MODEL THEORETIC FORCING IN ANALYSIS
ITAI BEN YAACOV AND JOSE IOVINO

ABSTRACT. We present a framework for model theoretic forcing in a non first order
context, and present some applications of this framework to Banach space theory.

INTRODUCTION

In this paper we introduce a framework of model theoretic forcing for metric structures,
i.e., structures based on metric spaces. We use the language of infinitary continuous logic,
which we define below. This is a variant of finitary continuous logic which is exposed in
[BU] or [BBHUOS|.

The model theoretic forcing framework introduced here is analogous to that developed
by Keisler [Kei73] for structures of the form considered in first order model theory.

The paper concludes with an application to separable quotients of Banach spaces. The
long standing Separable Quotient Problem is whether for every nonseparable Banach
space X there exists an operator 7: X — Y such that 7'(X) is a separable, infinite di-
mensional Banach space. We prove the following result (Theorem 5.4): If X is an infinite
dimensional Banach space and T: X — Y is a surjective operator with infinite dimen-
sional kernel, then there exist Banach spaces X , Y and a surjective operator T: X >Y
such that

(i) X has density character wy,
(ii) The range of T" is separable,
(iii) (X,Y,T) and (X,Y,T) are elementarily equivalent as metric structures.

The paper is organized as follows. In Section/1 we introduce the syntax that will be used
in the paper. In Section 2, we introduce model theoretic forcing for metric structures. In
Section 3/ we focus our attention on two particular forcing properties. These properties
are used in Section 4/ to prove the general Omitting Types Theorem. The last section,
Section [5, is devoted to the aforementioned application to separable quotients.

For the exposition of the material we focus on one-sorted languages. However, as the
reader will notice, the results presented here hold true, mutatis mutandis, for multi-sorted
contexts. In fact, the structures used in the last section are multi-sorted.
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1. PRELIMINARIES

Recall that if f: (X,d) — (X', d’) is a mapping between two metric spaces, then f is
uniformly continuous if and only if there exists a mapping ¢: (0, 00) — (0, 00| such that
for all z,y € X and € > 0,

(1) d(x,y) < 8(e) = d'(f(x), f(y)) < e.

If (1) holds, we say that § is a uniform continuity modulus and that f respects 6. The

choice of strict and weak inequalities here is so that the property of respecting 0 is

preserved under certain important constructions (e.g., completions and ultraproducts).
Let ¢": (0,00) — (0, 00] be any mapping, and define:

(2) 5(e) = sup{d'(¢) | 0 < € < €}

Then § and ¢’ are equivalent as uniform continuity moduli, in the sense that a function
f respects ¢ if and only if it respects ¢’. In addition we have

(3) d(e) = sup{d(e') | 0 < € < €},

i.e., 0 is increasing and continuous on the left. As a consequence, (1) is equivalent to the
apparently stronger version:

(4) d(z,y) < d(e) = d'(f(x), f(y)) <e

From this point on, when referring to a uniform continuity modulus §, we mean one that
satisfies (3).

In this section we introduce infinitary continuous formulas. For a general text regarding
continuous structures and finitary continuous first order formulas we refer the reader to
Sections 2 and 3 of [BU] or Sections 2-6 of [BBHUOS].

Recall that a continuous signature L consists of the following data:

e For each n, a set of n-ary function and predicate symbols.

e A distinguished binary predicate symbol d.

e For each n-ary symbol s and i < n, a uniform continuity modulus for the ¢th
argument denoted 9, ;.

A continuous L-structure is a set M equipped with interpretations of the symbols of
the language:

e Each n-ary function symbol is interpreted by an n-ary function:
MM — M.
e Each n-ary predicate symbol is interpreted by a continuous n-ary predicate:
PM: M™ —[0,1].
e The interpretation d™ of the distinguished symbol d is a complete metric.

e For each n-ary symbol s and i < n, the interpretation s, viewed as a function
of its ¢th argument, respects the uniform continuity modulus J, ;.
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It is proved in [BU] that the following system of connectives is full:
x
T — T, T g, (z,y) — x —y = max(z — y,0)

This means that for every n > 1, the family of functions from [0, 1]* — [0, 1] which can
be written using these three operations is dense in the class of all continuous functions
[0,1] — [0,1]. For the purposes of this paper (namely, to simplify the treatment of
forcing, in Section 2)), it is convenient to use the connective + instead of —. Note that
this causes no loss in expressive power, since z =y = =(—z 4 y).

In this paper we extend the class of first order continuous formulas by considering
formulas that may contain the infinitary connectives /\ and \/, where for a set of formulas
P, Ao and Vg ¢ stand for sup{p | ¢ € @}y and inf{y | ¢ € @}, respectively.
Because of the infinitary nature of this language, in order to form formulas with these
connectives, one needs to be particularly careful about the uniform continuity moduli of
the terms and formulas with respect to each variable, denoted 9, , and d,, , respectively;
thus, we have the following definition.

