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Abstract. We continue [Ben03], developing simplicity in the framework of compact
abstract theories. Due to the generality of the context we need to introduce definitions
which differ somewhat from the ones use in first order theories.
With these modified tools we obtain more or less classical behaviour: simplicity
is characterised by the existence of a certain notion of independence, stability is
characterised by simplicity and bounded multiplicity, and hyperimaginary canonical
bases exist.

Introduction

Having defined the framework of compact abstract theories in [Ben03], one turns to
develop tools.

The development of simplicity in [Pil00] extends quite well to cats, and many of the
proofs here are taken from this paper. However, the definition of simplicity in [Pil00]
raises a few problems (present already in the e.c. case). There, simplicity is defined by
the following two properties:

(i) Dividing satisfies the local character.
(ii) Morley sequences exist in every type.

In the case of a general cat, the first does not necessarily imply the second (see
Example 4.3). Moreover, it would seem on closer inspection that these two properties
cannot be given equal status:

The first property is robust, in the sense that in order to know that it holds we do
not need to verify it for all types, but only for “sufficiently many”. More explicitly,
we prove below that the local character of dividing is equivalent to the existence of an
automorphism-invariant co-final class A of sets (that is, for every set A there is B such
that A ⊆ B ∈ A), and of a regular cardinal κ > |T |, such that for every increasing
sequence (Ai ∈ A : i < κ), a type over

⋃
Ai does not divide over some Ai. This implies,

for example, that the local character is preserved when adjoining new hyperimaginary
sorts (this is important: after all, the ability to adjoin hyperimaginary sorts as real
elements was at the origin of the definition of cats).

On the other hand, even assuming that Morley sequences exist for types over certain
domains, we do not know whether this implies that Morley sequences exist for types
over other sets (except for a few particular cases). In particular, even if we assume
that every type over a set of real elements has a Morley sequence, this does not mean
we know that every type over a hyperimaginary domain has one.
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Moreover, we would like stability to imply simplicity: stability implies the local
character of dividing, but it does not imply that Morley sequences always exist. And
of course, we know that in first order theories, the local character suffices for the
development of simplicity.

In this paper we show that with some additional technical effort, simplicity can be
developed from the local character alone, without the existence of Morley sequences as
an additional assumption. In fact, we prove the symmetry and transitivity of dividing,
as well as its characterisation by equality of local D-ranks, without ever mentioning
Morley sequences. This gives, even in the first order case, a new approach to the first
steps of the development of simplicity theory, essentially different from the classical
one.

In order to do this, we introduce the somewhat technical notion of array-dividing.
We prove that simplicity (i.e., the local character of dividing) implies the local character
of array-dividing, and use it to prove that array-dividing is symmetric and transitive,
and is characterised by equality of appropriate local D-ranks. Only then can we prove
that in fact, array-dividing defines the same independence relation as dividing: we may
then forget about this little detour, and proceed with the classical definitions.

We obtain that dividing independence satisfies all the usual axioms but extension
and the independence theorem. For extendible type, that is types that satisfy the
extension axiom, all the axioms hold, and we show that there are enough of these.

We conclude by showing that stability is equivalent to simplicity with bounded
multiplicity of types, and that extendible amalgamation bases have hyperimaginary
canonical bases, which can be adjoined to the structure in a new sort.

In order to put things in their proper context one should also mention [BL03], al-
though it is independent of the present paper. There simplicity is developed for big
homogeneous structures (equivalently: an abstract elementary class with amalgama-
tion and type-locality). In very big lines, it has the advantage of having a more
general context (no compactness is required), and the disadvantage of more compli-
cated definitions and somewhat weaker results (in particular, canonical bases are not
hyperimaginaries, do not satisfy type-locality, and therefore do not find their place in
a homogeneous finitary structure).

On the other hand, there has been significant progress in the study of independence
theory in cats with additional hypotheses. First, in [Bena], we prove that in order
to get the full power of simplicity theory (as in first order theories), it suffices to
assume thickness, namely that indiscernibility is a type-definable property. A stronger
hypothesis than thickness is being Hausdorff, defined in [Ben03] as the property of
having Hausdorff type-spaces. In [Benb] it is shown that Hausdorff cats admit a type-
definable metric on their universal domains, which is unique up to uniform equivalence.
This metric is required for the development of useful notions of supersimplicity and
superstability, along lines similar to those Henson and Iovino followed in the case of
stable Banach spaces.
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1. Simple cats

We develop independence theory for simple cats, namely cats where dividing satisfies
the local character (but not necessarily the extension axiom). In order to do this we
define the tool of array-dividing.

We prove that simplicity is equivalent to the existence of an independence relation
satisfying slight variants of the classical axioms, which is necessarily given by non-
dividing.

1.1. Dividing and ranks. We shall need a generalised notion of dividing. We recall
first the notion of indiscernible array:

Definition 1.1. (i) An α-dimensional array (or simply an α-array) is a set (bσ :
σ ∈ βα).

(ii) Let fi : γ ↪→ β be monotonous inclusions for i < α. Define f̃ : γα → βα

by f̃(σ)(i) = fi(σ(i)) for σ ∈ γα and i < α. Then (bf̃(σ) : σ ∈ γα) is the

γα-sub-array of (bσ : σ ∈ βα) given by f̄ .
(iii) An array (bσ : σ ∈ βα) is c-indiscernible if β ≥ ω and for every n < ω, all the

nα-sub-arrays have the same type over c.
A sequence (bi : i < α) is c-indiscernible if it is such as a 1-dimensional array.

In this section we shall extract indiscernible sequences not once, as this is in the
essence of the theory of dividing. Since Ramsey’s theorem will fail us, we shall need a
stronger tool, which has already become standard:

Lemma 1.2. Let A be a set of parameters, and λ ≥ | Sκ(A)| (for example, λ =
2|T |+|A|+κ). Set µ = iλ+. Then for any sequence (ai : i < µ) of κ-tuples there is an A-
indiscernible sequence (bi : i < ω) such that for all n < ω there are i0 < . . . < in−1 < µ
for which tp(b0 . . . bn−1/A) = tp(ai0 . . . ain−1

/A).

Proof. As all chains of references for this lemma seem to end up somewhere in the
mists of the past, we give the complete proof.
We construct by induction a sequence of types pn, each one a complete n×κ-type over
A, such that for all n:

(i) For any i0 < . . . < im−1 < n we have pn(x0, . . . , xn−1) ² pm(xi0 , . . . , xim−1
).

(ii) For all η < µ there is I ⊆ µ, |I| = η such that every n elements in order from
aI satisfy pn.

For n = 0 there is nothing to do. Given pn, consider the set S of all (n + 1) × κ-types
over A that satisfy the first condition. If there is q ∈ S that also satisfies the second,
we are done. If not, then for each q ∈ S there is an ηq < µ that witnesses it. As
|S| ≤ λ < cf(µ) = λ+, we have that η = λ + sup{ηq : q ∈ S} < µ is such that for all
q ∈ S, for all I ⊆ µ with |I| = η, not all (n + 1)-sub-tuples in order from aI satisfy q.
As η < µ, then η < iθ for some θ < λ+. Write ν = iθ+n+1. Then on the one hand,
ν < µ. On the other, ν ≥ in(η)+. By the induction hypothesis there is I ⊆ µ, |I| = ν
such that all n-tuples in order in aI satisfy pn. As there are at most λ possible A-types
for (n + 1)-tuples and λ ≤ η, the Erdős-Rado theorem gives us I ′ ⊆ I with |I ′| = η+

in which all (n + 1)-tuples in order have the same type over A. This gives the wanted
contradiction, and concludes the construction. Taking pω as the limit of the pn gives
the type of the wanted sequence. qed1.2



4 ITAY BEN-YAACOV

For finite-dimensional arrays, we have a criterion for indiscernibility that uses indis-
cernibility of sequences, and an analogue of Lemma 1.2:

Lemma 1.3. Let l < ω.

(i) Consider an array (bσ : σ ∈ αl), and for i < l, j < α let b̄i,j = (bσ : σ ∈
αl, σ(i) = j) (that is, the jth hyperplane in the ith direction). Then (bσ) is
c-indiscernible if and only if for every i < l, the sequence (b̄i,j : j < α) is
c-indiscernible in the ordinary sense.

(ii) For any c and κ there is λ such that if (bσ : σ ∈ λl) is a finite-dimensional array
and |bσ| ≤ κ for every σ, then there is a c-indiscernible array (b′σ : σ ∈ ωl)
such that for every k < ω, every kl-sub-array of (b′σ : σ ∈ ωl) has the same
type over c as some kl-sub-array of the original array.

Proof. (i) Clear.
(ii) Fix c and κ, and set λ0 = κ. By induction on i, take λi+1 as given by Lemma 1.2

for sequences of tuples of length λi. Then λl should do, and λω = supi<ω λi

works independently of l.
qed1.3

Definition 1.4. Here α is any ordinal, and l, k < ω.

(i) A partial type p(x, b) α-array-divides over a if there is an α-dimensional a-
indiscernible array (bσ : σ ∈ ωα) in tp(b/a) such that

⋃
p(x, bσ) is inconsistent.

It divides over a if it 1-array-divides over a.
It array-divides over a if it α-array-divides over a for some α.

(ii) Let ϕ(x, y) be a formula. Let ȳ = y0 . . . yk−1. We say that ψ(ȳ) is a k-
inconsistency witness for ϕ if T ` ¬(ψ(ȳ) ∧

∧
i<k ϕ(x, yi)).

(iii) Let ψ(y<kl) be any formula. Then ψ̃l(y∈ωl) is the partial type saying that every
kl-sub-array of (yσ : σ ∈ ωl) satisfies ψ (the value of k can be deduced from ψ
and l).

(iv) If ψ is a kl-inconsistency witness for ϕ(x, y), then an instance ϕ(x, b) l-array-
divides over a with respect to ψ, if there is an array (bσ : σ ∈ ωl) in tp(b/a)

satisfying ψ̃l.

Remark 1.5. To our knowledge, indiscernible arrays were first introduced in [Kim98],
where it is proved that in a first order simple theory, dividing coincides with l-array-
dividing for every l < ω.

