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Abstract. We prove that, whenever G is a Polish group with metrizable universal minimal flow M(G), there exists
a comeagre orbit in M(G). It then follows that there exists an extremely amenable, closed, co-precompact subgroup
G∗ of G such that M(G) = Ĝ/G∗.

1. Introduction

The universal minimal flow (UMF) M(G) of a topological group G is a compact dynamical system of G
canonically associated with the group which is of great interest in topological dynamics (see the end of
the introduction for the precise definitions). For locally compact, non-compact groups, the UMF is never
metrizable and cannot be described in a meaningful way. However, for many important non-locally compact
groups, it turns out that this flow is metrizable, can be computed, and carries interesting information. For
example, the UMF of the unitary group of a separable, infinite-dimensional Hilbert space is a point (Gromov–
Milman [GM83]) (in that case, we say that the group is extremely amenable), the UMF of Homeo(S1) is S1

(Pestov [Pes98]), and the UMF of the infinite symmetric group is the space of all linear orderings on a
countable set (Glasner–Weiss [GW02]).

The systematic study of metrizable UMFs was initiated in the influential paper [KPT05] by Kechris, Pestov,
and Todorcevic, where they established a connection with Ramsey theory and computed many interesting
examples. It turns out that all known concrete computations of UMFs can be carried out using a single
technique, first employed by Pestov [Pes02]: isolating a co-precompact, extremely amenable subgroup G∗

of the group of interest G, and then observing that any minimal subflow of the completion Ĝ/G∗ must be
isomorphic to M(G). (In practice, with a judicious choice of G∗, Ĝ/G∗ is often already minimal and such
a choice can always be made; see Corollary 3.3.) Thus computing a metrizable UMF reduces to finding an
extremely amenable, co-precompact subgroup for which a variety of techniques have been developed (see
Pestov [Pes06]). In this paper, we show that this approach always works.

Theorem 1.1. Let G be a Polish group such that M(G) is metrizable. Then there exists a closed, co-precompact,
extremely amenable subgroup G∗ ≤ G such that M(G) = Ĝ/G∗.

Of course, conversely, if G is Polish and G∗ ≤ G is co-precompact, then Ĝ/G∗ is metrizable.
Our proof is based on the recent work of Melleray, Nguyen Van Thé, and Tsankov [MNT15], where the

conclusion of Theorem 1.1 is proved under the additional hypothesis that M(G) has a comeagre orbit (then
G∗ can be taken to be the stabilizer of a point in this orbit). Thus the main theorem proved in this paper is
the following.

Theorem 1.2. Let G be a Polish group whose universal minimal flow M(G) is metrizable. Then M(G) has a comeagre
orbit.

This theorem answers a question of Angel, Kechris, and Lyons [AKL14] (Question 15.2, “the generic point
problem”).

In a work simultaneous with (and independent from) [MNT15], Zucker [Zuc14] proved Theorem 1.1 for
the important special case of non-archimedean Polish groups (i.e., groups that admit a basis at the identity
consisting of open subgroups). His approach is based on topological properties of the Stone–Čech compact-
ification of a discrete set (the space of cosets G/V for open subgroups V) and combinatorial techniques. As
Polish groups do not usually admit open subgroups, his method does not directly generalize. In the present
paper, we abstract some of his ideas and combine them with a new, topometric approach to prove our main
result. We note that, while our proof is based in part on Zucker’s ideas, our argument is new even for the
non-archimedean case.
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In [MNT15], many structural results are proved for metrizable UMFs with a comeagre orbit; with Theo-
rem 1.2, now they automatically hold with the only assumption of metrizability.

We note that considering Polish groups in the place of arbitrary topological groups is not a real restriction
in our setting: if M(G) is metrizable, then the closure of the image of G in Homeo(M(G)) is a Polish group
whose minimal flows are exactly the same as those of G, so as long as we are interested only in minimal
flows, we can replace one with the other.

It is an interesting question whether there is a converse to Theorem 1.2.

