
GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES

ITAY BEN-YAACOV

Abstract. We develop the theory of germs of generic functions in simple theories.
Starting with an algebraic quadrangle (or other similar hypotheses), we obtain an
“almost” generic group chunk, where the product is defined up to a bounded number
of possible values. This is the first step towards the proof of the group configuration
theorem for simple theories, which is completed in [BTW].

Introduction

This paper represents the first step towards the proof of the group configuration
theorem for simple theories, which is achieved in [BTW]. In its stable version, this
theorem is one of the cornerstones of geometric stability theory. It has many vari-
ants, stating more or less that if some dependence/independence situation exists, then
there is a non-trivial group behind it, and in a one-based theory, every non-trivial
dependence/independence situation gives rise to a group (see [Pil96]). The question of
generalising it to simple theories arises naturally.

In the stable case, the proof can be decomposed into two main steps:

(1) Obtain a generic group chunk whose elements are germs of generic functions,
and whose product is the composition.

(2) Apply the Weil-Hrushovski generic group chunk theorem.

The second step is generalised to simple theories in [Wag01, Section 3]. This paper
is concerned with the generalisation of the first step, and does so with limited success:
we only obtain a generic polygroup chunk, that is a generic group chunk where product
is defined only up to a bounded set of possible values. This gap is eventually filled
in [BTW], and requires the use of altogether different tools: as far as we know, if
we are not ready to go beyond hyperimaginaries and into the realm of graded almost
hyperimaginaries, a generic polygroup chunk is indeed the best we can construct.

In order to understand the problems arising when trying to generalise the theory
of germs of generic functions to simple theories, let us first take a closer look on the
stable case. There, one could define generic functions as follows: Let p be a type, q,
q′ be two strong types, all over the same parameters. Then p acts generically from q
to q′ if for some (thus any) independent realizations f |= p, x |= q we have a definable
f(x) |= q′ such that f, x, f(x) are pairwise independent. Moreover, if p acts generically
from q to q′, and p′ acts generically from q′ to q′′, and p, p′ are strong types, then
p × p′, which is the set of independent realizations of p and p′, is a complete strong
type, that acts generically from q to q′′. And finally, f , f ′ have the same germ on q if

Key words and phrases. simple theories, group configuration, germs.
1

2 ITAY BEN-YAACOV

for some (thus any) x independent from both, f(x) = f ′(x), and this is obviously an
equivalence relation.

All this makes heavy use of the stationarity of strong types, which is precisely what
simple theories lack. Here is a brief description of the problems actually arising, and
how we propose to overcome them:

• Assume that p : q 7→ q′ and p′ : q′ 7→ q′′ are two generic actions as above: if we
were to compose them, then the (parameters of the) functions would belong to
p × p′ (set of independent pairs of realisations), which is no longer a complete
type.
Therefore we must accept generic actions whose set of functions is a partial type.
Moreover, the graph of each composed function g ◦ f is also a partial type for
the same reason. In order to accommodate this approach, it seems useful to
make a distinction between the general notion of a generic action, denoted by
π, the set of (parameters of) functions of π, denoted by Func(π), and the actual
functions, which we identify with their parameters f, g, h, . . . ∈ Func(π). The
graph of a function f is (the set of realisations of) a partial type over f .

• The passage to germs, which is essential to the theory, requires the graph
of a function to be a (complete) Lascar strong type over its parameter. So
partial types won’t do, and we introduce the completion of a generic action, a
procedure by which we replace each function whose graph is a partial type with
the (bounded!) set of all possible extensions of the graph to a Lascar strong
type over the parameter.
Unfortunately, each function has several possible completions, and a function
that is complete in this sense cannot in general be total.

• After the completion, we can pass to germs. This procedure, called reduction, is
essentially the same as in the stable case, and results in replacing each function
with the canonical base for its graph (note that unlike [HKP00], this is done
uniformly for Lascar strong types which are not all conjugates one of the other).
The reduction of π is denoted by π̄, and the set of germs of π is Germ(π) =
Func(π̄).
It should be noted, however, that due to lack of stationarity the germs are multi-
functions rather than functions: for arguments on which they are defined, they
give boundedly many possible values. We just accept this, as this does not
introduce any new difficulties elsewhere in the construction, and generalise our
notion of “generic function” accordingly.

• In order to get a set of germs where composition is a generic product, we need
a generic action π̂ such that a germ of the composition π̂ ◦ π̂ is also a germ of
π̂. In the stable case this is done (more or less) by defining π̂ = π−1 ◦ π for
a suitable invertible generic action π, and then proving that as far as germs
are concerned, the two middle terms can be eliminated from the composition
π−1 ◦ π ◦ π−1 ◦ π. The stable proof fails once more in the simple case, this time
since a non-forking extension of a Lascar strong type is not necessarily Lascar
strong: we introduce the technical notion of a generic action being strong on
the left or on the right, and prove the required elimination under some mild
strength assumption.

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 3

So far we only discussed machinery. The particular group configuration to which we
apply this machinery in this paper is the algebraic quadrangle, although it can be used
in other cases as well (it even plays some role in the construction of a binding group
in [BW]). In a stable (or simple) theory, an algebraic quadrangle is a diagram of the
form:

f a

³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³

pppppppppppppppppppp
b

g
c

h
Where f , g, h, a, b and c are imaginary elements, such that every non-collinear

triplet is independent (so in particular, every pair is), and f , g and h behave as
canonical parameters for definable invertible functions sending a 7→ b, b 7→ c and
a 7→ c, respectively: thus, the entire diagram explains in a sense how h = g ◦ f (we
cheat a little; for the precise definition see Definition 4.1).

The theorem (for stable theories) stipulates the existence of a type-definable group
G, acting faithfully and transitively on a set X, and of generic elements f ′, g′, h′ ∈ G
and a′, b′, c′ ∈ X, such that each primed element is interalgebraic with its non-primed
counterpart and: h′ = g′ · f ′, b′ = f ′ · a′ and c′ = g′ · b′ = h′ · a′. In particular,
(f ′, g′, h′, a′, b′, c′) form an algebraic quadrangle algebraically equivalent to the original,
but this time coming directly from a group action.

In the last section we show how to obtain from an algebraic quadrangle a generic
action π, which satisfies the strength assumption necessary for the elimination men-
tioned above. We define π̂ = π−1 ◦ π and P = Germ(π̂): for independent f, g ∈ P
we can define f ∗ g as the set of germs of completions of g ◦ f , which belong to P by
elimination. Since an incomplete generic function such as a composition g ◦f can have
many completions, product is only defined up to a bounded set of values. We obtain
the existence of a non-trivial polygroup chunk in Corollary 4.8; with some more work,
we get a better approximation of the stable theorem in Theorem 4.9.

1. Preliminaries

We assume familiarity with the basic definitions and properties regarding simple
theories, as given in [Kim98a, KP97], as well as with hyperimaginaries and canonical
bases, as given in [HKP00] or [Wag00].

Convention 1.1. We work in a first order simple theory T .
As we work with hyperimaginaries, by sort we mean a hyperimaginary sort. We usually
associate variables to sorts. Thus, using the same variable in two places means they
belong to the same sort.

It should be noted that although there is not much sense in speaking of a formula in
a hyperimaginary sort, the notions of a complete or partial type in a hyperimaginary
sort make perfect sense, and compactness applies to them as it does for partial types

4 ITAY BEN-YAACOV

in real sorts. Moreover, manipulations of partial types, such as infinite conjunctions,
finite disjunctions, and existential quantification, yield partial types. On its lowest
technical level, this paper consists essentially of many constructions of partial types
from others through such manipulation: thus, the treatment of hyperimaginaries in
first order theories proposed in [HKP00] suffices for our needs.

