omit the
subscript R′), if we write it as a · b where these are generics each of which is independent of g, then
τ̂(g) = τ(a) · τ(b) ∩ dcl(g) = τ(a) · τ(b) ∩ bdd(g).

This can be used to see that every coreless almost hyperdefinable generic polygroup chunk comes
from a double coset space:

Theorem 14. [Ben03, Theorem 1.12] Let S be a coreless generic polygroup chunk, G the corresponding
almost hyperdefinable group as given by Theorems 11 and 13, and H ⊆ G the set {σ(a, a′0, a

′′) ·
σ(a, a′1, a

′′)−1 : (a, a′0, a
′′)R, (a, a

′

1, a
′′)R ∈ S̃}. Then H is a bounded subgroup of G, and the set

gen(G//H) of generic elements is isomorphic to S.

Finally, given a generic multi-chunk π, it is also possible to recover the action:

Theorem 15. [TW03, Theorem 6] Let π be a generic multi-chunk. Then there is an almost hy-
perdefinable group G acting transitively and faithfully on an almost hyperdefinable set X. If π is
quasi-finite, so are G and X. Moreover, over some independent parameters a generic element of G
is interbounded with a realization of Germ(π), and a generic element of X is interbounded with a
realization of Arg(π).

In particular, the rank of G (if defined) is equal to the rank of Germ(π), and the rank of X is equal
to the rank of Arg(π).

3. Applications

3.1. One-basedness and pseudolinearity. In this section we shall use SUp-rank, Lascar rank
relativized to some type p, and p-closure clp(−), as developed in [Wag97, Sections 3.5 and 3.6] and
[Wag01, Section 5].

Definition 16. Let p be a regular type over A, and k < ω. We say that p is k-linear if SUp(Cb(q)/A) ≤
k for any completion q(x, y) ⊇ p(x)∪ p(y) of SUp-rank 1, and k is minimal possible; it is pseudolinear
if it is k-linear for some k.
We say that p is locally modular if any tuples ā and b̄ of realizations of p are independent over
clp(Aā) ∩ clp(Ab̄). It is one-based if ā and b̄ are independent over aclheq(Aā) ∩ aclheq(Ab̄).
Finally, p is trivial if any pairwise independent set of realisations of p is independent.
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Remark 7. (1) Since q(x, y) ⊇ p(x) ∪ p(y) is p-internal, SUp(q) = wp(q).
(2) A type p ∈ S(A) is 1-linear if and only if it is locally modular.
(3) If SU(p) = 1, then local modularity equals one-basedness.
(4) Local modularity refers to the (pre-)geometry of pheq, not of p.

Theorem 16. [TW03, Theorem 9] Let p ∈ S(∅) be a k-linear regular type, with k > 1 or k = 1
and p non-trivial. Then there is an almost hyperdefinable p-connected group G of SUp-rank k acting
transitively and faithfully on an almost hyperdefinable set X of SUp-rank 1. If p is quasi-finite, so are
G and X; only finitely many parameters are needed.

Remark 8. In fact X is generically p-pure, i.e. a forking extension of a type in X has SUp-rank 0.
Similarly, a group G is p-connected if a forking extension of any generic type has smaller SUp-rank.

In the ω-categorical case, a quasi-finite hyperimaginary is in fact imaginary, so we can use known
results about such group actions, and describe the possibilities.

Theorem 17. [TW03, Theorem 14] Let p be a finitely based locally modular regular Lascar strong
type in an ω-categorical theory. Then the geometry associated to (some non-forking extension of) p
is either trivial, or projective geometry over a finite field.

Remark 9. (1) When SU(p) = 1, Theorem 17 has also been shown by dePiro and Kim [dPK03]
by a direct reconstruction of the geometry. Moreover, they note that the geometry of a
one-based SU-rank 1 type over ∅ in an ω-categorical theory has a stable reduct preserving
independence, namely the reduct to the structure induced by the geometry.

(2) In [Vas01], Vassiliev studies the theory of a generic pair of SU-rank 1 structures. He shows
that the pair has SU-rank at most ω; rank 1 in the trivial and rank 2 in the linear non-trivial
case; moreover, in the ω-categorical non-trivial locally modular case he interprets a projective
geometry in the pair structure.