Question 1.3. Suppose that G is a Polish group such that M(G) has a comeagre orbit. Is it true that M(G) is
metrizable?

For the reader who prefers to only deal with metrizable spaces, the question can be rephrased equivalently
as follows: if all metrizable G-flows have a comeagre orbit, does this imply that M(G) is metrizable?

We conclude the introduction with the definitions of the notions that we have used above. A G-flow is a
continuous action of a topological group G on a compact, Hausdorff space, and a flow is minimal if all of its
orbits are dense. A fundamental theorem of topological dynamics, due to Ellis, establishes the existence of a
unique universal minimal flow for any topological group G, that is, a minimal G-flow which maps continuously
and equivariantly onto every minimal G-flow. A subgroup H ≤ G is called co-precompact if the completion
of the uniform space G/H (equipped with the quotient of the right uniform structure of G) is compact,
equivalently, if for any open V 3 1G, there exists a finite F ⊆ G such that VFH = G.

The paper is organized as follows. We first describe some general properties of the topometric structure on
the Samuel compactification of a metric space, then apply those in the dynamical setting to prove the main
result, and finish by noting several corollaries. We have tried to keep the paper self-contained: in particular,
everything that we need about topometric spaces is proved in the next section.

Acknowledgements. Research on this paper was partially supported by the ANR projects GruPoLoCo (ANR-
11-JS01-008) and GAMME (ANR-14-CE25-0004). We are grateful to the anonymous referee for some helpful
remarks and for providing a reference.

2. A topometric structure on the Samuel compactification of a metric space

Let (X, d) be a bounded metric space. Recall that the Samuel compactification S(X) of X is the Gelfand
space of the algebra UCb(X) of all complex-valued, uniformly continuous, bounded functions on X. This
compactification is characterized by the following universal property: whenever K is a compact Hausdorff
space, and f : X → K is uniformly continuous, f extends to a continuous map from S(X) to K. The algebra
of all continuous bounded functions on S(X) is naturally identified with UCb(X).

Our aim is to gain a better understanding of compact metrizable subsets of S(X). Note that, if d is
the discrete 0–1 metric, then the Samuel compactification is the Stone–Čech compactification βX, which is
extremally disconnected, so that its only compact metrizable subsets are finite. This informs our approach
here: we wish to give a precise meaning to the intuition that compact metrizable subsets of S(X) are small,
and in the discrete case “small” means “finite”. It is then natural, given the approach taken in [Ben08], [Ben13]
or [BM15], to try to define a topometric structure on S(X) for which “small” means “metrically compact”.
This topometric structure was already considered in [Ben13], where it is called the topometric Stone–Čech
compactification; below we recall all relevant definitions.

Definition 2.1. A compact topometric space is a triple (Z, τ, ∂), where Z is a set, τ is a compact Hausdorff
topology on Z, and ∂ is a distance on Z such that the following conditions are satisfied:

• the ∂-topology refines τ;
• ∂ is τ-lower semicontinuous, i.e., the set {(a, b) ∈ Z2 : ∂(a, b) ≤ r} is τ-closed for every r ≥ 0.

We define a topometric structure on S(X) as follows: we let τ be the Gelfand topology (i.e., the weak∗

topology inherited from the dual of UCb(X)) and define ∂ by:

∂(a, b) = sup{| f (a)− f (b)| : f ∈ CL(X)},
where CL(X) denotes the set of all bounded 1-Lipschitz functions on (X, d). To make sense of this, one must
recall that functions in CL(X), being bounded and uniformly continuous, uniquely extend to continuous
functions on S(X). To see why the ∂-topology refines τ, recall that any function in UCb(X) is a uniform limit
of Lipschitz maps, so τ has a basis of open sets of the form

{a ∈ S(X) : f1(a) ∈ I1, . . . , fn(a) ∈ In},
where each f j belongs to CL(X) and each Ij is an open interval.