Remark 1.2. Although we assume that we work in a first order theory, we hardly use
first order logic’s strength: negation is never used, since the negation of a partial type
is not, in general, a partial type (and the need for negation never arises); although
universal quantification does make sense for a partial type (even for one in a hyper-
imaginary sort, as long as the ambient theory is first order), we never need to use it
either; and the only primitive building blocks we use are complete types and partial
types that define indiscernibility.
It follows that the natural context for this paper is not a first order theory, but rather
the much more general one of a thick compact abstract theory (see [Ben03a, Ben03b]):
in a compact abstract theory there is no essential distinction between real and hyper-
imaginary sorts, and all the manipulations of partial types we propose to use make
sense; thickness means that indiscernibility is type-definable, so all the primitives are
available; finally, first order simplicity generalises fully to a simple thick compact ab-
stract theory. Once one understand this context, it is a mere observation that all that
we say in this paper holds without modification, and we will discuss it no further.

Notation 1.3. If A = {ai : i < α} is some set or sequence, we note a<i = {aj : j < i}
and a≤i = {aj : j ≤ i}. Similarly, ab means the concatenation of a and b, and never the
product of a and b (where that makes sense) or the application of a to b. Whenever we
want to multiply two elements, compose functions, or apply a function to an argument,
we use explicit notation.

Notation 1.4. When ∼ is a hyperdefinable equivalence relation on a given sort and
a is in this sort, then its quotient a /∼ is also noted a∼.

The Lascar strong type of a over b is noted lstp(a/b). We also write a ≡Ls
b a′ instead

of lstp(a/b) = lstp(a′/b).

Fact 1.5. For any two variables x and y, let LS(x, y, x′, y′) be the partial type saying
that y = y′ and there are y-indiscernible sequences 〈xi : i < ω〉 and 〈x′

i : i < ω〉 such
that x = x0, x′ = x′

0 and x1 = x′
1.

Then we have (taking LS on the right sorts):

(1) LS is a (type-definable) equivalence relation on the sort of x, y.
(2) a ≡Ls

b a′ if and only if LS(a, b, a′, b).
(3) lstp(a/b) = tp(a/ bdd(b)) = tp(a/(a, b)LS) = LS(x, b, a, b) (where equality is

that of the sets of realisations, and not of the types as sets of formulas).
(4) dcl((a, b)LS) = dcl(ab) ∩ bdd(b).

Proof. Most of this (and in particular, (a, b)LS ∈ bdd(b)) appears in [Kim98b] and
[KP97], so we only prove the last assertion. The inclusion dcl((a, b)LS) ⊆ dcl(ab) ∩
bdd(b) is clear. For the other, let f be an automorphism fixing (a, b)LS. Then f(b) = b,
and let a′ = f(a), so a ≡Ls

b a′. Let g be an automorphism sending a to a′ fixing bdd(b).

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 5

Then f = (f ◦ g−1) ◦ g, where g fixes bdd(b) and f ◦ g−1 fixes ab. Therefore f fixes
dcl(ab) ∩ bdd(b). qed

Remark 1.6. As lstp(a/b) = lstp(a′/b) if and only if (a, b)LS = (a′, b)LS, it makes sense
to identify the hyperimaginary (a, b)LS and the type lstp(a/b).

We shall make much use of the independence theorem. We shall mostly use the
following form:

Fact 1.7. Suppose that b0 |̂
a
b1, ci |̂

a
bi, and c0 ≡

Ls
a c1. Then there is c with c ≡Ls

abi
ci

and b0 |̂
ac

b1.

As we cannot restrict ourselves to complete types, we shall need a slight strength-
ening of results from [HKP00], as well as a remark on the definability of independence
on (some) partial types.

Fact 1.8. Let ∼1 be a reflexive, symmetric hyperdefinable relation on the realisations
of π, such that a ∼1 b ∼1 c and a |̂

b
c imply a ∼1 c. Let ∼ be its transitive closure.

Then ∼ is hyperdefinable, and whenever a∼ = b∼ and a |̂
a∼

b then a ∼1 b.

Proof. [Wag00, Lemma 3.3.1] qed

Definition 1.9. Let πi(xi) for i < α be partial types in various hyperimaginary sorts
over a fixed hyperimaginary parameter e. Their independent product (over e) noted∏

e
i<α

πi(x0, . . .) is the partial type, if one exists, saying that each xi satisfies πi, indepen-

dently over e of the others.

Definition 1.10. A partial type π over e is said to have definable independence (over
e) if π ×e π′ exists for any π′ over e.

Proposition 1.11. (1) Every complete type has definable independence over its
domain.

(2) If πi has definable independence over e for every i < α, then
∏

e
i<α

πi exists and

has definable independence.
(3) If π has definable independence over e, and π′ ` π, then π′ has it as well.
(4) If π has definable independence over e, ∼ is an e-hyperdefinable equivalence

relation on the sort of π, and π is ∼-invariant, then π /∼ has definable inde-
pendence over e.

Proof. (1) This is a well known fact.
(2) Existence is obvious. As for the definable independence, it is enough to notice

that if a<α is an independent set, then we have: a<α |̂
e
a if and only if a<α, a

is an independent set if and only if for all i < α we have ai |̂
e
a<i, a.

(3) Obvious.
(4) We have a∼ |̂

e
b if and only if there is a′ ∼ a with a′ |̂

e
b. By ∼-invariance,

π(a) ⇐⇒ π(a′).
qed

6 ITAY BEN-YAACOV

2. Germs of partial generic functions

2.1. Definitions. The difficulties mentioned in the introduction lead us to the follow-
ing definition:

Definition 2.1. Let π(x, y, z), be a partial type in three hyperimaginary variables,
over a hyperimaginary parameter, that from now on will be supposed to be ∅. We say
that π defines partial bounded generic functions, or that it is a generic action, if:

(1) π¹x, π¹y and π¹z have definable independence.
(2) π(x, y, z) implies that x, y, z are pairwise independent.
(3) For any f , a there is at most boundedly many b such that π(f, a, b), that is

π(f, a, z) is a bounded (possibly inconsistent) type. We note f(a) the set of all
such b.

We note Func(π) = π¹x, Arg(π) = π¹y, Val(π) = π¹z, namely the functions, arguments
and values of π. If f is a function, we note Gr(f)(y, z) = π(f, y, z). We consider these
interchangeably as a partial types and as sets. Note that f ∈ Func(π) ⇐⇒ Gr(f) 6=
∅.

Remark 2.2. In fact, it is not necessary to require that Val(π) has defineable indepen-
dence, as it follows from Func(π) and Arg(π) having it.

Proof. It will suffice to show that for b ∈ Val(π) and any e, b |̂ e if and only if there
are af |̂ e such that b ∈ f(a), as Func(π) × Arg(π) has definable independence by
assumption. So suppose that b |̂ e, so (as b ∈ Val(π)) there are f , a such that b ∈ f(a)
and we can suppose af |̂

b
e which gives af |̂ e. Conversely, if af |̂ e and b ∈ f(a)

then b |̂ e as b ∈ bdd(af). qed

Here are a few definitions that will be used later on:

Definition 2.3. Let π be a generic action.

(1) We say that π is trivial if π(x, y, z) implies that x, y, z are an independent
triplet.

(2) We say that π is invertible if every function sends at most boundedly many
arguments to any given value.

(3) We say the π is well defined if a function assigns at most one value to any
argument.

(4) If π is well defined, we say that it is well invertible if every function it induces
is injective.

(5) We say that π is complete if for any f ∈ Func(π), Gr(f) is a Lascar strong type
(i.e. an amalgamation base) over f .

(6) We say that π is reduced if it is complete, and whenever Gr(f) and Gr(g) have
a common non forking extension then f = g.

(7) We say that π(x, y, z) and π′(x′, y, z) are isomorphic if there is a (hy-
per)definable bijection ϕ : Func(π) → Func(π′) such that Gr(f) = Gr(ϕ(f))
for every f ∈ Func(π).

A remark on triviality and ranks:

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 7

Proposition 2.4. Let π be a generic action. Then SU(Arg(π)) ≥ SU(Val(π)) and
SU(Func(π)) ≥ SU(Val(π)).
π is trivial if and only if SU(Val(π)) = 0 (i.e., it is a bounded type).