Definition 1.1. Let £ be a continuous signature. We define the formulas of L, ..
Simultaneously, for each variable z, each term 7 and each formula ¢ of L, ., we define
uniform continuity moduli 0, , and J, .. Both definitions are inductive.
e A variable is a term, with ¢, , = id and ¢, , = oo for y # x.
e If f is an n-ary function symbol and 7, ..., 7,1 are terms, then fry...7,_1 is a
term. If 7 is a term of this form,
drz(€) = sup  min{d, , 0dsi(€) | i <n}.
€0t...+en—1<e
Here we follow the convention that §(co) = oo.
e If P is an n-ary predicate symbol and 7y, ...7,_1 are terms, then Pry...7,_1 is
a formula (called an atomic formula). The definition of dps,. ,, ,. is formally
identical that of 077 7. |-
e If v and ¢ are formulas then so are —, %gp and ¢ + 1. We have:

O-p0(€) = Op(€)
01, ,(€) = y.2(2€)

§g0,$

5<p+w,x(‘5) = iuP< min{(sw,x(GO)vdw,x(el)}

e Let ® be a countable set of formulas in a finite tuple of free variables . For each
variable x, let 6’/\ oo = Nfpea 000 (0,00) — [0, 00]. If (5;\ p.(€) >0 foralle>0
and x € 7, then A ® is a formula, also denoted /\Lp6<1> @. Its uniform continuity
moduli are given by

Op®.2(€) = sup{dp o, ('): 0 <€ < e},
so that (3) is satisfied.
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e If ¢ is a formula and x a variable, then inf, ¢ is a formula. For y # x we have
in, oy = Oy, While ding, o o = 00.

Notation 1.2. Rather than putting \/ and sup in our language we define them as

abbreviations:
ped
sup ¢ = —inf —p.
T X
If M is an L-structure and ¢(xo,...,x,—1) € Ly, o, one constructs the interpretation

©M: M™ — [0,1] in the obvious manner. By induction on the structure of ¢ one also
shows that for each variable z, ™ is uniformly continuous in x respecting d, .

Finitary continuous first order formulas, as defined in [BU] and [BBHUOS8|, are con-
structed in the same manner, with the exclusion of the infinitary connectives / and \/
(i.e., only using the connectives —, %, +, or equivalently —, %, ~). We observe that ¢ A ¢
is equivalent to ¢ = (¢ = 1), so finitary instances of /\ and \/ are allowed there as well.
The set of all such formulas is denoted L, .

Definition 1.3. Let £ be a continuous signature and let ¢ be an L, ,-formula. The set
of subformulas of ¢ denoted sub(y), is defined inductively as follows.

e If P is a predicate symbol and 79, ...7,_1 are terms, then sub(Pry...7, 1) =
{PTU c. Tn—l}-

sub(—p) = {~p} Usub(ip) and sub(Lp) = {1p} Usub(e).

sub(ip ) = {p + 1 } Usub(p) Usub(s).

WA e #) = { Ay # ) U U, cq sub(5).

sub(inf, ¢) = {inf, ¢ } Usub(yp).

L., need not be countable if £ is countable. Nevertheless, it is often sufficient to
work with countable fragments of L, .

Definition 1.4. A fragment of L, ., is subset of L, ., which contains all atomic formulas
and is closed under subformulas and substitution of terms for free variables.

Remark 1.5. Every countable subset of L, ,, is contained in a countable fragment of

Loy -

For the next three sections (that is, the rest of the paper minus the last section), £
will denote a fixed countable continuous signature, and L4 will denote a fixed countable
fragment of L, ,. We will let C' = {¢; | i < w} be a set of new constant symbols, and
L(C)=LUC. An L(C)-structure M will be called canonical if the set {cM | i < w} is
dense in M.

By L4(C) we will denote the smallest countable fragment of L, ,,(C) that contains
L 4; notice that L4(C) is obtained allowing closing £ 4 under substitution of constant
symbols from C for free variables.
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We will also use the following notation:

e The set of all sentences in L 4(C') will be denoted L% (C).
e The set of all atomic sentences in L 4(C') will be denoted L%(C).
e The set of variable-free terms in £(C') will be denoted T(C).

2. FORCING

Definition 2.1. A forcing property for L 4 is a triplet (P, <, f) where (P, <) is a partially
ordered set. The elements of P are called conditions. For each condition p, f assigns a
mapping f,: L% (C) — [0, 1] satisfying the following conditions.

(i) p < q implies f, < f, ie., fo(¢) < fo(p) for all ¢ € LY (C).
(ii) Given p € P, ¢ > 0, 7,0 € T(C), and an atomic L(C)-formula ¢(z) there are
q < p and c € C such that:

fold(7,0)) <€,
fold(7,0)) < fpld(o, 7)) + ¢,

and if f,(d(1,0)) < d,..(€),
fole(0)) < fplo(T)) + e
For the rest of this section, (P, <, f) will denote a fixed forcing property.