METRIZABLE UNIVERSAL MINIMAL FLOWS OF POLISH GROUPS HAVE A COMEAGRE ORBIT 3

As is usual when working with topometric spaces, we follow the convention that topological terms refer
to τ, and metric vocabulary refers to ∂; however, we will be careful to specify which one of the two we mean
whenever there is danger of confusion.

Note that ∂ and d coincide on X, and that elements of CL(X) extend to maps on S(X) which are both
τ-continuous and ∂-1-Lipschitz. Note also that if d is the discrete 0–1 distance on X, then ∂ is the discrete 0–1
distance on S(X).

We will need the fact that the distance ∂ is complete on S(X); in fact, this is true for any compact topometric
space, as proved in [Ben08].

Lemma 2.2. Let (Z, τ, ∂) be a compact topometric space. Then ∂ is complete.

Proof. Let (zn) be a Cauchy sequence; for all n, define rn = sup{∂(zn, zm) : m ≥ n}. Then rn converges to 0; let
Fn denote the closed ball of radius rn centred at zn. Each Fn is τ-closed, hence compact, and since Fn contains
zm for all m ≥ n, this family has the finite intersection property. By compactness,

⋂
n∈N Fn is non-empty; it

must be a singleton, which is the ∂-limit of the sequence (zn). �

The following theorem generalizes a well-known fact from the discrete case.

Theorem 2.3. Let (X, d) be a metric space and let (S(X), τ, ∂) be the topometric Stone–Čech compactification of X.
Then every τ-convergent sequence in S(X) is ∂-convergent.

In order to prove the theorem, we first establish two lemmas. The first is the topometric analogue of the
fact that in the discrete case, S(X) is extremally disconnected. If A, B are two subsets of a metric space (Z, d),
we denote

d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Lemma 2.4. Let U, V be τ-open subsets of S(X). Then we have

∂(Uτ , Vτ
) = ∂(U, V) = d(U ∩ X, V ∩ X).

Proof. First note that, since X is dense in S(X), we have Uτ
= U ∩ Xτ and Vτ

= V ∩ Xτ . Consider the
function f ∈ CL(X) defined by f (x) = d(x, U ∩ X). It extends to a τ-continuous, ∂-1-Lipschitz map on
S(X), which we still denote by f . Since f = 0 on U ∩ X, we must also have f = 0 on Uτ by continuity;
similarly, f ≥ d(V ∩ X, U ∩ X) on V ∩ X, so f ≥ d(V ∩ X, U ∩ X) on Vτ . Hence f witnesses the fact that
∂(Uτ , Vτ

) ≥ d(V ∩ X, U ∩ X); since d(U ∩ X, V ∩ X) is equal to ∂(U ∩ X, V ∩ X) by the definition of ∂, this
inequality must in fact be an equality, and we are done. �

Lemma 2.5. Assume that (an) is a sequence in S(X) and δ > 0 is such that ∂(an, am) > δ for all n 6= m. Then, for
every ε < δ/2, there exist a subsequence (bn) of (an) and τ-open sets (Un) such that bn ∈ Un and ∂(Un, Um) ≥ ε for
all n 6= m.

Proof. Let f ∈ CL(X) be such that | f (a0)− f (a1)| > δ. The triangle inequality implies that, for all n > 1, we
have | f (a0)− f (an)| > δ

2 or | f (a1)− f (an)| > δ
2 . One of those cases happens infinitely many times. Thus

we see that for any such sequence (an), there exists i0 ∈ {0, 1}, an infinite subset {in}n≥1 ⊆ N r {0, 1} and
f0 ∈ CL(X) such that f0(ai0) = 0 and f0(ain) >

δ
2 for all n ≥ 1. Repeating this infinitely many times, we build

a subsequence (bn) of (an) and a sequence of maps fn ∈ CL(X) such that fn(bn) = 0 for all n and fn(bm) >
δ
2

for all n < m.
Set Un = {a ∈ S(X) : fn(a) < δ

2 − ε and fk(a) > δ
2 for all k < n}. We have bn ∈ Un for all n, and the

function fn witnesses the fact that ∂(Un, Um) ≥ ε for all n < m. �

Proof of Theorem 2.3. Let (an) be a τ-convergent sequence in S(X) with limit a and suppose that it does not
admit a ∂-Cauchy subsequence. Then there exists δ > 0 such that ∂(an, am) > δ for all n 6= m and we can
apply Lemma 2.5 to obtain a subsequence (bn) of (an) and τ-open subsets Un of S(X) such that bn ∈ Un and
∂(Un, Um) ≥ δ/4 for all n 6= m. Let

U =
⋃
n

U2n and V =
⋃
n

U2n+1.