Proof. Suppose SU(Val(π)) ≥ α, so there is b ∈ Val(π) with SU(b) ≥ α, and there are
a, f such that b ∈ f(a). As b ∈ bdd(af):

SU(Arg(π)) ≥ SU(a) = SU(a/f) = SU(ab/f) ≥ SU(b/f) = SU(b) ≥ α

And similarly:

SU(Func(π)) ≥ SU(f) = SU(f/a) = SU(fb/a) ≥ SU(b/a) = SU(b) ≥ α

As for the second assertion, if π is trivial then for every fab |= π we have b |̂ fa =⇒
b |̂ b =⇒ SU(b) = 0. On the other hand, if SU(b) = 0 then the independence of a, f
implies that of a, b, f . qed

We start by composing generic functions:

Definition 2.5. Suppose that π(x, y, z), π′(t, z, w) are generic actions. Then we define
π′ ◦ π(xt, y, w) to be the partial type such that π′ ◦ π(fg, a, c) if and only if:

(1) f , g, a are independent.
(2) c ∈ g ◦ f(a), that is, there is b such that b ∈ f(a) and c ∈ g(b).

Proposition 2.6. π′◦π always exists (provided that the sorts match) and it is a generic
action.

Proof. As Func(π) and Func(π′) have definable independence, so does Func(π) ×
Func(π′). Thus the independence of f , g, a is definable, and π′ ◦ π exists. Now
as Func(π′ ◦ π) ` Func(π) × Func(π′), it also has definable independence. The defin-
able independence of Arg(π′ ◦ π) is easy. Boundedness is also evident. We verify the
pairwise independence property: Suppose π′ ◦π(fg, a, c), so we have b ∈ f(a), c ∈ g(b).
We know that {f, g, a} are independent. So a |̂

f
g and thus b |̂

f
g, as b ∈ bdd(af).

Now as f |̂ b we have b |̂ fg, so {f, g, b} are independent. Similarly, we conclude that
the following set are independent: {f, g, c}, {g, a, b}, {a, b, c}. In particular: fg, a, c
are pairwise independent. qed

And we get immediately:

Proposition 2.7. (1) Suppose π is a generic action, and note π−1(x, y, z) =
π(x, z, y). Then π is invertible if and only if π−1 is a generic action.

(2) Suppose π is well defined. Then π is well invertible if and only if π−1 is a well
defined generic action.

(3) Any composition of two invertible (well defined, well invertible) functions is
invertible (well defined, well invertible), and (π′ ◦ π)−1 = π−1 ◦ π′−1.

(4) The inverse of an invertible complete action is complete, and Gr(f)(x, y) =
Gr(f−1)(y, x).

We shall also need:

8 ITAY BEN-YAACOV

Proposition 2.8. Let π, π′ be generic actions on sorts such that π′ ◦ π is defined.
Suppose furthermore that Arg(π′) = Val(π) and these are Lascar strong types. Then
for any independent f ∈ Func(π) and g ∈ Func(π′), we have g ◦ f ∈ Func(π′ ◦ π).
If furthermore π′ is non-trivial, then so is the composition.

Proof. Take any f |̂ g. Consider a value of f and an argument for g. Then they have
the same Lascar strong type, thus by the independence theorem there is b |̂ fg which
is both. Thus there are a, c such that b ∈ f(a), c ∈ g(b). We may suppose that a |̂

bf
g,

So abf |̂ g =⇒ a |̂ fg. Thus g ◦ f is defined on a.
In such a situation we see that Val(π′ ◦ π) = Val(π′), so if π′ is non-trivial, so is the
composition. qed

2.2. Completion. Note that unlike the stable case, the composition of two complete
actions need not be complete, as over a composition two arguments need not even have
the same type, let alone Lascar strong type. However, the passage to germs requires
that the action be complete. In case it is not, we construct its completion:

Construction 2.9. Let π(x, y, z) be a generic action. Consider the hyperdefinable
equivalence relation LS(yz, x, y′z′, x′) from Fact 1.5 on the sort of yz, x. Note (a
typical variable in) the quotient sort by x = (yz, x)/LS. An element of this sort can
be viewed as a pair that we shall note fp, where f is an element in the sort of x, and
p is a Lascar strong type over f in the variables yz. Now let π(x, y, z) be defined as:

π((y′z′, x)/LS, y, z) = π(x, y, z) ∧ LS(yz, x, y′z′, x)

So |= π(fp, a, b) if and only if b ∈ f(a) and lstp(ab/f) = p.

Definition 2.10. We call π the completion of π. For a function f , we write f =
{(ab, f)LS : b ∈ f(a)} = {flstp(ab/f) : b ∈ f(a)}, that is the set of consistent completions
of f , or the set of extensions of Gr(f) to a complete Lascar strong type over f . Note
that this this is a bounded hyperdefinable set, non-empty if and only if f ∈ Func(π).

Remark 2.11. The sort of x is a quotient of that of x, and every element fp of the
second is bounded over f of the first.

This is rather straightforward to verify:

Proposition 2.12. (1) Let π be a generic action. Then π is a complete generic
action.

(2) If π is complete, then π and π are isomorphic.
(3) If π is invertible (well defined, well invertible) then so is its completion π. If it

is invertible then π−1 and π−1 are isomorphic.
(4) If π is non-trivial, so is π.

Note that as x is a bounded extension of x, all the properties of independence and
definable independence are preserved.

Remark 2.13. We can improve Proposition 2.8, saying that if π and π′ are complete,
then the following are actually equivalent:

(1) For any independent f ∈ Func(π) and g ∈ Func(π′), we have g◦f ∈ Func(π′◦π).
(2) Arg(π′) = Val(π) and these are complete Lascar strong types.

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 9

One direction is Proposition 2.8. For the other, suppose that a ∈ Val(π), a′ ∈ Arg(π′)
are of different Lascar strong types. Note p = lstp(a), p′ = lstp(p′). Take now f ∈
Func(π) such that a is a possible value of f . Then by completeness Gr(f)(x, y) |= p(y).
Similarly choose g ∈ Func(π′) such that g(a′) is not empty, and Gr(g)(x, y) |= p′(x).
We may now re-choose them such that f |̂ g. Then as p 6= p′, the composition g ◦ f
is nowhere defined, so g ◦ f 6∈Func(π′ ◦ π).

2.3. Reduction. For the construction of the reduction, we suppose that π is a com-
plete generic action.

What follows now is a variant of the construction of canonical bases, as given in
[HKP00], the aim being the canonical bases of the graphs Gr(f). Unfortunately, the
domain can be any f ∈ Func(π), so its type is not fixed (unlike what happens in
[HKP00]). On the other hand, we can use the dependence/independence relations
between the function, argument and value.

Definition 2.14. We say that two functions f , g are primitively equivalent if there is
a a |̂ fg such that f(a) ∩ g(a) 6= ∅, and we note it f ∼1 g. If b ∈ f(a) ∩ g(a), we say
that ab witness f ∼1 g.

First we show that the definition we gave for ∼1 is essentially the same as that that
given in [HKP00]:

Lemma 2.15. f ∼1 g if and only if Gr(f) and Gr(g) have a common non-forking
extension. More precisely, ab witness f ∼1 g if and only if they satisfy such an exten-
sion.

Proof. Suppose that f ∼1 g, witnessed by ab. Then a |̂ fg gives ab |̂
g
f and ab |̂

f
g

as b ∈ bdd(af) ∩ bdd(ag), and ab realize a common non-forking extension of Gr(f)
and Gr(g). Conversely, suppose that ab realize such an extension, then ab |̂

g
f and

ab |̂
f
g, from each of which we can deduce a |̂ fg. Obviously, b ∈ f(a)∩ g(a). qed

Lemma 2.16. The relation ∼1 satisfies the assumptions of Fact 1.8.