Definition 2.2. Let p € P be a condition and ¢ € L5(C) a sentence. We define
F,(¢) € [0,1] by induction on ¢. For ¢ atomic,

Fy(¢) = f(p).

Otherwise,
(=) = —infy<, Fy(p)
Fp(%%?) = %FP(SO).
Fy(p+) = Fyp) + Fp(¢)
F(A\®) = infoee Fp(p)

Fp(inf, o(z)) = infeec Fy(p(c)).
If r € R and F,(¢) < r we say that p forces that ¢ < r, in symbols p I ¢ < r.

Remark 2.3. Let p € P be a condition, ¢ € L5(C) a sentence, and r € R. Then,

plEo<r <> folp) <r, if ¢ is atomic
pll—%<p<r — plkyp<2r

plE—p<r = (Gs>1-r)(Vg<p)(g¥F ¢ <s)
plE(p+9Y)<r <= (@s)plFp<sandpl-¢ <r—s)
pIEAN® <T — (Fped)(plkep<r)
plEinf,p(z) <r < (e O)(plF ¢(c) <r).
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Remark 2.4. The forcing relation I can be defined inductively, without reference to the
function F,(¢), by the list of equivalences in the preceding remark. One can then define
Fy(p) asinf{r e R|plF¢ <r}.

The following basic properties will be used many times.

Lemma 2.5. For all p, ¢,

(i) Fy(p) €10,1].
(ii) ¢ < p = Fq(@) < fp(%p)'

(iii) Fp(p) + Fp(mp) >

Proof. The first two items are by induction on the structure of ¢. The last one follows
directly from the definition. m;

Definition 2.6. We also define F" by:
FY (g )—suplan ().

q<pq <q
If r € R and F(p) < r we say that p weakly forces that ¢ < r, in symbols p IF* ¢ <r.
By Lemma 2.5, F’(¢) < Fy(p).

Remark 2.7. The weak forcing relation IF" can be defined without reference to the
function F” as follows: pI-* ¢ < r if and only if (s < 7)(Vq < p)(I¢ < ¢)(¢' IF ¢ < s).
We can then define F’(p) as inf{r [ p " ¢ <r}.

Lemma 2.8. Let p € P, ¢ € L5(C) and r € R. Then
F () = sup FY() = sup inf F ().
qxp

qpqq

Proof. That F}'(p) = sup,c, F;’(¢) follows easily from the definitions, and

SUP <, Iy () = sup,<, infy <, Fii () is immediate. Finally:

sup inf F/(p) = sup inf sup inf Fyn(p) >sup inf inf Fyn(p)

q<p <4 q<p "<aq'<qg ¢"<q" q<p ’<aq"<q
w
= sup mf Fy(p) = F (o). LDy
a<p 94

Proposition 2.9. The weak forcing function F* obeys the following inductive rules:

Fw(_‘SO) = —infyq, Ey (¢)

Fy(5¢) = 35(p)
F,ﬁ”(@ TU) = supyg,infycg F(p) + FF (V)
FY(\®) = sup,<,infy<, 1nf§0€q> Fy (go)
Fy(inf, p(r)) = sup,c,infy<,infeco F;f(cp(c)).
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Proof. For —¢ and %gp this follows from a straightforward calculation. For example:

FY(—p) = Sup 1nf Fy(—p) = Sup inf = inf F, ()

’ q¢'<q
q< q'<q <q

- R )
For the other three, the inequality > is obtained substituting the definition of F}* on

the left hand side and using the fact that £, > F;’ . For <, we first use Lemma [2.8 to
replace each occurrence of F; on the left hand side with sup,., inf,<, Fi7. Thus, it will
suffice to show that:

E(p+v) < Fle)+F@)

FY(A\®) < 1nf¢€¢F ()
Fy (inf, o(x)) < infeee EY (p(0)).

For 4 assume F’(¢) = r and F}’(¢)) = s. Then for all € > 0 and for all ¢ < p there is
qo < q such that Fy () <7 +¢, and as g, < p there is ¢’ < g such that Fi/(¢) < s + €.
Then Fy(p + 1) <7+ s+ 2¢, yielding F/ (¢ +1) <7+ s.

For A\ ® and inf, p(z) it is a straightforward quantifier exchange argument, e.g.:

F¥(/\ @) = sup inf inf F,(¢) < inf sup inf Fy(p) = inf F(¢). W,

q<p €<qpe?®

*GS'B

g

Lemma 2.10. For all p € P and 7: F’(inf, d(7,x)) = 0.

Proof. 1f not then F*(inf, d(7,z)) = sup,, infy<,infeco fp(d(7,7)) > 0. But this con-
tradicts the definition of forcing property. DR
Definition 2.11. A nonempty G C P is generic if:

(i) It is directed downwards, i.e., for all p,q € G there is p’ € G such that p’ < p, q.
(i) It is closed upwards, i.e., if p € G and ¢ > p then ¢ € G.
(iii) For every ¢ € L5(C) and r > 1 there is p € G such that F,(¢) + F,(—¢) <r
If G is a generic set and ¢ € L5 (C) we define

¢ = inf F,(p).

peEG

Proposition 2.12. Fvery condition belongs to a generic set.