Then we have both that ∂(U, V) ≥ δ/4 and a ∈ Uτ ∩Vτ , which contradicts Lemma 2.4.
Thus every τ-convergent sequence admits a ∂-Cauchy subsequence, which combined with the facts that ∂

is complete and that the ∂-topology refines τ implies the statement of the theorem. �

Corollary 2.6. Let K ⊆ S(X) be a subset such that K equipped with the relative τ-topology is a metrizable topological
space. Then the ∂-topology and τ coincide on K and in particular, if K is τ-closed, (K, ∂) is compact.
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Proof. We already know that the ∂-topology is finer than τ. To see the converse, note that if K is metrizable,
its topology is determined by convergence of sequences and then apply Theorem 2.3. �

3. Proof of the main result

Let G be a Polish group, that is, a completely metrizable, separable topological group. Recall that the right
uniformity on G is given by the basis of entourages {(g, h) : gh−1 ∈ U}, where U ranges over all neighbour-
hoods of 1G; by the Birkhoff–Kakutani theorem, there exists a compatible right-invariant distance on G and
any such distance must induce the right uniformity. We fix a bounded, right-invariant distance dR on G.
Then (G, dR) is a metric space and we construct its topometric Stone–Čech compactification (S(G), τ, ∂) as in
the previous section.

In this setting, the universal property of S(G) translates to the following: if G y X is a G-flow and
x0 ∈ X, then there exists a unique G-map π : S(G) → X such that π(1G) = x0. It is then clear that whenever
M ⊆ S(G) is a minimal subflow, M is universal, that is, M equivariantly maps onto every other minimal G-
flow. One important property of (any such) M that we will need is that it is coalescent, i.e., any endomorphism
of it is an automorphism. This fact is due to Ellis (see Proposition 3.3 in [Usp00] for a simple proof). This
implies that any two universal minimal flows must be isomorphic, which allows us to speak of the universal
minimal flow M(G) of G.

We will need the following folklore lemma, which follows from standard facts on the enveloping semi-
group. Recall that if Z is a topological space, a continuous map r : Z → Z is called a retraction if r(r(z)) = r(z)
for all z ∈ Z.

Lemma 3.1. Let G be a topological group, let S(G) be its Samuel compactification, and let M be a minimal subflow of
S(G). Then there exists a G-equivariant retraction r : S(G)→ M.

Proof. The universal property of S(G) gives us a G-equivariant map f : S(G) → M. The restriction of f to M
is an endomorphism of M and is thus, by coalescence, an automorphism of M; denote this automorphism by
ϕ. Then ϕ−1 ◦ f is a retraction from S(G) onto M. �

To prove the existence of a comeagre orbit in Theorem 1.2, we use the following criterion, due to
C. Rosendal.

Proposition 3.2. Let X be a Polish space and G be a Polish group acting on X continuously and topologically transi-
tively. Then the following are equivalent:

(i) There exists a comeagre G-orbit;
(ii) For any open V 3 1G and any non-empty open subset U of X, there exists a non-empty open U′ ⊆ U such

that for any non-empty open W1, W2 ⊆ U′, we have V ·W1 ∩W2 6= ∅.

