
CONTINUOUS FIRST ORDER LOGIC AND LOCAL STABILITY

ITAÏ BEN YAACOV AND ALEXANDER USVYATSOV

Abstract. We develop continuous first order logic, a variant of the logic described in
[CK66]. We show that this logic has the same power of expression as the framework of
open Hausdorff cats, and as such extends Henson’s logic for Banach space structures.
We conclude with the development of local stability, for which this logic is particularly
well-suited.

Introduction

A common trend in modern model theory is to generalise model-theoretic notions and
tools to frameworks that go beyond that of first order logic and elementary classes and
properties. In doing this, there is usually a trade-off: the more general the framework,
the weaker the available tools, and one finds oneself many times trying to play this trade-
off, looking for the most general framework in which a specific argument can be carried
through. The authors admit having committed this sin not once.

The present paper is somewhat different, though: we do present what seems to be a
new framework, or more precisely, a new logic, but in fact we prove that it is completely
equivalent to one that has been previously defined elsewhere, namely that of (metric)
open Hausdorff cats (see [Ben05]).

Another logic dealing with metric structures is Henson’s logic of positive bounded for-
mulae and approximate satisfaction (see for example [HI02]). Even though Henson’s logic
was formulated for unbounded Banach space structures while ours deal with bounded
metric structures, it is fair to say that the two logics are equivalent. First of all, Henson’s
approach makes perfect sense in the bounded setting in which case the two logics are
indeed equivalent. Banach space structures can (in most cases) be reduced for model-
theoretic purposes to their closed unit ball (see Example 4.5). Moreover, there exists
an unbounded variant of continuous logic which is equivalent with to (a somewhat ex-
tended) Henson’s logic for arbitrary (bounded or unbounded) metric structures. It can
be reduced back to continuous logic as studied here (i.e., bounded) via the addition of a
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single point at infinity. This goes beyond the scope of the present paper and is discussed
in detail in [Benc].

Finally, this logic is almost a special case of the continuous first order logic that
Chang and Keisler studied in [CK66]. We do differ with their definitions on several
crucial points, where we find they were too general, or not general enough. Our logic
is a special case in that instead of allowing any compact Hausdorff space X as a set of
truth values, we find that letting X be the unit interval [0, 1] alone is enough. Indeed,
since every compact Hausdorff space embeds into a power of the interval, there is no
loss of generality. Similarly, since the unit interval admits a natural complete linear
ordering, we may eliminate the plethora of quantifiers present in [CK66], and the arbitrary
choices involved, in favour of two canonical quantifiers, sup and inf, which are simply
the manifestations in this setting of the classical quantifiers ∀ and ∃. On the other hand,
extending Chang and Keisler, we allow the “equality symbol” to take any truth value
in [0, 1]. Thus, from an equality symbol it becomes a distance symbol, allowing us to
interpret metric structures in the modified logic.

Yet, continuous first order logic has significant advantages over earlier formalisms for
metric structures. To begin with, it is an immediate generalisation of classical first
order logic, more natural and less technically involved than previous formalisms. More
importantly, it allows us to beat the above-mentioned trade-off. Of course, if two logics
have the same power of expression, and only differ in presentation, then an argument
can be carried out in one if and only if it can be carried out in the other; but it may still
happen that notions which arise naturally from one of the presentations are more useful,
and render clear and obvious what was obscure with the other one. This indeed seems
to be the case with continuous first order logic, which further supports our contention
that it is indeed the “true and correct” generalisation of classical first order logic to the
context of metric structures arising in analysis.

An example for this, which was part of the original motivation towards these ideas,
stems from a question by C. Ward Henson. It can be roughly stated as “how does one
generalise local (i.e., formula-by-formula) stability theory to the logic of positive bounded
formulae?” The short answer, as far as we can see, is “one doesn’t.” The long answer is
that positive bounded formulae may not be the correct analogues of first order formulae
for these purposes, whereas continuous first order formulae are. Indeed, local (and thus
global) stability theory can be developed for continuous logic very much along the lines
of the classical development.

In Section 1 we define the syntax of continuous first order logic: signatures, connectives,
quantifiers, formulae and conditions.

In Section 2 we define the semantics: pre-structures, structures, the special role of the
metric and truth values.

In Section 3 we discuss types and definable predicates. The family of definable predi-
cates is the completion, in some natural sense, of the family of continuous formulae.
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In Section 4 we discuss continuous first order theories and some basic properties such
as quantifier elimination. We also compare continuous first order theories to previous
formalisms such as open Hausdorff cats.

In Section 5 we discuss imaginaries as canonical parameters for formulae and definable
predicates.

In Section 6 we define ϕ-types, i.e., types which only depend on values of instances of
a formula ϕ.

In Section 7 we develop local stability, answering Henson’s question.
In Section 8 we show how to deduce the standard global theory of independence from

the local one in a stable theory.
We also have two appendices:
Appendix A contains a remark concerning an alternative (and useful) presentation of

continuity moduli.
Appendix B deals with the case of a formula which is stable in a single model of a

theory.

1. Continuous first order formulae

In classical (first order) logic there are two possible truth values: “true”, sometimes
denoted by ⊤ or T , and “false”, denoted by ⊥ or F . Often enough one associates the
classical truth values with numerical values, and the most common choice is probably to
assign T the value 1 and F the value 0. This assignment is not sacred, however, and for
our purposes the opposite assignment, i.e., T = 0 and F = 1, fits more elegantly.

The basic idea of this paper is to repeat the development of first order logic with
one tiny difference: we replace the finite set of truth values {0, 1} with the compact set
[0, 1]. Everything else should follow naturally from this modification. We will refer to
the classical framework also as discrete logic, whereas the one we develop here will be
referred to as continuous logic.

As in classical logic, a continuous signature L is a set of function symbols and predicate
symbols, each of which having an associated arity n < ω. In an actual continuous
structure, the function symbols will be interpreted as functions from the structure into
itself, and the predicate symbols as functions to the set of truth values, i.e., the interval
[0, 1].

For the definition of pure syntax we may restrict ourselves to non-metric signatures,
which are the analogues of classical signatures without equality.

Definition 1.1. A non-metric continuous signature consists of a set of function symbols
and predicate symbols, and for each function symbol f or predicate symbol P , its arity
nf < ω or nP < ω.

We may also consider multi-sorted signatures, in which case the arity of each symbol
also specifies the sorts of the arguments and each function symbol has a target sort.
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Given a continuous signature L, we define L-terms and atomic L-formulae as usual.
However, since the truth values of predicates are going to be in [0, 1], rather than in
{0, 1}, we need to adapt our connectives and quantifiers accordingly.

Let us start with connectives. In the discrete setting we use a somewhat fixed set of
unary and binary Boolean connectives, from which we can construct any n-ary Boolean
expression. In other words, any mapping from {0, 1}n → {0, 1} can be written using
these connectives (otherwise, we would have introduced additional ones). By analogy, an
n-ary continuous connective should be a continuous mapping from [0, 1]n → [0, 1], and
we would like to have a set of connectives with which we can construct every continuous
mapping [0, 1]n → [0, 1], for every n. However, this may be problematic, as continuum
many connectives would give rise to uncountably many formulae even in a countable
signature. To avoid this anomaly we will content ourselves with a set of connectives
which merely allows to construct arbitrarily good approximations of every continuous
mapping [0, 1]n → [0, 1].

Common connectives we may use, by arity:

• Constants in [0, 1].
• ¬x = 1 − x, and x

2
.

• x ∧ y = min{x, y}, x ∨ y = max{x, y}, x−. y = (x− y) ∨ 0, x∔ y = (x+ y) ∧ 1,
|x− y|.

We can express the non-constant connectives above in terms of the connectives ¬ and −. :

x ∧ y = x−. (x−. y)

x ∨ y = ¬(¬x ∧ ¬y)

x∔ y = ¬(¬x−. y)

|x− y| = (x−. y) ∨ (y −. x) = (x−. y) ∔ (y −. x)

The expression x−. ny is a shorthand for ((x−. y)−. y) . . .−. y, n times. We would also
like to point out to the reader that the expression x −. y is the analogue of the Boolean
expression y → x. For example, the continuous Modus Ponens says that if both y and
x−. y are true, i.e., equal to zero, then so is x.

Definition 1.2. (i) A system of continuous connectives is a sequence F = {Fn : n <
ω} where each Fn is a collection of continuous functions from [0, 1]n to [0, 1].

(ii) We say that a system of continuous connectives F is closed if it satisfies:
(a) For all m < n < ω, the projection on the mth coordinate πn,m : [0, 1]n →

[0, 1] belongs to Fn.
(b) Let f ∈ Fn, and g0, . . . , gn−1 ∈ Fm. Then the composition f◦(g0, . . . , gn−1) ∈

Fm.
If F is any system of continuous connectives, then F̄ is the closed system it
generates.

(iii) We say that a closed system of continuous connectives F is full if for every
0 < n < ω, the set Fn is dense in the set of all continuous functions {f : [0, 1]n →
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[0, 1]} in the compact-open (i.e., uniform convergence) topology. An arbitrary
system of continuous connectives F is full if F̄ is.
(We exclude n = 0 in order to allow full systems of connectives without truth
constants, i.e., in which F0 is empty.)

Fact 1.3 (Stone-Weierstrass Theorem, lattice version). Let X be a compact Hausdorff
space containing at least two points, I ⊆ R an interval, and equip A = C(X, I) with the
uniform convergence topology. Let B ⊆ A be a sub-lattice, such that for every distinct
x, y ∈ X, a, b ∈ I, and ε > 0, there is f ∈ B such that |f(x) − a|, |f(y) − b| < ε. Then
B is dense in A.

Proof. The proof of this or very similar results should appear in almost any analysis
textbook. We will nonetheless include the proof for completeness.

Let f ∈ A and ε > 0 be given. For each pair of points x, y ∈ X we can by hypothesis
find gx,y ∈ B for which |gx,y(x) − f(x)|, |gx,y(y) − f(y)| < ε. (In case x = y we take
gx,x = gx,z for any z 6= x.) The set Vx,y = {z ∈ X : f(z) − ε < gx,y(z)} is an open
neighbourhood of y.

Let us fix x. The family {Vx,y : y ∈ X} is an open covering of X, and admits a finite
sub-covering {Vx,yi : i < n}. Let gx =

∨

i<n gx,yi ∈ B. Then f(z)−ε < gx(z) for all z ∈ X
and |gx(x)− f(x)| < ε. Thus Ux = {z ∈ X : gx(z) < f(z) + ε} is an open neighbourhood
of x.

Now let x vary. The family {Ux : x ∈ X} is an open covering of X admitting a finite
sub-covering {Uxj : j < m}. Let g =

∧

j<m gxj . Then f(z) − ε < g(z) < f(z) + ε for all

z ∈ X, i.e., ‖g(z) − f(z)‖ < ε as desired. �1.3

It will be more convenient to use the following consequence, which is analogous to the
Stone-Weierstrass characterisation of dense algebras of functions:

Proposition 1.4. Let X be a compact Hausdorff space and let A = C(X, [0, 1]). Assume
that B ⊆ A is closed under ¬ and −. , separates points in X (i.e., for every two distinct
x, y ∈ X there is f ∈ B such that f(x) 6= f(y)), and satisfies either of the following two
additional properties:

(i) The set C = {c ∈ [0, 1] : the constant c is in B} is dense in [0, 1].
(ii) B is closed under x 7→ x

2
.

Then B is dense in A.

Proof. Since B is closed under ¬ and −. it is also closed under ∨ and ∧, so it is a
sub-lattice of A.

Since B separates points it is in particular non-empty, so we have 0 = f −. f ∈ B

for any f ∈ B, whereby 1 = ¬0 ∈ B. In case B is closed under x
2

we conclude that
1/2n ∈ B for all n, and since B is also closed under ∔, B contains all the dyadic constants
in [0, 1] which are dense in [0, 1]. We may therefore assume that B contains a dense set
of constants.
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Let x, y ∈ X be distinct, a, b ∈ [0, 1] and ε > 0. Let us first treat the case where
X = [0, 1] and id[0,1] ∈ B. Then x, y ∈ [0, 1], and without loss of generality we may
assume that x < y. Assume first that a ≥ b. Let m ∈ N be such that a

y−x
< m, and let

f0(t) = (a−. m(t−. x))∨ b. Then f0(x) = a∨ b = a, and f0(y) = 0∨ b = b. Replacing the
constants x, a, b ∈ [0, 1] with close enough approximations from C we obtain f ∈ B such
that |f(x)−a|, |f(y)− b| < ε. If a < b, find f ∈ B such that |f(x)−¬a|, |f(y)−¬b| < ε,
and then ¬f ∈ B is as required.

We now return to the general case where X can be any compact Hausdorff space.
Since x 6= y there is g ∈ B such that g(x) 6= g(y), and without loss of generality we may
assume that g(x) < g(y). As in the previous paragraph construct f : [0, 1] → [0, 1] such
that |f(g(x)) − a|, |f(g(y)) − b| < ε, and observe that f ◦ g ∈ B.

We have shown that B satisfies the hypotheses of Fact 1.3 and is therefore dense in
A. �1.4

Corollary 1.5. Let C ⊆ [0, 1] be dense, 1 ∈ C. Then the following system is full:

(i) F0 = C (i.e., a truth constant for each c ∈ C).
(ii) F2 = {−. }.

(iii) Fn = ∅ otherwise.

Corollary 1.6. The following system is full:

(i) F1 = {¬, x
2
}.

(ii) F2 = {−. }.
(iii) Fn = ∅ otherwise.

The system appearing in Corollary 1.5 can be viewed as the continuous analogue of the
full system of Boolean connectives {T, F,→} (T and F being truth constants), while that
of Corollary 1.6 is reminiscent of {¬,→}. We will usually use the latter (i.e., {¬, x

2
,−. }),

which has the advantage of being finite. Note however that for this we need to introduce
an additional unary connective x

2
which has no counterpart in classical discrete logic.

Remark 1.7. Unlike the discrete case, the family {¬,∨,∧} is not full, and this cannot
be remedied by the addition of truth constants. Indeed, it can be verified by induction
that every function f : [0, 1]n → [0, 1] constructed from these connectives is 1-Lipschitz
in every argument.

This takes care of connectives: any full system would do. We will usually prefer to
work with countable systems of connectives, so that countable signatures give countable
languages. When making general statements (e.g., the axioms for pseudo-metrics and
uniform continuity we give below) it is advisable to use a minimal system of connectives,
and we will usually use the one from Corollary 1.6 consisting of {¬, x

2
,−. }. On the other

hand, when spelling out actual theories, it may be convenient (and legitimate) to admit
additional continuous functions from [0, 1]n to [0, 1] as connectives.

As for quantifiers, the situation is much simpler: we contend that the transition from
{T, F} to [0, 1] imposes a single pair of quantifiers, or rather, imposes a re-interpretation
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of the classical quantifiers ∀ and ∃ (on this point we differ quite significantly from [CK66]).
In order to see this, let us look for a construction of the discrete quantifiers ∀ and ∃.

Let M be a set, and RM(n) be the set of all n-ary relations on M ; we may view each
R ∈ RM(n) as a property of n free variables x0, . . . , xn−1. For every R ∈ RM(n), let
j(R) ∈ RM(n + 1) be defined as the same relation, with an additional dummy variable
xn. Similarly, for every R ∈ RM(n + 1) we have relations ∃xnR and ∀xnR in RM(n).
Then for every R ∈ RM(n) and Q ∈ RM(n + 1) the following two properties hold (here
“�” means “implies”):

Q � j(R) ⇐⇒ ∃xnQ � R

j(R) � Q⇐⇒ R � ∀xnQ.

These properties actually determine the relations ∃xnQ and ∀xnQ, and can therefore be
used as the definition of the semantics of the quantifiers.

Replacing {T, F} with [0, 1], let CM(n) be the set of all functions from Mn to [0, 1].
We define j : CM(n) → CM(n + 1) as above, and infxn , supxn : CM(n + 1) → CM(n) in
the obvious manner. Since we identify T with 0 and F with 1, the relation � should be
replaced with ≥, and we observe that for every f ∈ CM(n) and g ∈ CM(n+ 1):

g ≥ j(f) ⇐⇒ inf
xn
g ≥ f

j(f) ≥ g ⇐⇒ f ≥ sup
xn

g.

Therefore, as in discrete logic, we will have two quantifiers, whose semantics are defined
by the properties above. We will use the symbols inf and sup, respectively, to denote the
quantifiers, as these best describe their semantics. Make no mistake, though: these are
not “new” quantifiers that we have “chosen” for continuous logic, but rather the only
possible re-interpretation of the discrete quantifiers ∃ and ∀ in continuous logic. (See
also Remark 2.11 below which relates our continuous quantifiers to Henson’s sense of
approximate satisfaction of quantifiers.)

Once we have connectives and quantifiers, we define the set of continuous first order
formulae in the usual manner.

Definition 1.8. A condition is an expression of the form ϕ = 0 where ϕ is a formula.
A condition is sentential if ϕ is a sentence.
A condition is universal if it is of the form supx̄ ϕ = 0 where ϕ is quantifier-free

If r is a dyadic number then ϕ ≤ r is an abbreviation for the condition ϕ −. r = 0,
and similarly ϕ ≥ r for r−. ϕ = 0. (Thus supx̄ ϕ ≤ r and inf x̄ ϕ ≥ r abbreviate universal
conditions.) With some abuse of notation we may use ϕ ≤ r for an arbitrary r ∈ [0, 1] as
an abbreviation for the set of conditions {ϕ ≤ r′ : r′ ≥ r dyadic}. We define ϕ ≥ r and
ϕ = r as abbreviations for sets of conditions similarly.

Notation 1.9. Given a formula ϕ we will use ∀x̄ ϕ = 0 as an alternative notation for
supx̄ ϕ = 0. While this may be viewed as a mere notational convention, the semantic
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contents of ∀x̄ (ϕ = 0) is indeed equivalent to that of (supx̄ ϕ) = 0 (notice how the
parentheses move, though). Similarly, we may write ∀x̄ ϕ ≤ r for supx̄ ϕ ≤ r and
∀x̄ ϕ ≥ r for inf x̄ ϕ ≥ r.