Proof. Fix p € P. Let ( (1, ¢n): n < w) enumerate all pairs (r, p), where r € Q, r > 1,
and ¢ € L£5(C). Construct a sequence pg > p; > ... > p, > ... in P as follows.
We start with py = p. Assume p,, has already been chosen. By definition F), (—p,) +
inf,<,,. Fy(¢n) =1 < 1y, s0 we can choose p,11 < p,, such that F), (—¢,)+F,,., (¢n) < 7,
whereby Fpnﬂ(—'gon) + Fp, .. (¢n) < ryn. Define

G={qeP|q>p, for some n}.
Then G is generic, and p € G. L_DRD)
Lemma 2.13. Let G be generic and ¢ € L5(C). Then ¢© = infpeq F(¢).
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Proof. The inequality > is immediate since F’(¢) < F,(p). For the other, assume
Y > infpeq (), so there are € > 0 and p € G such that ¢ —e > F¥(p). As G is
generic there is ¢ € G such that F,(¢) + F,(—¢) < 1 +¢, and as p € G we may assume
q < p. We obtain

Ef(p) 2 inf Fylp) = 1= Fy(op) > Fy(o) —e 2 97 —e > Fl(p),
a contradiction. LR
Lemma 2.14. If G is generic and p € L5(C), then (—p)® =1 — ¢¢.

Proof. From Lemma we have % + (—¢)¢ > 1, while % + (—¢)¢ < 1 follows from
Definition 2.111 m

Lemma 2.15. Let G be a generic set and 7,0 € T(C). Then:
(i) For every e > 0 there is c;.cq € C such that d(7,c,.q)¢ < e.
(ii) d(r,0)% = d(o,7)°.
(iii) For every atomic L(C)-formula o(z), if d(1,0)% < 6,4 (€) then |o(T)¢—p(0)%| <
€.

Proof. For (i), observe that (inf,d(7,z))¢ = 0 by Lemma and Lemma S0
there is p € G such that F,(inf, d(7,z)) < ¢, and thus there exists ¢ € C such that
d(r,c)¢ < F,(d(r,¢)) < €. The other two statements follow directly from Lemma
and the definition of forcing property. m

Lemma 2.16. Let M be the term algebra T(C) equipped with the natural interpretation
of the function symbols, and interpreting the predicate symbols by: PM(?(%) = P(7)“.
Then M§ is a pre-L(C)-structure, and its completion MY is a canonical structure.

Proof. First we use Lemma [2.15 to show that dME s a pseudometric. Symmetry
is Lemma [2.15(ii). The triangle inequality follows from Lemma [2.15(iii), keeping in
mind that 04(0). = id. That dMg’ (1,7) = 0 follows from the triangle inequality and
Lemma [2.15(i). Finally, by Lemma[2.15(iii), every symbol respects its uniform continu-
ity modulus. Thus M is a pre-structure, and we can define M to be its completion.
That CM€ is dense in M now follows from Lemma 2.15(1). o

Theorem 2.17. For all ¢ € L5(C) we have oM = xC.

Proof. By induction on ¢:
(i) For ¢ atomic, this is immediate from the construction of M¢.

(ii) For ¢, ¢ 41 and A @, this is immediate from the definition of forcing and the
induction hypothesis.

(iii) For —¢, this is immediate from Lemma and the induction hypothesis.

(iv) For inf, ¢(x), it follows from the definition of forcing and the induction hypothe-
sis that (inf, )¢ = inf{e(c)™° | ¢ € C}. Since M is dense in M and o(z)M*
is uniformly continuous in z, the latter is equal to (inf, gp)M “ n
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3. THE FORCING PROPERTIES P(M) AND P(M, %)

If M is class of L-structures, we denote by M(C') the class of all structures of the form
(M, a.)cec,, where M is in M and Cj is a finite subset of C; such a structure is regarded
naturally as an L(Cp)-structure by letting a. be the interpretation of ¢ in M, for each
cE Co.

Let X be a class of formulas of £ 4 that contains all the atomic formulas and is closed
under subformulas, and let 3(C') denote the subset of L(C') obtained from formulas ¢ in
Y by replacing finitely many free variables of ¢ with constant symbols from C'.

The forcing property P(M, X) is defined as follows. The conditions of P(M, X) are the
finite sets of the form

{901 <Ti,. oy, Pn <Tn}a
where @1, ..., p, € 3(C) and there exist M € M(C') such that M < r;, fori=1,... n.
The partial order < on conditions is reverse inclusion, i.e., if p, g are conditions of P(M, X)),
then p < ¢ if and only p D ¢. If p is a condition of P(Ma,>) and ¢ is an atomic sentence
of L(C), we define

min{r < 1| <r € p}, if{r<l1l|e<rep}#o,
fo() = .
1, otherwise.