Lemma 1.6. For a partial type p(x, b), the following are equivalent:

(i) p l-array-divides over a for some finite l ≤ α.
(ii) p β-array-divides over a for some β ≤ α.
(iii) p α-array-divides over a.
(iv) There are k < ω, a finite l ≤ α, a formula ϕ(x, y) such that p(x, y) ` ϕ(x, y),

and a kl-inconsistency witness ψ for ϕ, such that ϕ(x, b) l-array-divides over
a with respect to ψ.

Proof. (i) =⇒ (ii)., (ii) =⇒ (iii). Clear.
(iii) =⇒ (iv). We assume that p(x, b) α-array-divides over a, and let (bσ : σ ∈ ωα)

witness this. This mean that
⋃

σ p(x, bσ) is inconsistent, so by compactness
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there is some ϕ such that p(x, y) ` ϕ(x, y), a finite I ⊆ ωα, say |I| = k, and
an k-inconsistency witness ψ for ϕ such that ² ψ(b∈I). By the indiscernibility
of (bσ), we may assume that in fact I ⊆ kα. We are going to replace the
dimension α (which may be infinite) with the set F = kI , which is finite, of
cardinality kk. For i < α define fi ∈ F by fi(σ) = σ(i), and define g : α → F
by g(i) = fi. For every σ ∈ I define σ̂ ∈ kF by σ̂(f) = f(σ) for every f ∈ F .
Then (σ̂ ◦ g)(i) = σ̂(fi) = fi(σ) = σ(i) for every i < α, and σ̂ ◦ g = σ. Let

Î = {σ̂ : σ ∈ I} ⊆ kF , so Î ◦ g = I. Let y∈kF = (yτ : τ ∈ kF ) be an array of

variables in the sort of y. Since Î ⊆ kF , we can define ψ̂(y∈kF ) = ψ(y∈Î). Then
one easily verifies that (bσ◦g : σ ∈ ωF ) is an a-indiscernible array of dimension

|F |, ψ̂ is a kF -inconsistency witness for ϕ, and ² ψ̂(bkF ◦g). This proves what
we wanted.
Note that when ψ is a k-inconsistency witness, ψ̂ can be as much as a kkk

-
inconsistency witness.

(iv) =⇒ (i). We obtain an indiscernible array by Lemma 1.3.
qed1.6

Corollary 1.7. p array-divides over a if and only if it l-array-divides over a for some
l < ω.

So we may restrict ourselves to l-array-dividing for finite l: this is particularly reas-
suring, as Lemma 1.3 only speaks about finite-dimensional arrays.

The following is easy:

Lemma 1.8. tp(a/b) does not α-array-divides over c if and only if for every α-
dimensional c-indiscernible array bi containing b there is a bc-automorphism rendering
it ac-indiscernible.

Corollary 1.9. The following hold in any theory:

Monotonicity: If tp(aa′/bb′c) does not α-array-divide over c, then neither does
tp(a/bc).

Partial downward transitivity: If tp(a/bb′c) does not α-array-divide over c,
then neither does it α-array-divide over bc.

Partial upward transitivity: If tp(a/bcd) does not α-array-divide over bc and
tp(b/cd) does not α-array-divide over c then tp(ab/cd) does not α-array-divide
over c.

Proof. Monotonicity and partial downward transitivity are clear. For the partial
upward transitivity, we use the previous lemma. Let (dσ) be a c-indiscernible α-
dimensional array with d0 = d. As tp(b/cd) does not α-array-divide over c, (dσ) has
a cd-automorphic image that is bc-indiscernible. As tp(a/bcd) does not α-array-divide
over bc, a bcd-automorphism sends it to an abc-indiscernible array. The composition is
a cd-automorphism that shows that tp(ab/cd) does not α-array-divide over c. qed1.9

We also define the D(−, ϕ, ψ, l)-rank:

Definition 1.10. For a partial types p(x) (with parameters), a formula ϕ(x, y), l < ω
and a kl-inconsistency witness ψ(ȳ) for ϕ, we define D(p, ϕ, ψ, l) as the minimal value
in ω ∪ {−1,∞} that satisfies:



6 ITAY BEN-YAACOV

• D(p, ϕ, ψ, l) ≥ 0 if p is consistent.

• D(p, ϕ, ψ, l) ≥ n + 1 (for n ∈ ω) if there are (bσ : σ ∈ ωl), satisfying ψ̃l, and
D(p ∧ ϕ(x, bσ), ϕ, ψ, l) ≥ n for all σ ∈ ωl.

If l = 1 we may omit it.

Definition 1.11. For a formula ϕ, a kl-dividing witness ψ for ϕ, a partial type p and
an ordinal α define:

Ψϕ,ψ,l
α,p (x∈(ωl)α , y∈S

β<α(ωl)β+1) =
∧

η∈(ωl)α,β<α

ϕ(xη, yη¹β+1
)

∧
∧

η∈(ωl)α

p(xη)

∧
∧

β<α,σ∈(ωl)β

ψ̃l(yσ,s : s ∈ ωl)

If l = 1 we may omit it.

Lemma 1.12. Let p be a partial type, say over A, α an ordinal, and ϕ, ψ, l as above.
Then the following are equivalent:

(i) D(p, ϕ, ψ, l) ≥ α
(ii) Ψϕ,ψ,l

α,p is consistent.

(iii) There exist b∈α×ωl, such that for every i < α, (bi,σ : σ ∈ ωl) is an indiscernible

l-array over Ab∈i×ωl satisfying ψ̃l, and p(x) ∧
∧

i<α ϕ(x, bi,0l) is consistent.

Proof. (i) =⇒ (ii). One proves by induction on n < ω that if D(p, ϕ, ψ, l) ≥ n then
Ψϕ,ψ,l

n,p is consistent. For α ≥ ω, Ψϕ,ψ,l
α,p is consistent by compactness.

(ii) =⇒ (iii). By compactness, we can replace the ωl-arrays in Ψϕ,ψ,l
α,p with λl-

arrays, for any λ. Applying Lemma 1.3 α times, we can find a realisation
² Ψϕ,ψ,l

α,p (a∈(ωl)α , b∈S

β<α(ωl)β+1) such that in addition, for every β < α and

σ ∈ (ωl)β, the l-array (bσ,s : s ∈ ωl) is indiscernible (as an array) over
A ∪ b∈S

γ<β(ωl)γ+1}. Now pick up the arrays along some branch.

(iii) =⇒ (i). For α = n < ω, one proves by induction on m ≤ n that D(p(x) ∧∧
i<n−m ϕ(x, bi,0l), ϕ, ψ, l) ≥ m, whereby D(p, ϕ, ψ, l) ≥ n. For α ≥ ω, the

finite case implies D(p, ϕ, ψ, l) = ∞.
qed1.12

Corollary 1.13. Let p be a partial type over a set A. Then there is a complete type
q ∈ S(A) extending p, such that D(q, ϕ, ψ, l) = D(p, ϕ, ψ, l) (q depends on ϕ, ψ, l).

Proof. By Lemma 1.12, there is α ≤ ω such that the value of D(p, ϕ, ψ, l) is witnessed
by the existence of b∈α×ωl such that for every i < α, (bi,σ : σ ∈ ωl) is an indiscernible

l-array over Ab∈i×ωl satisfying ψ̃l, and p(x) ∧
∧

i<α ϕ(x, bi,0l) is consistent. Choose a
such that ² p(a) ∧

∧
i<α ϕ(a, bi,0l), and let q = tp(a/A). Then the same b∈α×ωl witness

that D(q, ϕ, ψ, l) = D(p, ϕ, ψ, l). qed1.13

Corollary 1.14. Let p be a partial type, p(x) `
∨

i<λ χi(x, bi). Then D(p, ϕ, ψ, l) =
max D(p ∧ χi(x, bi), ϕ, ψ, l). In particular, the maximum is attained.
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Proof. Let A contain all the parameters for p, as well as all the bi, and let q ∈ S(A)
extend p such that D(q, ϕ, ψ, l) = D(p, ϕ, ψ, l). Then q ` p∧χi0(x, bi0) for some i0 < λ,
so D(p, ϕ, ψ, l) = D(q, ϕ, ψ, l) ≤ D(p∧χi0(x, bi0), ϕ, ψ, l) ≤ sup D(p∧χi(x, bi), ϕ, ψ, l) ≤
D(p, ϕ, ψ, l), so there is equality all the way and the supremum is in fact a maximum.

qed1.14

This is clear:

Fact 1.15. Let p be a partial type over A, and q ⊇ p l-array-dividing over A. Then
there are ϕ, ψ such that either D(q, ϕ, ψ, l) < D(p, ϕ, ψ, l) or D(q, ϕ, ψ, l) = ∞.

And we obtain the robustness of the local character:

Definition 1.16. A co-final class is a class A of subsets of the universal model U ,
invariant under automorphisms. We may alternatively consider it as a class of (infinite)
tuples, where a tuple is in A if it enumerates a set in A (this is because we prefer
enumerated tuples to sets in general).

Proposition 1.17. For a cat T and l < ω, the following are equivalent:

(i) D(x = x, ϕ, ψ, l) < ∞ for all ϕ(x, y) and kl-inconsistency witness ψ(y∈kl for
ϕ.

(ii) l-array-dividing satisfies a strong local character: For any set A and possibly
infinite tuple b, there is A0 ⊆ A with |A0| ≤ |T | + |b|, such that tp(b/A) does
not l-array-divide over A0.

(iii) l-array-dividing satisfies a weak local character: There is some λ, such that for
any set A and finite tuple b, there is A0 ⊆ A with |A0| ≤ λ, such that tp(b/A)
does not l-array-divide over A0.

(iv) For any co-final class A, A-l-array-dividing satisfies a strong local character:
For any possibly infinite tuple b, and for any increasing sequence (Ai : i < µ)
of A-sets such that cf(µ) > |T | + |b|, there is some j < µ such that tp(b/A<µ)
does not l-array-divide over Aj.

(v) For some co-final class A, A-l-array-dividing satisfies a weak local character:
There is some µ, such that for any finite tuple b, and for any increasing se-
quence (Ai : i < µ) of A-sets, there is some j < µ such that tp(b/A<µ) does
not l-array-divide over Aj.

Proof. (i) =⇒ (ii). Take a subset A0 ⊆ A such that D(tp(b/A), ϕ, ψ, l) =
D(tp(b/A0), ϕ, ψ, l) for all ϕ, k < ω, and kl-inconsistency witness ψ. A0 can
be taken to be of cardinality at most |T | + |b|, as there are at most |T | + |b|
D(−, ϕ, ψ, l)-ranks to be considered. By Fact 1.15, tp(b/A) does not l-array-
divide over A0.