Proof. (i) ⇒ (ii). Suppose that G · x0 ⊆ X is a comeagre orbit and let V 3 1G and U ⊆ X be given. Let
1G 3 V′ ⊆ G be open such that V′V′−1 ⊆ V. Let x ∈ U ∩ G · x0. By Effros’s theorem, there exists an
open U0 ⊆ X such that V′ · x = U0 ∩ G · x, and in particular, U0 ⊆ V′ · x. Finally, let U′ = U0 ∩U and let
W1, W2 ⊆ U′. Then there exist v1, v2 ∈ V′ such that v1 · x ∈W1 and v2 · x = v2v−1

1 v1 · x ∈ V ·W1 ∩W2.
(ii) ⇒ (i). Suppose that there is no comeagre orbit. Since we are assuming that the action is topologically

transitive, the topological zero–one law implies that all orbits are meagre. Let x ∈ X be arbitrary. As G · x is
meagre, there exist closed, nowhere dense sets {Fn : n ∈ N} such that G · x ⊆ ⋃

n Fn. Let Bn = {g ∈ G : g · x ∈
Fn}. Then each Bn is closed and by the Baire category theorem, there exists n such that Bn has non-empty
interior. Let V 3 1G be open and g ∈ G be such that gV ⊆ Bn. Then V · x ⊆ g−1 · Fn, so V · x is nowhere
dense. We conclude that for every point x ∈ X, there exists V 3 1G such that V · x is nowhere dense. As
there are only countably many possible V (we can always restrict to a basis at 1G), there exists V 3 1G and a
non-empty, open set U ⊆ X such that the set

{x ∈ U : V · x is somewhere dense}
is meagre. (Here we are using the fact that {x ∈ X : V · x is nowhere dense} is a Borel set and hence has the
property of Baire, and that a non-meagre set with the Baire property must be comeagre in an open set.) Let
now U′ ⊆ U be as given by (ii). The property of U′ implies that the set

{x ∈ U′ : V · x is dense in U′} = {x ∈ U′ : ∀W1 ⊆ U V · x ∩W1 6= ∅}
is dense Gδ in U′, which is a contradiction (the quantifier ∀W1 ⊆ U can be taken to range over a countable
basis of U). �

We are now ready to prove our main result.
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Proof of Theorem 1.2. We view M(G) as a subflow of S(G) and fix a G-equivariant retraction r : S(G)→ M(G),
as given by Lemma 3.1. To show that there is a comeagre orbit, we will apply Proposition 3.2. Let V 3 1G and
U ⊆ M(G) be given. We may assume that V = {g : dR(g, 1G) < ε} for some ε > 0. Since M(G) is metrizable,
we have that τ and the ∂-topology coincide on M(G) by Corollary 2.6 and we can find a non-empty τ-open
U′ ⊆ U of ∂-diameter < ε. Let W1, W2 ⊆ U′ be non-empty, open. By the choice of U′, we have ∂(W1, W2) < ε;
since W1 ⊆ r−1(W1) and W2 ⊆ r−1(W2), we also have that ∂(r−1(W1), r−1(W2)) < ε. Then Lemma 2.4 tells
us that dR(r−1(W1) ∩ G, r−1(W2) ∩ G) < ε. So we can find f1 ∈ r−1(W1) ∩ G and f2 ∈ r−1(W2) ∩ G such that
dR( f1, f2) < ε, that is, f2 f−1

1 ∈ V. Since r( f2) = f2 f−1
1 r( f1) ∈ W2 ∩ f2 f−1

1 W1, the criterion is verified and we
are done. �

Note that even though our proof produces a “natural” metric ∂ on M(G) compatible with the topology,
this metric is not canonical: it depends on the right-invariant metric on G that we start with, and more
importantly, on the copy of M(G) in S(G) that we consider.

Theorem 1.1 follows directly from Theorem 1.2 and [MNT15, Theorem 1.2].
We close the paper by pointing out several consequences of Theorem 1.1.

Corollary 3.3. Suppose that G is a Polish group which admits a closed, extremely amenable, co-precompact subgroup
H. Then there exists a subgroup H′ ≤ G which is still extremely amenable and co-precompact, and, moreover Ĝ/H′ is
minimal.