Proof. Hyperdefinability is due to the definable independence of Arg(π) (note that this
would be less evident for ∼1 as defined in [HKP00], since the types of functions are not
fixed). Reflexivity and symmetry are immediate. Finally, suppose that f ∼1 g ∼1 h,
and f |̂

g
h. Then as Gr(g) is a Lascar strong type, two common non-forking extensions

of it with Gr(f) and with Gr(h) can be extended to a common non-forking extension
of all three, by the independence theorem, whence f ∼1 h. qed

Thus, using Fact 1.8, the transitive closure of ∼1 is a hyperdefinable equivalence
relation ∼ on the sort of functions. Now, let f ∈ Func(π), and let ∼′, ∼′

1 be the
restrictions of ∼, ∼1 to tp(f). One verifies easily (compare with [Wag00, Lemma
3.3.4]) that ∼′ is the transitive closure of ∼′

1. Thus f /∼ = Cb(Gr(f)).

Definition 2.17. We call the class of a function f modulo ∼ the germ of that function,
noted f̄ . The sort of germs of π is x /∼ , noted also x̄. We define π̄(x̄, y, z) as the
partial type such that π̄(f̄ , a, b) if and only if there is f ∈ f̄ such that b ∈ f(a). If π is

not complete, f̂ is the set of germs of all the completions of f . We note the set of all
germs of π by Germ(π).

10 ITAY BEN-YAACOV

Proposition 2.18. Let π be a complete generic action. Then π̄ is a reduced generic
action. In particular, for any f ∈ Func(π), Grπ̄(f̄) = Grπ(f)¹f̄ , that is the canonical
restriction of Gr(f) (we recall that if ρ(x, a) is a partial type and aE is the quotient of a
by a type-definable equivalence relation E, then ρ(x, a)¹aE

is equivalent to ∃y [ρ(x, y)∧
E(y, a)]).

Proof. We begin by noting that if f ∼ g, then Gr(f)¹f̄= Gr(g)¹f̄ . Now this entails

that for any f ∈ Func(π): Gr(f)¹f̄= Gr(f̄) = π̄(f̄ , y, z).
Now, let us verify that this is a generic action: Func(π̄) had definable independence as
a quotient of Func(π). Suppose ab |= Gr(f̄). Then there is f ∈ f̄ such that b ∈ f(a),
so in particular f, a, b are pairwise independent. A fortiori, f̄ , a, b are. Finally, as
Gr(f̄) = Gr(f)¹Cb(Gr(f)), we have ab |̂

f̄
f . Thus b |̂

af̄
af , and as b ∈ bdd(af) we

get b |̂
af̄

b =⇒ b ∈ bdd(af̄). Thus all the elements of f̄(a) are bounded over af , so

necessarily f̄(a) is bounded. We have shown that π̄ is a generic action.
To show that π̄ is reduced, we note at first that each Gr(f̄) is the canonical restriction
of Gr(f), thus a canonical type. So suppose now that Gr(f̄) and Gr(ḡ) have a common
non-forking extension. Then, as they are canonical types, f̄ is interdefinable with ḡ,
and Gr(f̄) = Gr(ḡ). So take any f ∈ f̄ , g ∈ ḡ, such that f |̂

f̄
g. Now as Gr(f) and

Gr(g) are non-forking extensions of Gr(f̄), Gr(f) ∪ Gr(g) does not fork over f̄ by the
independence theorem. Thus f ∼1 g by Lemma 2.15, and f̄ = ḡ. qed

Thus every complete generic action π admits a reduction π̄. In case π is not complete,
we take the reduction of its completion. We have: Germ(π) = Func(π̄).

Lemma 2.19. Let π be a reduced generic action. Then the following are equivalent:

(1) f = g
(2) Gr(f) = Gr(g)
(3) There are ab |= Gr(f) ∪ Gr(g) with ab |̂

g
f and ab |̂

f
g.

Proof. 1 =⇒ 2 =⇒ 3: immediate.
3 =⇒ 1: By the definition of a reduced action. qed

Corollary 2.20. (1) If two reduced actions are isomorphic, then the isomorphism
is unique, given by: ϕ(f) = g ⇐⇒ ∃xy x |̂ fg ∧ y ∈ f(x) ∩ g(x).

(2) Two reduced actions are isomorphic if and only if they have the same graphs
(that is, for every function of one there is a function of the other with the same
graph).

Thus we may identify any two reduced functions having the same graph. The (canon-
ical) identification of any two isomorphic reduced actions ensues.

Definition 2.21. We say that two generic actions are equivalent, if their reductions
are isomorphic. We note it π ≈ π′.

Lemma 2.22. If π is reduced, it is isomorphic to π̄. In particular, for every f ∈
Func(π), Gr(f) is canonical.

Proof. By the definition of a reduced type and Lemma 2.15, ∼ will be trivial on
Func(π). qed

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 11

Lemma 2.23. If π is invertible then so is its reduction π̄, and π̄−1 and π−1 are

isomorphic. In other words, π̄−1 ≈ π−1. Moreover, for any f ∈ Func(π): f̂−1 = f̂−1

(where f̂−1 is the set of inverses of germs in f̂).

Proof. By Lemma 2.15, ∼π−1 is the same as ∼π. The isomorphism ensues, whence π
is invertible. qed

Corollary 2.24. The inverse of an invertible reduced action is reduced.

We pass to considering compositions. Here we suppose that π and π′ are generic
actions, on sorts such that π′ ◦ π exists.

Lemma 2.25. Let f ∈ Func(π), g ∈ Func(π′), f |̂ g, and h ∈ Germ(π′ ◦ π). Suppose
furthermore that abc |= Gr(f)(x, y)∪Gr(g)(y, z)∪Gr(h)(x, z). Then the following are
equivalent:

(1) h ∈ bdd(fg) and af |̂
b
cg.

(2) h ∈ bdd(fg) and ac |̂
h
fg.

(3) a |̂ fgh.

Proof. 1 =⇒ 3: af |̂
b
cg gives that a, f, g are independent, thus as h ∈ bdd(fg) we

get a |̂ fgh.
3 =⇒ 2: a |̂ fgh gives ac |̂

h
fg and ac |̂

fg
h by boundedness. Thus lstp(ac/fg) has

a common non-forking extension with Gr(h). But as the latter is a canonical type, this
means that h ∈ bdd(fg).
2 =⇒ 1: We get a |̂

h
fg =⇒ a |̂ fg =⇒ abf |̂ g =⇒ af |̂

b
cg as required. qed

When abc satisfy the conditions of this lemma (that is, all of the initial assumptions,
as well as any of the equivalent conditions 1 − 3), we say that they witness that

h ∈ ĝ ◦ f .

Lemma 2.26. Under the hypotheses of Lemma 2.25, h ∈ ĝ ◦ f if and only if there are
witnesses to it.

Proof. First, suppose h ∈ ĝ ◦ f . Then h is the germ of some completion of g◦f , so there
are abc satisfying the appropriate graphs with a independent of fg. As h ∈ bdd(fg),
a |̂ fgh.
Conversely, if abc are witnesses, then lstp(ac/fg) is a non-forking extension of Gr(h).

Thus h is the germ of the completion of g ◦ f to lstp(ac/fg), and h ∈ ĝ ◦ f . qed

Lemma 2.27. Suppose f ∈ Func(π), g ∈ Func(π′), f |̂ g. Then ĝ ◦ f =
⋃

f̄∈f̂ ,ḡ∈ĝ

̂̄g ◦ f̄ ,

when we identify germs with equal graphs. In other words:

{Grπ′◦π(h) : h ∈ ĝ ◦ f} = {Grπ̄′◦π̄(h) : f̄ ∈ f̂ , ḡ ∈ ĝ, h ∈ ̂̄g ◦ f̄}

Proof. Let h ∈ ĝ ◦ f , so there are witnesses abc |= Gr(f)(x, y)∪Gr(g)(y, z)∪Gr(h)(x, z),
and af |̂

b
cg. Fix f̄ to be the germ of the completion of f to lstp(ab/f), and ḡ the germ

of the completion of g to lstp(bc/g). Then we get at first: f |̂
b
cg =⇒ f |̂ bcg =⇒

fg |̂
ḡ
bc, and using it: a |̂

bf̄
cfg =⇒ abc |̂

f̄ ḡ
fg. Thus, lstp(ac/fg) is a non-forking

12 ITAY BEN-YAACOV

extension of lstp(ac/f̄ ḡ), so they have the same canonical restriction, Gr(h). Thus

identifying germs with equal graphs we get h ∈ ̂̄g ◦ f̄ .