2. Continuous structures

In classical logic one usually has a distinguished binary predicate symbol =, and the
logic requires that this symbol always be interpreted as actual equality. The definition we
gave for a non-metric continuous signature is the analogue of a discrete signature without
equality. The analogue of a discrete signature with equality is somewhat trickier, since
the symbol taking equality’s place need no longer be discrete. Discrete equality always
satisfies the equivalence relation axioms:

∀xx = x

∀xy x = y → y = x

∀xyz x = y → (y = z → x = z)

(ER)

Still within the discrete framework, let us replace the symbol = with the symbol d.
Recalling that T = 0, F = 1 we obtain the discrete metric:

d(a, b) =

{

0 a = b

1 a 6= b

Let us now translate ER to continuous logic, recalling that −. is the analogue of implica-
tion:

sup
x
d(x, x) = 0

sup
xy

d(x, y) −. d(y, x) = 0

sup
xyz

(d(x, z) −. d(y, z)) −. d(x, y) = 0

(PM)

Following Notation 1.9, we can rewrite PM equivalently as the axioms of a pseudo-metric,
justifying the use of the symbol d:

∀x d(x, x) = 0

∀xy d(x, y) = d(y, x)

∀xyz d(x, y) ≤ d(x, z) + d(z, y)

(PM′)

By the very definition of equality it is also a congruence relation for all the other
symbols, which can be axiomatised as:

∀x̄ȳzw
(

z = w → f(x̄, z, ȳ) = f(x̄, w, ȳ)
)

∀x̄ȳzw
(

z = w → (P (x̄, z, ȳ) → P (x̄, w, ȳ))
)(CR)
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Translating CR to continuous logic as we did with ER above would yield axioms saying
that every symbol is 1-Lipschitz with respect to d in each of the variables. While we
could leave it like this, there is no harm in allowing other moduli of uniform continuity.

Definition 2.1. (i) A continuity modulus is a function δ : (0,∞) → (0,∞) (for our
purposes a domain of (0, 1] would suffice).

(ii) Let (X1, d1), (X2, d2) be metric spaces. We say that a mapping f : X1 → X2 is
uniformly continuous with respect to a continuity modulus δ (or just that f re-
spects δ) if for all ε > 0 and for all x, y ∈ X1: d1(x, y) < δ(ε) =⇒ d2(f(x), f(y)) ≤
ε.

(For a different approach to the definition of continuity moduli see Appendix A.)

Thus, for each n-ary symbol s and each i < n we will fix a continuity modulus δs,i,
and the congruence relation property will be replaced with the requirement that as a
function of its ith argument, s should respect δs,i. As above this can be written in pure
continuous logic or be translated to a more readable form:

sup
x<i,y<n−i−1,z,w

(

δf,i(ε) −. d(z, w)
)

∧
(

d(f(x̄, z, ȳ), f(x̄, w, ȳ)) −. ε
)

= 0

sup
x<i,y<n−i−1,z,w

(

δP,i(ε) −. d(z, w)
)

∧
(

(P (x̄, z, ȳ) −. P (x̄, w, ȳ)) −. ε
)

= 0
(UCL)

∀x<i, y<n−i−1, z, w
(

d(z, w) < δf,i(ε) → d(f(x̄, z, ȳ), f(x̄, w, ȳ)) ≤ ε
)

∀x<i, y<n−i−1, z, w
(

d(z, w) < δP,i(ε) →
(

P (x̄, z, ȳ) −. P (x̄, w, ȳ)
)

≤ ε
)(UC′

L)

Here x<i denotes the tuple x0, . . . , xi−1, and similarly for y<n−i−1, etc.

Remark 2.2. The axiom scheme UCL can be reformulated to mention only constants in
some dense set C ⊆ [0, 1] (say rational or dyadic numbers): simply, for every ε > 0, and
every r, q ∈ C such that r > ε and q < δs,i(ε) (where s is either f or P ):

sup
x̄,ȳ,z,w

(

q −. d(z, w)
)

∧
(

d(f(x̄, z, ȳ), f(x̄, w, ȳ)) −. r
)

= 0

sup
x̄,ȳ,z,w

(

q −. d(z, w)
)

∧
(

(P (x̄, z, ȳ) −. P (x̄, w, ȳ)) −. r
)

= 0
(UC′′

L)

This leads to the following definition:

Definition 2.3. A (metric) continuous signature is a non-metric continuous signature
along with the following additional data:

(i) One binary predicate symbol, denoted d, is specified as the distinguished distance
symbol.

(ii) For each n-ary symbol s, and for each i < n a continuity modulus δs,i, called the
uniform continuity modulus of s with respect to the ith argument.

If we work with a multi-sorted signature then each sort S has its own distinguished
distance symbol dS.
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Definition 2.4. Let L be a continuous signature. A (continuous) L-pre-structure is a
set M equipped, for every n-ary function symbol f ∈ L, with a mapping fM : Mn →M ,
and for every n-ary relation symbol P ∈ L, with a mapping PM : Mn → [0, 1], such that
the pseudo-metric and uniform continuity axioms PM, UCL (or equivalently PM′, UC′

L)
hold.

An L-structure is a pre-structure M in which dM is a complete metric (i.e., dM(a, b) =
0 =⇒ a = b and every Cauchy sequence converges).

The requirement that dM be a metric corresponds to the requirement that =M be
equality. Completeness, on the other hand, has no analogue in discrete structures, since
every discrete metric is trivially complete; still, it turns out to be the right thing to
require.

As in classical logic, by writing a term τ as τ(x̄) we mean that all variables occurring
in τ appear in x̄. Similarly, for a formula ϕ the notation ϕ(x̄) means that the tuple x̄
contains all free variables of ϕ.

Definition 2.5. Let τ(x<n) be a term, M a L-pre-structure. The interpretation of τ(x̄)
in M is a function τM : Mn →M defined inductively as follows:

• If τ = xi then τM(ā) = ai.
• If τ = f(σ0, . . . , σm−1) then τM(ā) = fM

(

σM0 (ā), . . . , σMm−1(ā)
)

.

Definition 2.6. Let ϕ(x<n) be a formula, M a L-pre-structure. The interpretation of
ϕ(x̄) in M is a function ϕM : Mn → [0, 1] defined inductively as follows:

• If ϕ = P (τ0, . . . , τm−1) is atomic then ϕM(ā) = PM
(

τM0 (ā), . . . , τMm−1(ā)
)

.

• If ϕ = λ(ψ0, . . . , ψm−1) where λ is a continuous connective then ϕM(ā) =
λ
(

ψM0 (ā), . . . , ψMm−1(ā)
)

.
• If ϕ = infy ψ(y, x̄) then ϕM(ā) = infb∈M ψM(b, ā), and similarly for sup.

Proposition 2.7. Let M be an L-pre-structure, τ(x<n) a term, ϕ(x<n) a formula. Then
the mappings τM : Mn → M and ϕM : Mn → [0, 1] are uniformly continuous in each of
their arguments. Moreover, τM and ϕM respect uniform continuity moduli which depend
only on τ and ϕ but not on M .

Proof. In the case of terms, this is just an inductive argument using the fact that a
composition of uniformly continuous mappings is uniformly continuous. In the case of
formulae one needs two more facts. First, all connectives are uniformly continuous as
continuous mappings from a compact space. Second, if ϕ(x̄) = infy ψ(y, x̄) then any
uniform continuity modulus ψ(y, x̄) respects with respect to xi is also respected by ϕ.

As the uniform continuity proof above does not depend on M in any way, uniform
continuity moduli for terms and formulae can be extracted from the inductive argument.

�2.7

Definition 2.8. (i) Let s(x̄) be a condition ϕ(x̄) = 0, M an L-(pre-)structure and
ā ∈M . We say that s is satisfied by ā in M , in symbols M � s(ā), or even ā � s
(in case the ambient structure M is clear from the context) if ϕM(ā) = 0.
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(ii) A set of conditions Σ(x̄) is satisfied by a tuple ā ∈M (again denoted M � Σ(ā)
or ā � Σ) if all conditions in Σ are satisfied by ā in M . This makes sense just as
well in case Σ involves infinitely many free variables.

(iii) Earlier on we defined ϕ(x̄) ≤ r, ϕ(x̄) ≥ r, etc., as abbreviations for conditions
or sets thereof. Notice that ϕM(ā) ≤ r if and only if the corresponding (set
of) condition(s) holds for ā, and similarly for the other abbreviations. We may
therefore extend the definition above without ambiguity to satisfaction of such
abbreviations.

(iv) If Σ(x̄) is a set of conditions and s(x̄) a condition, we say that s is a logical
consequence of Σ, or that Σ implies s, in symbols Σ � s, if for every M and
ā ∈M : M � Σ(ā) =⇒M � s(ā).

(v) A set of conditions Σ is satisfiable if there is a structure M and ā ∈M such that
M � Σ(ā). It is finitely satisfiable if every finite Σ0 ⊆ Σ is satisfiable. We may
further say that Σ is approximately finitely satisfiable if for every finite subset
Σ0 ⊆ Σ, which we may assume to be of the form {ϕi = 0: i < n}, and for every
ε > 0, the set of conditions {ϕi ≤ ε : i < n} is satisfiable.

Definition 2.9. A morphism of L-pre-structures is a mapping of the underlying sets
which preserves the interpretations of the symbols. It is elementary if it preserves the
truth values of formulae as well.

Proposition 2.10. Let M be an L-pre-structure. Let M0 = M/{dM(x, y) = 0}, and let

d0 denote the metric induced by dM on M0. Let (M̂0, d̂0) be the completion of the metric
space (M0, d0) (which is, for all intents and purposes, unique).

Then there exists a unique way to define an L-structure M̂ on the set M̂0 such that

dM̂ = d̂0 and the natural mapping M → M̂ is a morphism. We call M̂ the L-structure
associated to M .

Moreover:

(i) If N is any other L-structure, then any morphism M → N factors uniquely

through M̂ .
(ii) The mapping M → M̂ is elementary.

Another way of saying this is that the functor M 7→ M̂ is the left adjoint of the forgetful
functor from the category of L-structures to that of L-pre-structures, and that it sends
elementary morphisms to elementary morphisms.

Proof. Straightforward using standard facts about metrics, pseudo-metrics and comple-
tions. �2.10

We say that two formulae are equivalent, denoted ϕ ≡ ψ if they define the same
functions on every L-structure (equivalently: on every L-pre-structure). For example,
let ϕ[t/x] denote the free substitution of t for x in ϕ. Then if y does not appear in ϕ, then
supx ϕ ≡ supy ϕ[y/x] (this is bound substitution of y for x in supx ϕ). Similarly, provided
that x is not free in ϕ we have ϕ ∧ supx ψ ≡ supx ϕ ∧ ψ, ϕ−. supx ψ ≡ supx(ϕ−. ψ), etc.
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Using these and similar observations, it is easy to verify that all formulae written using
the full system of connectives {¬, x

2
,−. } have equivalent prenex forms. In other words, for

every such formula ϕ there is an equivalent formula of the form ψ = supx infy supz . . . ϕ,
where ϕ is quantifier-free. The same would hold with any other system of connectives
which are monotone in each of their arguments.

Remark 2.11. We can extend Notation 1.9 to all conditions in prenex form, and thereby
to all conditions. Consider a condition ψ ≤ r (a condition of the basic form ψ = 0 is
equivalent to ψ ≤ 0). Write ψ in prenex form, so the condition becomes:

sup
x

(

inf
y

(

sup
z
. . . ϕ(x, y, z, . . .)

))

≤ r

A reader familiar with Henson’s logic [HI02] will not find it difficult to verify, by induction
on the number of quantifiers, that this is equivalent to the approximate satisfaction of:

∀x
(

∃y
(

∀z . . . ϕ(x, y, z, . . .) ≤ r
))

(Notice how the parentheses move, though.)

We view this as additional evidence to the analogy between the continuous quantifiers
inf and sup and the Boolean quantifiers ∃ and ∀.

Remark 2.12. Unlike the situation in Henson’s logic, there are no bounds on the quanti-
fiers as everything in our logic is already assumed to be bounded. For a fuller statement
of equivalence between satisfaction in continuous logic and approximate satisfaction in
positive bounded logic, see the section on unbounded structure in [Benc]. In particular we
show there that under appropriate modifications necessitated by the fact that Henson’s
logic considers unbounded structures, it has the same power of expression as continuous
logic.

Definition 2.13. Let M be an L-structure. A formula with parameters in M is some-
thing of the form ϕ(x̄, b̄), where ϕ(x̄, ȳ) is a formula in the tuples of variables x̄ and ȳ,
and b̄ ∈ M . Such a formula can also be viewed as an L(M)-formula, where L(M) is
obtained from L by adding constant symbols for the elements of M , in which case it may
be denoted by ϕ(x̄) (i.e., the parameters may be “hidden”).

Definition 2.14 (Ultraproducts). Let {Mi : i ∈ I} be L-structures (or even pre-
structures), and U an ultrafilter on I. Let N0 =

∏

iMi, and interpret the function
and predicate symbols on it as follows:

fN0((ai), (bi), . . .) = (fMi(ai, bi, . . .))

PN0((ai), (bi), . . .) = lim
U
PMi(ai, bi, . . .)

Recall that a sequence in a compact set has a unique limit modulo an ultrafilter: for any
open set U ⊆ [0, 1], we have:

PN0((ai), (bi), . . .) ∈ U ⇐⇒ {i ∈ I : PMi(ai, bi, . . .) ∈ U} ∈ U
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It is immediate to verify that N0 satisfies PM and UCL, so N0 is an L-pre-structure.
Finally, define

∏

iMi/U = N = N̂0, and call it the ultraproduct of {Mi : i ∈ I} modulo
U .

Theorem 2.15 ( Loś’s Theorem for continuous logic). Let N =
∏

iMi/U as above. For
every tuple (ai) ∈

∏

Mi let [ai] be its image in N . Then for every formula ϕ(x̄) we have:

ϕN([ai], [bi], . . .) = lim
U
ϕMi(ai, bi, . . .)

Proof. By induction on the complexity of ϕ. See also [CK66, Chapter V]. �2.15

Corollary 2.16 (Compactness Theorem for continuous first order logic). Let Σ be a
family of conditions (possibly with free variables). Then Σ is satisfiable in an L-structure
if and only if it is finitely so, and furthermore if and only if it is approximately finitely
so (see Definition 2.8).

Proof. The proof is essentially the same as in discrete logic. Replacing free variables
with new constant symbols we may assume all conditions are sentential. Enumerate
Σ = {ϕi = 0: i < λ}, and let I = {(w, ε) : w ⊆ λ is finite and ε > 0}. For every
(w, ε) ∈ I choose Mω,ε in which the conditions ϕi ≤ ε hold for i ∈ w. For (w, ε) ∈ I,
let Jw,ε = {(w′, ε′) ∈ I : w′ ⊇ w, ε′ ≤ ε}. Then the collection U0 = {Jw,ε : (w, ε) ∈ I}
generates a proper filter on I which may be extended to an ultrafilter U . Let M =
∏

Mw,ε/U . By  Loś’s Theorem we have M � ϕi ≤ ε for every i < λ and ε > 0, so in fact
M � ϕi = 0. Thus M � Σ. �2.16

Fact 2.17 (Tarski-Vaught Test). Let M be a structure, A ⊆ M a closed subset. Then
the following are equivalent:

(i) The set A is (the domain of) an elementary substructure of M : A �M .
(ii) For every formula ϕ(y, x̄) and every ā ∈ A:

inf{ϕ(b, ā)M : b ∈M} = inf{ϕ(b, ā)M : b ∈ A}.

Proof. One direction is by definition. For the other, we first verify that A is a substructure
of M , i.e., closed under the function symbols. Indeed, in order to show that ā ∈ A =⇒
f(ā) ∈ A we use the assumption for the formula d(y, f(ā)) and the fact that A is complete.
We then proceed to show that ϕ(ā)A = ϕ(ā)M for all ā ∈ A and formula ϕ by induction
on ϕ, as in discrete logic. �2.17

When measuring the size of a structure we will use its density character (as a metric
space), denoted ‖M‖, rather than its cardinality.

We leave the following results as an exercise to the reader:

Fact 2.18 (Upward Löwenheim-Skolem). Let M be a non-compact structure (as a metric
space). Then for every cardinal κ there is an elementary extension N � M such that
‖N‖ ≥ κ.
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Fact 2.19 (Downward Löwenheim-Skolem). Let M be a structure, A ⊆M a subset. Then
there exists an elementary substructure N �M such that A ⊆ N and ‖N‖ ≤ |A| + |L|.

Fact 2.20 (Elementary chain). Let α be an ordinal and (Mi : i < α) an increasing chain
of structures such that i < j < α =⇒ Mi � Mj. Let M =

⋃

iMi. Then Mi � M for all
i.

3. Types and definable predicates

We fix a continuous signature L, as well as a full system of connectives (which might
as well be {¬, x

2
,−. }).

3.1. Spaces of complete types. Recall that a condition (or abbreviation thereof) is
something of the form ϕ = 0, ϕ ≤ r or ϕ ≥ r where ϕ is a formula and r ∈ [0, 1] is
dyadic.

Definition 3.1. (i) Let M be a structure and ā ∈ Mn. We define the type of ā in
M , denoted tpM(ā) (or just tp(ā) when there is no ambiguity about the ambient
structure), as the set of all conditions in x̄ = x<n satisfied in M by ā.

(ii) Observe that equality of types tpM(ā) = tpN(b̄) is equivalent to the elementary
equivalence (M, ā) ≡ (N, b̄) (where the tuples are named by new constant sym-
bols). If the ambient structures are clear for the context we may shorten this to
ā ≡ b̄.

(iii) A complete n-type, or just an n-type, is a maximal satisfiable set of conditions in
the free variables x<n. The space of all n-types is denoted Sn.

(iv) If p is an n-type and ā ∈Mn is such that M � p(ā), we say that ā realises p (in
M).

We start with a few easy observations whose proof we leave to the reader.

