SCHRODINGER’S CAT
ITAY BEN-YAACOV

ABSTRACT. We show that the classical framework of probability spaces, which does
not admit a model theoretical treatment, is equivalent to that of probability algebras,
which does. We prove that the category of probability algebras is a stable cat, where
non-dividing coincides with the ordinary notion of independence used in probability
theory.

INTRODUCTION

In this paper we wish to present a model-theoretic treatment of probability spaces.
The objects we are interested in are events and random variables, and their types are
going to be their probabilities, or their distributions. And of course, these objects
admit the natural notion of probabilistic independence: as we would hope, it turns out
to coincide with non-dividing, and is in fact the unique stable (or simple) notion of
independence that the “theory” of probability spaces admits.

In doing so there are two main hurdles to be passed. First, let us recall that a
probability space is classically defined as a triplet (2,8, 1) where Q is a set, B C P(2)
is a o-algebra of subsets of 2, and pu: B — [0, 1] is a o-additive positive measure of
total mass 1. The elements of B are called events, and if a € 9B then its measure
p(a) is also called its probability. This point-oriented description fits our intuition of
what a measure space or a measurable function are. On the other hand, the class
of probability spaces as two-sorted structures in the signature (€, 1) does not seem to
have the “nice” properties which would allow any reasonable model-theoretic treatment
(as we understand it).

The problematic part of this two-sorted structure seems to be the sort of points: For
example, given events {a;: i < w}, the property a = J,_, a;, which is of fundamental
importance to measure theory, cannot conceivably be defined by a (finitary!) formulas
with parameters in {a;}, or even an infinite conjunction thereof, as long as we insist on
seeing events as sets of points. But then again, we are principally interested in events
and random variables, not in points, so we look for an alternative approach that would
forgo points entirely. Forgetting the sort of points, we are left with the boolean algebra
B of events equipped with a measure function pu: B — [0,1]. In the terminology of
[Fre04], B is a measure algebra; as we are mostly interested in the case where the total
measure is 1, we study in this paper the model theory of probability measure algebras.

The framework of (probability) measure algebras turns out to suffice for all prac-
tical purposes, with some definitions somehow turned around. For example, random
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variables are now defined by the events that in the classical approach they define (e.g.,
if f is a positive random variable, then we identify it with the sequence of events
({f > t}:t € QT)). The pure boolean algebra B does not come with a notion of
countable union; however, the measure p induces one such notion, which is the unique
one with respect to which p is o-additive: thus, in this approach, o-additivity comes
for free. Also, the existence of “countable unions” in B (i.e., the analogue of B being
a o-algebra) is equivalent to 8 being complete in a natural metric; if it is not then it
has a unique completion, so in some sense being a o-algebra comes for free as well.

We will try to give a pretty complete though schematic introduction to integration
theory in probability measure algebras. For a more general treatment, we refer the
reader to [Fre04].

The second hurdle is that probability measure algebras do not admit a first order
treatment. The author does not consider this to be much of a deficiency, as they do
admit a natural and elegant treatment as a compact abstract theory (cat). As such it
is stable, and in fact w-stable. It is not uncountably categorical; it is w-categorical
though, and has relatively few models in uncountable cardinals (these last properties
follow from Maharam'’s structure theorem [Fre04, 332B] for measure algebras, discussed
in Section 2.3).

We refer the reader to [Bena] for a survey of the framework of compact abstract
theories. In particular, the reader is referred there for the definition of cats, types,
the topology of the type spaces, and the relations between type spaces as given by the
type-space functor. We will mostly be concerned with Hausdorff cats, i.e., cats whose
type spaces are Hausdorff.

Lowercase letters a,b, ... denote single elements, or tuples thereof: here these will
usually be events in a probability measure algebra, but may also be hyperimaginary
elements (i.e., quotients of possibly infinite tuples of “real” elements by type-definable
equivalence relations), and thus in particular possibly infinite tuples of elements. The
precise meaning of an “element” will always be clear from the context or explicitly
stated. Uppercase letters A, B, ... denote sets, i.e., possibly infinite tuples with no
fixed enumeration. Script letters &7, 4, ... denote probability measure algebras. The
notation a =4 @’ means that tp(a/A) = tp(a’/A).

If a, b are any two tuples (possibly hyperimaginary) in a universal domain then b is
definable (bounded) over a, in symbols b € dcl(a) (b € bdd(a)) if tp(b/a) has a unique
realisation (bounded number of realisations). If a € dcl(b) and b € dcl(a) then they
are interdefinable. If dcl(a) = bdd(a) then a is boundedly closed.

Sometimes we wish to view dcl(a) (bdd(a)) as a set, rather than a proper class.
For this We may restrict it to all small hyperimaginary elements (i.e., quotients of
tuples which are not longer than the cardinality of the language) which are definable
(bounded) over a: since every hyperimaginary element is interdefinable with a tuple
of small ones, there is no loss of information.