When ¥ is the set of all atomic L-formulas, the forcing property P(M, X)) is denoted
simply P(M).

The main result of this section is Proposition 3.4, below, which characterizes weak
forcing for the forcing property P(M, 3); for the proof, we need two lemmas.

Definition 3.1. We extend the definition of f, above to all sentences of X(C):

min{r <1| ¢ <r € p}, if{r<1lle<rep}+#ao,
Hy(p) = .

1, otherwise.
We define H} accordingly: H’(¢) = sup,<, inf,<, Hy(p).
Clearly if ¢ < p then Hy (o) < Hy(¢) and H(p) < H}' (), whereby for all p: HY(¢) <
Hy(p).
Lemma 3.2. For allp € P(M, %) and p € (C):

() = inf{r € [0,1] | (Vg < p)(qU{p <1} € P(M, X))}

=sup{r € [0,1] [ pU{—p <1 -1} € P(M, %)}
(Here inf @ =1, sup@ =0.)
Proof. The first equality is a mere rephrasing: H(¢) < r if and only if infy<, H,(¢) <7
for all ¢ < p, i.e., if and only if qU {p < r} € P(M, %) for all ¢ < p.

For the second equality: Assume first that ¢ = pU {—-p < 1 —r} € P(M,%). Then
g < pbut qu{p < r} ¢ P(M,3). This gives >. Now assume pU{—-p < 1—r} & P(M, X).



10 ITAI BEN YAACOV AND JOSE IOVINO

Then pU {—p < 1 —r} cannot be realized in the given class. Thus, for every g < p, as ¢q
can be realized, it is realized in a model where ¢ < r. Thus q U {p < s} € P(M,X) for
all ¢ < pand s > r. This gives <. P

Proposition 3.3. The functions H)’ satisfy the properties stated for F;" in Lemma 2.8
and Proposition 2.9, i.e.:

H;U(Sp) = Su'qup H;U(SO) = Supqu infq’Sq H;y(@)
Hee) = it ()
Hy (5¢) = 3H.(p)

SUP,<p infy <4 H:;'}(SO) + H;')(@ZJ)
SUp,<, inf <, inf,eq H;‘,’(go)
inf, p(x)) = SUp,<, infy<ginfece H;’f(cp(c)).

<3
o +
=
I

Proof. The first property is proved precisely as in Lemma 2.8.

For —: it follows from Lemma 3.2 that H}'(—¢) = —inf,<, H,(¢), and we conclude as
in the proof of Proposition 2.9.

For 1: observe that ¢ U {¢ < r} € P(M,X) if and only if ¢ U {3¢ < 37} € P(M, %)
and apply Lemma 3.2.

For the last three we reduce as in the proof of Proposition to showing that:

Hy(p+4¢) < Hy(p)+ Hy(¥)

Hy (N ®) < infyeo Hy' ()

HY (inf, e(x)) < infeee H;j’(go(c)).
For + this follows from Lemma [3.2. For A and inf the quantifier exchange argument
from proof of the corresponding items in Proposition 2.9 works here too. P

Proposition 3.4. Suppose that p is a condition in the forcing property P(M,X) and o
is a sentence of X.(C). Then F(0) = H,’(0).

Proof. For atomic o the equality is immediate. We then proceed by induction on o,
noting that Proposition 2.9 on the one hand and Proposition3.3/on the other tell us that
F" and H}’ obey the same inductive definitions. |_EW

4. GENERIC MODELS AND sup A inf-FORMULAS
Recall from Section (1 that the expressions \/ ® and sup, ¢ are regarded abbreviations
of — /\‘p@ —p and —inf, - respectively.
Proposition 4.1. Let (P, <, f) be a forcing property for L4(C) and let p € P. Then

(i) Fp(V ®) = sup,eq F3'(¢).
(i) Fp(sup, ¢ (2)) = supec £, (¢(c)).
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Proof. The proofs are straightforward applications of the definitions: for (i),

B\ @) = Fy(= ]\ ~¢) = =inf F,( /\ ~¢)

ped - ped

= —inf inf F,(-yp)

q<p ped

= —inf inf = inf Fj,(p)

g<ppe® ¢'<q
= supsup inf F (p)
q<p ped I'<4q
= supsup inf F (p)
pe® q<p 9'<q
= sup F;U( )7

ped

and for (ii),
Fy(sup p(x)) = Fp(minf 2p(2)) = = inf F,(inf ~(2))
=~ mf inf F,(—¢(c))

q<pceC

= —inf inf = inf F,(¢(c))

q<pceC ¢'<q

q<p ceC €<q

= supsup inf F (p(c))
)

= supsup inf F (p(c))
ceC q<p 4 '<q

—ilelgF“’( p(c)). o,

Notation 4.2. If ® is a finite set of formulas, say ® = {¢1,...,¢,}, we write
©OiN- ANy, and @1 V-V,
as abbreviations of A\ ® and \/ @, respectively.