Lemma 3.2. (i) If ā is an n-tuple (in some structure) then tp(ā) is a (complete)
n-type.

Conversely, every n-type can be obtained as the type of an n-tuple.
(ii) Let p ∈ Sn and ϕ(x<n) be a formula. Then for every realisation ā � p, the value

of ϕ(ā) depends only on p. It will be denoted ϕp (the value of ϕ according to p).
Conversely, the mapping ϕ 7→ ϕp, where ϕ varies over all formulae in the

variables x<n, determines p.

Every formula ϕ(x<n) defines a mapping p 7→ ϕp : Sn → [0, 1]. With some abuse of
notation this function will also be denoted by ϕ. This is legitimate, since it is clear that
two formulae ϕ(x̄) and ψ(x̄) are equivalent if and only if the functions ϕ, ψ : Sn → [0, 1]
are equal.

We equip Sn with the minimal topology in which all the functions of this form are
continuous, which is sometimes called the logic topology.

Lemma 3.3. With the topology given above, Sn is a compact and Hausdorff space.
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Proof. Let L(n) be the family of all formulae in the variables x<n, and consider the
mapping Sn → [0, 1]L(n) given by p 7→ (ϕp : ϕ ∈ L(n)). As observed in Lemma 3.2 this
mapping is injective, and the topology on Sn is the topology induced on its image from
the product topology on [0, 1]L(n), which is Hausdorff. It follows from the Compactness
Theorem (Corollary 2.16) that the image is closed in [0, 1]L(n), so it is compact. �3.3

Since we are only interested in formulae up to equivalence, it is legitimate to identify a
formula with such a mapping. We know that in discrete first order logic the equivalence
classes of formulae are in bijection with clopen sets of types, i.e., with continuous map-
pings from the type space to {T, F}. Here we cannot claim as much, and it only holds
up to uniform approximations:

Proposition 3.4. A function f : Sn → [0, 1] is continuous if and only if it can be uni-
formly approximated by formulae.

Proof. For right to left, we know that every formula defines a continuous mapping on the
type space, and a uniform limit of continuous mappings is continuous.

Left to right is a consequence of Proposition 1.4 and the fact that formulae separate
types. �3.4

Given a formula ϕ(x<n) and r ∈ [0, 1], we define [ϕ < r]Sn = {p ∈ Sn : ϕp < r}. We
may omit Sn from the notation when it may not cause ambiguity. We could define [ϕ > r]
similarly, but as it is equal to [¬ϕ < 1 − r] this would not introduce any new sets. All
sets of this form are clearly open in Sn. Similarly, we define sets of the form [ϕ ≤ r],
[ϕ ≥ r], which are closed. (Since ϕ ≤ r is a condition we can also characterise [ϕ ≤ r] as
the set {p : “ϕ ≤ r” ∈ p}).

Lemma 3.5. The family of sets of the form [ϕ < r] forms a basis of open sets for the
topology on Sn. Equivalently, the family of sets of the form [ϕ ≤ r] forms a basis of closed
sets.

Moreover, if U is a neighbourhood of p, we can always find a formula ϕ(x<n) such that
p ∈ [ϕ = 0] ⊆ [ϕ < 1/2] ⊆ U .

Proof. We prove the moreover part, which clearly implies the rest. Assume that p ∈ U ⊆
Sn and U is open. By Urysohn’s Lemma there is a continuous function f : Sn → [0, 1]
such that f(p) = 0 and f↾Uc = 1. We can then find a formula ϕ0 such that |f−ϕ0| ≤ 1/4.
Then the formula ϕ = ϕ0 −. 1/4 would do. �3.5

3.2. Definable predicates. The discussion above, which is semantic in nature, should
convince the reader that uniform limits of formulae are interesting objects, which we
would like to call definable predicates. But, as formulae are first defined syntactically and
only later interpreted as truth value mappings from structures or from type spaces, it
will be more convenient later on to first define definable predicates syntactically. Since
uniform convergence of the truth values is a semantic notion it cannot be brought into
consideration on the syntactic level, so we use instead a trick we call forced convergence.
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This will be particularly beneficial later on when we need to consider sequences of for-
mulae which sometimes (i.e., in some structures, or with some parameters) converge, and
sometimes do not.

Forced conversion is first of all an operation on sequences in [0, 1], always yielding
a number in [0, 1]. The forced limit coincides with the limit if the sequence converges
fast enough. More precisely, if the sequence converges fast enough, we take its limit;
otherwise, we find the closest sequence which does converge fast enough, and take its
limit. Formally:

Definition 3.6. Let (an : n < ω) be a sequence in [0, 1]. We define a modified sequence
(aF lim,n : n < ω) by induction:

aF lim,0 = a0

aF lim,n+1 =











aF lim,n + 2−n−1 aF lim,n + 2−n−1 ≤ an+1

an+1 aF lim,n − 2−n−1 ≤ an+1 ≤ aF lim,n + 2−n−1

aF lim,n − 2−n−1 aF lim,n − 2−n−1 ≥ an+1

The sequence (aF lim,n : n < ω) is always a Cauchy sequence, satisfying n ≤ m < ω =⇒
|aF lim,n − aF lim,m| ≤ 2−n.

We define the forced limit of the original sequence (an : n < ω) as:

F lim
n→∞

ai
def
= lim

n→∞
aF lim,n.

Lemma 3.7. The function F lim: [0, 1]ω → [0, 1] is continuous, and if (an : n < ω) is a
sequence such that |an − an+1| ≤ 2−n for all n then F lim an = lim an.

In addition, if an → b ∈ [0, 1] fast enough so that |an − b| ≤ 2−n for all n, then
F lim an = b.

Proof. Continuity follows from the fact that if (an) and (bn) are two sequences, and for
some m we have |an − bn| < 2−m for all n ≤ m, then we can show by induction that
|aF lim,n − bF lim,n| < 2−m for all n ≤ m, whereby | F lim an −F lim bn| < 3 · 2−m.

For the second condition, one again shows by induction that |aF lim,n−b| < 2−n whence
the conclusion. �3.7

We may therefore think of F lim as an infinitary continuous connective.

Definition 3.8. A definable predicate is a forced limit of a sequence of formulae, i.e., an
(infinite) expression of the form F limn→∞ ϕn.

We say that a variable x is free in F limϕn if it is free in any of the ϕn.

Note that a definable predicate may have infinitely (yet countably) many free variables.
In practice, we will mostly consider forced limits of formulae with a fixed (finite) tuple of
free variables, but possibly with parameters, so the limit might involve infinitely many
parameters. We may write such a definable predicate as ψ(x̄, B) = F limϕn(x̄, b̄n), and
say that ψ(x̄, B) is obtained from ψ(x̄, Y ) (= F limϕn(x̄, ȳn)) by substituting the infinite
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tuple of parameters B =
⋃

b̄n in place of the parameter variables Y =
⋃

ȳn. (Another
way to think about this is to view parameter variables as constant symbols for which
we do not have yet any interpretation in mind: then indeed all the free variables are in
x̄.) Later on in Section 5 we will construct canonical parameters for such instances of
ψ(x̄, Y ). We shall see then that dealing with infinitely many parameters (or parameter
variables) is not too difficult as long as the tuple x̄ of actually free variable is finite. So
from now on, we will only consider definable predicates in finitely many variables.

The semantic interpretation of definable predicates is as expected:

Definition 3.9. Let ψ(x̄) = F limϕn(x̄) be a definable predicate in x̄ = x<m. Then for
every structure M and ā ∈ Mm, we define ψM(ā) = F limϕMn (ā). Similarly, for p ∈ Sm
we define ψp = F limϕpn.

As with formulae, if ā ∈M realises p ∈ Sm, then ψM(ā) = ψp. Therefore, two definable
predicates ψ(x̄) and χ(x̄) are equivalent (i.e., ψM = χM for all M) if and only if they are
equal as functions of types.

In the same manner we tend to identify two equivalent formulae, we will tend to
identify two equivalent definable predicates. Thus, rather than viewing definable as
infinite syntactic objects we will rather view them as semantic objects, i.e., as continuous
functions on the corresponding type space. If one insists on making a terminological
distinction then the syntactic notion of a forced limit of formulae could be called a limit
formula.

Proposition 3.10. The continuous functions Sm → [0, 1] are precisely those given by
definable predicates in m free variables.

Proof. Let ψ(x<m) = F limϕn be a definable predicate. Then the mapping p 7→ (ϕpn : n <
ω) is continuous, and composed with the continuous mapping F lim: [0, 1]ω → [0, 1] we
get ψ : Sm → [0, 1], which is therefore continuous.

Conversely, let f : Sm → [0, 1] be continuous. Then by Proposition 3.4 f can be
uniformly approximated by formulae: for every n we can find ϕn(x<m) such that |f −
ϕn| ≤ 2−n. Then f = limϕn = F limϕn. �3.10

Viewed as continuous functions of types, it is clear that the family of definable predi-
cates is closed under all continuous combinations, finitary or not (so in particular under
the infinitary continuous connective F lim), as well as under uniform limits. Finally, let
ψ(x̄, y) be a continuous predicate, and find formulae ϕn(x̄, y) that converge to ψ uniformly
on Sm+1. Then the sequence supy ϕn converges uniformly on Sm to a definable predicate
which will be denoted supy ψ (this is since we always have | supy ϕn−supy ϕk| ≤ |ϕn−ϕk|).
Furthermore, if follows from the uniform convergence ϕn → ψ that for every structure
M and ā ∈M we have (supy ψ)M(ā) = sup{ψM(ā, b) : b ∈M}. The same holds with inf,
and we conclude that the family of definable predicates is closed under continuous quan-
tification. Also, since all formulae are uniformly continuous with respect to the metric d,
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so are their uniform limits. This means, for example, that every definable predicate can
be added to the language as a new actual predicate symbol.

We conclude with a nice consequence of the forced limit construction, which might
not have been obvious if we had merely defined definable predicates as uniform limits of
formulae.

Lemma 3.11. Let M be a structure, and let (ϕn(x̄) : n < ω) be a sequence of formulae,
or even definable predicates, such that the sequence of functions (ϕMn : n < ω) converges
uniformly to some ξ : Mm → [0, 1] (but need not converge at all for any other structure
instead of M).

Then there is a definable predicate ψ(x̄) such that ψM = ξ = limϕMn (i.e., ξ is definable
in M).

Proof. Up to passing to a sub-sequence, we may assume that |ϕMn − ξ| ≤ 2−n, so ξ =
F limϕMn = (F limϕn)M . would do. �3.11

3.3. Partial types.

Definition 3.12. A partial type is a set of conditions, usually in a finite tuple of variables.
(Thus every complete type is in particular a partial type.)

For a partial type p(x<n) we define:

[p]Sn =
⋂

s∈p

[s]Sn = {q ∈ Sn : p ⊆ q}.

Since the sets of the form [s] (where s is a condition in x<n) form a basis of closed sets for
the topology on Sn, the sets of the form [p] (where p(x<n) is a partial type) are precisely
the closed subsets of Sn.

For every n,m < ω we have a natural restriction mapping π : Sn+m → Sn. This
mapping is continuous, and therefore closed (as is every continuous mapping between
compact Hausdorff spaces). Let p(x<n, y<m) be a partial type, defining a closed subset
[p] ⊆ Sn+m. Then π([p]) ⊆ Sn is closed as well, and therefore of the form [q(x<n)].

Definition 3.13. Let p(x̄, ȳ) be a partial type. We define ∃ȳ p(x̄, ȳ) to be any partial
type q(x̄) (say the maximal one) satisfying [q]Sn = π([p]Sn+m).

By the previous argument we have:

Fact 3.14. For every partial type p(x̄, ȳ), a partial type ∃ȳ p(x̄, ȳ) exists. Moreover, if
M is structure and ā ∈M then M � ∃ȳ p(ā, ȳ) if and only if there is N �M and b̄ ∈ N
such that N � p(ā, b̄). In case M is ω-saturated (i.e., if every 1-type over a finite tuple
in M is realised in M) then such b̄ exists in M .
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4. Theories

Definition 4.1. A theory is a set of sentential conditions, i.e., things of the form ϕ = 0,
where ϕ is a sentence.

Thus in some sense a theory is an “ideal”. Since every condition of the form ϕ ≤ r,
ϕ ≥ r or ϕ = r is logically equivalent to one of the form ϕ′ = 0 (if r is dyadic) or to
a set of such conditions (for any r ∈ [0, 1]), we may allow ourselves conditions of this
form as well. It should be noted however that most theories are naturally axiomatised
by conditions of the form ϕ = 0.

Definition 4.2. Let T be a theory. A (pre-)model of T is an L-(pre-)structure M in
which T is satisfied.

The notions of satisfaction and satisfiability of sets of conditions from Definition 2.8
apply in the special case of a theory (a set of conditions without free variables). In
particular, a theory is satisfiable if and only if it has a model, and by Proposition 2.10,
this is the same as having a pre-model.

A theory is complete if it is satisfiable and maximal as such (i.e., if it is a complete
0-type), or at least if its set of logical consequences is. The complete theories are precisely
those obtained as theories of structures:

Th(M) = {ϕ = 0: ϕ an L-sentence and ϕM = 0}

≡ {ϕ = ϕM : ϕ an L-sentence}.

(In the second line we interpret ϕ = r as an abbreviation for a set of conditions as
described earlier.)

4.1. Some examples of theories. Using the metric, any equational theory (in the
ordinary sense) can be expressed as a theory, just replacing x = y with d(x, y) = 0.

Example 4.3. Consider probability algebras (i.e., measure algebras, as discussed for ex-
ample in [Fre04], with total measure 1). The language is L = {0, 1, c,∧,∨, µ}, with all
continuity moduli being the identity. The theory of probability algebras, denoted PrA,
consists of the following axioms:

〈equational axioms of Boolean algebras〉

µ(1) = 1

µ(0) = 0

∀xy
(

µ(x) + µ(y) = µ(x ∨ y) + µ(x ∧ y)
)

∀xy
(

d(x, y) = µ((x ∧ yc) ∨ (y ∧ xc))
)

The last two axioms are to be understood in the sense of Notation 1.9. Thus ∀xy µ(x) +

µ(y) = µ(x ∨ y) + µ(x ∧ y) should be understood as supxy |µ(x)+µ(y)
2

− µ(x∨y)+µ(x∧y)
2

| = 0,
etc. In the last expression, division by two is necessary to keep the range in [0, 1]. As we
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get used to this we will tend to omit it and simply write supxy |µ(x) + µ(y)− µ(x∨ y)−
µ(x ∧ y)| = 0.

Note that we cannot express µ(x) = 0 → x = 0, but we do not have to either: if M
is a model, a ∈M , and µM(a) = 0, then the axioms imply that dM(a, 0M) = 0, whereby
a = 0M .

The model companion of PrA is APA, the theory of atomless probability algebras,
which contains in addition the following sentence:

∀x∃y
(

µ(y ∧ x) = µ(x)
2

)

,

Following Remark 2.11 we can express this by:

sup
x

inf
y

∣

∣

∣µ(y ∧ x) − µ(x)
2

∣

∣

∣ = 0

(We leave it to the reader to verify that this sentential condition does indeed hold if and
only if the probability algebra is atomless.)

Example 4.4 (Convex spaces). Let us now consider a signature Lcvx consisting of binary
function symbols cλ(x, y) for all dyadic numbers λ ∈ [0, 1], which are all, say, 1-Lipschitz
in both arguments. Let Tcvx consist of:

(∀xyz) d
(

z, cλ(x, y)
)

≤ λd(z, x) + (1 − λ)d(z, y)

(∀xyz) cλ0+λ1

(

c λ0
λ0+λ1

(x, y), z
)

= cλ1+λ2

(

c λ1
λ1+λ2

(y, z), x
)

λ0 + λ1 + λ2 = 1

(∀xyz) d
(

cλ(x, z), cλ(y, z)
)

= λd(x, y).

By [Mac73], the models of Tcvx are precisely the closed convex subsets of Banach spaces of
diameter ≤ 1, equipped with the convex combination operations cλ(x, y) = λx+(1−λ)y.
We may in fact restrict to a single function symbol c1/2(x, y), since every other convex
combination operator with dyadic coefficients can be expressed using this single operator.
Since our structures are by definition complete, dyadic convex combinations suffice.

Example 4.5. Let us continue with the previous example. We may slightly modify our
logic allowing the distance symbol to have values in the compact interval [0, 2], so now
models of Tcvx are convex sets of diameter ≤ 2. Let us add a constant symbol 0 and
a unary function symbol −. We also introduce ‖x‖ as shorthand for d(x, 0) and λx as
shorthand for cλ(x, 0). We add the following axioms:

(∀x) ‖x‖ ≤ 1

(∀x)x+ (−x) = 0

(∀x∃y) d(x, y/2) ∧ (1/2 −. ‖x‖) = 0

The first axiom tells us that our model is a convex subset of the unit ball of the ambient
Banach space. The second that it is symmetric around 0. The third axiom tells us that
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our model is precisely the unit ball: if ‖x‖ ≤ 1/2 then 2x exists. One can add more
structure on top of this, for example:

(i) Multiplication by i, rendering the ambient space a complex Banach space.
(ii) Function symbols ∨ and ∧, rendering the ambient space a Banach lattice. In

order to make sure we remain inside the unit ball, we actually need to add
(x, y) 7→ (x ∧ y)/2 and (x, y) 7→ (x ∨ y)/2 rather than ∨ and ∧. In particular
the model-theoretic study of independence in Lp Banach lattices carried out in
[BBH] fits in this setting.

Alternatively, in order to study a Banach space E one could introduce a multi-sorted
structure where there is a sort En for each closed ball around 0 in E of radius n < ω.
On each sort, all the predicate symbols have values in a compact interval, and operations
such as + go from En × Em to En+m. However, since every sort En is isomorphic to E1

up to rescaling, this boils down to the single-sorted approach described above (and in
particular, re-scaled addition is indeed the convex combination operation).