(3) In the non-ω-categorical case, one can likewise hope to generalize the theory of groups with
locally modular generic types to the almost hyperdefinable context, in order to characterize the
geometry of a locally modular non-trivial regular Lascar strong type as projective geometry
over a division ring (work in progress).

As for the equivalence of pseudolinearity and local modularity, we have:

Theorem 18. [TW03, Theorem 11] Let p ∈ S(∅) be a finitely based pseudolinear regular type in an
ω-categorical theory. Then p is locally modular.

The proof proceeds as in the stable case by analysing the action of the group G on the set X given
by Theorem 16 in a counterexample with k ≥ 2. However, in order to derive a contradiction, one needs
G to be nilpotent; the only known sufficient condition in a simple theory is ω-categoricity [Mac88,
Theorem 1.2], where the group will even be virtually central-by-abelian by a suitable generalisation
of [EW00].

3.2. The binding group.

Definition 17. Let p be a type over a set A, and Σ an A-invariant family of partial types. We say
that p is

• (almost) Σ-internal if for every realization a |= p there is B |⌣A
a and realizations c̄ of types

in Σ over B, such that a ∈ dcl(Bc̄) (resp. a ∈ bdd(Bc̄)).
• (almost) generated over Σ if there is B ⊇ A such that for any realization a |= p there are

realizations c̄ of types in Σ over B with a ∈ dcl(Bc̄) (resp. a ∈ bdd(Bc̄)).
• almost orthogonal to Σω if for any a |= p and any tuple c̄ consisting of realizations of partial

types in Σ we have a |⌣A
c̄.

From now on, Σ will be a family of partial types over ∅, and S the set of realizations of Σ (in the
monster model).
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Lemma 19. [BW04, Lemma 2.2] Let a be any hyperimaginary, and c = Cb(a/S). Then there exists
c̄ ∈ dcl(a) ∩ dcl(S) such that for every automorphism σ

σ(c̄) = c̄⇐⇒ tp(σ(c)/S) = tp(c/S).

One then has c̄ ∈ dcl(c), c ∈ bdd(c̄), bdd(c) = bdd(c̄), and a |⌣ c̄
S.

We denote such a c̄ by CbΣ(a). Clearly, it is unique. In a stable structure, for every two tuples a
and a′ the following are equivalent:

(1) a and a′ are conjugate under an automorphism fixing S pointwise.
(2) tp(a/S) = tp(a′/S).
(3) CbΣ(a) = CbΣ(a

′).

However, in the simple case, only the implications from top to bottom need hold. The classical
definition of the the binding group as aut(p/A ∪ S) corresponds to the first condition. The group
Pél(p,Σ) of elementary permutations of p over A ∪ S proposed in [SW02] corresponds to second
condition, but, as remarked in that paper, it still seems to be too small, as it can also be destroyed by
adding a random bipartite graph between p and Σ. We shall now construct a polygroup corresponding
to the third and weakest condition.

Suppose p ∈ S(∅) is Lascar strong and almost orthogonal to Σω. Put

R = {tp(ab) : a |= p, a |⌣ b, a ∈ bdd(bS)},

and for r(y, x) ∈ R define

πr(xx
′, y, z) = r(yx) ∧ r(zx′) ∧ CbΣ(yx) = CbΣ(zx

′) ∧ x |⌣
CbΣ(yx)

x′.

Theorem 20. [BW04, Corollary 2.8, Theorem 2.9] πr ≈ πr′ for any r, r′ ∈ R. If π = πr for some
(any) r ∈ R, the composition π2 is generic, and π ≈ π2. Hence π is a generic multi-chunk. If P
is the set of its germs with product given by composition, then P is a generic polygroup chunk with
SU(P ) ≥ SU(p).
Moreover, if p is in a real sort, then P is in a finitary sort.

We can now apply Theorem 15 and obtain an almost hyperdefinable group G acting transitively and
faithfully on an almost hyperdefinable set X, such that a generic element of G is interbounded (over
independent parameters) with a realization of Germ(π), and a generic element of X is interbounded
(over independent parameters) with a realisation of Arg(π) = p.

Remark 10. If the theory was stable to start with, and p is Σ-internal, then 〈G,X〉 will be isomorphic
to 〈aut(p/S), p〉.
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