Proposition 4.3. If (P, <, f) is a forcing property for LA(C) and p € P, then
Ep(pr Ve Vo) = max Ff (gi).

Proof. By Proposition [4.1. .

Definition 4.4. Let ¥ be a class of formulas of £ 4 which contains all atomic formulas
and is closed under subformulas. A sup A inf-formula over ¥ is an L 4-formula of the
form

-sup /\ 1nf ylr(lf) On 1($ yn) -V On,j(n) (*/Z'v gn))v

Im pcw

where o,,, belongs to X forn <wandv =1,...,j(n), T = x1,...,%y, and g, =
Yty -5 Yi(n)-
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Proposition 4.5. Let X be a class of formulas of £ o which contains all atomic formulas
and is closed under subformulas. Suppose that ¢ is a sup \ inf-formula over 3, of the
form

Sup /\ 1nf ?}I(lf) On 1(55 yn) Y O—n,j(n)(xa yn))a

where oy, belongs to X for n<wandv =1,....5(n), T = x1,...,%y, and Yy, =
Y1y - - Yigm)- Then, if (P, <, f) is a forcing property for L4(C) and p € P,
F = sup inf max F(o,.(¢d)).
Pl0)= s ALy i (onled)

q<p deCi(®)
n<w

Proof. We use Propositions 4.1 and [4.3[to compute F},(¢):

(sup...su inf ... inf (0,1(Z, Uy N o i) (T, Un
up. p/\w nf... inf (0,(Z, 9n) V (T, a)))
= sup F°( N\ inf ... inf (05,1, 90) V -+ V 0 (€ Tn) ) (by [4.1)
ceCcm n<w Y1 Yi(n)

= sup sup inf Fy( /\ inf ... inf (6,,1(C,Un) V-V Onjm)(C0n)))

ceCm q<p I'<q nw Y1 Yi(n)
= sup sup inf inf _inf Fy,(o, ¢, d)V---Vo, c,d
CGCIT)” q<113 q'<gn<w deCi(n) ( ’1( ) A(n ( ) )
= sup sup inf inf inf max FY(0,,(cd)) (by [4.3).

ceCm g<p ¢'<gn<w deCi(n) 1<v<j(n)
m

Remark 4.6. If p is a condition in the forcing property P(M, %), then F¥(p) = H}' (),
by Proposition [3.4. Hence, if ¢ is as in Proposition [4.5]

BOL= 2 (g el d)
q<p deCm)
nw

Recall (Section (1)) that C' denotes countable set of constants not in £ and that L(C') =
LUC. Asin Section/3, if M is a class of L-structures, M(C') denotes the class of structures
of the form (M, a.)qcc,, where M is in M and Cj is a finite subset of C. If I' is a set
of inequalities of the form ¢ < r, where ¢ is an L 4(C)-formula and r is a real number,
we will say that I' is satisfiable in M if there exists a structure M in M(C') such that
oM < r for every inequality ¢ < r in I

Let X be class of formulas of £ 4 that contains all the atomic formulas and is closed
under subformulas. A finite ¥-piece of M is a finite set p of inequalities of the form
@ < r, where ¢ € X, such that p that is satisfiable in M.
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Corollary 4.7 (Omitting Types Theorem). Let (p, | n < w) be a sequence of L-
formulas such that for each n < w @, is a sup \ inf-formula over ¥, of the form

sup ... sup wn(xlv e ?xm(n))’
x1 Tm(n)

where for each n < w 1, is of the form

/\ inf... inf (O-n,k,l(a_:m gn,k) VeV Un,k,j(n,k) (ina gn,k))7

Y1 Yi(n,k
k<w i)

with T, = Z1,..., Tmm), 00d Yok = Y1, .-, Yitk), and let (r, | n < w) be a sequence
of real numbers such that for every finite Y -piece p of M and every ¢, € C™™ | the set
pUA{w,(Cn) < 1o} is satisfiable in M. Then there exists a canonical L(C')-structure M
such that M <'r, for everyn < w.

Proof. Let p be a condition in the forcing property P(M,¥). Fix a condition g < p,
n <wand ¢, € C™™. Since qU {,(¢,) < r,,} is satisfiable in M, there exist k < w and
dp i € C*™F) such that

q U {Un,k,l(éna dn,k) VeV On,k,j(n,k) (Ena dn,k) < Ty }

is satisfiable in M. Let

q/ =4q U {O'n,k,l(aw dn,k) < Tpyeen y Onk,j(n,k) (éna dn,k) <7Tp }

Then, ¢ is a condition in P(M, ¥), and by Lemma

1§1£2?€7<1,k) H;l’)( U”Jﬂ,l/(ém Czn,k) ) < Tn,

SO

inf max  Hy (0 pp(Cns dng)) < T
¢'<q 1<v<j(n,k)

deCitnb)

k<w

Thus, by Remark [4.6] F,(p,) < r,. Let G be a generic set for P(M, X) (the existence
of G is guaranteed by Proposition [2.12). For every n < w, ¢¢ = inf,cq F,(¢n) < 1y
(see Definition 2.11). Let now M® be as in Lemma 2.16. Then, by Theorem [2.17,