(ii) =⇒ (iii)., (iv) =⇒ (v). Clear.
(ii) =⇒ (iv). tp(b/A<µ) does not l-array-divide over some subset of cardinality at

most |T | + |b|, which is contained in some Aj as cf(µ) > |T | + |b|.
(iii) =⇒ (v). Similarly, and take µ = λ+.
(v) =⇒ (i). Assume that D(x = x, ϕ, ψ, l) = ∞. By Lemma 1.12 we obtain a

sequence (bi : i < µ) of arbitrary length, such that
∧

i<µ ϕ(x, bi) is consistent,

and ϕ(x, bi) l-array-divides over b<i, as witnessed by (bσ
i : σ ∈ ωl). Write

q(Y ) = q(y<µ) = tp(b<µ), and for i < µ: qi = tp(b<i). We propose to
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construct by induction an increasing sequence (Ai : i < µ) of A-sets, and
a sequence (ci : i < µ) of elements, realizing q, such that ci ∈ Ai+1, and
ϕ(x, ci) l-array-divides over Ai. Indeed, suppose we have done so for all j < i,
so c<i ² qi. Take some Ai ∈ A containing A<ic<i, and realize qi+1(c<i, yi)
in some d. By choice of q, there is a c<i-indiscernible array (dσ : σ ∈ ωl)
containing d, such that {ϕ(x, dσ)} is inconsistent. Applying Lemma 1.3 we
obtain such a sequence which is also Ai-indiscernible. Taking ci to be any
element of this sequence gives the wanted properties, and the construction is
complete. Now any realisation of

∧
ϕ(x, ci) contradicts the local character of

A-l-array-dividing.
qed1.17

Remark 1.18. It is in Proposition 1.17 that we find the robustness of the local character.
In particular, it is preserved when adjoining new hyperimaginary sorts, as co-final
classes remain co-final.

Definition 1.19. A cat T is simple if dividing satisfies the local character (that is to
say that any of the equivalent conditions of Proposition 1.17 is satisfied for l = 1).

As we said above, our proof that simplicity implies symmetry and transitivity of
dividing uses array dividing, and the corresponding D(−, ϕ, ψ, l)-ranks, instead of the
Morley sequences used in the classical approach. In particular, we want these ranks to
be finite, so we need:

Proposition 1.20. If T is simple then l-array-dividing satisfies the local character for
every l < ω.

Proof. We prove that l-array-dividing satisfies the local character by induction on l.
For l = 1 this is the assumption, so assume for l, and prove for l + 1:
If not, then there are a formula ϕ(x, y), numbers k, l < ω, and a kl+1-inconsistency
witness ψ for ϕ, such that D(x = x, ϕ, ψ, l+1) = ∞. By Lemma 1.12, for every cardinal
µ there exist b∈µ×ωl+1 , such that for every i < µ, (bi,s : s ∈ ωl+1) is an indiscernible

(l+1)-array over b∈i×ωl+1 satisfying ψ̃l+1, and
∧

i<µ ϕ(x, bi,0l+1) is consistent. Moreover,

as we can choose µ arbitrarily great, we may assume that (b∈{i}×ωl+1 : i < µ) is
indiscernible.
Let µ = |T |+, and for I ⊆ µ write qI(x) =

∧
i∈I,s∈ωl ϕ(x, bi,s,0)∧

∧
i/∈I ϕ(x, bi,0l+1). There

are two possibilities:

• Either qµ is consistent, in which case it divides over every b∈i×ωl+1 for every i,
contradicting simplicity.

• Or not, in which case there is some i0 < µ such that qi0 is consistent, but qi0+1

is not. By indiscernibility of (b∈{i}×ωl+1 : i < µ), qi0∪{i} is inconsistent for any
i0 ≤ i < µ, which means that qi0 l-array-divides over b∈i×ωl+1 for every i < µ,
contradicting the induction hypothesis.

This contradiction shows that (l + 1)-array-dividing satisfies the local character and
the induction step is done. qed1.20

Corollary 1.21. T is simple if and only if array-dividing satisfies the local character.

Remark 1.22. Note that we used Proposition 1.17 in the proof of Proposition 1.20, so
we could not have restricted Proposition 1.17 to dividing.
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1.2. Symmetry and transitivity. The whole point of introducing array-dividing is
in that it enables us to prove:

Lemma 1.23. Let a, b, c be possibly infinite tuples, x, y, z the corresponding tuples
of variables. Then the following conditions imply one another from top to bottom:

(i) For all k, l < ω, ϕ(y, xz) and kl-inconsistency witness ψ for ϕ:

D(tp(b/ac), ϕ, ψ, l) = D(tp(b/c), ϕ, ψ, l) < ∞

(ii) tp(b/ac) does not array-divide over c.
(iii) For all k, l < ω, ϕ(x,w) and kl-inconsistency witness ψ for ϕ:

D(tp(a/bc), ϕ, ψ, l) = D(tp(a/c), ϕ, ψ, l)

Proof. (i) =⇒ (ii). Just use Fact 1.15.
(ii) =⇒ (iii). Assume that D(tp(a/c), ϕ, ψ, l) ≥ n, so we can find ²

Ψϕ,ψ,l
n,tp(a/c)(a∈(ωl)n , d∈

S

β<n(ωl)β+1). Then (aσ : σ ∈ (ωl)n) is an ln-array in tp(a/c),

so in particular finite dimensional: by compactness and Lemma 1.3, we may
assume that it is c-indiscernible. Now use the assumption that tp(b/ac) does
not array-divide over c to obtain b′ such that aσb

′ ≡c ab for all σ ∈ ωln. Let f
be an automorphism of the universal domain sending b′ to b while fixing c: then
² Ψϕ,ψ,l

n,tp(a/bc)(f(a∈(ωl)n), f(d∈
S

β<n(ωl)β+1)), whereby D(tp(a/bc), ϕ, ψ, l) ≥ n.

The equality ensues.
qed1.23

The first implication actually holds for each value of l separately: Fact 1.15 says
precisely that for every l, if D(tp(b/ac), ϕ, ψ, l) = D(tp(b/c), ϕ, ψ, l) < ∞ for all ϕ, ψ,
then tp(b/ac) does not l-array-divide over c.

On the other hand, in the second implication, the dimension of the arrays under
consideration may increase arbitrarily: in order to prove that D(tp(a/bc), ϕ, ψ, l) =
D(tp(a/c), ϕ, ψ, l) we need non-nl-array-dividing, and we have no bound for n (even
if l is fixed, D(x = x, ϕ, ψ, l) varies with ϕ, ψ). Thus, even if we only want to prove
that D(tp(a/bc), ϕ, ψ) = D(tp(a/c), ϕ, ψ) for all ϕ, ψ, we need to assume that tp(b/ac)
does not array-divide over c: ordinary non-dividing does not, a priori, suffice. This
should explain the need for the rather technical definitions and results above, and in
particular for Proposition 1.20.

Convention 1.24. From here on we assume that T is simple.

Notation 1.25. We write a |̂
c
b to say that tp(a/bc) does not array-divide over c.

Then Lemma 1.23 yields:

Corollary 1.26. The following are equivalent:

(i) a |̂
c
b

(ii) b |̂
c
a

(iii) D(tp(a/bc), ϕ, ψ, l) = D(tp(a/c), ϕ, ψ, l) for every ϕ, ψ, l for which this is de-
fined.

(iv) D(tp(b/ac), ϕ, ψ, l) = D(tp(b/c), ϕ, ψ, l) for every ϕ, ψ, l for which this is de-
fined.
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Corollary 1.27. Independence is symmetric and transitive:

(i) a |̂
c
b ⇐⇒ b |̂

c
a

(ii) a |̂
c
bd ⇐⇒ a |̂

c
b ∧ a |̂

bc
d.

Proof. Symmetry was proved in Corollary 1.26. Transitivity follows either from sym-
metry and partial upward and downward transitivity, or from the characterisation of
independence by equality of D(−, ϕ, ψ, l)-ranks. qed1.27

We defined simplicity by the local character of dividing, proved that the local charac-
ter of array-dividing follows, and used it to prove that non-array-dividing is symmetric
and transitive. We may now complete the cycle by proving:

Proposition 1.28. The following are equivalent:

(i) a |̂
c
b.

(ii) D(a/bc, ϕ, ψ) = D(a/c, ϕ, ψ) for every ϕ, ψ for which this makes sense.
(iii) tp(a/bc) does not divide over c.

Proof. (i) =⇒ (ii). Take l = 1 in Corollary 1.26.
(ii) =⇒ (iii). Take l = 1 in Fact 1.15.
(iii) =⇒ (i). It would suffice to show that D(b/ac, ϕ, ψ, l) = D(b/c, ϕ, ψ, l) for every

ϕ, ψ, l.
So fix such a triplet: by Corollary 1.13 we can find a sequence (bi : i < |T |+)
such that bi ≡c b and D(bi/cb<i, ϕ, ψ, l) = D(b/c, ϕ, ψ, l) for every i. By
Lemma 1.2 we may assume that this sequence is c-indiscernible, and since
tp(a/bc) does not divide over c we may further assume that bi ≡ac b for all i.
By the local character of array-dividing, there is i < |T |+ such a |̂

cb<i
bi,

whereby: D(b/ac, ϕ, ψ, l) = D(bi/ac, ϕ, ψ, l) ≥ D(bi/acb<i, ϕ, ψ, l) =
D(bi/cb<i, ϕ, ψ, l) = D(b/c, ϕ, ψ, l).

qed1.28

Therefore, from this point onwards, we shall mention array-dividing no more.

1.3. Extension. By Example 4.3, the extension axiom need not always holds in a
simple cat. Still, as the extension axiom plays an essential role in simplicity theory,
we should like to distinguish those types for which it does hold. We characterise them
as those types for which Morley sequences exist, and show that they these types are
quite abundant.

Definition 1.29. A complete type p ∈ S(A) is called extendible if it has non-dividing
extensions to every set B ⊇ A.

This notion is closely related to that of a Morley sequence:

Definition 1.30. A sequence (ai) is independent over c if ai |̂
c
a<i for all i. If in

addition it is c-indiscernible, then it is a Morley sequence over c.
A Morley sequence over c for a is a Morley sequence (ai) over c, such that a0 = a.