It can be shown that either approach (single unit ball sort or a sort for each radius) has
the same power of expression as Henson’s logic, i.e., the translation from a Banach space
structure à la Henson to a unit ball structure (in an appropriate signature) preserves such
notions as elementary classes and extensions, type-definable subsets of the unit ball, etc.
This should be intuitively clear from Remark 2.11. Thus, continuous first order logic is
indeed as good a setting for the study of such properties as stability and independence in
Banach space structures as Henson’s logic, but as we show later it is much better adapted
for such study.

The reader may find in [Benc] a treatment of unbounded continuous signatures and
structures, an approach much closer in spirit to Henson’s treatment of Banach space
structures. It is proved there that approximate satisfaction of positive bounded formu-
lae (which makes sense in any unbounded continuous signature) has the same power of
expression as satisfaction of conditions of continuous first order logic. The equivalence
mentioned in the previous paragraph follows. In addition, the single point compactifi-
cation method defined there turns such unbounded structures into bounded structures
as studied here without chopping them into pieces as above (and again, preserving such
notions as elementarity and definability).

4.2. Type spaces of a theory. If T is a theory, we define its type spaces as in classical
first order logic:

Sn(T ) = {p ∈ Sn : T ⊆ p} = {tpM(ā) : M � T and ā ∈Mn}.

This is a closed subspace of Sn, and therefore compact and Hausdorff in the induced
topology. We define [ϕ ≤ r]Sn(T ) = [ϕ ≤ r]Sn ∩ Sn(T ), and similarly for ϕ = r, etc. As
before, we may omit Sn(T ) if the ambient type space in question is clear.
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If M is a structure and A ⊆ M , we define L(A) by adding constant symbols for the
elements of A and identify M with its natural expansion to L(A). We define T (A) =
ThL(A)(M) and Sn(A) = Sn(T (A)), the latter being the space of n-types over A.

This definition allows a convenient re-statement of the Tarski-Vaught Test:

Fact 4.6 (Topological Tarski-Vaught Test). Let M be a structure, A ⊆ M a closed
subset. Then the following are equivalent:

(i) The set A is (the domain of) an elementary substructure of M : A �M .
(ii) The set of realised types {tpM(a/A) : a ∈ A} is dense in S1(A).

Proof. We use Fact 2.17. Assume first that the set of realised types is dense. Let ϕ(y, ā) ∈
L(A), r = infy ϕ(y, ā)M ∈ [0, 1]. Then for every ε > 0 the set [ϕ(y, ā) < r + ε] ⊆ S1(A)
is open and non-empty, so there is b ∈ A such that ϕ(b, ā)M < r + ε, whence condition
(ii) of Fact 2.17. Conversely, since the sets of the form [ϕ(y, ā) < r] (with ā ∈ A) form
a basis of open sets for S1(A), condition (ii) of Fact 2.17 implies the realised types are
dense. �4.6

By previous results, a uniform limit (or forced limit) of formulae with parameters in
A is the same (as functions on M , or on any elementary extension of M) as a continuous
mapping ϕ : Sn(A) → [0, 1]. Such a definable predicate with parameters in A is called a
definable predicate over A, or an A-definable predicate.

We define κ-saturated and (strongly) κ-homogeneous structures as usual, and show
that every complete theory admits a monster model, i.e., a κ-saturated and strongly
κ-homogeneous model for some κ which is far larger than the cardinality of any other
set under consideration. It will be convenient to assume that there is always an ambient
monster model: every set of parameters we consider is a subset of a monster model, and
every model we consider is an elementary substructure thereof. (Even when considering
an incomplete theory, each model of the theory embeds in a monster model of its complete
theory.)

If M is a monster model and A ⊆ M a (small) set, we define

Aut(M/A) = {f ∈ Aut(M) : f↾A = idA}.

A definable predicate with parameters (in M) is A-invariant if it is fixed by all f ∈
Aut(M/A).

All type spaces we will consider in this paper are quotient spaces of Sn(M), where M

is a fixed monster model of T , or of Sn(T ), which can be obtained using the following
general fact:

Fact 4.7. Let X be a compact Hausdorff space and A ⊆ C(X, [0, 1]) any sub-family of
functions. Define an equivalence relation on X by x ∼ y if f(x) = f(y) for all f ∈ A,
and let Y = X/∼. Then:

(i) Every f ∈ A factors uniquely through the quotient mapping π : X → Y as f =
fY ◦ π.
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(ii) The quotient topology on Y is precisely the minimal topology under which every
such fY is continuous.

(iii) This topology is compact and Hausdorff.

Conversely, let Y be a compact Hausdorff space and π : X → Y a continuous projection.
Then Y is a quotient space of X and can be obtained as above using A = {f ◦ π : f ∈
C(Y, [0, 1])}.

Proof. The first item is by construction. Let T1 be the quotient topology on Y and T2 the
minimal topology in which every fY is continuous. Then T1 is compact as a quotient of a
compact topology. If y1, y2 ∈ Y are distinct then there is a function fY separating them,
whereby T2 is Hausdorff. Finally, let V ⊆ [0, 1] be open and f ∈ A, so U = f−1

Y (V ) ⊆ Y
is a pre-basic open set of T2. Then π−1(U) = f−1(V ) ⊆ X is open, whereby U ∈ T1.
Thus T1 refines T2. Since T1 is compact and T2 is Hausdorff they must coincide.

For the converse, the space Y ′ = X/∼ constructed in this manner can be identified
with Y . The original topology on Y refines the quotient topology by the second item,
and as above they must coincide. �4.7

For example, let M be a monster model and A ⊆ M a set. Then there is a natural
projection π : Sn(M) → Sn(A) restricting from L(M) to L(A), and let:

A = {ϕ ◦ π : ϕ ∈ C(Sn(A), [0, 1])},

A
′ = {ϕ ∈ C(Sn(M), [0, 1]) : ϕ is A-invariant}.

Then clearly A ⊆ A
′. On the other hand, A and A

′ separate the same types, so by
Fact 4.7 every f ∈ A

′ factors through Sn(A) and A
′ = A. In other words we’ve shown:

Lemma 4.8. Let A be a set (in the monster model) and let ϕ be an A-invariant definable
predicate with parameters possibly outside A. Then ϕ is (equivalent to) an A-definable
predicate A.

Let us adapt the notions of algebraicity and algebraic closure to continuous logic:

Lemma 4.9. Let A be a set of parameters and p(x) ∈ S1(A). Then the following are
equivalent:

(i) For every ε > 0 there is a condition (ϕε(x) = 0) ∈ p (with parameters in A) and
nε < ω such that for every sequence (ai : i ≤ nε), if ϕε(xi) < 1/2 for all i ≤ nε
then d(xi, xj) ≤ ε for all i < j ≤ nε.

(ii) Every model containing A contains all realisations of p.
(iii) Every indiscernible sequence in p is constant.
(iv) There does not exist an infinite sequence (ai : i < ω) of realisations of p such that

inf{d(ai, aj) : i < j < ω} > 0.
(v) The set of realisations of p is compact.

Proof. (i) =⇒ (ii). We may assume that for the choice of ϕε, the number nε is minimal:
we can therefore find in the universal domain elements a<nε such that ϕε(ai) < 1/2 for all
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i < nε and yet d(ai, aj) > ε for all i < j < nε. Then we have (in the universal domain):

supx<nε

(

∧

i<nε

(

1
2
−. ϕε(xi)

)

∧
∧

i<j<nε

(d(xi, xj) −. ε)

)

> 0.

Assume that A ⊆ M . Then the same holds in M , and we may therefore find a<nε as
above inside M . Assume also that a � p. Then by assumption there is some i < nε such
that d(a, ai) ≤ ε. Since this holds for all ε > 0 and M is complete we must have a ∈M .

(ii) =⇒ (iii). By Downward Löwenheim-Skolem.
(iii) =⇒ (iv). By (compactness and) Ramsey’s theorem.
(iv) =⇒ (i). Since the set {d(xi, xj) ≥ ε : i < j < ω}∪

⋃

i<ω p(xi) must be inconsistent.
(iv) ⇐⇒ (v). Condition (iv) is equivalent to saying that the set of realisations of p is

totally bounded. Since it is in addition automatically complete (a limit of realisations of
p is a realisation of p), this is the same as saying it is compact. �4.9

Definition 4.10. If p ∈ S(A) satisfies any of the equivalent properties in Lemma 4.9
then it is called algebraic. We say that a is algebraic over A if tp(a/A) is algebraic. We
define the algebraic closure of A, denoted acl(A), as the set of all algebraic elements over
A. By Lemma 4.9 if A ⊆ M then acl(A) ⊆ M as well, so acl(A) is the same in every
model containing A. If A = acl(A) then we say that A is algebraically closed.

4.3. The metric on types of a complete theory. Let T be complete. Since any two
n-types are realised inside the monster model we can define for every p, q ∈ Sn(T ):

d(p, q) = inf{d(ā, b̄) : ā � p and b̄ � q}

Here d(a<n, b<n) =
∨

i<n d(ai, bi). It is trivial to verify this is a pseudo-metric. By
compactness the infimum is attained, so it is in fact a metric: d(p, q) = 0 =⇒ p = q.
Note also that we can construct Sn(T ) as a set as M

n/Aut(M), where M is the monster
model and we divide it by the action of its automorphism group, in which case the
distance between types in the one induced from M

n. (For this purpose, any ω-saturated
and strongly homogeneous model of T would serve just as well.)

The metric on Sn(T ) refines the logic topology. Indeed, let p ∈ Sn(T ) and U a neigh-
bourhood of p. Then there is a formula ϕ such that p ∈ [ϕ = 0] ⊆ [ϕ < 1/2] ⊆ U . The
uniform continuity of ϕ implies the existence of δ > 0 such that d(p, q) ≤ δ =⇒ ϕq < 1/2,
so U contains a metric neighbourhood of p. By a theorem of Henson (for Banach space
structures in positive bounded logic, but it boils down to the same thing), for a complete
countable theory T , the metric on Sn(T ) coincides with the logic topology for all n if and
only if T is separably categorical, i.e., if and only if it has a unique separable model up
to isomorphism.

Also, if F ⊆ Sn(T ) is closed and ε > 0, then so is the closed ε-neighbourhood of F :

F ε = {p ∈ Sn(T ) : d(p, F ) ≤ ε}.
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Indeed, since the set F is closed in can be written as [p(x̄)] where p is some partial type,
and then

F ε = [∃ȳ
(

d(x̄, ȳ) ≤ ε ∧ p(ȳ)
)

].

This leads us to the following definition which will turn out to be useful later on:

Definition 4.11. A compact topometric space is a triplet 〈X,T , d〉, where T is a
compact Hausdorff topology and d a metric on X, satisfying:

(i) The metric refines the topology.
(ii) For every closed F ⊆ X and ε > 0, the closed ε-neighbourhood of F is closed in

X as well.

When dealing with topometric spaces some care must be taken about the language.
We will follow the convention that whenever we use terms which come from the realm
of general topology (such as compactness, closed and open sets, etc.) we refer to the
topology. When wish to refer to the metric, we will use terminology that clearly comes
from the realm of metric spaces. When there may be ambiguity, we will say explicitly to
which part we are referring.

We may therefore sum up the previous observations as:

Fact 4.12. The type space Sn(T ) is a compact topometric space.

We will come back to topometric spaces later. Let us now conclude with a small fact
about them:

Lemma 4.13. Let X be a compact topometric space (so by the terminological convention
above, we mean to say that the topology is compact). Then it is complete (as a metric
space).

Proof. Let (xn : n < ω) be a Cauchy sequence in X. We may assume that d(xn, xn+1) ≤
2−n−1 for all n. For each n the set {xn}

2−n , (the closed 2−n-ball around xn) is closed in
the topology, and ({xn}

2−n : n < ω) is a decreasing sequence of non-empty closed sets. By
compactness there is some x in the intersection, and clearly xn → x in the metric. �4.13

4.4. Quantifier elimination.

Definition 4.14. A quantifier-free definable predicate is a definable predicate defined by
a forced limit of quantifier-free formulae.

A theory has quantifier elimination if every formula can be uniformly approximated
over all models of T by quantifier-free formulae, i.e., if every formula is equal in models
of T to a quantifier-free definable predicate.

(In order to avoid pathologies when there are no constant symbols in L, we must allow
that if ϕ is a formula without free variables, the quantifier-free definable predicate may
have a free variable.)
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We introduce the following criterion for quantifier elimination, analogous to the clas-
sical back-and-forth criterion:

Definition 4.15. We say that a theory T has the back-and-forth property if for every
two ω-saturated models M,N � T , non-empty tuples ā ∈Mn and b̄ ∈ Nn, and singleton
c ∈M , if ā and b̄ have the same quantifier-free type (i.e., ϕM(ā) = ϕN(b̄) for all quantifier-
free ϕ) then there is d ∈ N such that ā, c and b̄, d have the same quantifier-free type.

Theorem 4.16. The following are equivalent for any continuous theory T (not neces-
sarily complete):

(i) The theory T admits quantifier elimination.
(ii) The theory T has the back-and-forth property.

Proof. Assume first that T admits quantifier elimination. Then under the assumptions
we have ā ≡ b̄. Let p(x, ȳ) = tp(c, ā). Then p(x, b̄) is consistent and is realised by some
d ∈ N by ω-saturation.

For the converse we introduce an auxiliary definition: The infy-type of a tuple ā ∈M
is given by the function ϕ(x̄) 7→ ϕM(ā), where ϕ varies over all the formulae of the form
infy ψ(y, x̄), ψ quantifier-free. We define Sinfy

n (T ) as the set of all infy-types of n-tuples
in models of T . This is a quotient of Sn(T ), and we equip it with the quotient topology,
which is clearly compact and Hausdorff.

We claim first that if M,N � T and ā ∈ Mn, b̄ ∈ Nn have the same quantifier-free
type then they have the same infy-type. Since we may embed M and N elementarily in
more saturated models, we may assume both are ω-saturated. Assume infy ψ(y, ā) = r.
Then there are cm ∈ M such that ψ(cm, ā) ≤ r + 2−m, and by ω-saturation there is
c ∈ M such that ψ(c, ā) = r. Therefore there is d ∈ N such that ψ(d, b̄) = r, whereby
infy ψ

M(y, ā) ≥ infy ψ
N(y, b̄). By a symmetric argument we have equality.

We conclude that the quantifier-free formulae separate points in Sinfy
n (T ). Since

quantifier-free formulae form a family of continuous functions on Sinfy
n (T ) which is closed

under continuous connectives, the quantifier-free formulae are dense in C(Sinfy
n (T ), [0, 1])

by Proposition 1.4. In particular, every infy-formula can be uniformly approximated by
quantifier-free formulae, and by induction on the structure of the formula, every formula
can be thus approximated (on models of T , or equivalently on Sn(T )). �4.16

Corollary 4.17. The theory of atomless probability algebras (described above) is complete
and has quantifier elimination.

Proof. The back-and-forth property between complete atomless probability algebras is
immediate, and does not require ω-saturation (or rather, as it turns out, all complete
atomless probability algebras are ω-saturated). Indeed, two n-tuples a<n ∈M and b<n ∈
N have the same quantifier-free type (ā ≡qf b̄) if and only if they generate isomorphic
algebras. Letting a0 = a, a1 = ac and āt̄ =

∧

i<n a
ti
i for t̄ ∈ {0, 1}n we have ā ≡qf b̄ if and

only if µ(āt̄) = µ(b̄t̄) for all t̄ ∈ {0, 1}n. If c ∈M is any other singleton use atomlessness
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to find for each t̄ ∈ {0, 1}n an event dt̄ ≤ b̄t̄ such that µ(dt̄) = µ(c ∧ āt̄). Then d =
∨

dt̄
will do.

Also, every two probability algebras can be embedded in a third one, which can be
further embedded in a complete atomless one, whence the completeness. �4.17

Definition 4.18. A theory T is model complete if for every M,N � T , M ⊆ N =⇒
M ≺ N .

We leave the following as an exercise to the reader (see [Benb] for a complete proof):

Proposition 4.19. A theory T is model complete if and only if every formula can be uni-
formly approximated on Sn(T ) by formulae of the form inf ȳ ϕ(x̄, ȳ), where ϕ is quantifier-
free.

4.5. Continuous first order logic and open Hausdorff cats. We now show the
equivalence between the framework of continuous first order logic and that of (metric)
open Hausdorff cats. For this we assume familiarity with the latter framework, as exposed
in [Ben05]. The reader who is not familiar with open Hausdorff cats may safely skip this
part.

To every theory T we associate its type-space functor S(T ) in the usual manner. For
every n < ω we defined Sn(T ) above. Ifm,n < ω and f : n→ m is any mapping, we define
f ∗ : Sm(T ) → Sn(T ) by f ∗(p(x<m)) = {ϕ(x<n) = ϕ(xf(0), . . . , xf(n−1))

p : ϕ(x<n) ∈ L},
i.e., f ∗ : tp(a0, . . . , am−1) 7→ tp(af(0), . . . , af(n−1)).

Fact 4.20. Let T be a continuous first order theory. Then its type-space functor S(T ) is
an open, compact and Hausdorff type-space functor in the sense of [Ben03].

Since a type-space functor is one way to present a cat, this can be restated as: every
continuous first order theory is an open Hausdorff cat.

Proof. Clearly S(T ) is a Hausdorff compact type-space functor. To see it is open, let
πn : Sn+1(T ) → Sn(T ) consist of restriction to the n first variables (so πn = (n →֒
n + 1)∗). Let U ⊆ Sn+1(T ) be a basic open set, i.e., of the form [ϕ(x̄, y) < r]. Then
πn(U) = [infy ϕ < r] is open as well, so πn is an open mapping. �4.20

Recall that a definable n-ary function from a cat T to a Hausdorff space X is a
continuous mapping f : Sn(T ) → X. Equivalently, this is a mapping from the models of
T to X such that for every closed subset F ⊆ X, the property f(x̄) ∈ F is type-definable
without parameters (whence definable function). A definable metric is a definable binary
function which defines a metric on the models.

Note that d is indeed a definable metric, so T is a metric cat, and the models of T
(in the sense of continuous first-order logic) are precisely its complete models as a metric
Hausdorff cat, as defined in [Ben05].