MG
OM” = % <. -

Remark 4.8. The reader may worry about the fact that the assumptions of Corollary 4.7/
involve strict inequalities while the conclusion only yields a weak inequality. In fact it
would be enough to assume a weak inequality, i.e., that p U {1, (¢,) < r,} is satisfiable
in M for every p and v, as in the statement of Corollary or more precisely, that
pU{¥n(c,) < r,+ €} is satisfiable for every € > 0. Indeed, in this case we would be able
to find M in which X <7, +27™ for all n,m, i.e., such that pM <r, for all n.
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5. APPLICATION: SEPARABLE QUOTIENTS

If ¢ is a formula of L, ,,, we will say that ¢ is finitary if all the occurrences of A in ¢
are finitary, i.e., if whenever /\w@ 1 is a subformula of ¢, the set ® is finite. We recall
from Section|1 that the set of all finitary formulas is denoted L, .

If M and N are L-structures, M and N are said to be elementary equivalent, written
M = N, if oM = oV for every finitary L-sentence ¢. Thus M = N if and only if
oM < r implies oV < r for every finitary L-sentence ¢ and every rational number
r. If M is a substructure of N, M is said to be an elementary substructure of N if
(M,a|ae M)=(N,a|ae M).

A Banach space (X, || - ||) can be regarded as a metric structure in a number of ways.
A natural approach is to introduce for each nonnegative rational r a distinct sort for the
closed ball Bx(r) of radius r around 0; the metric on Bx(r) is given by the norm || - |[;
in the structure we also include:

the inclusion maps I, s: Bx(r) — Bx(s) for r < s,
the vector addition, which maps Bx(r) x Bx(s) onto Bx(r + s),
for each A € Q, the scalar multiplication by A\, which maps Bx(r) onto Bx (|A|r),
the normalized norm predicate || - ||/r, which maps Bx(r) onto the interval [0, 1],
e the normalized distance predicate on Bx(r) defined by d(x,y) = || — y||/(2r)
(as x —y € Bx(2r)).

Notice that with the normalized norm and distance, all symbols are 1-Lipschitz, mean-
ing that the identity function §(e) = € is a modulus of uniform continuity for each and
every one of them.

Other ways of regarding Banach space as metric structures are discussed in Section 3
of [BUJ and in Section 4 [Ben].

If X and Y are Banach spaces and T': X — Y is a Banach space operator, we denote
by (X,Y,T) the structure that includes, in addition to the Banach space structure of X
and the Banach space structure on Y, in separate sorts, the operator 1" as a family of
functions between the appropriate sorts, i.e., from Bx(r) to By(s) if s > ||T'||r. If T is
non zero, the function d(e) = ¢/||T'|| is a modulus of uniform continuity for 7.

Proposition 5.1. Let X, Y,X,Y be Banach spaces m}d {et T: X —>Y and T: X > Y
be bounded linear operators such that (X,Y,T) = (X,Y,T). Then T is surjective if and
only if T is surjective.

Proof. For a real number r > 0, let Bx(r) and By (r) denote the closed balls of radius r
around 0 in X and Y, respectively. The proof of the Open Mapping Theorem shows that

T: X — Y is surjective if and only if the following holds: for every ¢ > 0 there exists
d(e) > 0 such that

Vy € By(d(e)) 3z € Bx(1) ([[T(x) —yl[ <¢).

We can assume that §(e) < 1 for € < 1. Thus, T is surjective if and only if for every

e with 0 < € < 1 we have @EX’Y’T) = 0, where ¢, is the following finitary sentence (the
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variables = and y are of sort Bx (1) and By (1), respectively):

sup inf min ( () = [lyll, [|T(x) = yll = € ).
Y

(Or, if one wishes to be pedantic, replace ||T( ) —yl| = € with || T(z) — y[| = §.) Hence,
if (X,Y,T) = (X Y T) and T is surjective, T is surjective too. H;

The authors are grateful to William B. Johnson for pointing out that Proposition 5.1/
is given by the proof of the Open Mapping Theorem.

All the Banach spaces mentioned henceforth will be infinite dimensional.

The Separable Quotient Problem is perhaps the most prominent open problem in non-
separable Banach space theory. The question is whether for every nonseparable Banach
space X there exist a separable Banach space Y and a surjective operator T: X — Y.
Let T: X — Y be a Banach space operator and consider the structure (X,Y,T) (the
sorts of this structure are X and Y'). In this section we use Corollary 4.7 to prove that if
T: X — Y is surjective and has infinite dimensional kernel, then there exists an operator
T: X — Y such that

(i) (X,Y,T) = (X,?,T),
(ii) X has density character wy,
(i) Y is separable.
It follows from (i) and Proposition [5.1 that 7" is surjective.