Fact 1.31. If (ai : i ∈ I) is an independent set over c, then a∈I′ |̂
c
a∈I′′ for every

disjoint I ′, I ′′ ⊆ I.
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Proof. For finite I ′, I ′′, this is by symmetry and transitivity. For infinite ones, by the
finite character. qed1.31

The usefulness of Morley sequences lies in the following property, first noticed in
[Kim98]:

Proposition 1.32. Let (ai : i < α) be a Morley sequence over c, and b any tuple.
Then:

(i) If cf(α) > |T | + |b| then there is i < α such that a∈[i,α) |̂
c
b.

(ii) If (ai) is bc-indiscernible, then a<α |̂
c
b.

Proof. (i) By the local character there is i < α such that b |̂
a<ic

a∈[i,α). Since this

is a Morley sequence we also have a<i |̂
c
a∈[i,α), so a∈[i,α) |̂

c
b by transitivity.

(ii) Since the sequence is bc-indiscernible we may extend it to length (|T | + |b|)+,
and apply the previous item and automorphism invariance.

qed1.32

The connection is given by:

Lemma 1.33. A type p = tp(a/c) is extendible if and only if it has a Morley sequence.

Proof. =⇒ If p is extendible we can construct a long c-independent sequence in p,
and then apply Lemma 1.2.

⇐= Let (ai) be a Morley sequence in p over c, and let b be any tuple. Assuming
it is long enough we find some ai |̂

c
b by Proposition 1.32, so tp(ai/bc) is the

required extension.
qed1.33

We can show that extendible types exist:

Proposition 1.34. (i) Assume that a |̂
c
b. Then tp(a/c) is extendible if and

only if tp(a/bc) is.
(ii) Assume that tp(a/bc) and tp(b/c) are extendible. Then tp(ab/c) is.
(iii) Assume that tp(ab/c) is extendible. Then tp(a/c) is.
(iv) A type tp(a∈I/c) is extendible if and only if tp(a∈I0/c) is extendible for every

finite I0 ⊆ I. We could say that the property of being extendible has a finite
character.

(v) Assume that {ai : i ∈ I} are c-independent, and tp(ai/c) is extendible for all
i ∈ I. Then tp(a∈I/c) is extendible.

Proof. (i) Let (ai : i < ω) be a Morley sequence for a over c. As a |̂
c
b, we may

assume that it is indiscernible over bc in tp(a/bc). Then a<ω |̂
c
b, and (ai) is

a Morley sequence over bc by transitivity. Conversely, a Morley sequence for
a over bc is also a Morley sequence over c, by transitivity.

(ii) Let d be any tuple, and we want to find a non-dividing extension for tp(ab/c)
to dc. First realize tp(b/c) by b′ |̂

c
d, then find a′ such that a′ |̂

b′c
d and

a′b′ ≡c ab. Then a′b′ |̂
c
d by transitivity.

(iii) Clear.
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(iv) Left to right is clear. We prove right to left by induction on κ = |I|, and we
may in fact assume that I = κ. If κ < ω this is tautological, so we may assume
that κ ≥ ω. In this case, pi = tp(a<i/c) is extendible for every i < κ by the
induction hypothesis.
Let d be any tuple. We want to construct an increasing sequence of types
qi, each of which being a non-dividing extension of the corresponding pi to
cd. At limits (and 0) there is no problem. For i + 1 take a Morley sequence
(aj

≤i : j < ω) in tp(a≤i/c). As qi does not divide over c, we may assume

that
∧

j qi(a
j
<i), and furthermore that (aj

≤i : j < ω) is cd-indiscernible. Then

a0
≤i |̂

c
d, so we can take qi+1 = tp(a0

≤i/cd).

Thus q =
⋃

qi is a non-dividing extension of tp(a<κ/c) to cd.
(v) For finite I use (i) and (ii); for infinite I, use the finite case and (iv).

qed1.34

Proposition 1.35. There is a cardinal λ such that every type over a λ-compact model
is extendible.

Proof. Write λ = i(2|T |)+ . We want to prove that if M is λ-compact and a is any tuple,
then tp(a/M) is extendible.
By Lemma 1.34, we may assume that a is finite. By the local character, there exists
A ⊆ M , |A| ≤ |T | such that a |̂

A
M . Using the fact that M is λ-compact, we can

construct a sequence (ai : i < λ) in M such that ai ≡Aa<i
a for every i < λ. Then

a |̂
A

M =⇒ ai |̂
A

a<i for every i, and (ai) is an independent sequence over A. By

Lemma 1.2, we obtain a Morley sequence in tp(a/A), whereby tp(a/A) is extendible.
Since a |̂

A
M , we get that tp(a/M) is extendible as well. qed1.35

Definition 1.36. Let A be a co-final class. Then T is A-simple if it is simple, and
every type over an A-set is extendible.

Thus, if λ is as in Proposition 1.35 and A is the class of λ-compact models, then A
is co-final and T is A-simple.

Question 1.37. Does λ = |T |+ suffice for Proposition 1.35?

1.4. The independence theorem. We pass to Lascar strong types and the inde-
pendence theorem. We follow a path similar to [Sha00, Pil00], with some needed
improvements.

Lemma 1.38. Let a and b be two tuples of the same sort, and c any tuple. Then
conditions (i) and (ii) below are equivalent. If T is simple and tp(a/c) is extendible,
then they are further equivalent to condition (iii):

(i) a and b are equivalent under every c-invariant bounded equivalence relation
(that is, which has a bounded number of classes) on the sort of a.

(ii) There are n < ω and a = a0, . . . , an = b such that for every i < n, ai, ai+1 are
on some c-indiscernible sequence.

(iii) There are a = a0, . . . , an = b such that every ai, ai+1 are on some Morley
sequence over c.
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Proof. (i) =⇒ (ii). The relation in (ii) is clearly a c-invariant equivalence relation, so
we have to show it is bounded. If not, Lemma 1.2 would give a c-indiscernible
sequence of non-equivalent elements, contradicting the definition.

(ii) =⇒ (i). Any two elements on a c-indiscernible sequence must clearly be equiv-
alent by any bounded c-invariant equivalence relation.

(i) =⇒ (iii). We assume that T is simple and tp(a/c) is extendible.
As above, the relation in (iii) is clearly a c-invariant equivalence relation, and
we have to show that it is bounded. We may restrict it to the realisations of
p = tp(a/c), saying that any two elements not satisfying p are equivalent, so
it suffices to prove that it has boundedly many classes on the realisations of p.
Assume the contrary, and find for any κ a c-independent sequence (ai : i < κ)
of inequivalent realisations of p: Having found a<i for i < κ, let b ² p be
inequivalent to all of a<i, and let (bj) be a Morley sequence over c with b0 =
b. Assuming it is long enough and applying Proposition 1.32, we find some
bj |̂

c
a<i on this sequence, and as bj in on the same Morley sequence over c

as b, it is not equivalent to any of a<i either. Take ai = bj.
Doing this for κ big enough and applying Lemma 1.2 we obtain a Morley
sequence in p whose elements are inequivalent, contradicting the definition.

(iii) =⇒ (ii). Clear.
qed1.38

Definition 1.39. We say that a ≡Ls
c b if any of the conditions of Lemma 1.38 is true.

It is clearly the finest bounded c-invariant equivalence relation on any sort.

We have extension for extendible Lascar strong types:

Proposition 1.40. If tp(a/c) is extendible, then for every b there is a′ ≡Ls
c a such that

a |̂
c
b.

Proof. Take a long Morley sequence (ai) for a over c. Then by Proposition 1.32 there
is some ai |̂

c
b, and ai ≡

Ls
c a. qed1.40

We prove the independence theorem in several steps:

Lemma 1.41. Assume that {a, b0, b1} is a c-independent set, d |̂
c
ab0 and b0, b1 are

on some Morley sequence over c. Then there exists d′ ≡ac d such that d′b1 ≡c db0 and
d′ |̂

c
ab1

Proof. We may assume that (bi : i < ω) is a Morley sequence over c. As a |̂
cb0

b1, we

may assume that (ab0bi : 0 < i) is c-indiscernible. Take it to be long enough, and for
each i find ai such that (aibibi′ : i′ > i) be similar over c to (ab0bi : i > 0). Apply
Lemma 1.2 to get (aibi) to be c-indiscernible, without changing b0, b1. As for all i < i′:
aibibi′ ≡c ab0b1, we may also assume that a0 = a. As we know that d |̂

c
ab0, there is

d′ ≡cab0 d such that (aibi) is cd′-indiscernible. Then d′ ≡ac d and d′b1 ≡c d′b0 ≡c db0.
In addition, (bi : 0 < i) is a Morley sequence over c, indiscernible over acd′, whereby
ad′ |̂

c
b1 and d′ |̂

c
ab1. qed1.41

Lemma 1.42 (Weak independence theorem). Assume that a0 |̂
c
a1, bi |̂

c
ai, b0 ≡Ls

c

b1 and tp(ai/c), tp(bi/c) are all extendible. Then there is b |̂
c
a0a1 with b ≡aic bi.
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Proof. We might as well assume that {a0, a1, b0, b1} is a c-independent set. As b0 ≡
Ls
c b1,

there are b0 = d0, . . . , dn = b1 such that di, di+1 are on the same Morley sequence over
c. As a0 |̂

c
a1, we know that tp(a0a1/c) is extendible, whereby we may assume that

a0a1 |̂
c
d̄. Successive applications of Lemma 1.41 would give a′

1 ≡a0c a1 such that

a′
1b0 ≡c a1b1 and a′

1 |̂
c
a0b0. Send a′

1 back to a1 fixing a0c and take b to be the image

of b0. Then b |̂
c
a0a1 and b ≡aic bi. qed1.42

Corollary 1.43. Assume that tp(a/c) is extendible. Then a ≡Ls
c b and a |̂

c
b if and

only if a, b lie on some Morley sequence over c.

Proof. One direction is clear. For the other, the classical proof works: Write p =
tp(ab/c), and obtain a c-independent sequence (ai) such that for every i < j we have
p(aiaj) and ai ≡ca<i

aj. Start with a0 = a, a1 = b. For i limit, just take ai to realize⋃
j<i tp(aj/ca<j). For i + 1 ≥ 2, send a to ai over c and take a′

i+1 to be the image of b.