For the converse, we will use the following property of definable functions in open cats:

Lemma 4.21. Let T be an open cat. Let f(x̄, y) be an definable n+ 1-ary function from
T to [0, 1] (or the reals, for that matter), and let g(x̄) = supy f(x̄, y). Then g is also a
definable function.
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Proof. For every real number, we can define g(x̄) ≥ r by the partial type
∧

s<r ∃y f(x̄, y) ≥
s. We can also define g(x̄) ≤ r by ∀y f(x̄, y) ≤ r, and this is expressible by a partial type
since T is assumed to be open. �4.21

Remark 4.22. This can also be stated in purely topological terms: Let X and Y
be compact Hausdorff spaces, and f : X → Y an open continuous surjective map-
ping. Let ϕ : X → [0, 1] be continuous, and let ψ : Y → [0, 1] be defined by ψ(y) =
sup{ϕ(x) : f(x) = y}. Then ψ is continuous.

Observe that if T is a metric open Hausdorff cat and d a definable metric on some
sort, then by compactness the metric is bounded. Thus, up to rescaling we may always
assume its range is contained in [0, 1].

Theorem 4.23. Let T be a metric open Hausdorff cat, and let d be a definable metric
on the home sort with range in [0, 1].

Then there exists a metric signature L̂ whose distinguished metric symbol is d̂, and an
L̂-theory T̂ , such that S(T̂ ) ≃ S(T ), and such that the metric d̂ coincide with d.

Moreover, if κ is such that Sn(T ) has a basis of cardinality ≤ κ for all n < ω, then we
can arrange that |L| ≤ κ.

Proof. For each n, we choose a family Fn ⊆ C(Sn(T ), [0, 1]) which separates points, are
closed under {¬,−. , x

2
}, and such that d ∈ F2. By Lemma 4.21 we may further assume

that supy P (x̄, y) ∈ Fn for each P (x̄, y) ∈ Fn+1. We can always choose the Fn such that
|Fn| ≤ κ for all n, where κ is as in the moreover part. By Proposition 1.4, Fn is dense in
C(Sn(T ), [0, 1]).

We observe that every P ∈ Fn is uniformly continuous with respect to d. Indeed,
|P (x̄) − P (ȳ)| is a continuous function from S2n(T ), and for every ε > 0, the following
partial type is necessarily inconsistent:

{|P (x̄) − P (ȳ)| ≥ ε} ∪ {d(xi, yi) ≤ 2−m : m < ω, i < n}.

Therefore there is m < ω such that d(x̄, ȳ) ≤ 2−m =⇒ |P (x̄) − P (ȳ)| ≤ ε.

Let L̂n = {P̂ : n < ω, P ∈ Fn}, where we associate to each n-ary predicate symbol

P̂ the uniform continuity moduli obtained in the previous paragraph. Every universal
domain of T , or closed subset thereof, is naturally a L̂-structure, by interpreting each P̂
as P . In particular, all the predicates satisfy the appropriate continuity moduli.

Clearly, the family of n-ary definable functions is closed under continuous connectives.
Also, if ϕ(x<n) : Sn(T ) → [0, 1] is a definable n-ary function and f : n → m is any
mapping, then ϕ(xi0 , . . . , xin−1

) = ϕ ◦ f ∗ is a definable m-ary function: in other words,
the definable functions are closed under changes of variables. Finally, by Lemma 4.21,
the definable functions are closed under quantification. Put together, every L̂-formula
ϕ(x<n) induces a definable function ϕ ∈ C(Sn(T ), [0, 1]). Since Fn is dense there, for
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every m we can find Pϕ,m ∈ Fn such that |Pϕ,m − ϕ| ≤ 2−m. Let T̂ consist of:

sup
x̄

|P̂ϕ,m(x̄) − ϕ(x̄)| ≤ 2−m ϕ, Pϕ,m as above

sup
x̄
P̂ ≤ 2−m P ∈ Fn and P (Sn(T )) ⊆ [0, 2−m]

Clearly, every model of T , viewed as an L̂-structure, is a model of T̂ .
We claim that S(T̂ ) ≈ S(T ). Indeed, for every p ∈ S(T ), define θn(p) by ϕθn(p) = ϕ(p)

for every L̂-formula ϕ(x<n). Then θn(p) is just the L̂-type of any realisation of p (again,

viewing models of T as L̂-structure), so in particular is it indeed in Sn(T̂ ). Since the

predicate symbols of L̂ separate T -types, θn is injective. It is also clearly continuous,
and therefore (as its domain is compact and its target Hausdorff) is a homeomorphism

of Sn(T ) with a closed subspace of Sn(T̂ ). If θn is not surjective, there is q ∈ Sn(T̂ ), and
a neighbourhood q ∈ U which is disjoint of the image of θn. As usual there is a formula
ϕ such that q ∈ [ϕ = 0] ⊆ [ϕ < 1/2] ⊆ U , and letting ψ = ¬(ϕ ∔ ϕ): q ∈ [ψ = 1] ⊆

[0 < ψ] ⊆ U , so ψ(Sn(T )) = {0}. Then T̂ says that supx̄ |ψ(x̄) − P̂ψ,2(x̄)| ≤ 1/4 and

supx̄ P̂ψ,2(x̄) ≤ 1/4, which in turn imply that ψ ≤ 1/2 and therefore ϕ ≥ 1/4, so q is

inconsistent with T̂ .
Thus θn : Sn(T ) → Sn(T̂ ) is a homeomorphism for every n, and by construction it is

compatible with the functor structure so θ : S(T ) → S(T̂ ) is the required homeomorphism
of type-space functors.

It is clear from the way we axiomatised it that T̂ has quantifier elimination. �4.23

Theorem 4.23, combined Fact 4.20, says that framework of continuous first order theo-
ries coincides with that of metric open Hausdorff cats. In fact, we know from [Ben05] that
if T is a non-metric Hausdorff cat then its home sort can be “split” into (uncountably
many) hyperimaginary metric sorts, so in a sense every Hausdorff cat is metric. Thus,
with some care, this observation can be generalised to all open Hausdorff cats.

Compact type-space functors are a structure-free and language-free way of present-
ing cats. By [Ben03], one can associate to each compact type-space functor a positive
Robinson theory T ′ in some language L′ and talk about universal domains for that cat
as L′-structures. Then “complete models” mean the same thing in both settings:

Fact 4.24. Let T be a complete continuous theory and T ′ the corresponding cat (i.e.,
positive Robinson theory in a language L′).

Then there is a one-to-one correspondence between (κ-)monster models of T and
(κ-)universal domains of T ′ over the same set of elements (for a fixed big cardinal κ), in
such a way that the type of a tuple in one is the same as its type in the other.

Moreover, a closed subset of such a model is an elementary submodel in the sense of
T if and only if it is a complete submodel in the sense of T ′, as defined in [Ben05].

Proof. For the first condition, the identification of the type-space functors of T and of
T ′ imposes for each monster model (or universal domain) of one an interpretation of the
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other language, and it is straightforward (though tedious) to verify then that the new
structure is indeed a universal domain (or a monster model) for the other theory.

The moreover part is a special case of Fact 4.6. �4.24

Since T is a metric cat, its monster model is a monster metric space (momspace) as
defined in [SU], and its models (in the sense of continuous logic) are precisely the class
Kc

1 studied there. So results proved for momspaces apply in our context.

5. Imaginaries

In classical first order model theory there are two common ways to view (and define)
imaginaries: as canonical parameters for formulae, or, which is more common, as classes
modulo definable equivalence relations. Of course, any canonical parameter for a formula
can be viewed as an equivalence class, and an equivalence class is a canonical parameter
for the formula defining it, so both approaches are quite equivalent in the discrete setting.

We have already observed that in the passage from discrete to continuous logic equiv-
alence relations are replaced with pseudo-metrics. On the other hand, the notion of a
canonical parameter remains essentially the same: the canonical parameter for ϕ(x̄, ā)
is something (a tuple, an imaginary. . . ) c which an automorphism fixes if and only if it
does not alter the meaning of the formula (i.e., c = f(c) ⇐⇒ ϕ(x̄, ā) ≡ ϕ(x, f(ā)) for
every f ∈ Aut(M)).

As in the classical setting, both approaches are essentially equivalent, but in practice
the canonical parameter approach has considerable advantages. In particular, when doing
stability, we would need to consider canonical parameters for definable predicates ψ(x̄, A),
which only have finitely many free variables but may have infinitely many parameters.
Canonical parameters for such definable predicates are dealt with as with canonical pa-
rameters for formulae, and the existence of infinitely many parameters introduces very
few additional complications. On the other hand, if we wished to define the canonical
parameter as an equivalence class modulo a pseudo-metric we would be forced to consider
pseudo-metrics on infinite tuples, the logic for whose equivalence classes could become
messy.

Other minor advantages include the fact that we need not ask ourselves whether a
particular formula defines a pseudo-metric on every structure or only on models of a
given theory, and finally the conceptually convenient fact that unlike equivalence relations
which need to be replaced with pseudo-metrics, canonical parameters are a familiar notion
which we leave unchanged.

Let L be a continuous signature. For convenience, assume that L has a single sort
S. If we wanted to work with a many-sorted language we would have to keep track on
which variables (in the original language) belong to which sort, but other than that the
treatment is identical.

Let us start with the case of a formula ϕ(x<n, y<m), where x<n are the free variables,
and y<m are the parameter variables (and to simplify notation we will consider that this
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partition of the variables is part of ϕ). We define a new signature Lϕ, consisting of L
along with a new sort Sϕ for the canonical parameters for instances ϕ(x̄, ā) of ϕ, and the
following new symbols:

(i) A predicate symbol dϕ(z, z′) on S2
ϕ which will be the distance symbol for Sϕ.

(ii) A predicate symbol Pϕ(x<n, z) on Sn × Sϕ. Its uniform continuity moduli with
respect to the first n arguments are the same as ϕ’s with respect to x<n, and
with respect to the last argument it is the identity. (This symbol is not strictly
necessary, but will be convenient.)

We will expand every L-structure M to an Lϕ-structure, interpreting Sϕ as the family
the canonical parameters of all instances ϕ(x̄, ā) of ϕ(x̄, ȳ) in M . We first expand M into
an Lϕ-pre-structure Mϕ,0 by defining:

SMϕ,0
ϕ = Mm

PMϕ,0
ϕ (ā, (b̄)) = ϕM(ā, b̄)

dMϕ,0
ϕ ((b̄), (b̄′)) = supx̄ |ϕ(x̄, b̄) − ϕ(x̄, b̄′)|M

(Here b̄ is an m-tuple in the home sort of M , (b̄) is the corresponding element of S
Mϕ,0
ϕ .)

We leave the reader the verification that d
Mϕ,0
ϕ is a pseudo-metric and the uniform conti-

nuity moduli fixed above are indeed respected, so Mϕ,0 is an Lϕ-pre-structure. We then

define Mϕ = M̂ϕ,0, the structure associated to the pre-structure Mϕ,0.

For b̄ ∈ Mm, let [b̄]ϕ denote the image of (b̄) in S
Mϕ
ϕ . Clearly, every automorphism

of M extends uniquely to an automorphism of Mϕ, and it fixes ϕ(x̄, b̄) if and only if it
fixes [b̄]ϕ, which is therefore a canonical parameter for ϕ(x̄, b̄). If c = [b̄]ϕ then Pϕ(x̄, c)
coincides with ϕ(x̄, b̄). We therefore allow ourselves to abuse notation and denote either
one simply as ϕ(x̄, c).

The properties of the new sort are described intuitively by the following axioms:

∀zz′
(

dϕ(z, z′) = supx̄|Pϕ(x̄, z) − Pϕ(x̄, z′)|
)

,

∀z ∃ȳ ∀x̄
(

ϕ(x̄, ȳ) = Pϕ(x̄, z)
)

,

∀ȳ ∃z ∀x̄
(

ϕ(x̄, ȳ) = Pϕ(x̄, z)
)

.

To get the precise axioms we apply Remark 2.11, so“∀∃∀(. . . = . . .)” should be read as
“sup inf sup | . . .− . . . | = 0”, etc. We therefore define Tϕ to be the following Lϕ-theory:

sup
zz′

∣

∣dϕ(z, z′) − supx̄|Pϕ(x̄, z) − Pϕ(x̄, z′)|
∣

∣ = 0,

sup
z

inf
ȳ

sup
x̄

∣

∣ϕ(x̄, ȳ) − Pϕ(x̄, z)
∣

∣ = 0,

sup
ȳ

inf
z

sup
x̄

∣

∣ϕ(x̄, ȳ) − Pϕ(x̄, z)
∣

∣ = 0.

One easily verifies that:
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Proposition 5.1. An Lϕ-structure is a model of Tϕ if and only if it is of the form Mϕ

for some L-structure M .

Therefore, if T is a complete L-theory then T ∪ Tϕ is a complete Lϕ-theory. We
discussed the case of a single formula ϕ, but we can do the same with several (all)
formulae simultaneously.

Remark 5.2. As we said earlier, the continuous analogue of an equivalence relation is a
pseudo-metric. We can recover classes modulo pseudo-metrics from canonical parameters
in very straightforward manner:

(i) Assume that ϕ(x̄, ȳ) defines a pseudo-metric on Mn. Then the pseudo-metric

d
Mϕ,0
ϕ (defined on S

Mϕ,0
ϕ = Mn) coincides with ϕM , and (Sϕ, dϕ)Mϕ is the com-

pletion of the set of equivalence classes of n-tuples modulo the relation ϕ(ā, b̄),
equipped with the induced metric.

(ii) In particular, let ξn(x<n, y<n) =
∨

i<n d(xi, yi). Then the sort Sξn is the sort of
n-tuples with the standard metric.

We now wish to define canonical parameters to definable predicates of the form ψ(x̄, B),
i.e. to instances of ψ(x̄, Y ), which may unavoidably have infinitely many parameters (or
parameter variables). We can write ψ(x̄, Y ) as a uniform limit of a sequence of formulae
(ϕn(x̄, ȳn) : n < ω), where (ȳn) is an increasing sequence of tuples and Y =

⋃

n ȳn. We
may further assume that the rate of convergence is such that |ϕn−ψ| ≤ 2−n. Since each
ȳn is finite, we may assume that |Y | = ω.

We define Lψ by adding to L a new sort Sψ and predicate symbols dψ(z, z′) and Pψ(x̄, z)
as before.

Given a structure M we construct Mψ,0 much the same as before:

S
Mψ,0

ψ = Mω

P
Mψ,0

ψ (ā, (B)) = ψM(ā, B) (= limϕMn (ā, b̄n))

d
Mψ,0

ψ ((B), (B′)) = supx̄ |ψ(x̄, B) − ψ(x̄, B′)|M

Again Mψ,0 is a pre-structure, and we define Mψ = M̂ψ,0. Letting [B]ψ be the image of
(B) in Mψ, we see again that [B]ψ is a canonical parameter for ψ(x̄, B). If c = [B]ψ
then again we allow ourselves the abuse of notation which consists of denoting either of
ψ(x̄, B) and Pψ(x̄, c) (which are equivalent) by ϕ(x̄, c).

Notice that Lψ is a finitary language in which the canonical parameters are singletons,
and the fact that Y is an infinite tuple is indeed hidden.
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The theory Tψ, the analogue of Tϕ above, consists of infinitely many axioms, according
to the following schemes, which we interpret according to Remark 2.11 as above:

∀zz′
(

dψ(z, z′) = supx̄|Pψ(x̄, z) − Pψ(x̄, z′)|
)

,

∀z ∃ȳn ∀x̄ |ϕn(x̄, ȳn) − Pψ(x̄, z)| ≤ 2−n,

∀yn ∃z̄ ∀x̄ |ϕn(x̄, ȳn) − Pψ(x̄, z)| ≤ 2−n

Again, the models of Tψ are precisely the Lψ-structures of the form Mψ.

Remark 5.3. It is not true that if T is model complete then so is T ∪ Tϕ.
In the case of canonical parameters for a single formula ϕ we can remedy this defi-

ciency as in discrete logic by naming the mapping b̄ 7→ [b̄]ϕ with a new function symbol
πϕ : Sm → Sϕ. We leave it to the reader to verify that, if T is a model complete L-theory
then T ∪ T ′

ϕ is a model complete L′
ϕ-theory, where

L′
ϕ = Lϕ ∪ {πϕ}, T ′

ϕ = Tϕ ∪ {∀x̄ȳ
(

ϕ(x̄, ȳ) = Pϕ(x̄, πϕ(ȳ))
)

}.

The graph of πϕ (or of any function of continuous structures) is defined here to be the
predicate γϕ(ȳ, z) = dϕ(πϕ(ȳ), z). This predicate is definable in Lϕ:

γϕ(ȳ, z) = supx̄|ϕ(x̄, ȳ) − Pϕ(x̄, z)|.

It follows that the addition of πϕ to the language does not add any structure (see [Bena,
Section 1] for a more detailed discussion of definable functions in continuous logic).

In the case of canonical parameters of ψ(x̄, Y ) = limϕn(x̄, ȳn), which are quotients of
infinite tuples, we cannot add a function symbol πϕ. Instead we observe that in the case
of a single formula it would have sufficed to name γϕ by a predicate (rather than naming
πϕ). While γψ would depend infinitely many variables and thus still impossible to add to
the language, we may add finite approximations. We add predicate symbols γϕn,ψ(ȳn, z)
and add to Tψ the axioms:

∀ȳnz
(

γϕn,ψ(ȳn, z) = supx̄|ϕn(x̄, ȳn) − Pψ(x̄, z)|
)

.

Call the expanded language L′
ψ and the expanded theory T ′

ψ. Again, we leave it to the
reader to verify that if T is a model complete L-theory, then so is T ∪T ′

ψ as an L′
ψ-theory.

We leave the details to the interested reader.

6. Local types and ϕ-predicates

In this section and later we will consider formulae whose free variables are split in
two groups ϕ(x̄, ȳ). Following Remark 5.2, we may replace finite tuples of variables with
single ones, and therefore allow ourselves to restrict our attention to formulae of the form
ϕ(x, y), where x and y may belong to distinct sorts.