Conversely, suppose that h ∈ ̂̄g ◦ f̄ , and take abc to witness that, so af̄ |̂
b
cḡ and

abc |= Gr(f̄)(x, y) ∪ Gr(ḡ)(y, z) ∪ Gr(h)(x, z).
We may choose abc such that in addition f |̂

f̄ ḡh
abc, so actually f |̂

f̄
abcḡh (remember

that h ∈ bdd(f̄ ḡ)). Let fp ∈ f be the completion of f whose germ is f̄ : then Gr(fp)

is a non-forking extension of Gr(f̄) (and of Gr(f)). Recall that fp ∈ bdd(f), and
that we also have ab |̂

f̄
ḡh, so by the independence theorem we may re-choose ab

such that ab |̂
f̄
fpḡh and ab |= Gr(fp), and then we can re-choose c such that abc

witness h ∈ ̂̄g ◦ f̄ . We may further choose it such that f |̂
abf̄ ḡ

c, so afp |̂
bḡ

c. From

ab |̂
f̄
fpḡh we get abf |̂ ḡ and then afp |̂

b
cḡ. To sum up, we did not change the

type of abc over f̄ ḡh, but now they witness h ∈ ̂̄g ◦ fp.
Take gq ∈ g such that ḡ = ḡq. The same argument, with g, ḡ, gq instead of f, f̄ , fp,
and fp instead of ḡ, shows that we can once again re-choose abc, without modifying

their type over fpḡh, such that they witness h ∈ ĝq ◦ fp. In particular, they witness

h ∈ ĝ ◦ f . qed

Corollary 2.28. π′ ◦π ≈ π̄′ ◦ π̄. Moreover, composition is compatible with equivalence
(that is, if πi ≈ π′

i then π1 ◦ π0 ≈ π′
1 ◦ π′

0).

Proof. For the first assertion, we have just seen that the germs of π′ ◦ π and π̄′ ◦ π̄
have exactly the same graphs. The second assertion is an immediate corollary of the
first. qed

Finally, if we add the hypothesis that T is one-based, we get a few significant sim-
plifications:

Proposition 2.29. Suppose T is one-based.

(1) If f is a germ and ab |= Gr(f) then f ∈ bdd(ab).

(2) If f , g are germs and h ∈ ĝ ◦ f then h |̂ f and h |̂ g.

Proof. (1) If f is a germ, then f = Cb(Gr(f)). One-basedness implies that ab |=
Gr(f) =⇒ Cb(Gr(f)) ∈ bdd(ab).

(2) Take abc witnessing that h ∈ ĝ ◦ f . Then a, b, c are independent, so in par-
ticular c |̂

a
b whence h |̂

a
f by the previous claim, and thus h |̂ f . We get

h |̂ g similarly.
qed

3. Germs of invertible functions

We start with a few more definitions:

Definition 3.1. (1) We say that a generic action π is connected if π(x, y, z) is a
complete type.

(2) We say that a generic action π is strong on the left (resp. on the right) if
π(x, y, z) implies that tp(xz/y) (resp. tp(xy/z)) is a Lascar strong type.

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 13

(3) We say that a composition π′◦π is generic if for every independent f ∈ Func(π),

g ∈ Func(π′), and for every h ∈ ĝ ◦ f , h is independent both of f and of g.

Remark 3.2. (1) Being strong on either side, being connected, or having a generic
composition (for a pair of actions) is preserved by completion and reduction.
Being connected is also preserved by taking the inverse action when this exists.

(2) By Proposition 2.29, in a one-based theory, every composition is generic.

Proof. Connectedness is preserved under completion since all Lascar strong extensions
of a complete type are conjugate.
We prove that if π is strong on the left then its completion π is strong on the left:
By Fact 1.5, π is strong on the left if and only if π(x, y, z) implies that dcl(y) =
dcl(xyz)∩bdd(y). Similarly, if π(x, y, z) is its completion, then by definition it implies
that dcl(x) = dcl(xyz) ∩ bdd(x), thus in fact dcl(xyz) = dcl(xyz). Intersecting with
bdd(y) we see that π is strong on the left.
The rest is easy. qed

Lemma 3.3. Consider a composition π′ ◦ π, and f ∈ Func(π), g ∈ Func(π′), h ∈
Germ(π′ ◦ π).

(1) If π is invertible, and f |̂ g, f |̂ h, then: h ∈ ĝ ◦ f ⇐⇒ g ∈ ĥ ◦ f−1, and
abc witness the first if and only if bac witness the second.

(2) If π′ is invertible, and f |̂ g, h |̂ g, then: h ∈ ĝ ◦ f ⇐⇒ f ∈ ĝ−1 ◦ h, and
abc witness the first if and only if acb witness the second.

Proof. (1) Given abc satisfying the graphs, and given the independencies, the first
statement is equivalent to a |̂ fgh, while the second to b |̂ fgh. We have

a |̂ fgh ⇐⇒ a |̂
f

gh ⇐⇒ ab |̂
f

gh ⇐⇒ b |̂
f

gh ⇐⇒ b |̂ fgh

(2) Given abc satisfying the graphs, and given the independencies, both statements
are equivalent to a |̂ fgh.

qed

3.1. Elimination. We now wish to study when a generic action and its inverse can
be eliminated from a composition.

Definition 3.4. (1) Let π, π′, π′′ be generic actions, π′ invertible, on sorts such
that the compositions π′−1 ◦ π and π′′ ◦ π′ exist and are generic. Then we say
that they form an elimination context.

(2) Let π, π′, π′′ form an elimination context. Suppose f ∈ Germ(π′), g0 ∈
Germ(π′′), g1 ∈ Germ(π), h0 ∈ Germ(π′−1 ◦ π), h1 ∈ Germ(π′′ ◦ π′). Sup-

pose that adb witness h0 ∈ ̂f−1 ◦ g0, and bdc witness h1 ∈ ĝ1 ◦ f . Suppose
furthermore that ag0h0 |̂

bdf
cg1h1. Then abcdfg0g1h0h1 form an elimination

diagram.
(3) Let π, π′, π′′ form an elimination context. For independent h0 ∈ Germ(π′−1◦π),

h1 ∈ Germ(π′′ ◦ π′), Elim(h0, h1) is the set of all the germs of h1 ◦ h0 obtained
by elimination diagrams, i.e. germs of lstp(ac/h0h1) taken from an elimination
diagram abcdfg0g1h0h1.

14 ITAY BEN-YAACOV

As a first step, we study what happens within a single elimination diagram:

Lemma 3.5. Let π, π′, π′′ form an elimination context, and abcdfg0g1h0h1 be an
elimination diagram for it. Then:

(1) abd witness g0 ∈ f̂ ◦ h0, and dbc witness g1 ∈ ̂h1 ◦ f−1.
(2) g0 |̂ g1, h0 |̂ h1, and a |̂ fg0g1h0h1.
(3) The germs of g1 ◦ g0 and of h1 ◦ h0 given by ac are the same.

(4) Note this common germ h. Then abc witness h ∈ ĥ1 ◦ h0, and adc witness
h ∈ ĝ1 ◦ g0.

(5) h is independent of each of g0, g1, h0, h1.

(6) Elim(h0, h1) ⊆ ĥ1 ◦ h0 ∩ Germ(π′′ ◦ π).