As p(xy) ` x ≡Ls
c y, we have ai ≡

Ls
c a′

i+1. On the other hand, ai |̂
c
a<i and ai |̂

c
a′

i+1,

so we can amalgamate tp(ai/ca<i) and tp(a′
i+1/cai) and obtain ai+1 |̂

c
a≤i satisfying

the requirements. Apply Lemma 1.2 to finish. qed1.43

Corollary 1.44. Assume that p = tp(a/c) is extendible. Then ≡Ls
c restricted to p is

type-definable.

Proof. Let q(x, y) be the type over c of two elements from some Morley sequence in
p. Then q(x, y) ` p(x) ∧ p(y) ∧ x |̂

c
y ∧ x ≡Ls

c y. We claim that a ≡Ls
c b if and only

if there are a = a0, a1, a2, a3 = b such that q(ai, ai+1), and this condition is clearly
type-definable. One direction is clear. For the other, assume that a ≡Ls

c b. Take a1

such that q(a, a1) and a1 |̂
ac

b. Then in particular a1 |̂
c
b, and we can amalgamate

q(a1, x) and q(x, b) to obtain the desired a2. qed1.44

Remark 1.45. Unlike in simple first order theories, the relation ≡Ls
c is not necessarily

type-definable. In fact, in a simple cat, type-definability of ≡Ls
c (over every c, or

only over c = ∅) is equivalent to thickness, which is discussed further in [Bena]. In
Example 4.3, ≡Ls (over ∅) is not type-definable.

Definition 1.46. Let a and b be two hyperimaginaries.
We say that a is definable over b if a is fixed by every automorphism of the universal
domain fixing b. a is bounded over b it is has boundedly many conjugates under
automorphisms fixing b.
bdd(b) is (an arbitrary enumeration of) the set of all small hyperimaginaries (that is,
quotients of tuples not longer than |T |) which are bounded over b. One easily sees
that every hyperimaginary is interdefinable with a set of small hyperimaginaries, so a
hyperimaginary is bounded over b if and only if it is definable over bdd(b).

Corollary 1.47. Let tp(a/c) be extendible. Then a ≡Ls
c b if and only if a ≡bdd(c) b. In

other words, an extendible Lascar strong type over c is the same as an extendible type
over bdd(c).

Proof. Having the same type over bdd(b) is a bounded equivalence relation over b,
whence one direction. Conversely, be Corollary 1.44, the set of pairs (b, c′) such that
c′ = c and b ≡Ls

c a is a hyperimaginary, and is clearly bounded over c as such. The
type of a over this hyperimaginary clearly implies lstp(a/c). qed1.47
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Theorem 1.48 (Full independence theorem). Assume that a0 |̂
c
a1, bi |̂

c
ai for i <

2, b0 ≡Ls
c b1 and tp(b0/c) is extendible. Then there is b |̂

c
a0a1 with b ≡Ls

aic
bi. Notice

that we do not require tp(ai/c) to be extendible.

Proof. We may assume that {a0, a1, b0, b1} is a c-independent set, as we only need the
extendibility of tp(bi/c) for this. As b0 ≡Ls

c b1, they lie on a Morley sequence over
c. As in the weak case, we apply Lemma 1.41 to replace a0 by a′

0 |̂
c
a1b1 such that

a′
0b1 ≡c a0b0 and a′

0 ≡a1c a0. Send a′
0 back to a0 by an a1c-automorphism, and let b

be the image of b1. Then b |̂
c
a0a1 and b ≡aic bi for i < 2. In order to get b ≡Ls

aic
bi,

choose b′i, b
′′
i ≡Ls

aic
bi such that {a0, a1, b

′
0, b

′′
0, b

′
1, b

′′
1} is c-independent. Then we have

a0b
′′
0 |̂

c
a1b

′′
1, b′i |̂

c
aib

′′
i and b′0 ≡Ls

c b′1, so there is b |̂
c
a0a1b

′′
0b

′′
1 with b ≡aib′′i c b′i. As

b′i ≡
Ls
aic

b′′i , we get: b ≡Ls
aic

b′′i ≡Ls
aic

bi. qed1.48

1.5. Characterising independence relations. We consider what a relation of in-
dependence over A-sets would be:

Definition 1.49. Let A be a co-final class, and Γ a class of triplets (a, b, c), where
a, b, c are possibly infinite tuples and c ∈ A. Write a |Γ^c

b for (a, b, c) ∈ Γ. Then Γ is
called a A-independence relation, if it satisfies the following:

Invariance: Γ is invariant under automorphisms. If (a, b, c) ∈ Γ, and c′, a′c′ and
b′c′ are interdefinable with c, ac and bc, respectively, then (a′, b′, c′) ∈ Γ.

Existence: a |Γ^c
c, for all c ∈ A and a.

Finite character: a |Γ^c
b if and only if a′ |Γ^c

b′ for all finite a′ ⊆ a, b′ ⊆ b.

Symmetry: a |Γ^c
b if and only if b |Γ^c

a.

Restricted transitivity: If b ∈ A and bc ∈ A, then a |̂
b
cd if and only if

a |̂
b
c and a |̂

bc
d.

Local character: There exists λ such that whenever cf(µ) > λ + |b|, and (ci :
i < µ) is an increasing sequence of A-sets, there is some j < µ with: b |Γ^cj

c<µ.

Extension: If a |Γ^c
b and b′ ⊇ b, then there is a′ ≡c a with a′ |Γ^c

b′.

Independence theorem: Whenever c ∈ A, a0 |Γ^c
a1, bi |Γ^c

ai for i < 2 and

b0 ≡
Ls
c b1, then there exists b |Γ^c

a0a1 with b ≡Ls
cai

bi.

Remark 1.50. As we restrict to independence over A-sets, we need to re-write the local
character in the spirit of Proposition 1.17. Similarly, we need to restrict transitivity
somewhat. In any case, our intention is to show that these conditions characterise
simplicity and non-dividing, so the weaker the conditions the stronger the result, and
once we proved this implies simplicity we have the full versions of transitivity and the
local character at our disposal.

We prove (compare with [KP97]):

Theorem 1.51. A cat T is simple if and only if there is an A-independence relation
Γ for some co-final class A. In this case, T is A-simple, and Γ coincides with non-
dividing.

Proof. Left to right is known: in particular, A can be taken to be the class of all
λ-compact models where λ is given by Proposition 1.35.
We prove right to left:
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Claim. Assume that c ∈ A and a |Γ^c
b. Then tp(a/bc) does not divide over c.

Proof of claim. Let (bi) be a c-indiscernible sequence containing b. Take it to be very
long, and for every i find a A-set ci ⊇ c ∪ c<i ∪ {bi} such that b>i is ci-indiscernible.
Assume that the sequence is of length κ + 1, with b = bκ. Taking κ big enough, the
local character gives us i < κ such that b |Γ^ci

b<κ, which means that (bj : i < j < κ)

is a Γ-Morley sequence over ci (a Γ-Morley sequence being the obvious thing). By
extension, we may assume that a |Γ^c

bci, thus a |Γ^ci
b by restricted transitivity. Write

p′(x, y) = tp(a, b/ci), p(x, y) = tp(a, b/c). Repeated applications of the independence
theorem show that we may find a′ such that ²

∧
i<j<i+ω p′(a′, bj), so in particular

²
∧

i<j<i+ω p(a′, bj). qedClaim

Claim. T is simple.

Proof of claim. Apply the local character of Γ, the previous claim and Proposition 1.17.
qedClaim

Claim. For c ∈ A: a |Γ^c
b ⇐⇒ a |̂

c
b.

Proof of claim. Left to right was proved above.
For right to left, we can apply extension and the finite character to obtain a Γ-Morley
sequence (bi : i < κ) over c containing b. Since a |̂

c
b, we may assume that (bi)

is in fact ac-indiscernible. We will now construct a increasing sequence of A-sets
(ci ∈ A : i < κ), beginning with c0 = c, such that bi ⊆ ci+1 and bj |Γ^c

cib<j for all
i ≤ j < κ.
For i = 0, c0 = c will do, since bj |Γ^c

b<j by assumption. For i > 0, let ci be an A-set

containing c<ib<i such that ci |Γ^c<ib<i
b<κ. By the induction hypothesis for i we know

that bj |Γ^c
c<ib<j for all i ≤ j < κ (if i is limit, use the finite character), so bj |Γ^c

cib<j

as required.
By the local character applied to tp(a/

⋃
ci), and assuming (as we may) that κ was

taken to be big enough, there is i < κ such that:

a |Γ^
ci

c<κ =⇒ a |Γ^
ci

bi =⇒ a |Γ^
c

bi+1 =⇒ a |Γ^
c

b

Which concludes the proof. qedClaim

Now the extension axiom for Γ shows that T is in fact A-simple. qed1.51

2. Stability

Here we sketch how the very basics of stability theory can be developed for cats. We
do not pretend to give a full treatment, as a much more complete one already exists
in [She75]: our humble goal is to show the connection with simplicity, and we only
develop those tools needed for it.

Definition 2.1. (i) Let ϕ(x, y), ψ(x, y) be two formulas. We define the local
R(−, ϕ, ψ, λ) rank, by induction. The interesting part is: R(p, ϕ, ψ, λ) ≥ α+1
if there are (pi : i < λ) extending p, with R(pi, ϕ, ψ, λ) ≥ α for all i < λ,
and such the for all i < j < λ there is b such that ϕ(x, b) ∈ pi, ψ(x, b) ∈ pj
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or the other way around, and ϕ and ψ are contradictory (so if they are not
contradictory, R(p, ϕ, ψ, λ) is either 0 or −1).

(ii) The pair ϕ, ψ is stable if R(x = x, ϕ, ψ, 2) < ω. This is equivalent to: R(x =
x, ϕ, ψ, ω) < ω.

(iii) The formula ϕ is stable if ϕ, ψ are, for all ψ on the same tuple of variables.
(iv) T is stable if all formulas are, that is if all pairs are.
(v) A ϕ(x, y)-definition for p(x) ∈ S(A) is a partial existential type q(y) over A,

containing at most |T | formulas, such that for all b ∈ A: p ` ϕ(x, b) if and only
if q(b). It is sometimes noted dpϕ. A type is ϕ-definable if it has a ϕ-definition.

(vi) A definition for p is a set {dpϕ} such that dpϕ is a ϕ-definition for p, for all
relevant ϕ. A type is definable if it has a definition.