Proof. The flow G y Ĝ/H is metrizable and it maps to any G-flow (Pestov [Pes02, Lemma 2.3]; see also
[MNT15]); any of its minimal subflows is isomorphic to M(G), which is therefore metrizable, and thus
Theorem 1.1 applies. �

Recall that a Polish group G is called a CLI group if its right uniformity is complete (equivalently, admits
a right-invariant, complete, compatible metric) and a SIN group if its left and right uniformities coincide
(equivalently, admits a bi-invariant compatible metric). Every Polish SIN group is CLI.

Corollary 3.4. Assume that G is a Polish SIN group and M(G) is metrizable. Then M(G) is a compact group, that
is, there exists a normal, extremely amenable, closed subgroup G∗ of G such that M(G) = G/G∗. In particular, G is
amenable.

Proof. Theorem 1.1 gives us an extremely amenable subgroup G∗ such that M(G) = Ĝ/G∗. Pick a compatible
bi-invariant metric d on G. Such a metric must be complete, so in that case, G/G∗ is also complete and we have
M(G) = G/G∗. The action of G on G/G∗ is isometric for the natural quotient metric on G/G∗, giving us a
homomorphism ϕ from G to the compact group Iso(G/G∗). Then ϕ(G) is a compact subgroup of Iso(G/G∗),
on which G acts minimally (via the left-translation action of ϕ(G)). The evaluation map π : ϕ(G) → G/G∗,
π( f ) = f (G∗) is continuous and G-equivariant from ϕ(G) to G/G∗. Since G/G∗ = M(G), it must be the
case that π is an isomorphism, which can only happen if ϕ(G) is closed. Hence G/G∗ ∼= ϕ(G) is a group. In
particular, M(G) carries a G-invariant measure, the Haar measure on G/G∗, and G is amenable. �

Remark 3.5. In [AKL14], Angel, Kechris, and Lyons ask whether for an amenable, Polish group G, the metriz-
ability of M(G) implies that it is uniquely ergodic (if it is, then so is every minimal G-flow). While we cannot
answer this question in general, we note that Corollary 3.4 and the uniqueness of the Haar measure imply
that this is true for SIN groups.

Remark 3.6. In [Gla98], Glasner asks whether every monothetic Polish group that admits no non-trivial homo-
morphisms to the circle has to be extremely amenable. We note that Corollary 3.4 implies a positive answer
in the case where M(G) is metrizable. This was also observed by L. Nguyen Van Thé (see the forthcoming
paper [NVT]).

Remark 3.7. Another interesting family of groups to which Corollary 3.4 applies are the full groups of count-
able, Borel, measure-preserving, ergodic equivalence relations. (See, for example, [Kec10, Chapter I, 3] for the
definition and their basic properties.) If E is hyperfinite, then the full group [E] is extremely amenable and
if it is not, then [E] is not amenable (Giordano–Pestov [GP07]), and therefore, by Corollary 3.4, its universal
minimal flow is not metrizable. This suggests that for non-hyperfinite E, the category of minimal flows of [E]
is quite rich: it would be interesting to investigate how its structure reflects the structure of the equivalence
relation E.

The argument used at the beginning of the proof of Corollary 3.4 to show that M(G) = G/G∗ only uses
the fact that dR is complete, so we also have the following.
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Corollary 3.8. Assume that G is a Polish CLI group and that M(G) is metrizable. Then G y M(G) is transitive and
so is any other minimal G-flow.

We do not know an example of a CLI group G which is not SIN and such that M(G) is metrizable.

Corollary 3.9. Let G be a Polish group such that M(G) is metrizable and the action G y M(G) is free. Then G is
compact.

Proof. Theorem 1.1 gives us a co-precompact G∗ ≤ G such that M(G) = Ĝ/G∗; as the action G y M(G) is
free, this implies that G∗ = {1G}, which, in turn, means that G is compact. �

Veech’s well-known theorem that if G is locally compact, then the action G y S(G) is free now allows us
to recover the following result of [KPT05]: if G is Polish, locally compact and M(G) is metrizable, then G is
compact.
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