Proof. (1) By Lemma 3.3 and the genericity of π′−1 ◦ π and π′′ ◦ π′.
(2) We have ag0 |̂

bdf
g1 and ag0 |̂

d
bf , thus

ag0 |̂
d

fg1 =⇒ ag0 |̂ fg1 =⇒ a |̂ fg0g1 =⇒ a |̂ fg0g1h0h1

We can also continue:

ag0 |̂ fg1 =⇒ g0 |̂
f

g1 =⇒ h0 |̂
f

h1

which give g0 |̂ g1 and h0 |̂ h1, by the genericity of, say, π′−1 ◦ π.
(3) a |̂ fg0g1h0h1 gives ac |̂

h0h1

g0g1 and ac |̂
g0g1

h0h1.

(4) Clear by the above.
(5) We have h0 |̂ g0 by the genericity hypothesis, thus

g0h0 |̂
bdf

g1 =⇒ g0h0 |̂ g1 =⇒ h0 |̂ g0g1 =⇒ h0 |̂ h

One obtains h1 |̂ h similarly. Exchanging the roles of gi and hi:

g0h0 |̂
bdf

h1 =⇒ g0h0 |̂ h1 =⇒ g0 |̂ h0h1 =⇒ g0 |̂ h

and g1 |̂ h is similar.
(6) Clear by the above.

qed

We can now prove:

Theorem 3.6. Let π, π′, π′′ form an elimination context, and suppose furthermore
that π′ is connected and strong on the left.

(1) For independent h0 ∈ Germ(π′−1 ◦ π), h1 ∈ Germ(π′′ ◦ π′):

Elim(h0, h1) = ĥ1 ◦ h0

(2) The composition (π′′ ◦ π′) ◦ (π′−1 ◦ π) is generic, and:

Germ(π′′ ◦ π′ ◦ π′−1
◦ π) ⊆ Germ(π′′ ◦ π)

(3) If we further suppose that Val(π)∧Arg(π′′) ` Val(π′), we have equality, that is:

π′′ ◦ π′ ◦ π′−1
◦ π ≈ π′′ ◦ π

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 15

Proof. (1) Suppose that abc witness h ∈ ĥ1 ◦ h0, where h0 ∈ Germ(π′−1 ◦ π) and
h1 ∈ Germ(π′′ ◦ π′). As ab |= Gr(h0), we can find f ∈ Func(π′), g0 ∈ Func(π)

and d such that adb witness h0 ∈ ̂f−1 ◦ g0. Similarly we find f ′ ∈ Func(π′),

g1 ∈ Func(π) and d′ such that bd′c witness h1 ∈ ĝ1 ◦ f ′.

As π′−1 ◦ π is generic, we have h0 |̂ f , wherefore by Lemma 3.3 g0 ∈ f̂ ◦ h0

is witnessed by abd, and in particular ah0 |̂
b
df . Similarly, dbc witness g1 ∈

̂h1 ◦ f ′−1 and ch1 |̂
b
d′f ′. Of course, ah0 |̂

b
ch1. Since π′ is connected we get

df ≡b d′f ′. Since π′ is strong on the left, we have in fact df ≡Ls
b d′f ′. Summing

up, we may apply the independence theorem. Thus, fixing abchh0h1, we may
assume that d = d′, f = f ′, and ah0 |̂

bdf
ch1. We may also re-choose g0, g1 such

that ag0h0 |̂
bdf

cg1h1. We have obtained an elimination diagram for π, π′, π′′,

and h ∈ Elim(h0, h1) as required. The other inclusion is given by Lemma 3.5.
(2) Use the previous item, Corollary 2.28 and Lemma 3.5.
(3) Suppose now that h ∈ ĝ1 ◦ g0, where g0 ∈ Func(π) and g1 ∈ Func(π′′) are

independent, and let adc witness this. Then d |= Val(π) ∧ Arg(π′′) =⇒ d |=
Val(π′), and we can find some f ∈ Func(π′) and b such that bd |= Gr(f). We
may take bf |̂

d
acg0g1h, so ag0, cg1, bf are d-independent, and ag0 |̂

bdf
cg1.

Now f |̂ g0g1, a |̂ fg0 and b |̂ fg1, so we may take h0 = Cb(ab/fg0), h1 =
Cb(bc/fg1). Thus ag0h0 |̂

bdf
cg1h1, and once again we have an elimination

diagram. Then abc witness that h ∈ ĥ1 ◦ h0 and we are done.
qed

3.2. Generic multi-chunks.

Definition 3.7. We say that a generic action π is a generic multi-chunk if π is reduced,
Arg(π) is Lascar strong, π is invertible satisfying π = π−1, and the composition π ◦ π
is generic satisfying π2 ≈ π.

So, Theorem 3.6 gives:

Corollary 3.8. Let π be an invertible generic action, and let π′ be possibly another
generic action which is connected and strong on the left, such that Arg(π) and Val(π)
are Lascar strong, and π−1 ◦ π′ ≈ π′−1 ◦ π ≈ π−1 ◦ π are all generic compositions (so
Arg(π′) = Arg(π)). Note π̂ = π−1 ◦ π. Then π−1, π′, π form an elimination context,
and π̂ is a generic multi-chunk. If π is non-trivial, so is π̂.

Proof. The corollary is straightforward. For the consistency and non-triviality of π̂,
use Proposition 2.8 and that Val(π) is Lascar strong. qed

Usually we would have π′ = π.

A generic multi-chunk almost suffices in order to apply [Wag01, Theorem 3.1]. We
have:

Theorem 3.9. Let π be a generic multi-chunk. Let P = Germ(π). Then the composi-
tion π2 ≈ π induces a hyperdefinable function ∗ : P ×P → P , which is defined up to a
bounded non-zero number of possible values. This function satisfies the hypotheses of
the generalised Hrushovski-Weil theorem ([Wag01]), in the following sense:

16 ITAY BEN-YAACOV

(1) Generic independence: If f |̂ g and h ∈ f ∗ g then f, g, h are pairwise inde-
pendent.

(2) Generic associativity: suppose f, g, h are independent. Then f ∗ (g ∗ h) =
(f ∗ g) ∗ h (as sets).

(3) Generic surjectivity: For any independent f, g, there is h such that g ∈ f ∗ h.
Moreover, for any f, g, h: g ∈ f ∗ h ⇐⇒ h ∈ f−1 ∗ g.

If π is non-trivial, then P is not bounded, and in fact f ∈ P implies that tp(f) is not
bounded.

Proof. By π2 ≈ π, P is canonically definably isomorphic with Germ(π2), and we may

identify them. So take f ∗ g = ĝ ◦ f .
By Proposition 2.8, f ∗ g 6= ∅ for any f |̂ g, as Arg(π) = Val(π) is a complete Lascar
strong type by hypothesis. We also know this is a bounded set. So let us verify the
properties:

(1) Because the composition π ◦ π is generic.
(2) Consider f ′ ∈ f ∗ (g ∗ h). So there is g′ ∈ g ∗ h and f ′ ∈ f ∗ g′. Take witnesses

abd to f ′ ∈ f ∗ g′, and b′cd′ to g′ ∈ g ∗ h. Then we clearly have b′d′ |̂
g′

gh, and

also b |̂ fg′ =⇒ bd |̂
g′

ff ′, and finally f |̂ gh =⇒ ff ′ |̂
g′

gh. Then by the

independence theorem (and Gr(g′) being a Lascar strong type) we may suppose
that bd = b′d′, ff ′ |̂

bdg′
gh. We may further assume that aff ′ |̂

bdg′
cgh. Thus

we obtain af |̂
bdg′

gh =⇒ af |̂
b
dg′gh =⇒ abf |̂ gh =⇒ a |̂ fgh. Take h′

to be the germ of lstp(ac/fg). Then abc witness h′ ∈ f ∗ g and acd witness
f ′ ∈ h′ ∗ h. The other direction is similar.

(3) The moreover part is by Lemma 3.3. As f−1 ∗ g 6= ∅, it gives the surjectivity.