(vii) A definition {dpϕ} for p is good if when applied to any set B it gives a complete
consistent type p′ ∈ S(B). A type is well definable if it has a good definition.

Proposition 2.2. The following are equivalent:

(i) ϕ is stable.
(ii) Any complete type has a ϕ-definition.
(iii) For all A there are at most (|A| + |T |)|T | different (positive) ϕ-types in S(A).
(iv) For some λ, for all A such that |A| ≤ λ, there are at most λ different (positive)

ϕ-types in S(A).

Proof. (i) =⇒ (ii). Let ψ be any formula on the right tuple that contradicts ϕ, and
let n = R(p, ϕ, ψ, 2). Considering trees, compactness yields that there is some
χ ∈ p with n = R(χ, ϕ, ψ, 2). Then R(χ ∧ ϕ(x, y), ϕ, ψ, 2) ≥ n can be written
as an existential formula in y. Let dpϕ be the conjunction of all formulas
arising this way, and we claim that it has the required properties. Indeed,
suppose that ϕ(x, b) ∈ p. Then we have χ ∧ ϕ(x, b) ∈ p as well, so it has
rank n. On the other hand, if ϕ(x, b) /∈ p, there must be some ψ(x, b) ∈ p
with ψ contradicting ϕ. Then we get R(χ∧ψ(x, b), ϕ, ψ, 2) = n, so necessarily
R(χ ∧ ϕ(x, b), ϕ, ψ, 2) < n, as otherwise R(χ, ϕ, ψ, 2) > n. Since there are |T |
possible choices for ψ, |dpϕ| ≤ |T | as required.

(ii) =⇒ (iii). Over a set A there are at most (|A|+ |T |)|T | possible definitions, given
the bound on the size of one.

(iii) =⇒ (iv). Clear.
(iv) =⇒ (i). The standard proof: suppose that R(x = x, ϕ, ψ, 2) ≥ ω for some ψ.

For any λ, let µ be minimal such that 2µ > λ. Build a tree of depth µ: it
has ≤ λ parameters, and 2µ > λ branches, that is partial types that when
completed necessarily give different ϕ-types.

qed2.2

We get then the usual type counting characterisation for stable theories.

We now point out the connection between stability and simplicity, using several ideas
from [Pil98].

Lemma 2.3. (T simple)
An extendible stationary type is well definable. In fact, it has a definition that gives
its unique non-dividing extension to any set containing its domain.
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Proof. Let p = tp(a/C) be a stationary and extendible. For each ϕ(x, y), let d′
pϕ(y)

be the existential type that says that D(p(x) ∧ ϕ(x, y), ϕ, ψ) = D(p, ϕ, ψ) whenever
that makes sense. Then by the stationarity, the d′

pϕ define on B ⊇ C the unique
non-dividing extension of p to B, noted p ¹ B. Of course, there is no reason to assume
that |d′

pϕ| ≤ |T |, which is required for it to be a definition for p, so there is some more
work to be done.
For all contradicting pairs ϕ, χ, consider d′

pϕ∧d′
pχ: Clearly, this must be inconsistent,

otherwise some non-dividing extension of p would satisfy ϕ(x, b)∧χ(x, b). By compact-
ness (which applies to existential formulas as well), there are finitely many formulas in
d′

pϕ, d′
pχ that give this contradiction. Take dpϕ to contain all formulas that arise this

way in d′
pϕ, for all χ. Then |dpϕ| ≤ |T | as required, and {dpϕ} gives a consistent type

over any B ⊇ C, that contains the unique non-dividing extension, and must then be
equal to it. In particular, on C it gives p. qed2.3

Corollary 2.4. (T simple)
An extendible type of bounded multiplicity is definable. In fact, it has a definition that
gives the intersection of its non-dividing extensions to any set containing its domain.

Proof. Let p = tp(a/C) be extendible of bounded multiplicity. Then it has a stationary
non-dividing extension q to some B ⊇ C. Let {dqϕ} be the (good) definition of q giving
its non-dividing extensions. Then for any set C ′ ⊇ C, applying this definition to C ′

gives a non-dividing extension of p. Let b ⊆ B be the tuple of parameters occurring
in this definition, so write it rather {dqϕ(y, b)}. Let b′ be a C-conjugate of b. Then
{dqϕ(y, b′)} also gives non-dividing extensions of p. Since p has bounded multiplicity,
there is a set b̄ = {bi} of C-conjugates of b such that for any other C-conjugate b′ of
b, the definition {dqϕ(y, b′)} is already equivalent to {dqϕ(y, bi)} for some i. Write:
r(z) = tp(b/C), r̄(z̄) = tp(b̄/C), and:

d′
pϕ(y) = ∃z r(z) ∧ dqϕ(y, z)

d′′
pϕ(y) = ∃z̄ r̄(z̄) ∧

∧

i

dqϕ(y, zi)

Clearly these can be written as existential types over C. So d′
pϕ(y) says that there

is some non-dividing extension of p containing ϕ(x, y), and d′′
pϕ(y) says that all non-

dividing extensions of p contain ϕ(x, y). We therefore see that if ϕ and χ are contra-
dictory, then d′

pϕ(y) ∧ d′′
pχ(y) is inconsistent. By compactness (applied to existential

formulas), finitely many formulas suffice for the contradiction. Take dpϕ to be the set
of all formulas arising this way in d′′

pϕ. Then |dpϕ| ≤ |T | as required, and we claim
that it is equivalent to {d′′

pϕ}. Indeed, suppose that c 6² d′′
pϕ. Then there is some non-

dividing extension of p to Cc that does not satisfy ϕ(x, c), so it must satisfy χ(x, c)
for some χ contradicting ϕ. Then we have c ² d′

pχ, so by construction: c 6² dpϕ. This
proves the claim. In particular, dpϕ gives p on C. qed2.4

We recall that if A ⊇ B, and p ∈ S(A) is such that whenever a, a′ ∈ A, a ≡B a′,
then p ` ϕ(x, a) ⇐⇒ p ` ϕ(x, a′), then p is called non-splitting over B. We usually
consider this property only when B is a model and A satisfies at least some saturation
requirements over B.

Notation 2.5. Mct is the class of |T |+-compact models of T .
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Lemma 2.6. Let M ∈ Mct, and suppose that p ∈ S(M) is definable. Then:

(i) p has a unique definition over M (up to equivalence).
(ii) The unique definition of p is good.
(iii) For A ⊇ M , p ¹ A (the interpretation of the definition of p on A) does not

divide over M , and is non-splitting over M .

Proof. (i) Suppose there are two inequivalent ϕ(x, y)-definitions q(y) and q′(y)
for p. Then there is some a realising, say, q and not q′. Then there is a
contradicting pair ψ, χ and b ∈ M such that ψ(y, b) ∈ q′, and ² χ(a, b).
Then q(y)∧ χ(y, b) is consistent, and by |T |+-compactness it is realised in M ,
contradicting the assumption that q, q′ were the same on M .

(ii) For A ⊇ M , let p ¹ A denote the application of the (unique) definition of p
to A. We show first that p ¹ A is consistent. Indeed, assume that {ϕi(x, ai) :
i < n} ⊆ p ¹ A. This means that for i < n: ai ² dpϕi. Let B ⊆ M be the
set of parameters used for {dpϕi : i < n}. Then |B| ≤ |T |, so tp(a<n/B) is
realised in M , say by b<n. Thus p ²

∧
ϕi(x, bi), and

∧
ϕi(x, bi) is consistent.

As a<n ≡ b<n, so is
∧

ϕi(x, ai), so p ¹ A is consistent.
To prove completeness, suppose that for some formulas ϕi(x, y) : i < λ ≤ |T |
we have ²

∨
i<λ ϕi, and let B ⊆ M contain all the parameters for dpϕi : i < λ.

Then |B| ≤ |T |, so for every a ∈ A, there is b ∈ M realising tp(a/B). Then,
as p is complete, for some i < λ we have:

p ` ϕi(x, b) =⇒ b ² dpϕi =⇒ a ² dpϕi =⇒ p ¹ A ` ϕi(x, a)

which proves that p ¹ A is complete.
(iii) Easy.

qed2.6

Corollary 2.7. (T stable)
The equality of Lascar strong types over A is the transitive closure of equality of types
over Mct-models containing A.

Proof. We have non-splitting extensions over Mct-models (see [KP97]). qed2.7

In particular, if T is stable, the Lascar strong type over Mct-models is the same as
the usual type.

Theorem 2.8. The following are equivalent:

(i) T is stable.
(ii) T is Mct-simple, and Mct-types are stationary.
(iii) T is simple, and extendible types have bounded multiplicity.

Proof. (i) =⇒ (ii). First, let us show Mct-simplicity. So let (Mi : i < |T |+) be an
increasing sequence, and p ∈ Sn(M<|T |+). Consider a definition of p: it contains
at most |T | parameters, therefore it is over some Mj, so it is a good definition
and p does not divide over Mj. This shows that T is simple. The existence of
Morley sequences results from the existence of non-splitting extensions.
Suppose now that there is some Mct-type p ∈ S(M) which is not stationary.
That is, there is some a and two different non-dividing extensions p0, p1 ∈
S(Ma) of p. Let (ai : i < λ) be a Morley sequence in tp(a/M). Then by
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the independence theorem for Lascar strong types (p is one by Corollary 2.7),
for every ε ∈ 2λ there is bε |̂

M
a<λ such that bε ²

⋃
i<λ pεi

(x, ai). Thus,

disposing of M (except maybe for a finite set of elements needed to establish
the difference between p0 and p1), we obtain 2λ types over sets of cardinality
λ, for any λ, contradicting stability.

(ii) =⇒ (iii). Clear, when considering the non-dividing extensions of an extendible
type to an Mct-model containing its domain.