We will associate variable letters with sorts: x, xi, etc., belong to one sort, y, yj, etc.,
to another, and so forth. Accordingly, we will denote the difference spaces of types in
the variable x by Sx(T ), Sx(A), etc.
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We now fix a formula ϕ(x, y). We will define spaces of ϕ-types as quotients of spaces
we have already constructed using Fact 4.7. The notion of a ϕ-type over a model is fairly
straightforward. A few more steps will be required in order to obtain the correct notion
of a ϕ-type over an arbitrary set.

Definition 6.1. Let M be a structure. We define Sϕ(M) as the quotient of Sx(M) given
by the family of functions AM,ϕ = {ϕ(x, b) : b ∈ M}. An element of Sϕ(M) is called a
(complete) ϕ-type over M .

Accordingly, the ϕ-type of a over M , denoted tpϕ(a/M), is given by the mappings
ϕ(x, b) 7→ ϕ(a, b) where b varies over all elements of the appropriate sort of M .

We equip Sϕ(M) with a metric structure: For p, q ∈ Sϕ(M) we define

d(p, q) = sup
b∈M

|ϕ(x, b)p − ϕ(x, b)q|.

Fact 6.2. Equipped with this metric and with its natural topology (inherited as a quotient
space from Sx(M)), Sϕ(M) is a compact topometric space as in Definition 4.11.

Definition 6.3. Let M be a structure. A ϕ-predicate over M , or an M-definable ϕ-
predicate, is a continuous mapping ψ : Sϕ(M) → [0, 1].

Fact 6.4. Let ψ : Sx(M) → [0, 1] be an M-definable predicate. Then the following are
equivalent:

(i) ψ is a ϕ-predicate (i.e., factors through the projection Sx(M) → Sϕ(M)).
(ii) There are formulae ψn(x, b̄n), each obtained using connectives from several in-

stances ϕ(x, bn,j), where each bn,j ∈M , and in M we have ψ(x) = F limψn(x).
(iii) ψ can be written as f ◦ (ϕ(x, bi)

M : i < ω) where f : [0, 1]ω → [0, 1] is continuous
and bi ∈M for all i < ω.

Proof. (i) =⇒ (ii). Standard application of Proposition 1.4.
(ii) =⇒ (iii) =⇒ (i). Immediate. �6.4

Lemma 6.5. Let M be a monster model, and M � M a model. Let ψ(x) be an M-
invariant ϕ-predicate over M. Then ψ is (equal to) a ϕ-predicate over M .

Proof. We know that ψ(x) is equal to a definable predicate over M , so ψ(x) =
limψn(x, cn) where each ψn(x, zn) is a formula and cn ∈ M . We also know that
ψ(x) = limχn(x, dn), where each χn(x, d̄n) is a combination of instances ϕ(x, dn,j) with
parameters dn,j ∈ M. For all ε > 0 there exists n < ω such that:

M � supx|ψn(x, cn) − χn(x, d̄n)| < ε

In particular:

M � inf ȳnsupx|ψn(x, cn) − χn(x, ȳn)| < ε
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Since M � M:

M � inf ȳnsupx|ψn(x, cn) − χn(x, ȳn)| < ε

So there is d̄′n ∈M such that:

M � supx|ψn(x, cn) − χn(x, d̄′n)| < ε.

We can therefore express ψ as limχn(x, d̄′n), which is a ϕ-predicate over M . �6.5

This leads to the following:

Definition 6.6. Let A be a (small) set in a monster model M.

(i) A ϕ-predicate over A, or an A-definable ϕ-predicate is a ϕ-predicate over M

which is A-invariant.
(ii) We define Sϕ(A) as the quotient of Sϕ(M) determined by the A-definable ϕ-

predicates. The points of this space are called (complete) ϕ-types over A.
(iii) Accordingly, the ϕ-type tpϕ(a/A) is given by the mappings ψ(x) 7→ ψ(a) where

ψ varies over all A-definable ϕ-predicates.

By Lemma 6.5, these definitions coincide with previous ones in case that A = M � M.
We conclude with a result about compatibility of two kinds of extensions of local types:

to the algebraic closure of the set of parameters, and to more (all) formulae.

Lemma 6.7. Let p ∈ Sϕ(A), and let q ∈ Sϕ(acl(A)) and r ∈ Sx(A) extend p. Then q ∪ r
is consistent.

Proof. Let R1 ⊆ Sx(acl(A)) be the pullback of r (i.e., the set of all its extensions to a
complete type over acl(A)), and R2 ⊆ Sϕ(acl(A)) the image of R1 under the restriction
projection Sx(acl(A)) → Sϕ(acl(A)). Then R2 is the set of all extensions of p to acl(A)
compatible with r, and we need to show that q ∈ R2 (i.e., that R2 is the set of all the
extensions of p).

Indeed, assume not. The setsR1 and thereforeR2 are closed. Therefore we can separate
R2 from q by a ϕ-predicate ψ(x, a), with parameter a ∈ acl(A), such that ψ(x, a)q = 0
and R2 ⊆ [ψ(x, a) = 1]. Since a ∈ acl(A), by Lemma 4.9 there is a sequence (ai : i < ω)
such that:

(i) Every ai is an A-conjugate of a.
(ii) For every ε > 0 there is n such that every A-conjugate of a is in the ε-

neighbourhood of some ai for i < n.

Define ψn(x, a<n) =
∧

i<n ψ(x, ai). Then, by uniform continuity of ψ(x, y) with respect
to y, the sequence (ψn(x, a<n) : n < ω) converges uniformly to the predicate χ(x) =
inf{ψ(x, a′) : a′ ≡A a}. Thus χ(x) is a definable ϕ-predicate (as a limit of such) and A-
invariant, so it is an A-definable ϕ-predicate. On the one hand we clearly have χ(x)p =
χ(x)q = 0. On the other, as R2 is A-invariant as well, we have R2 ⊆ [ψ(x, ai) = 1] for all
i < ω, so χ(x)p = χ(x)r = 1. This contradiction concludes the proof. �6.7
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Lemma 6.8. Let A ⊆M where M is strongly (|A| + ω)+-homogeneous, and p ∈ Sϕ(A).
Then Aut(M/A) acts transitively on the extensions of p to Sϕ(acl(A)).

Proof. Follows from (and is in fact equivalent to) Lemma 6.7. �6.8

7. Local stability

Here we answer C. Ward Henson’s question mentioned in the introduction. Throughout
this section T is a fixed continuous theory (not necessarily complete) in a signature L.

Definition 7.1. (i) We say that a formula ϕ(x, y) is ε-stable for a real number ε > 0
if in models of T there is no infinite sequence (aibi : i < ω) satisfying for all i < j:
|ϕ(ai, bj) − ϕ(aj, bi)| ≥ ε.

(ii) We say that ϕ(x, y) is stable if it is ε-stable for all ε > 0.

Lemma 7.2. Let ϕ(x, y) be a formula, ε > 0. Then the following are equivalent:

(i) The formula ϕ is ε-stable.
(ii) It is impossible to find 0 ≤ r < s ≤ 1 and an infinite sequence (aibi : i < ω) such

that r ≤ s− ε and for all i < j: ϕ(ai, bj) ≤ r, ϕ(aj, bi) ≥ s.
(iii) There exists a natural number N such that in model of T there is no finite

sequence (aibi : i < N) satisfying:

for all i < j < k : |ϕ(aj, bi) − ϕ(aj, bk)| ≥ ε.(∗)

Proof. (i) ⇐⇒ (ii). Left to right is immediate. For the converse assume ϕ is not ε-
stable, and let the sequence (aibi : i < ω) witness this. For every δ > 0 we can find using
Ramsey’s Theorem arbitrarily long sub-sequences (a′ib

′
i : i < N) such that in addition:

If i < j and i′ < j′ then: |ϕ(ai, bj) − ϕ(ai′ , bj′)|, |ϕ(aj, bi) − ϕ(aj′ , bi′)| ≤ δ.

(For this we use the classical finite Ramsey’s Theorem. We could also use the infinite
version to obtain a single infinite sequence with the same properties.)

By compactness we can find an infinite sequence (cidi : i < ω) witnessing ε-instability
such that in addition, for i < j, ϕ(ci, dj) = r and ϕ(cj, di) = s do not depend on i, j.
Thus |r − s| ≥ ε. If r < s we are done. If r > s we can reverse the ordering on all the
finite subsequences obtained above, thus exchanging r and s, and conclude in the same
manner.

(ii) ⇐⇒ (iii). Now right to left is immediate. For left to write, we argue as above, us-
ing Ramsey’s Theorem and compactness, that there exists an infinite sequence (aibi : i <
ω) such that for i < j < k we have |ϕ(aj, bi) − ϕ(aj, bk)| ≥ ε and ϕ(ai, bj) = r and
ϕ(aj, bi) = s do not depend on i, j. Then again |r−s| ≥ ε and we conclude as above. �7.2

It follows that stability is a symmetric property: define ϕ̃(y, x)
def
= ϕ(x, y); then ϕ is

(ε-)stable if and only if ϕ̃ is.

Notation 7.3. If ϕ is ε-stable we define N(ϕ, ε) to be the minimal N such that no
sequence (aibi : i < N + 1) exists satisfying (∗).
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Let us define the median value connective medn : [0, 1]2n−1 → [0, 1]:

medn(t<2n−1) =
∧

w∈[2n−1]n

∨

i∈w

ti =
∨

w∈[2n−1]n

∧

i∈w

ti.

If ϕ(x, y) is ε-stable define:

dεϕ(y, x<2N(ϕ,ε)−1) = medN(ϕ,ε)

(

ϕ(xi, y) : i < 2N(ϕ, ε) − 1
)

.

Lemma 7.4. Let M be a model and p ∈ Sϕ(M). Then there exist cε<2N(ϕ,ε)−1 ∈ M such
that, for every b ∈M :

∣

∣ϕ(x, b)p − dεϕ(b, cε<2N(ϕ,ε)−1)
∣

∣ ≤ ε.

Proof. We argue as in the proof of [Pil96, Lemma 2.2]. Choose a realisation c � p in the
monster model: c ∈ M �M . We construct by induction on n, tuples cn ∈M in the sort
of x, an increasing sequence of sets K(n) ⊆ P(ω), and tuples aw ∈M in the sort of y for
each w ∈ K(n), as follows.

At the nth step we assume we have already chosen c<n. We define:

K(n) = {w ⊆ n : ∃a ∈M such that |ϕ(c, a) − ϕ(ci, a)| > ε for all i ∈ w} .

For every w ∈ K(n) such that aw has not yet been chosen, choose aw ∈ M witnessing
that w ∈ K(n). Note that if w ⊆ m < n and aw witnesses that w ∈ K(m) then it also
witnesses that w ∈ K(n), so there is no problem keeping previously made choices. We
now have:

∀w ∈ K(n), i ∈ w : |ϕ(ci, aw) − ϕ(c, aw)| > ε,

whereby:

supx









∧

w∈K(n)

i∈w

|ϕ(ci, aw) − ϕ(x, aw)|









> ε.

This holds in M; but since all of the parameters of the form aw, bw, ci are in M , the last
inequality actually holds in M . Therefore there exists cn ∈M such that:

∀w ∈ K(n), i ∈ w : |ϕ(ci, aw) − ϕ(cn, aw)| > ε.

This concludes the nth step of the construction.
Note that if w ∈ K(n) and m < n then w ∩m ∈ K(n) as well.

Claim. For all n and w ∈ K(n): |w| < N(ϕ, ε).

Proof of claim. If not there is w = {m0 < . . . < mN−1} ∈ K(n) where N ≥ N(ϕ, ε).
Define mN = n (so mN−1 < mN), and for j < N , let wj = {mi : i < j}. Then for all
i < j < k ≤ N we have mi ∈ wj ∈ K(mk), whereby:

∣

∣ϕ(cmi , awj) − ϕ(cmk , awj)
∣

∣ > ε.
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Thus the sequence (cmi , awi : i < N + 1) contradicts the choice of N(ϕ, ε). �Claim

It follows that for every w ∈ [2N(ϕ, ε) − 1]N(ϕ,ε) and a ∈M :
∧

i∈w

ϕ(ci, a) − ε ≤ ϕ(c, a) ≤
∨

i∈w

ϕ(ci, a) + ε

Whereby |ϕ(c, a) − dεϕ(a, c<2N(ϕ,ε)−1)| ≤ ε, as required. �7.4

Definition 7.5. Let p(x) ∈ Sϕ(M). A definition for p is an M -definable predicate ψ(y)
satisfying ϕ(x, b)p = ψM(b) for all b ∈ M . If such a definable predicate exists then
it is unique (any two such definable predicates coincide on M , and therefore on every
elementary extension of M), and is denoted dpϕ(y).

Assume now that ϕ(x, y) is stable, and let:

X = (xni : n < ω, i < 2N(ϕ, 2−n) − 1),

dϕ(y,X) = F lim
n

d2−nϕ(y, xn<2N(ϕ,2−n)−1).

Proposition 7.6. Let M be a model, and p ∈ Sϕ(M). Then there are parameters C ⊆M
such that dϕ(y, C) = dpϕ(y) (so in particular, a definition dpϕ exists). Moreover, dpϕ is
an M-definable ϕ̃-predicate.

Proof. For each n < ω choose cn<2N(ϕ,2−n)−1 as in Lemma 7.4, and let C = (cni : n < ω, i <

2N(ϕ, 2−n) − 1).
Let ξ : M → [0, 1] be defined as b 7→ ϕ(x, b)p. Then |d2−nϕ(y, cn,<2N(ϕ,2−n)−1)

M − ξ| ≤
2−n, whereby:

ξ = F lim
n

d2−nϕ(y, cn<2N(ϕ,2−n)−1)
M = dϕ(y, C)M .

This precisely means that dϕ(y, C) = dpϕ.
That dϕ(x,C) is a ϕ̃-predicate follows from its construction. �7.6

From this point onwards we assume that L has a sort for the canonical parameters of
instances of dϕ(y,X) for every stable formula ϕ(x, y) ∈ L. If not, we add these sorts
as in Section 5. It should be pointed out that if M is an L-structure and ‖M‖ ≥ |L|,
the addition of the new sorts does not change ‖M‖: this can be seen directly from the
construction, or using the Downward Löwenheim-Skolem Theorem (Fact 2.19) and the
fact that we do not change |L|.

For every stable formula and type p ∈ Sϕ(M) we define Cbϕ(p) as the canonical
parameter of dpϕ(y). With the convention above we have Cbϕ(p) ∈ M . Notice that
if p, q ∈ Sϕ(M), c = Cbϕ(p) and c′ = Cbϕ(q), then d(c, c′) (in the sense of the sort of
canonical parameters for dϕ) is equal to d(p, q) in Sϕ(M).

As with structures, we will measure the size of a type space Sϕ(M) by its metric density
character ‖ Sϕ(M)‖.

Proposition 7.7. The following are equivalent for a formula ϕ(x, y):
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(i) ϕ is stable.
(ii) For every M � T , every p ∈ Sϕ(M) is definable.

(iii) For every M � T , ‖ Sϕ(M)‖ ≤ ‖M‖.
(iv) There exists λ ≥ |T | such that whenever M � T and ‖M‖ ≤ λ then ‖ Sϕ(M)‖ ≤ λ

as well.

Proof. (i) =⇒ (ii). By Proposition 7.6.
(ii) =⇒ (iii). Let D ⊆ Mdϕ be the family of canonical parameters of instances of

dϕ(y,X) which actually arise as definitions of ϕ-types over M . Then ‖D‖ ≤ ‖M‖, and
D is isometric to Sϕ(M).

(iii) =⇒ (iv). Immediate.
(iv) =⇒ (i). Let λ ≥ |T | be any cardinal and assume ϕ is unstable. It is a classical

fact that there exists a linear order (I,<) of cardinality λ admitting > λ initial segments:
for example, let µ be the least cardinal such that 2µ > λ and let I = {0, 1}<µ equipped
with the lexicographic ordering.

Assuming ϕ is unstable then we can find (using Lemma 7.2 and compactness) 0 ≤ r <
s ≤ 1 and a sequence (aibi : i ∈ I) such that i < j imply ϕ(ai, bj) ≤ r and ϕ(aj, bi) ≥ s. By
the Downward Löwenheim-Skolem Theorem there exists a model {bi : i ∈ I} ⊆ M � M

such that ‖M‖ ≤ λ. On the other hand, by compactness, for every initial segment
C ⊆ I there exists aC such that ϕ(aC , bi) ≥ s if i ∈ C and ϕ(aC , bi) ≤ r if i /∈ C. Let
pC = tpϕ(aC/M).

If C,C ′ are two distinct initial segments of I then d(pC , pC′) ≥ s − r, showing that
‖ Sϕ(M)‖ > λ and concluding the proof. �7.7

Definition 7.8. Let (X, d) be a metric space. The diameter of a subset C ⊆ X is defined
as

diam(C) = sup{d(x, y) : x, y ∈ C}

We say that a subset C ⊆ X is ε-finite if it can be written as C =
⋃

i<k Ci, where
diam(Ci) ≤ ε for all i < k. In this case, its ε-degree, denoted degε(C), is the minimal
such k.

Note that if C and C ′ are ε-finite then so is C ∪ C ′ and degε(C ∪ C ′) ≤ degε(C) +
degε(C

′).

Definition 7.9. Let X be a compact topometric space.
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For a fixed ε > 0, we define a decreasing sequence of closed subsets Xε,α by induction:

Xε,0 = X

Xε,α =
⋂

β<α

Xε,β (α a limit ordinal)

Xε,α+1 =
⋂

{F ⊆ Xε,α : F is closed and diam(Xε,α r F ) ≤ ε}

Xε,∞ =
⋂

α

Xε,α

Finally, for any non-empty subset C ⊆ X we define its ε-Cantor-Bendixson rank in X
as:

CBX,ε(C) = sup{α : C ∩Xε,α 6= ∅} ∈ Ord ∪ {∞}

If CBX,ε(C) < ∞ we also define CBmX,ε(C) = C ∩Xε,CBX,ε(C), i.e., the set of points of
maximal rank.