Finally, suppose that there is some bounded f ∈ P . Then, for any g ∈ P , we have
f |̂ g. Let abc witness h ∈ f ∗g. Then by the boundedness of f we have: af |̂

b
cg =⇒

a |̂ bcg =⇒ ac |̂ g =⇒ ac |̂ gf =⇒ ac |̂ h. But lstp(ac/h) is a canonical type, so h

must be bounded as well. But we also have: g ∈ f−1 ∗ h, so g is bounded. Thus every
element of P = Func(π) is bounded, so π is trivial. qed

Remark 3.10. Suppose that T is one-based.
Let a, b, c be pairwise independent, non-independent elements. Using the hypothesis of
one-basedness, we obtain a pairwise independent non-independent triplet a′, b′, c′ such
that each one is bounded over the other two, as in [BH94]. Take:

b′′ = bdd(b′) ∩ dcl(a′b′c′)

And:

π(x, y, z) = lstp(a′b′′c′)

As in a one-based theory all compositions are generic, we see that π satisfies the
hypotheses of Corollary 3.8, with π = π′.
Moreover, if we just seek to witness the non-triviality of T , we may assume that a, b
and c are finitary hyperimaginaries (that is, quotients of finite tuples; this was pointed

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 17

out by Ivan Tomašić). In this case, so would be a′, b′′ and c′. If in addition T is ω-
categorical, then a finitary hyperimaginary is in fact an imaginary, and ω-categoricity
applies to it. This will enable us to construct a definable group in [BTW].

4. Algebraic Quadrangles

A great deal of this section is an adaptation of passages from [Pil96, Chapter 5.4] to
the simple context.

We recall the definition. We wish to consider hyperimaginaries, so we replace alge-
braic by bounded closure:

Definition 4.1. Let e be some hyperimaginary parameter, and (f, g, h, a, b, c) a tuple
whose elements we put on a diagram as follows:

f a

³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³
³

pppppppppppppppppppp
b

g
c

h
Then (f, g, h, a, b, c) is a algebraic quadrangle over e if it satisfies the following condi-
tions:

(1) Every non-collinear triplet is e-independent.
(2) bdd(fge) = bdd(fhe) = bdd(ghe) (i.e., any two of f, g, h are e-interbounded

over the third).
(3) a, b are fe-interbounded, b, c are ge-interbounded, a, c are he-interbounded.
(4) f is e-interbounded with Cb(ab/fe) [= Cb(lstp(ab/fe))], g is e-interbounded

with Cb(bc/ge), h is e-interbounded with Cb(ac/he).

These can be easily verified:

Fact 4.2. If (f, g, h, a, b, c) is an algebraic quadrangle over e as above, and
(f ′, g′, h′, a′, b′, c′) is such that each primed element is interbounded over e with the
corresponding unprimed element, then (f ′, g′, h′, a′, b′, c′) is also an algebraic quadran-
gle over e. In such a case we say that these quadrangles are algebraically equivalent
(over e).

Fact 4.3. If (f, g, h, a, b, c) is an algebraic quadrangles over e, independent over e from
e′ ⊇ e, then it is an algebraic quadrangle over e′ as well.

We now prove a variant of [Pil96, Lemma 5.4.6] for a simple theory. This is done
solely for the sake of completeness: since in any case we have to accept multi-valued
generic functions, it is not of much use for us. The reader may feel free to skip directly
to Proposition 4.7.

Fact 4.4. Suppose a |̂
c
b with c ∈ bdd(a) ∩ bdd(b). Then c is interbounded with

Cb(a/b).

18 ITAY BEN-YAACOV

Proof. As c ∈ bdd(b): Cb(a/bc) = Cb(a/b). Thus a |̂
c
b =⇒ Cb(a/b) ∈ bdd(c). We

also have:

a |̂
Cb(a/b)

b =⇒ c |̂
Cb(a/b)

c =⇒ c ∈ bdd(Cb(a/b))

qed

Lemma 4.5. Let (f, g, h, a, b, c) be an algebraic quadrangle over e. Then there is e′ ⊇ e
such that fghabc |̂

e
e′ (so it is an algebraic quadrangle over e′ as well), and f ′ ⊇ f ,

b′ ⊇ b, and a′, such that (f ′, g, h, a′, b′, c) is algebraically equivalent to the original
quadrangle over e′, and a′ ∈ dcl(f ′b′e′).
Furthermore, if we had originally b ∈ dcl(fae), c ∈ dcl(hae), then we still have b ∈
dcl(f ′a′e′).

Proof. Realize tp(ghc/fabe) by g′h′c′, such that ghc |̂
fabe

g′h′c′. Write e′ = eg′, so

indeed fghabc |̂
e
e′. Write f ′ = fh′, b′ = bc′, so over e′ they are interbounded with

f and b, respectively. Take now a′ to be the (unordered) set of f ′b′e′-conjugates of a
(as a is bounded over f ′b′e′, this exists, see in [BPW01]). Then clearly a ∈ bdd(a′).
For the other direction, notice that f |̂

ae
h′ =⇒ fb |̂

ae
h′c′, and as a ∈ bdd(fbe) ∩

bdd(h′c′e) we conclude that a is interbounded over e with Cb(h′c′/fbe). Thus, if
â |= tp(a/f ′b′e′), then a, â are e′-interbounded, whence a′ ∈ bdd(ae′). Thus we have
obtained an algebraically equivalent quadrangle, and a′ ∈ dcl(f ′b′e′).
For the second assertion, suppose that indeed b ∈ dcl(fae), c ∈ dcl(hae). Then
b′ = bc′ ∈ dcl(fh′ae) = dcl(f ′ae). Then, if â |= tp(a/f ′b′e′), we also have b′ ∈ dcl(f ′âe).
So b′ ∈ dcl(f ′a′e′). qed

Proposition 4.6. Let (f, g, h, a, b, c) be an algebraic quadrangle over e. Then there is
e′ ⊇ e such that fghabc |̂

e
e′, and (f ′g′h′, a′, b′, c′) algebraically equivalent to it over

e′, such that a′, b′ are f ′e′-interdefinable.

Proof. Apply the lemma to obtain (f ′, g, h, a′, b′, c) over e′, with a′ ∈ dcl(f ′b′e′). Apply
it again, this time with c in place of a, to obtain (f ′, g′, h, a′, b′′, c′) over e′′, with
c′ ∈ dcl(g′b′′e′′). As we only increased b′, e′ to obtain b′′, e′′, we still have a′ ∈ dcl(f ′b′′e′′).
Finally, apply it to obtain (f ′′, g′, h, a′′, b′′′, c′) over e′′′, with b′′′ ∈ dcl(f ′′a′′e′′′). By
the furthermore part of the lemma, we still have a′′ ∈ dcl(f ′′b′′′e′′′). Now we have:
f ′g′ha′b′′c′ |̂

e′′
e′′′ =⇒ f ′gha′b′c |̂

e′′
e′′′ =⇒ f ′gha′b′c |̂

e′
e′′′ =⇒ fghabc |̂

e′
e′′′ =⇒

fghabc |̂
e
e′′′, which concludes the proof. qed

We also have:

Proposition 4.7. Let (f, g, h, a, b, c) be an algebraic quadrangle, say over ∅, and take
π(x, y, z) = tp(fab). Then π is an invertible generic action. Moreover, if π is strong
on the right, then π−1 ◦ π is a generic composition.

Proof. The only part that requires proof is the generic composition, assuming that π
is strong on the right. So suppose that a, f, f ′ are independent, and a′ ∈ f ′−1 ◦ f(a),
and we need to show that the germ of lstp(aa′/ff ′) is independent of each of f, f ′.
There is b ∈ f(a) ∩ f ′(a′), and we have f |̂

b
f ′ =⇒ fa |̂

b
f ′a′.