(iii) =⇒ (i). Since extendible types have bounded multiplicity, we can find for every
set B a superset B′ ⊇ B such that every extendible type over B′ non-dividing
over B is stationary. By Proposition 1.35, there is some λ such that every type
over a λ-compact model is extendible, and we may assume that λ ≥ |T |+ is
big enough so that if |B| ≤ |T | then there is B′ as above with |B′| < λ.
We claim that T is µ-stable for every µ satisfying µ<λ = µ (so for example,
for µ = 2λ).
Assume that |A| = µ = µ<λ: then there is a λ-compact model M containing
A of cardinality µ, and it would suffice to show that | Sn(M)| ≤ µ. Every
p ∈ Sn(M) is extendible, and does not divide over some B ⊆ M , |B| ≤ |T |,
which gives µ|T | = µ possibilities. By assumption on λ, we can choose every
such B a superset B ⊆ B′ ⊆ M as above. Then p ¹ B′ is stationary as it
is extendible and does not divide over B, and p is its unique non-dividing
extension to M . This leaves us still with | Sn(B′)| ≤ 2<λ ≤ µ possibilities, and
the statement is proved.

qed2.8

3. Canonical bases

When trying to generalise the construction of canonical bases from [HKP00] to cats,
one encounters several technical difficulties:

• The proof that the relation ∼1 (having a common non-dividing extension) is
type-definable does not go through: if p(x, a) and p′(x, a′) are two complete
types, and D(p ∧ p′, ϕ, ψ) = D(p, ϕ, ψ) = D(p′, ϕ, ψ) for all ϕ, ψ, then we still
do not know whether p ∼1 p′, if neither tp(a/a′) nor tp(a′/a) is extendible.

• The definition of the relation R uses negative formulas (namely, the negations
of formulas that make D-ranks decrease) which we do not allow. Therefore,
with the definitions of [HKP00], it is not even clear that R is consistent.

• The proof in [HKP00] makes use of instances of the extension axiom which
may no longer be valid in our context.

We suggest therefore an alternative approach, similar in spirit but different in details:
the relation R is defined quite differently (although it turns out to be the same), and
we do not even claim that it is type-definable; the type-definability of ∼1 is proved
differently; and applications of the extension axiom are replaced with more direct
arguments. This is accomplished through an extensive use of Morley sequences in the
types we consider, and of Proposition 1.32.

In order to apply this approach, all we need is a simple cat T and an extendible
amalgamation base p. In particular, p does not divide over Cb(p), so p ¹ Cb(p) is
extendible and independence theory applies to it in full.
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Convention 3.1. (i) T is simple.
(ii) In this section a complete type over a is noted p(x, a), where p(x, y) is the

obvious complete pure type.

Definition 3.2. (i) An extendible type p(x, a) is an amalgamation base if it sat-
isfies the independence theorem. Equivalently: if it has a unique extension to
bdd(a).

(ii) Let p(x, a) and p′(x, a′) be amalgamation base, and (ci : i < ω) a Morley
sequence in both (over a and over a′, respectively), indiscernible over aa′.
Then we say that c<ω witnesses that p(x, a) ∼1 p′(x, a′).
If in addition a |̂

c<ω
a′, then c<ω witnesses that p(x, a) R p′(x, a′).

(iii) We define ∼ as the transitive closure of ∼1, and we say that p ∼ p′ are parallel.

The first step is to show that the relation p(x, a) ∼1 p′(x, a′) is type-definable (for a
given pair of p(x, y) and p′(x, y′)).

Lemma 3.3. Let p(x, a) and p′(x, a′) be amalgamation bases, and q(x<ω, a) the type
of a Morley sequence in p. Then the following are equivalent:

(i) p ∼1 p′.
(ii) p and p′ have a common non-dividing extension to aa′.
(iii) D(p, ϕ, ψ) = D(p′, ϕ, ψ) for every ϕ, ψ, and q(x<ω, a) ∧

∧
i<ω p′(x′, a′) is con-

sistent.

Proof. (i) =⇒ (ii). If c<ω witnesses that p ∼1 p′, then tp(c0/aa′) is a common non-
dividing extension by Proposition 1.32.

(ii) =⇒ (iii). Let c realise a common non-dividing extension, namely c ² p ∧ p′

and c |̂
a
a′ ∧ c |̂

a′ a. Then D(p, ϕ, ψ) = D(c/a, ϕ, ψ) = D(c/aa′, ϕ, ψ) =

D(c/a′, ϕ, ψ) = D(p′, ϕ, ψ). As tp(a′/ac) does not divide over a, q(x<ω, a) ∧∧
i<ω p′(x′, a′) is consistent.

(iii) =⇒ (i). Assume that q(x<ω, a) ∧
∧

i<ω p′(x′, a′) is consistent. By compactness
and Lemma 1.2, we can find an aa′-indiscernible sequence c<ω realising it. By
Proposition 1.32 c<ω |̂

a
a′, so ci |̂

a
a′c<i for every i < ω, and whereby for

every ϕ, ψ:

D(ci/a
′c<i, ϕ, ψ) ≥ D(ci/aa′c<i, ϕ, ψ) = D(ci/a, ϕ, ψ) = D(p, ϕ, ψ)

= D(p′, ϕ, ψ) = D(ci/a
′, ϕ, ψ)

We conclude that ci |̂
a′ c<i, so c<ω is a common Morley sequence witnessing

p ∼1 p′.
qed3.3

Corollary 3.4. Let p(x, a) and p′(x, a′) be amalgamation bases. Then the relation
p(x, b) ∼1 p′(x, b′) is type-definable in b, b′.

Proof. If there are ϕ, ψ such that D(p(x, a), ϕ, ψ) 6= D(p′(x, a′), ϕ, ψ), then the relation
is empty. Otherwise, if q(x, a) is the type of any Morley sequence in p(x, a), then
p(x, b) ∼1 p′(x, b′) ⇐⇒² ∃x<ω q(x<ω, b) ∧

∧
i<ω p′(x′, b′). qed3.4

Notation 3.5. Let c<α+1 be an a-indiscernible sequence, α ≥ ω. Then we note
tpnext(c<α) = tp(cα/c<α), that is the type of the next element of the sequence. As
α ≥ ω, this does not depend on the choice of cα.
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The proof of the main result is by induction. The starting point is given by:

Lemma 3.6. Define α∗ = {β∗ : β ∈ α} for every ordinal α (by induction on α), and
define that α∗ < β∗ ⇐⇒ β < α and α < β∗ for every two ordinals α, β.
If (ci : i ∈ ω ∪ ω∗) is an indiscernible sequence, then tpnext(c∈ω) is an amalgamation
base, and c∈ω∗ is a Morley sequence in it (over c∈ω).

Proof. For i∗ ∈ ω∗, tp(ci∗/c∈ωc∈i∗) does not divide over c∈ω, as every formula it contains
is already satisfied by some element of c∈ω. This shows that c∈ω∗ is Morley sequence
in tpnext(c∈ω), and in particular tpnext(c∈ω) is extendible. If c, c′ ² tpnext(c∈ω), then we
can extend c∈ω to c∈2ω and c′∈2ω, such that c′∈ω+1 = c∈ω+1, c = cω+1 and c′ = c′ω+1,
whereby c ≡Ls

c∈ω
c′′ ≡Ls

c∈ω
c′, so tpnext(c∈ω) is an amalgamation base. qed3.6

Corollary 3.7. Let p(x, a) be an amalgamation base, and c<ω a Morley sequence in
p. Then p R tpnext(c<ω).

Proof. We may extend it to a sequence (ci : i ∈ ω ∪ ω∗), and apply the lemma.
Then tpnext(c<ω) is an amalgamation base, and c∈ω∗ is a Morley sequence in p and
in tpnext(c<ω), indiscernible over ac<ω. But by symmetry of ω ∪ ω∗, c<ω is a Morley
sequence over c∈ω∗ , indiscernible over ac∈ω∗ , so c<ω |̂

c∈ω∗
a. We conclude that c∈ω∗

witnesses that p R tpnext(c<ω). qed3.7

And the induction step is given by:

Lemma 3.8. Assume that a |̂
a′ a

′′ and p(x, a) R p′(x, a′) ∼1 p′′(x, a′′). Then a |̂
a′′ a

′

and p(x, a) R p′′(x, a′′).

Proof. Let c<ω witness p R p′. We may extend it to an aa′-indiscernible sequence c<λ

of any length λ. Let q(x, a′a′′) be a common non-dividing extension of p′ and p′′.
By induction on i < λ, we choose a sequence (di : i < λ) such that:

(i) di ² q for every i < λ.
(ii) d<λ ≡aa′ c<λ.
(iii) d<λ |̂

a′ aa′′

Assume we have already chosen d<i ≡aa′ c<i such that d<i |̂
a′ aa′′. Write

q′(x, aa′c<i) = tp(ci/aa′c<i). Then both q′(x, aa′d<i) and q(x, a′a′′) are non-dividing
extensions of p′, and a |̂

a′ a
′′ =⇒ ad<i |̂

a′ a
′′. Since p′ is an amalgamation base we

can find di |̂
a′ aa′′d<i realising q′(x, aa′d<i)∧q(x, a′a′′), and the construction may con-

tinue.
Having chosen λ big enough, we may assume by Lemma 1.2 that the sequence d<ω is
aa′a′′-indiscernible, in which case it is a Morley sequence in all of p, p′ and p′′, and is
independent of aa′a′′ over either one of a, a′ or a′′. Therefore:

d<ω |̂
a′

aa′′ =⇒ ad<ω |̂
a′

a′′ =⇒ a |̂
d<ω

a′a′′ =⇒ ad<ω |̂
a′′

a′

Thus the sequence d<ω witnesses that p(x, a) R p′′(x, a′′), and a |̂
a′′ a

′. qed3.8

We put them together:

Lemma 3.9. Assume that p(x, a) ∼ p′(x, a′), and c<ω is a Morley sequence in p such
that c<ω |̂

a
a′. Then p(x, a) R tpnext(c<ω) R p′(x, a′) and c<ω |̂

a′ a.
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Proof. We have p(x, a) = p0(x, a0) ∼1 . . . ∼1 pn(x, an) = p′(x, a′), and as c<ω |̂
a
a′,

we may further assume that c<ω |̂
a
a≤n.

Then tpnext(c<ω) R p(x, a) by Corollary 3, and we may apply Lemma 3.8 repeatedly
to obtain tpnext(c<ω) R pi and c<ω |̂

ai
a≤n for every i ≤ n. For i = n, this is what we

want. qed3.9

Proposition 3.10. Let p(x, a), and p′(x, a′) be amalgamation bases. Let c<ω be a
Morley sequence in p, and p′′(x, c<ω) = tpnext(c<ω). Then the following are equivalent:

(i) p(x, a) ∼ p′(x, a′)
(ii) There exists a sequence d<ω such that p(x, a) R p′′(x, d<ω) R p′(x, a′), and in

addition d<ω |̂
a′ a and d<ω |̂

a
a′.