It is worthwhile to point out that either Xε,α 6= ∅ for every α (and eventually stabilises
to Xε,∞) or there is a maximal α such that Xε,α 6= ∅. The same holds for the sequence
{C ∩Xε,α : α ∈ Ord} if C ⊆ X is closed.

Assume that C ⊆ X is closed and α = CBX,ε(C) < ∞. Then by the previous para-
graph C contains points of maximal rank, i.e., CBmX,ε(C) 6= ∅. Moreover, CBmX,ε(C)
is compact and admits in Xε,α an open covering by sets of diameter ≤ ε. By compact-
ness, it can be covered by finitely many such, and is therefore ε-finite. This need not
necessarily hold in case C is not closed.

We will use this definition for X = Sϕ(M), where M is at least ω-saturated. In this
case we may write CBϕ,M,ε instead of CBSϕ(M),ε, etc.

Remark 7.10. In the definition of the ε-Cantor-Bendixson rank we defined Xε,α+1 by
removing from Xε,α all its “small open subsets”, i.e., its open subsets of diameter ≤
ε. There exist other possible definitions for the ε-Cantor-Bendixson derivative, using
different notions of smallness. Such notions are studied in detail in [Bend] where it is
shown that in the end they all boil down to the same thing.

Proposition 7.11. ϕ is stable if and only if for one (any) ω-saturated model M � T :
CBϕ,M,ε(Sϕ(M)) <∞ for all ε.

Proof. If not, let Y = {p ∈ Sϕ(M) : CBϕ,M,ε = ∞}. Then Y is compact, and if U ⊆ Y
is relatively open and non-empty then diam(U) > ε. We can therefore find non-empty
open sets U0, U1 such that Ū0, Ū1 ⊆ U and d(U0, U1) > ε. Proceed by induction. This
would contradict stability of ϕ in a countable fragment of the theory.

The converse is not really important, and is pretty standard. �7.11

From now on we assume that ϕ is stable.
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Definition 7.12. Let M � T and A ⊆ M , and assume that M is (|A| + ω)+-saturated
and strongly homogeneous. A subset F ⊆ Sϕ(M) is A-good if it is:

(i) Metrically compact.
(ii) Invariant under automorphisms of M fixing A.

Recall the notions of algebraicity and algebraic closure from Definition 4.10.

Lemma 7.13. Assume that F ⊆ Sϕ(M) is A-good. Then every p ∈ F is definable over
acl(A).

Proof. We know that p is definable, so let dϕ(y, C) be its definition, and c = Cbϕ(p) the
canonical parameter of the definition. We may write dϕ(x,C) as dpϕ(y, c).

Assume that c /∈ acl(A). Then there exists an infinite sequence (ci : i < ω) in tp(c/A)
such that d(ci, cj) ≥ ε > 0 for all i < j, and we can realise this sequence in M by the
saturation assumption. By the homogeneity assumption, each dϕp(y, ci) defines a type
pi which is an A-conjugate of p. Therefore pi ∈ F for all i < ω, and d(pi, pj) ≥ ε for all
i < j < ω, contradicting metric compactness. �7.13

Lemma 7.14. Assume that A ⊆M � T , M is (|A| + ω)+-saturated and strongly homo-
geneous, and F ⊆ Sϕ(M) is closed, non-empty, and invariant under Aut(M/A). Then
F contains an A-good subset.

Proof. Define by induction on n: F0 = F , and Fn+1 = CBmϕ,M,2−n(Fn). Then (Fn : n <
ω) is a decreasing sequence of non-empty closed subsets of Sϕ(M), and so Fω =

⋂

n Fn 6=
∅. The limit set Fω is ε-finite for every ε > 0, i.e., it is totally bounded. Since the metric
refines the topology, Fω is also metrically closed in Sϕ(M) and thus complete. We see
that fω is a totally bounded complete metric space and therefore metrically compact.
Also, each of the Fn is invariant under Aut(M/A), and so is Fω. �7.14

Proposition 7.15. Let A ⊆ M � T , and let p ∈ Sϕ(A). Then there exists q ∈ Sϕ(M)
extending p which is definable over acl(A).

Proof. We may replace M with a larger model, so we might as well assume that M is
(|A| + ω)+-saturated and strongly homogeneous. Let P = {q ∈ Sϕ(M) : p ⊆ q}. By
Lemma 7.14, there is an A-good subset Q ⊆ P , which is non-empty by definition. By
Lemma 7.13, any q ∈ Q is an acl(A)-definable extension of p. �7.15

Proposition 7.16. Let M � T , p(x) ∈ Sϕ(M) and q(y) ∈ Sϕ̃(M). Let dpϕ(y) and
dqϕ̃(x) be their respective definitions, and recall that these are a ϕ̃- and a ϕ-predicate,
respectively. Then dpϕ(y)q = dqϕ̃(x)p.

Proof. Let M0 = M . Given Mn �M , obtain pn ∈ Sϕ(Mn) and qn ∈ Sϕ̃(Mn) by applying
the definition of p and q, respectively, to Mn (these are indeed complete satisfiable ϕ-
and ϕ̃-types). Realise them by an and bn, respectively, in some extension Mn+1 � Mn.
Repeat this for all n < ω.

We now have for all i < j: ϕ(aj, bi) = dpϕ(y)q and ϕ(ai, bj) = dqϕ̃(x)p, and if these
differ we get a contradiction to the stability of ϕ. �7.16
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Proposition 7.17. Assume that A ⊆ M is algebraically closed, p, p′ ∈ Sϕ(M) are both
definable over A, and p↾A = p′↾A. Then p = p′.

Proof. Let b ∈ M , q = tpϕ̃(b/A). By Proposition 7.15 there is q̂ ∈ Sϕ̃(M) extending q
which is definable over acl(A) = A, and let dq̂ϕ̃(x) be this definition. Recalling that dpϕ
and dp′ϕ are ϕ̃-predicates, dq̂ϕ̃ is a ϕ-predicate, and all of them are over A, we have:

ϕ(x, b)p = dpϕ(b) = dpϕ(y)q = dpϕ(y)q̂

= dq̂ϕ̃(x)p = dq̂ϕ̃(x)p
′

= dp′ϕ(y)q̂ = dp′ϕ(y)q = dp′ϕ(b)

= ϕ(x, b)p
′

.

Therefore p = p′. �7.17

Given A ⊆M � T and p ∈ Sϕ(acl(A)), we denote the unique acl(A)-definable extension
of p to M by p↾M . The definition of p↾M is an acl(A)-definable ϕ̃-predicate which does
not depend on M , and we may therefore refer to it unambiguously as dpϕ(y) (so far we
only used the notation dpϕ(y) when p was a ϕ-type over a model).

If p ∈ Sϕ(A), we define (with some abuse of notation) p↾M = {q↾M : p ⊆ q ∈
Sϕ(acl(A))}.

Proposition 7.18. If A ⊆M � T and p ∈ Sϕ(A) as above, then p↾M is closed in Sϕ(M).
Assume moreover that M is (|A| + ω)+-saturated and strongly homogeneous, and let

P = {q ∈ Sϕ(M) : p ⊆ q}. Then p↾M is the unique A-good set contained in P .
Also, we have p↾M =

⋂

ε>0 CBmϕ,M,ε(P ), and in fact p↾M =
⋂

ε∈E CBmϕ,M,ε(P ) for

any E ⊆ (0,∞) such that inf E = 0. In other words, q ∈ p↾M if and only if q ∈ P , and
it has maximal CBϕ,M,ε-rank as such for every ε > 0.

Proof. If M �M ′, then p↾M = {q↾M : q ∈ p↾M
′

}, so we may assume that M is (|A|+ω)+-
saturated and strongly homogeneous.

Let Q ⊆ P be any A-good subset. If q ∈ Q, then q = (q↾acl(A))↾
M ∈ p↾M . By

Lemma 6.8 it follows that Q = p↾M . Therefore p↾M is closed.
It follows by Lemma 7.14 that p↾M ⊆ CBmϕ,M,ε(P ) for every ε > 0, whereby

⋂

ε>0 CBmϕ,M,ε(P ) 6= ∅. The other requirements for
⋂

ε>0 CBmϕ,M,ε(P ) to be A-good

follow directly from its definition, and we conclude that p↾M =
⋂

ε>0 CBmϕ,M,ε(P ). �7.18

Proposition 7.19. Assume that M � N � T are both ω-saturated. Let p ∈ Sϕ(M), and
let q ∈ Sϕ(N) extend it. Then CBϕ,M,ε(p) ≥ CBϕ,N,ε(q), and equality holds for all ε > 0
if and only if q = p↾N .

Proof. Assume first that N is ω1-saturated and strongly homogeneous. Let:

Xε,α = {p ∈ Sϕ(M) : CBϕ,M,ε(p) ≥ α} Yε,α = {q ∈ Sϕ(N) : CBϕ,N,ε(q) ≥ α}
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We first prove by induction on α that if CBϕ,M,ε(p) ≤ α and p ⊆ q ∈ Sϕ(N) then
CBϕ,N,ε(q) ≤ α. Given a ϕ-predicate ψ(x, a) with parameters a ∈ M and r ∈ [0, 1], let
us write:

[ψ(x, a) < r]M = [ψ(x, a) < r]Sϕ(M) = {p′ ∈ Sϕ(M) : ψ(x, a)p
′

< r}.

Sets of this form form a basis of open sets for Sϕ(M). Since CBϕ,M,ε(p) ≤ α, there are
such ψ(x, a) and r such that p ∈ [ψ(x, a) < r]M and diam([ψ(x, a) < r]M ∩Xε,α) ≤ ε.

Clearly, q ∈ [ψ(x, a) < r]N , so we’ll be done if we prove that diam([ψ(x, a) < r]N ∩
Yε,α) ≤ ε as well. Indeed, assume that there are q′, q′′ ∈ [ψ(x, a) < r]N such that
d(q′, q′′) > ε. Let dϕ(y, e′) and dϕ(y, e′′) be their respective definitions, where e′ and e′′

are the canonical parameters. Then we can find f ′, f ′′, b ∈ M such that f ′f ′′b ≡ e′e′′a
and d(a, b) is as small as we want (in fact using ω-saturation we can actually have a = b,
but the argument goes through even if we can only have b arbitrarily close to a; therefore
the result is true even if M is merely approximately ω-saturated, as defined in [Ben05] or
[BU07]).

Let p′, p′′ ∈ Sϕ(M) be defined by dϕ(y, f ′) and dϕ(y, f ′′), respectively. Then p′, p′′ ∈
[ψ(x, b) < r]M , and having made sure that b is close enough to a, we can get p′, p′′ ∈
[ψ(x, a) < r]M . Also, we still have d(p′, p′′) > ε. Therefore at least one of p′ /∈ Xε,α or
p′′ /∈ Xε,α must hold, so let’s say it’s the former. In this case, by the induction hypothesis,
p′↾N /∈ Yε,α. Since N is ω1-strongly homogeneous, p′↾N and q′ are conjugates by Aut(N),
so q′ /∈ Yε,α, as required.

Now let q = p↾N , and let dϕ(y, e) be the common definition. Assume that CBϕ,N,ε(q) ≤
α, so there are a ϕ-predicate ψ(x, a) with a ∈ N , and r, such that q ∈ [ψ(x, a) < r]N and
diam([ψ(x, a) < r]N ∩Yα,ε) ≤ ε. We may find b, f ∈M such that bf ≡ ae, and such that
f is as close as we want to e (again: if we take the plain definition of ω-saturation we can
even have e = f , but we want an argument that goes through if M is only approximately
ω-saturated). If p′ ∈ Sϕ(M) is defined by dϕ(y, f), then p′ ∈ [ψ(x, b) < r]M , and
assuming f and e are close enough we also have p ∈ [ψ(x, b) < r]M . By the homogeneity
assumption for N we get diam([ψ(x, b) < r]N ∩ Yα,ε) ≤ ε.

Assume now that p′′, p′′′ ∈ [ψ(x, b) < r]M , and d(p′′, p′′′) > ε. Let q′′ = p′′↾N and
q′′′ = p′′′↾N . Then d(q′′, q′′′) > ε, so either q′′ /∈ Yε,α or q′′′ /∈ Yε,α (or both), so let’s say it’s
the former. By the induction hypothesis we get p′′ /∈ Xε,α, showing that diam([ψ(x, b) <
r]M ∩Xα,ε) ≤ ε. Therefore CBϕ,M,ε(p) ≤ α.

Since p↾N is the unique extension of p to N having maximal CBϕ,N,ε rank for all ε > 0,
this proves what we wanted.

If N is not ω1-strongly homogeneous, take a common elementary extension for M and
N which is. �7.19

Corollary 7.20. Again, let M � N be ω-saturated. Let X ⊆ Sϕ(M) be any set of ϕ-
types (without any further assumptions), and let Y ⊆ Sϕ(N) be its pre-image under the
restriction mapping. Then CBϕ,M,ε(X) = CBϕ,N,ε(Y ).
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In particular, this gives us an absolute notion of CBϕ,ε(p) where p is a partial ϕ-type,
without specifying over which (ω-saturated) model we work: just calculate it in any
ω-saturated model containing the parameters for p.

For example, assume that A ⊆ B ⊆ M � T , p ∈ Sϕ(A) and p ⊆ q ∈ Sϕ(B). Then q is
definable over acl(A) if and only if CBϕ,ε(p) = CBϕ,ε(q) for all ε > 0.

8. Global stability and independence

In the previous section we only considered local stability, i.e., stability of a single
formula ϕ(x, y). In this section we will use those results to deduce a global stability
theory.

8.1. Gluing local types. Let A be an algebraically closed set, and say A ⊆ M . Let
ϕ(x, y) and ψ(x, z) be two stable formulae, pϕ ∈ Sϕ(A), pψ ∈ Sψ(A). Then we know that
each of pϕ and pψ have unique extensions qϕ ∈ Sϕ(M) and qψ ∈ Sψ(M), respectively,
which are A-definable.

Assume now that pϕ and pψ are compatible, i.e., that pϕ(x) ∪ pψ(x) is satisfiable. We
would like to show that qϕ and qψ are compatible as well. For this purpose there is no
harm in assuming that M is strongly (|A| + ω)+-homogeneous, or even that M = M is
our monster model.

Let t, w be any variables in a single sort, say the home sort, and e 6= e′ ∈ M in that
sort. We may assume that d(e, e′) = 1: even if not, everything we do below would work
when we replace d(t, w) with d(t, w) ∔ . . .∔ d(t, w). Define:

χϕ,ψ(x, yztw) = ϕ(x, y) ∧ d(t, w) ∔ ψ(x, z) ∧ ¬d(t, w).

Since we assume that ϕ and ψ are stable so is χϕ,ψ(x, yztw) by the following easy
result:

Lemma 8.1. Assume ϕi(x, y) are stable formulae for i < n and f is an n-ary continuous
connective. Then (f ◦ ϕ<n)(x, y) is stable as well.

Let a, b and c be in the appropriate sorts. Then:

ϕ(a, b) = χϕ,ψ(a, bcee′),

ψ(a, c) = χϕ,ψ(a, bcee).

Thus every instance of ϕ or of ψ is an instance of χϕ,ψ, so every ϕ-predicate or ψ-
predicate (with parameters in M) is a χϕ,ψ-predicate. Moreover, if B ⊆ M and ρ(x)
is B-definable as a ϕ-predicate (or ψ-predicate) then it is B-invariant and therefore a
B-definable χϕ,ψ-predicate. Notice that there is no need to assume here that e, e′ ∈ B.
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We therefore obtain for every set B ⊆ M quotient mappings θϕ : Sχϕ,ψ(B) → Sϕ(B)
and θψ : Sχϕ,ψ(B) → Sψ(B), and if B ⊆ C then the following diagram commutes:

Sχϕ,ψ(C) //

��

Sϕ(C) × Sψ(C)

��

Sχϕ,ψ(B) // Sϕ(B) × Sψ(B)

Let us now return to the situation we started with, namely A ⊆M algebraically closed
and a pair of compatible pϕ ∈ Sϕ(A) and pψ ∈ Sψ(A). Since they are compatible, there
exists pχϕ,ψ ∈ Sχϕ,ψ(A) such that pϕ = θϕ(pχϕ,ψ), pψ = θψ(pχϕ,ψ) (pϕ and pψ actually
determine pχϕ,ψ , but we do not need this fact).

Let qχϕ,ψ ∈ Sχϕ,ψ(M) be the unique extension of pχϕ,ψ which is A-definable, and let q′ϕ =
θϕ(qχϕ,ψ) ∈ Sϕ(M), q′ψ = θψ(qχϕ,ψ). Then q′ϕ is definable over M (by stability of ϕ) and is
invariant under Aut(M/A) (since qχϕ,ψ is). Since M is strongly (|A|+ω)+-homogeneous,
it follows that the definition dq′ϕϕ(y) is A-invariant, and therefore A-definable. By the
commutativity of the diagram above (with B = A, C = M) q′ϕ extends pϕ. Therefore,
by uniqueness, qϕ = q′ϕ. Similarly, qψ = q′ψ, so qϕ ∪ qψ ⊆ qχϕ,ψ is satisfiable.

8.2. Global stability.

Definition 8.2. A theory T is stable if all formulae are stable in T .

Definition 8.3. A theory T is λ-stable if for all n < ω and all sets A such that |A| ≤ λ:
‖ Sn(A)‖ ≤ λ.

Definition 8.4. Let M be a model and p ∈ Sn(M). We say that p is definable if p↾ϕ is
definable for every formula of the form ϕ(x<n, ȳ), i.e., if for every such formula there is
an M -definable predicate dpϕ(ȳ), called the ϕ-definition of p, such that for all b̄ ∈M :

ϕ(x̄, b̄)p = dpϕ(b̄).

Theorem 8.5. The following are equivalent for a theory T :

(i) T is stable.
(ii) All types over models are definable.

(iii) T is λ-stable for all λ such that λ = λ|T |.
(iv) T is λ-stable for some λ ≥ |T |.