Lemma 5.2. Suppose that X is a Banach space and'Y 1is a closed proper subspace of X.
Then there exists a non zero linear functional f: X — R whose restriction to'Y is zero.
Up to multiplication by a scalar we may further assume that || f|| = 1.

Proof. This is a well-known application of the Hahn-Banach theorem; the proof can be
found in a textbook, e.g., [FHH01]. H;,

Lemma 5.3. If X is a Banach space of density character k, there exists a family (z;)i<sx
in X such that ||z;|| = 1 for every i < k and ||z; — x| > 1 fori < j < k.

Proof. The construction of (x;);<, is inductive. Fix j < k and suppose that constructed
x; is defined for i < j. Let Y be the closed linear span of {z; | i < j}, which is a
proper closed subspace of X. By Lemma 5.2, take f: X — R such that f(x) = 0 for
every x € Y and ||f|| = 1. Let now x; be an element of the unit sphere of X such that
|f(z)| = || f|]| = 1. Then, if y € Y, we have ||z; — y|| > |f(z;) — f(y)| = 1; in particular,
Hl'j — IEZH >1fori< 7. N

Theorem 5.4. For every surjective operator T: X — Y with infinite dimensional kernel
there exists an operator T: X — Y such that
e (X,Y,T)= (X,Y,T),
o X has density character wy,
oV is separable.
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Furthermore, if D is a given countable subset of X, the structure (X, Y, T) can be chosen
with the following property: there exists a separable subspace Xo of X such that D C X,
and if Ty denotes the restriction of T to Xy,

b (X(),To(Xo),To) = ()ga }fa CTA);
[ ] (X()’T()(Xo),To) < (X,Y,T)

Proof. By the Lowenheim-Skolem Theorem [HI02, page 47], there exists a separable
subspace X of X such that if 7 denotes the restriction of 7" to Xy and Yy = Ty (Xo),

(XO;Y()aT()) < <X7KT>

ote that Xy can be taken so that it contains any given countable subset of X.
Note that X, be tak that it tai gi table subset of X
Let A be a countable dense subset of X, and consider the structure

(X0, Yy, T,ala€A).

Let L be the signature that results from expanding the signature of (X,Y,T,a|a € A)
with new constant symbols ¢g, ¢1, . .. and ¢, of sort Bx (1) as well as new constant symbols
dy,dy, ... and of sort By (1).

Let us introduce some temporary terminology. If ¢ is an L-sentence, an L-structure
M satisfies the inequality ¢ < r if o™ < r. An inequality ¢ < r will be called finitary if
the formula ¢ is finitary.

Let T consist of the following inequalities (the variable z in is of sort By(1)):

(i) All the finitary inequalities satisfied by the structure ( Xy, Yy, T,a | a € A)
(ii) =fleall < € (i-e., [Jeal] > 1 =€) and =|d, || < ¢, for every n < w and every rational
e> 0.
(iii) =3llem — eull < 5 +€ (e, [[en — el > 1 — 2¢) and —i||d,, — dy]| < 3 + ¢, for
every pair m,n with m < n < w and every rational € > 0.
(iv) —|||co|| <€, for every rational € > 0.
(v) =3l — cn|| < 3 + ¢, for every n < w and every rational € > 0.
(vi) | T(cn)|| <€, for every rational € > 0.
(vii) For every ratlonal € > 0, the inequality

1
sup /\ (n+1)- n—HHT(x) - ZhdzH < €.
705-,Tn—1€QN[—1,1] i<n
n<w
Here —+||-|| is just the normalized norm predlcate on the sort of T'(x) =), _, rid;,

and (n+ 1) - ¢ is defined in general as ¢ + --- + ¢ n 4+ 1 times.

Lemma ensures that the hypotheses of Corollary [4.7 are satisfied with ¥ = L, .
Thus by Corollary 4.7, T’ has a separable model

(Xla}/inlaa?an?bn7aS ’ aGA,n<w),
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where for each n < w, a, is the interpretation of ¢, b, is the interpretation of d,,, and

ag is the interpretation of ¢f. By (i), we have
(X, V,T) < (Xy,Y1,T1),
so, in particular, by Proposition 5.1, 77 is surjective.
Now we iterate the preceding process to find for each ordinal o with 0 < o < wy a
separable structure
(Xoy Yo, Toyan, by, af | n <w,i<a)
such that if 0 < a < § < wy,
o (X, Yo Ty an,by,al | n<w,i<a)=<(XpYsTsanby,a |n<w,i<a)
o ac X, fori<a
e |laj| =1 and [[aj —a}[| =1fori<j<a
e The linear span of {b, | n < w} is a dense subset of T, (X,).
The theorem then follows by taking X = X, Y =U Y, and T = Uacw, Ta-
;.

a<wi a<wi
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