(iii) There exists a sequence d<ω such that p(x, a) ∼1 p′′(x, d<ω) ∼1 p′(x, a′).

Proof. (i) =⇒ (ii). We may choose d<ω ≡a c<ω such that d<ω |̂
a
a′, and apply

Lemma 3.9.
(ii) =⇒ (iii). Clear, as R implies ∼1.
(iii) =⇒ (i). By definition.

qed3.10

Corollary 3.11. Let p(x, a) be an amalgamation base, and q = tp(a). For a′, a′′ ² q
define a′ ∼ a′′ if a′ = a′′ or p(x, a′) ∼ p(x, a′′). Then ∼ is a type-definable equivalence
relation.

Proof. Clearly, ∼ is an equivalence relation. Let c<ω be a Morley sequence in p(x, a),
and p′(x, c<ω) = tpnext(c<ω). Then a′ ∼ a′′ if and only if a′ = a′′ or there is a sequence
d<ω such that p(x, a′) ∼1 p′(x, d<ω) ∼1 p(x, a′′), and this is type-definable. qed3.11

Therefore, we can give:

Definition 3.12. For an extendible amalgamation base p(x, a) we define the canonical
base of p, Cb(p), as the hyperimaginary a∼.

Note that in the beginning of the proof of the following theorem we have to turn
around a bit, as we do not know that tp(a/a∼) is extendible.

Theorem 3.13. Let p(x, a) be an extendible amalgamation base, a∼ = Cb(p). Then:

(i) For a′ ≡ a, we have p(x, a) ∼ p(x, a′) if and only if Cb(p(x, a)) = Cb(p(x, a′)).
Thus Cb(p) is a canonical parameter for the parallelism class of p.

(ii) p does not divide over a∼. Equivalently, if c<ω is a Morley sequence in p, then
c<ω |̂

a∼
a.

(iii) p(x, a) R p′(x, a′) if and only if p ∼ p′ and a |̂
a∼

a′.

(iv) p ¹ Cb(p) is an amalgamation base.
(v) If b ⊆ a, then p does not divide over b if and only if a∼ ⊆ bdd(b). If in addition

p ¹ b is an amalgamation base, then a∼ ⊆ b.

Proof. (i) By definition.
(ii) Let c<ω be a Morley sequence in p(x, a), and we want to prove that q(x<ω, a) =

tp(c<ω/a) does not divide over a∼. So let (ai : i < ω) be an a∼-indiscernible
sequence with a0 = a, and we need to prove that

∧
i q(x<ω, ai) is consistent.
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We may extend the sequence by one element a−1, and we may re-choose c<ω

such that c<ω |̂
a
a−1. As tpnext(c<ω) R p(x, a) and a = a0 ∼ a−1, we obtain

c<ω |̂
a−1

a by Lemma 3.9. As (ai : i < ω) is a−1-indiscernible, we can find

c′<ω such that c′<ωai ≡a′ c<ωa for all i < ω, so in particular ²
∧

i q(c
′
<ω, ai), as

required.
(iii) =⇒: If p R p′ then clearly p ∼ p′. Taking c<ω to witness p R p′, then

a |̂
c<ω

a′ =⇒ a |̂
a∼

a′c<ω.

⇐=: We assume that a ∼ a′ and a |̂
a∼

a′. Let c<ω be a Morley sequence

in p and c<ω |̂
a
a′, so:

c<ω |̂
a

a′ =⇒ ac<ω |̂
a∼

a′ =⇒ a |̂
c<ω

a′

Then p(x, a) R tpnext(c<ω) R p(x, a′) by Lemma 3.9, but then as a |̂
c<ω

a′

we can apply Lemma 3.8 to conclude that p(x, a) R p(x, a′).
(iv) Note p0 = p ¹ a∼, p1 = p ¹ bdd(a∼). As p is an amalgamation base, p1 is

a complete type, and in fact an amalgamation base. As p ∼ p1 they have
the same parallelism class, whereby Cb(p1) is interdefinable with a∼. Let p2

be any extension of p0 to bdd(a∼). Then it is an a∼-conjugate of p1, whereby
Cb(p1) = Cb(p2) and p1 ∼ p2. We also have bdd(a∼) |̂

a∼
bdd(a∼), so p1 R p2.

In particular they have a common extension, whereby they are equal. Thus p0

has a unique extension to bdd(a∼).
(v) Assume first that b ⊆ a, p ¹ b is an amalgamation base, and p does not divide

over b. Then p ¹ b ∼1 p, so Cb(p ¹ b) = a∼ and in particular a∼ ⊆ b. If we
only know that p does not divide over b, then consider p ¹ bdd(b) (this makes
sense, as p has a unique extension to bdd(a)). Then p ∼1 p ¹ bdd(b) and
a∼ ⊆ bdd(b). Conversely, if a∼ ⊆ bdd(b), then p does not divide over bdd(b)
(as it does not divide over a∼), and therefore neither over b.

qed3.13

4. Examples

Example 4.1. The category B of Banach spaces is not simple.

Proof. The proof we give may not be the shortest one, but has the advantage of being
a natural chain of deductions using the previous results. A direct counter-example to
the local character may be deduced from it, of course. One should also mention that
stronger results exist: Alex Usviatsov has shown that B has SOPn for every n, but
this goes beyond our scope.
Assume that B is simple. Then we make the following observations:

• For sets A,B,C in some big normed space, we define A ⊕B
C B =

Span(AC) ⊕B

Span(C) Span(BC). We say that A and B are direct summands

over C if Span(ABC) is isomorphic to A ⊕B
C B over ABC. We claim that

when this is true, tp(A/BC) does not divide over C:
Indeed, let {Bi} be any set of realizations of tp(B/C). Let D = A ⊕B

C

⋃
Bi.

One verifies easily that for each Bi, the norm in D on Span(ABiC) is exactly
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the image of that on A ⊕B
C B, that is on Span(ABC) by assumption. Thus

tp(A/BC) does not divide over C.
• Morley sequences exist in every type:

For any B,C, consider
⊕

i<ω
B

C
Bi, where Bi are copies of B over C. Then (Bi)

is an indiscernible sequence (in fact, an indiscernible set) over C, and each Bi

is a direct summand over C with B<i. By the previous claim, (Bi) is a Morley
sequence in tp(B/C).

• A |̂
C

B if and only if, whenever bi ∈ Span(BC) for i < n:

inf{
∑

‖bi − ai‖ : ai ∈ Span(AC),
∑

ai = 0} =

inf{
∑

‖bi − ci‖ : ci ∈ Span(C),
∑

ci = 0}

As B is simple, we know that A |̂
C

B if and only if for some Morley sequence

(Bi) in tp(B/C), we can realise tp(A/B) over all the Bi simultaneously. In
this, we may just as well use the Morley sequence given by the direct sum.
So if it is true, we may suppose that tp(ABi/C) = tp(AB/C) for all i. Take
bi ∈ Span(BiC) for i < n. Then by definition of the direct sum: ‖

∑
bi‖ =

inf{
∑

‖bi − ci‖ : ci ∈ Span(C),
∑

ci = 0}. On the other hand, by the triangle
inequality: ‖

∑
bi‖ ≤ inf{

∑
‖bi − ai‖ : ai ∈ Span(AC),

∑
ai = 0}. As the

other inequality is clear, we obtain what we wanted. Conversely, this condition
simply states that the natural mapping of

⊕
i<ω

B

C
Bi into

⊕
i<ω

B

AC
Bi is an

isometry, and we thus obtain a copy of A such that tp(ABi/C) = tp(AB/C)
for all i. As it suffices to verify for a single Morley sequence, the independence
is established.

• The above condition is asymmetric:
Consider a 2-dimensional vector space, with a, b as a base. Consider the fol-
lowing norm: ‖αa+βb‖ = max{|α|, |β−α|}. Let A = a, B = b, C = ∅. Then
for αia ∈ Span(A) we have:

∑
|αi| = inf{

∑
max{|αi|, |βi − αi|} :

∑
βi = 0}

But replacing A and B we have:

‖2b‖ + ‖ − 2b‖ = 4

> 2 = ‖2b + a‖ + ‖ − 2b − a‖

≥ inf{max{|α|, |2 − α|} + max{| − α|, | − 2 + α|} : α ∈ F}

As this is impossible in a simple cat, B is not simple. qed4.1

Example 4.2. The class H of Hilbert space is stable, independence being orthogonality.

Example 4.3. Let Ult be the category of ultrametric spaces, where the distances take
values in ω. Then Ult is a compact abstract elementary category, whereby a cat, and
is stable as such. However, types over ∅ are not extendible.
(We found this example in [BL03], where it was given rather in terms of equivalence
relations, and attributed to Shelah).
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Proof. Verifying that Ult is an elementary category with amalgamation is easy and is
left for the reader. One also sees that the type of a tuple is completely determined by
the distances between elements of the tuple: this takes care of locality of types, so the
only thing left to prove is weak compactness. By the description of types, we need to
prove the following:

Claim. Let G = (V,E, d) be a graph, where V is the set of vertices and may be infinite,
E ⊆ [V ]2 is the set of edges, and d : E → ω is some map. Assume that every finite
subgraph can be realised in Ult where d is the distance map: then G can be realised
in Ult.

Proof of claim. We may assume that G is connected. For every path v0, v1, . . . , vn in
G, let d0(v̄) = maxi<n d(vi, vi+), and for any v, w ∈ V let d1(v, w) be the minimum of
d0(v̄) where v̄ is a path connecting v and w.
If {v, w} ∈ E, then d1(v, w) = d(v, w): d1(v, w) ≤ d(v, w) by definition, and if the
inequality is strict we get a contradiction to finite realisability. On the other hand, it
follows from the construction that (V, d1) ∈ Ult, so G is realised in Ult. qedClaim

In order to see that Ult is stable, we observe that tp(a/A) is completely determined
by d(a,A) and by an element b ∈ A such that d(a, b) = d(a,A): counting types follows.
Finally, whatever be a and b, tp(a/b) divides over ∅: Let n = d(a, b), so tp(a/b) just
says d(x, b) = n, and take an indiscernible sequence (bi) such that d(b0, b1) > n, so∧

d(x, bi) = n is inconsistent. qed4.3
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