Proof. (i) ⇐⇒ (ii). By Proposition 7.7.
(i) =⇒ (iii). Assume T is stable λ = λ|T |, n < ω, and |A| ≤ λ. Then by Downward

Löwenheim-Skolem we can find M ⊇ A such that ‖M‖ ≤ λ. Let ϕ(x<n, ȳ) be any
formula. Then by Proposition 7.7 we have ‖ Sϕ(M)‖ ≤ λ, whereby | Sϕ(M)| ≤ λω =
λ. Let {ϕi(x<n, ȳ) : i < |T |} enumerate all formulae of this form. Then | Sn(M)| ≤
∏

| Sϕi(M)| ≤ λ|T | = λ, and a fortiori ‖ Sn(M)‖ ≤ λ.
(iii) =⇒ (iv). Let λ = 2|T |.
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(iv) =⇒ (i). Let T be λ-stable (λ ≥ |T |) and ϕ(x<n, ȳ) be any formula, and we will
show that ϕ is stable in T . Let M be any model such that ‖M‖ ≤ λ, so let M0 ⊆
M be a dense subset such that |M0| = λ. Then Sn(M) = Sn(M0) (i.e., the quotient
mapping Sn(M) → Sn(M0) is a homeomorphism and an isometry). Since ϕ is uniformly
continuous, the quotient mapping Sn(M) → Sϕ(M) is uniformly continuous as a mapping
between metric spaces. Therefore ‖ Sϕ(M)‖ ≤ ‖ Sn(M)‖ = ‖ Sn(M0)‖ ≤ λ.

Since this holds for all M such that ‖M‖ ≤ λ, we conclude by Proposition 7.7 that ϕ
is stable. �8.5

Convention 8.6. From now on we assume T is stable.

Proposition 8.7. Let A ⊆ M , where A is algebraically closed, and let p(x) ∈ Sx(A).
Then p has a unique extension to M , denoted p↾M , which is A-definable. Moreover, the
A-definable definitions of such extensions do not depend on M , and will be denoted as
usual by dpϕ.

Proof. For every formula ϕ(x, y) let dpϕ = dp↾ϕϕ. Then uniqueness and moreover part
are already a consequence of Proposition 7.17. Thus all that is left to show is that the
following set of conditions is satisfiable (and therefore a complete type):

p↾M = {ϕ(x, b) = dpϕ(x, b)M : ϕ(x, y) ∈ L, b ∈M in the sort of y}

=
⋃

ϕ(x,y)∈L

(p↾ϕ)↾M .

(Here x is fixed but y varies with ϕ.)
By compactness it suffices to show this for unions over finitely many formulae ϕ. For

two formulae this was proved is the previous subsection, by coding both formulae in a
single one. But we can repeat this process encoding any finite set of formulae in a single
one, whence the required result. �8.7

Definition 8.8. Let A ⊆ B, p ∈ S(B). We say that p does not fork over A if there exists
an extension p ⊆ q ∈ Sn(acl(B)) such that all the definitions dqϕ are over acl(A).

If ā is a tuple, A and B sets, and tp(ā/AB) does not fork over A, we say ā is independent
from B over A, in symbols ā |⌣A

B.

Corollary 8.9. Let A ⊆ B, where A is algebraically closed, and let p ∈ Sn(A). Then
there exists a unique q ∈ Sn(B) extending p and non-forking over A. This unique non-
forking extension is denoted p↾B, and is given explicitly as

p↾B = {ϕ(x̄, b̄) = dpϕ(b̄) : ϕ(x̄, ȳ) ∈ L, b̄ ∈ B}.

Proof. Let M be any model such that B ⊆ M . Then acl(B) ⊆ M , and (p↾M)↾acl(B) =

p↾acl(B) is A-definable, so p↾B is a non-forking extension of p.
Conversely, let q ∈ Sn(B) be a non-forking extension of p. Then there exists q′ ∈

Sn(acl(B)) which is A-definable. Then q′↾M is an A-definable extension of p, so q′↾M =
p↾M , whereby q = p↾B. �8.9
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Corollary 8.10. Let A and B be sets, ā a tuple, and let p = tp(ā/ acl(A)) and q =
tp(ā/ acl(AB)). Then ā |⌣A

B if and only if dpϕ = dqϕ for every formula ϕ(x̄, ȳ).

Proof. Right to left is immediate from the definition. So assume ā |⌣A
B. This means

there is a type q′ ∈ Sn(acl(AB)) extending tp(ā/AB) such that dq′ϕ is acl(A)-definable
for all ϕ. Then q and q′ are conjugates by an automorphism fixing AB. Such an auto-
morphism would fix acl(A) setwise, so dqϕ is acl(A)-definable for all ϕ. Now let M ⊇ AB
be a model, and r = q↾M . Then dqϕ = drϕ by definition, and r is acl(A)-definable and
extends p, whereby dpϕ = drϕ. �8.10

We conclude:

Theorem 8.11. Assume T is stable. Then:

(i) Invariance: The relation |⌣ is automorphism-invariant.

(ii) Symmetry: ā |⌣A
b̄⇐⇒ b̄ |⌣A

ā

(iii) Transitivity: ā |⌣A
BC if and only if ā |⌣A

B and ā |⌣AB
C.

(iv) Existence: For all ā, A and B there is b̄ ≡A ā such that b̄ |⌣A
B.

(v) Finite character: ā |⌣A
B if and only if ā |⌣A

b̄ for all finite tuples b̄ ∈ B.

(vi) Local character: For all ā and A there is A0 ⊆ A such that |A0| ≤ |T | and
ā |⌣A0

A.

(vii) Stationarity: Assume A is algebraically closed, and B ⊇ A. If ā ≡A b̄ and
ā |⌣A

B, b̄ |⌣A
B then ā ≡AB b̄.

Proof. Invariance is clear.
Symmetry follows from Proposition 7.16.
Transitivity is immediate from Corollary 8.10.
For existence, we may replace B with any model containing B. Then let p′ be any

extension of p = tp(ā/A) to acl(A), and then let b̄ realise the unique non-forking extension
of p′ to M .

For finite character, we may replace A with acl(A) without changing the statement.
But then ā |⌣A

B if and only if tp(ā/AB) = tp(ā/A)↾AB, and if this fails it is due to
some finite tuple in B.

Let p = tp(ā/ acl(A)). Recall we defined Cbϕ(p) as the canonical parameter of dpϕ.
Let Cb(p) = {Cbϕ(p) : ϕ(x̄, . . .) ∈ L} be the canonical base of p. Then |Cb(p)| = |T |,
and p is definable over its canonical base so ā |⌣Cb(p)

acl(A). For each c ∈ Cb(p) we know

that tp(c/A) is algebraic, and going back to the definition of algebraicity in Lemma 4.9
we see that countably many parameters in A suffice to witness this. Let A0 be the union
of all these witness sets for all c ∈ Cb(p). Then A0 ⊆ A, |A0| ≤ |T |, and Cb(p) ⊆ acl(A0),
so ā |⌣acl(A0)

acl(A), or equivalently, ā |⌣A0

A.

Stationarity is just Corollary 8.9. �8.11
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Appendix A. A remark on continuity moduli on bounded spaces

The usual definition of (uniform) continuity in the metric setting goes “for all ε > 0
there is δ > 0 such that. . . ”, whence our definition of a continuity modulus as a function
δ : (0,∞) → (0,∞), mapping each ε to a corresponding δ. We would like to present here
an alternative definition, which rather goes the other way around.

In the cases which interest us all metric spaces (structures and type spaces) are
bounded, usually of diameter ≤ 1. We may therefore allow ourselves the following sim-
plification:

Convention A.1. Hereafter, all metric spaces are bounded of diameter ≤ 1.

Definition A.2. An inverse continuity modulus is a continuous monotone function
u : [0, 1] → [0, 1] such that u(0) = 0.

We say that a mapping f : (X, d) → (X ′, d′) respects u, or that it is uniformly contin-
uous with respect to u, if for every x, y ∈ X:

d′(f(x), f(y)) ≤ u(d(x, y)).

In other words, an inverse uniform continuous modulus maps a δ to an ε. (In case that
the destination space is not bounded we may still consider inverse continuity moduli, but
then we need to allow the range of u to be [0,∞].)

Lemma A.3. Let u be an inverse continuity modulus. For ε > 0 define δ(ε) = sup{t ∈
[0, 1] : u(t) ≤ ε}. Then δ is a continuity modulus, and every function which respects u (as
an inverse uniform continuity modulus) respects δ (as a uniform continuity modulus).

Proof. That ε > 0 =⇒ δ(ε) > 0 follows from the fact that u(t) → 0 as t → 0. Assume
now that f : (X, d) → (X ′, d′) respects u, ε > 0, and d(x, y) < δ(ε). By monotonicity of
u and definition of δ:

d′(f(x), f(y)) ≤ u(d(x, y)) ≤ ε. �A.3

The converse is not much more difficult:

Lemma A.4. Let δ be a continuity modulus. Then there exists an inverse continuity
modulus u such that every function respecting u respects δ.

Proof. For r, r′ ∈ [0, 1] define:

u0(r) = inf{ε > 0: δ(ε) > r} (inf ∅ = 1)

u1(r, r
′) =











u0(r
′) r ≥ r′

u0(r
′) ·
(

2r
r′
− 1
)

r′

2
≤ r < r′

0 r < r′

2

u(r) = sup
r′∈[0,1]

u1(r, r
′).
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Then u0 : R+ → R+ is an increasing function, not necessarily continuous. It is however
continuous at 0: limr→0+ u0(r) = 0 = u0(0) (since for every ε > 0, u0(δ(ε)) ≤ ε). For
every r0 > 0, the family of function r 7→ u1(r, r

′), indexed by r′, is equally continuous
on [r0, 1], so u is continuous on (0, 1]. We also have r ≤ 1/2 =⇒ u(r) ≤ u0(2r) (since
for r′ ≥ 2r, u1(r, r

′) contributes nothing to u(r)), whereby limr→0+ u(r) = 0 = u(0).
Therefore u is continuous on [0, 1], and therefore an inverse continuity modulus. Observe
also that:

u(r) ≥ u1(r, r) = u0(r) ≥ sup{ε ≤ 1: (∀0 < ε′ < ε)(δ(ε′) ≤ r)}.

Assume now that f : (X, d) → (X ′, d′) respects δ. If x, y ∈ X and ε > 0 satisfy
d′(f(x), f(y)) > ε, Then d(x, y) ≥ δ(ε′) for all 0 < ε′ < ε, whereby u(d(x, y)) ≥ ε.
Therefore d′(f(x), f(y)) ≤ u(d(x, y)), and f respects u, as required. �A.4

Together we obtain:

Theorem A.5. A mapping between bounded metric spaces f : (X, d) → (X ′, d′) is uni-
formly continuous with respect to a (standard) continuity modulus if and only if it is
uniformly continuous with respect to an inverse one. In other words, the two distinct
definitions of continuity moduli give rise to the same notion of uniform continuity.

Inverse continuity moduli give us (continuously) a direct answer to the question “how
much can the value of f change from x to y?” For example, if we attached to symbols
in a signature inverse continuity moduli, rather than usual ones, the axiom scheme UCL

would take the more elegant form:

sup
x<i,y<n−i−1,z,w

d(f(x̄, z, ȳ), f(x̄, w, ȳ)) −. uf,i(d(z, w)) = 0

sup
x<i,y<n−i−1,z,w

|P (x̄, z, ȳ) − P (x̄, w, ȳ)| −. uP,i(d(z, w)) = 0.
(UCu

L)

Since the continuity moduli us,i are continuous functions, they can be admitted as
connectives in the language, so the above can indeed be viewed as sentences. In fact, in
almost all actual cases, the inverse continuity moduli can be directly constructed from
the standard connectives {¬,−. , x

2
}, so there is no need to introduce new connectives (for

example, in the case of probability algebras, all the inverse continuity moduli can be
taken to be the identity).

Appendix B. On stability inside a model

This appendix answers a question posed by C. Ward Henson to the first author con-
cerning stability of a formula inside a specific structure (in contrast with stability of a
formula in all models of a theory, discussed in Section 7 above). The notion of stability
inside a model appears for example in the work of Krivine and Maurey on stable Banach
spaces [KM81]: a Banach space E is stable in the sense of Krivine and Maurey precisely
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if the formula ‖x+ y‖ is stable in the unit ball of E (viewed as a continuous structure in
an appropriate language) in the sense defined below.

Definition B.1. Let M be a structure, ϕ(x, y) be a formula and ε > 0. We say that ϕ is
ε-stable in M if there is no sequence (aibi : i < ω) in M such that |ϕ(ai, bj)−ϕ(aj, bi)| ≥ ε
for all i < j < ω. We say that ϕ is stable in M if it is ε-stable in M for all ε > 0.

Note that ϕ(x, y) is (ε-)stable in M if and only if ϕ̃(y, x) is. Also, ϕ is (ε-)stable in a
theory T if and only if it is in every model of T .

Lemma B.2. Assume that ϕ(x, y) is ε-stable in M . Then for every p ∈ Sϕ(M) there
exists a finite sequence (ci : i < n) in M such that for all a, b ∈M :

(∀i < n)(ϕ(ci, a) ≤ ϕ(ci, b) + ε) =⇒ ϕ(x, a)p ≤ ϕ(x, b)p + 3ε.

Proof. Assume not. We will choose by induction on n elements an, bn, cn ∈ M and
rn, sn ∈ [0, 1] as follows. At each step, there are by assumption an, bn ∈ M such that
ϕ(ci, an) ≤ ϕ(ci, bn) + ε for all i < n, and yet ϕ(x, an)p > ϕ(x, bn)p + 3ε. Choose rn, sn
such that ϕ(x, bn)p < rn < rn + 3ε < sn < ϕ(x, an)p. Once these choices are made we
have ϕ(x, ai)

p > si and ϕ(x, bi)
p < ri for all i ≤ n, and we may therefore find cn ∈ M

such that ϕ(cn, ai) > si and ϕ(cn, bi) < ri for all i ≤ n.
Once the construction is complete, for every i < j < ω colour the pair {i, j} as follows:

if si > ϕ(ci, aj)+ε, colour the pair {i, j} yellowish maroon; otherwise, colour it fluorescent
pink. Notice that if {i, j} is fluorescent pink then ϕ(ci, bj)−ε > ri. By Ramsey’s Theorem
there is an infinite monochromatic subset I ⊆ ω, and without loss of generality I = ω.
If all pairs are fluorescent pink then we have for all i < j < ω: ϕ(cj, ai) − ϕ(ci, aj) >
si− (si− ε) = ε. If all are yellowish maroon we get ϕ(ci, bj)−ϕ(cj, bi) > (ri+ ε)− ri = ε.
Either way, we get a contradiction to ε-stability in M . �B.2

Lemma B.3. Assume that ϕ(x, y) is ε-stable in M . Then for every p ∈ Sϕ(M) there
exists a finite sequence (ci : i < n) in M and a continuous increasing function f : [0, 1]n →
[0, 1], such that for all a ∈M :

|ϕ(x, a)p − f(ϕ(ci, a) : i < n)| ≤ 3ε.

Proof. Let (ci : i < n) be chosen as in the previous Lemma. As a first approximation, let:

f(ū) = sup{ϕ(x, a)p : a ∈M and ϕ(ci, a) ≤ ui for all i < n}.

This function is increasing, but not necessarily continuous. We define a family of auxiliary
functions hū : [0, 1]n → [0, 1] for ū ∈ [0, 1]n:

hū(v̄) =
1

ε

∧

i<n

(((vi + ε) −. ui) ∧ ε).

In other words, hū(v̄) is a piece-wise linear function which is equal to 1 if vi ≥ ui for all
i, to 0 if vi ≤ ui − ε for some i, and is linear in between. We now define:

g(v̄) = sup
ū∈[0,1]n

hū(v̄)f(ū).
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Since all the functions hū are are equally continuous, g is continuous. It is clearly in-
creasing, and also satisfies for all v̄ ∈ [0, 1]:

f(v̄) ≤ g(v̄) ≤ f(v̄ ∔ ε).

Indeed, the first inequality is clear from the definition, and the second follows from the
fact that f is increasing, and every tuple ū such that f(ū) contributes to g(v̄) must be
smaller in every coordinate than v̄ ∔ ε.

Now let a ∈M and vi = ϕ(ci, a) for i < n. Then by choice of c̄:

g(v̄) ≤ f(v̄ + ε)

= sup{ϕ(x, b)p : b ∈M and ϕ(ci, b) ≤ ϕ(ci, a) + ε for all i < n}

≤ ϕ(x, a)p + 3ε,

and

g(v̄) ≥ f(v̄)

= sup{ϕ(x, b)p : b ∈M and ϕ(ci, b) ≤ ϕ(ci, a) for all i < n}

≥ ϕ(x, a)p.

Therefore |g(ϕ(ci, a) : i < n) − ϕ(x, a)p| ≤ 3ε. �B.3

Theorem B.4. Assume ϕ is stable in M . Then every p ∈ Sϕ(M) is definable. Moreover,
for every such p there is a sequence (ci : i < ω) and a continuous increasing function
f : [0, 1]ω > [0, 1] such that dpϕ(y) = f ◦ (ϕ(ci, y) : i < ω).

Proof. For all m < ω choose a sequence (cm,i : i < nm) and function fm : [0, 1]nm → [0, 1]
as in the previous Lemma corresponding to ε = 2−m−17. Let:

Nm =
∑

k<m

nk,

dNm+i = cm,i i < nm,

f(u<ω) = F lim
m

fm(uNm , . . . , uNm+1−1).

Since each fm is increasing and continuous, as is F lim: [0, 1]ω → [0, 1], we have that f is
increasing and continuous. Also, by the choice of the parameters we have for all a ∈M :

f(ϕ(di, a) : i < ω) = F lim
m

fm(ϕ(ci, a) : i < nm) = ϕ(x, a)p. �B.4

Notice that we get almost the same result as for a formula which is stable in a theory:
the definition is still a limit of positive (i.e., increasing) continuous combinations of
instances of ϕ with parameters in M . However, these combinations are not necessarily
the particularly elegant median value as in Section 7.
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