We may assume in fact that f, a, b are those of the original quadrangle. Since π is

GROUP CONFIGURATIONS AND GERMS IN SIMPLE THEORIES 19

strong on the right we have fa ≡Ls
b f ′a′, so we can find g′c′ such that fgac ≡Ls

b f ′g′a′c′.
In the original quadrangle, we have g |̂

b
f =⇒ gc |̂

b
fa, and thus g′c′ |̂

b
f ′a′. By

the independence theorem we may assume that gc = g′c′ and fa |̂
gbc

f ′a′. We may

then find h′ such that fha |̂
gbc

f ′h′a′ and fha ≡gbc f ′h′a′. We see that:

fa |̂
gbc

f ′ =⇒ fa |̂
g

f ′ =⇒ a |̂ ff ′g =⇒ a |̂ ff ′hh′

fh |̂
gbc

h′ =⇒ fh |̂ h′ =⇒ f |̂ hh′

And similarly f ′ |̂ hh′. Also, a′ ∈ bdd(ahh′) as we can pass through c instead of
b. So we have that aa′ |̂

hh′
ff ′ and aa′ |̂

ff ′
hh′, thus Cb(aa′/ff ′) = Cb(aa′/hh′) ∈

bdd(hh′), and is therefore independent of each of f, f ′. Thus the composition is generic.
qed

We obtain more or less immediately:

Corollary 4.8. Let (f, g, h, a, b, c) be an algebraic quadrangle over e. Let a′ =
dcl(fabe)∩bdd(ae) and b′ = dcl(fabe)∩bdd(be). Then (f, g, h, a′, b′, c) is algebraically
equivalent over e to the original quadrangle. Take π = lstp(fa′b′/e). Then, π is strong
on both sides, and it satisfies the assumptions of Corollary 3.8, with π = π′, yielding a
generic multi-chunk π̂ = π−1 ◦ π (over bdd(e)).

And with some more work:

Theorem 4.9. Let (f, g, h, a, b, c) be an algebraic quadrangle over e. Then there are
an algebraic quadrangle (f ′, g′, h′, a′, b′, c′) also over e, a generic multi-chunk π̂ over
bdd(e), and a hyperimaginary e′ such that:

• e′ |̂
e
fghabc and e′ |̂

e
f ′g′h′a′b′c′.

• (f, g, h, a, b, c) and (f ′, g′, h′, a′, b′, c′) are algebraically equivalent over e′.

• f ′, g′, h′ ∈ Func(π̂), a′, b′, c′ ∈ Arg(π̂) = Val(π̂), and a′b′c′ witness h′ ∈ ĝ′ ◦ f ′.

Moreover, if all of (f, g, h, a, b, c) and e are finitary hyperimaginaries, then we can
take π̂ to be over a finitary hyperimaginary ẽ such that e ⊆ ẽ ⊆ bdd(e), and then
P = Germ(π̂) of Theorem 3.9 is in a finitary hyperimaginary sort.

Proof. First, set ẽ = dcl(fghabce) ∩ bdd(e). Then (f, g, h, a, b, c) is also an algebraic
quadrangle over ẽ. Working over ẽ, we will assume that ẽ = ∅.
Let ã = dcl(fghabc)∩bdd(a), b̃ = dcl(fghabc)∩bdd(b) and c̃ = dcl(fghabc)∩bdd(c),

and take π = tp(fãb̃), π′ = tp(hãc̃), and π̂ = π−1 ◦ π. Since we work over ẽ, π and
π′ are both Lascar strong types, and π̂ is a generic multi-chunk by Corollary 3.8. By
looking at the proof of Proposition 4.7, we see that every germ of π−1 ◦ π is a germ of

π′−1 ◦ π′ and vice versa, so π̂ = π′−1 ◦ π′ as well.
Write a′ = ã. Choose f̃ ≡b̃ f such that f̃ |̂ fghãb̃c̃, and take b′ ∈ f̃−1(b̃). Similarly,

choose h̃ ≡c̃ h such that h̃ |̂ ff̃ghãb̃b′c̃, and choose c′ ∈ h̃−1(c̃).

Then f̃−1◦f ∈ Func(π−1◦π) and b′ ∈ f̃−1◦f(a′), so we can take f ′ ∈ ˜̂f−1 ◦ f ⊆ Germ(π̂)

to be Cb(a′b′/ff̃). Similarly, take h′ ∈ ˜̂h−1 ◦ h ⊆ Germ(π̂) to be Cb(a′c′/hh̃). Finally,

take g′ ∈ ̂h′ ◦ f ′−1 ⊆ Germ(π̂2) = Func(π̂) to be Cb(b′c′/f ′h′).

20 ITAY BEN-YAACOV

Let e′ = f̃ h̃. Then h̃ |̂ ff̃ghãb̃b′c̃ implies e′ |̂ fghabc. Is also implies h̃f̃ |̂ fha′,

whereby {f̃ , h̃, f, h, a′} are an independent set, whereby {f̃ , h̃, f ′, h′, a′} are an inde-
pendent set, and e′ |̂ f ′g′h′a′b′c′ as promised.

b′a′c′ witness that g′ ∈ ̂h′ ◦ f ′−1, so a′b′c′ witness h′ ∈ ĝ′ ◦ f ′.
By their choice, each of a′, b′, c′, f ′ and h′ is interbounded over e′ with the un-
primed element. For g and g′, we need to work slightly more. Let π′′ = lstp(gb̃c̃),

and let g̃ ∈ Germ(π′′) be Cb(b̃c̃/g). Then g and g̃ are interbounded, and it suf-
fices to show that g̃ and g′ are interbounded over e′. But then one sees easily that

b̃ |̂ f̃ g̃g′h̃ and b′ |̂ f̃ g̃g′h̃, so b′b̃c̃c′ witness that g′ ∈ ̂h̃−1 ◦ g̃ ◦ f̃ and b̃b′c′c̃ witness that

g̃ ∈ ̂h̃ ◦ g′ ◦ f̃−1, and we are done.
For the moreover part, assume that (f, g, h, a, b, c) and e are finitary hyperimaginaries.

Then so are ã and b̃, and ẽ, and π̂ is over ẽ. In the rest of the construction, if the input
is in finitary hyperimaginary sorts, then so is the output. qed

References

[Ben03a] Itay Ben-Yaacov, Positive model theory and compact abstract theories, Journal of Mathe-
matical Logic 3 (2003), no. 1, 85–118.

[Ben03b] , Thickness, and a categoric view of type-space functors, Fundamenta Mathematicae
179 (2003), 199–224.

[BH94] Elisabeth Bouscaren and Ehud Hrushovski, On one-based theories, Journal of Symbolic
Logic 59 (1994), no. 2, 579–595.

[BPW01] Steven Buechler, Anand Pillay, and Frank O. Wagner, Supersimple theories, Journal of the
American Mathematical Society 14 (2001), 109–124.

[BTW] Itay Ben-Yaacov, Ivan Tomašić, and Frank O. Wagner, Constructing an almost hyperdefin-

able group, preprint.
[BW] Itay Ben-Yaacov and Frank O. Wagner, On almost orthogonality in simple theories, Journal

of Symbolic Logic (to appear).
[HKP00] Bradd Hart, Byunghan Kim, and Anand Pillay, Coordinatisation and canonical bases in

simple theories, Journal of Symbolic Logic 65 (2000), 293–309.
[Kim98a] Byunghan Kim, Forking in simple unstable theories, Journal of the London Mathematical

Society 57 (1998), no. 2, 257–267.
[Kim98b] , A note on lascar strong types in simple theories, Journal of Symbolic Logic 63

(1998), no. 3, 926–936.
[KP97] Byunghan Kim and Anand Pillay, Simple theories, Annals of Pure and Applied Logic 88

(1997), 149–164.
[Pil96] Anand Pillay, Geometric stability theory, Clarendon Press, 1996.
[Wag00] Frank O. Wagner, Simple theories, Kluwer Academic Publishers, 2000.
[Wag01] , Hyperdefinable groups in simple theories, Journal of Mathematical Logic 1 (2001),

152–172.

Itay Ben-Yaacov, Équipe de Logique Mathématique, UFR de Mathématiques (case
7012), Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05 France

E-mail address: pezz@logique.jussieu.fr
URL: http://www.logique.jussieu.fr/www.pezz