1. POINT-FREE PROBABILITY SPACES

Here we develop the notion of a probability measure algebra (or probability algebra,
for short), explain why it is equivalent to classical probability spaces, and sketch the
development of integration theory in this framework.



SCHRODINGER’S CAT 3

1.1. Probability algebras.

Definition 1.1. Let &/ be a boolean algebra. A probability semi-measure on <7 is a
function p: o — [0, 1] satisfying:

(i) p(a V) + plaAb) = p(a) + p(b)
(i) (1) =1
(i) p(0) = 0
It is a probability measure if in addition:
(iii)” p(a) =0<=a=0
If 4 is a probability (semi-)measure on o/ then we say that (<7, p) is a probability
(semi- )measure algebra. Most of the time, though, we omit x4 and consider it a part
of the structure on .«/. We may shorten probability measure algebra into probability
algebra.

A probability algebra as defined here is the same as a measure algebra in the sense
of [Fre04] with total measure one. Since we deal here with finite total measure, some
technical conditions introduced in [Fre04] are not required.

Notation 1.2. If &7 is a boolean algebra, then & denotes symmetric difference in 7.

We use @ to denote symmetric difference as we think of it more as the addition
of the corresponding boolean ring (see Fact 2.1 below). Throughout this paper we
will use & to denote addition in boolean rings and + to denote addition in ordinary
characteristic zero rings.

Definition 1.3. If o7 is a probability semi-measure algebra, we define a semi-metric
on o by d(a,b) = p(a ®b). If u is a measure, then d is a metric.

Given a semi-metric space, it is natural to replace it with a metric one, and then with
its completion. Both procedures are compatible with the measure algebra structure:

First we define a =¢ b if d(a,b) = 0. Then = is the equivalence relation induced by
the null-measure ideal in .27, so &7 /= is a boolean algebra on which pu is well-defined.
Thus (&7 /=0, pt) is a probability measure algebra on which d is a true metric.

Assume now that o7 is probability measure algebra. Then it is easy to verify that
its unique completion (as a metric space) o admits a unique structure of a probability
measure algebra: if (a;) and (b;) are Cauchy sequences in &7, then (lima;) A (lim b;) =
lim(a; A b;), p(lima;) = lim p(a;), ete.

In particular, since the metric d was defined from p, the measure function p is always
continuous.

Definition 1.4. Let &7 be a probability algebra, and {a;: ¢ < A} C & a family of

events. We say that b € o7 is the least upper bound of {a;: i < A}, in symbols b =

Viea @i, if b > a; for all i < A and p(b) = sup,epy<e #(Vig, @) In case A = w, which

the interesting one, then this is the same as requiring that p(b) = limy,<., u(\/,_,, @)
Greatest lower bounds are defined similarly.

Fact 1.5. Let {a;: i < A} be a family of events in a probability algebra <f .

(i) If b =V, a; (in the sense of probability algebras) then b is the l.u.b. of that
family in the sense of pure boolean algebras as well. It is therefore unique.
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(ii) There exists a countable subset I C X\ (depending on the family {a;: i < \})
such that \/,_, a; exists if and only if \/,.; a; does, in which case they are equal.
(iii) If A = w, then \/,_, a; = lim,«, \/,_, a; provided at least one exists.

Proof. (i) Assume that b=\/,_, a;, and ¢ > q; for all . Then

i<X
p(b) = sup u(\/ai):>u(b\c):O:>czb.
wEN|<w icw

(ii) Find w, € [\]<¥ for n < w be such that

sup p( \/ a;) = sup M(\/ ai),

<
n<w 1EWn weA < €W

and let I =, wy,. Then:
(1) sup M(\/ a;) = sup M(\/ ;).

well]<w o weN<Y o
Clearly, if b = \/,_, a; exists then £(b) is equal to the common value in (1), and
b= V,e; @i as well. Conversely, assume b = \/,_; a; exists. Then again p(b) is
equal to the common value in (1). For every j < A we must have p(a; \b) = 0,
since the contrary would yield a contradiction to (1). Therefore b > a; for all
j<Xandb=1V,_,a,.

(iii) Immediate from the definitions.

QEDq 5

More generally, one can show that \/, o @i = limyepyy<e \/iew a; provided that at least
one exists, when the limit is taken over the directed set of finite subsets of .

By passing to the complement, a probability measure algebra admits least upper
bounds if and only it admits greatest lower bounds. This is further equivalent to
completeness:

Proposition 1.6. A probability measure algebra <7 is complete if and only if it admits
countable (arbitrary) least upper bounds.

Proof. Assume that o7 is complete. Since the measure is finite, a sequence of the form
(Vicpai: n < w) is a Cauchy sequence, and therefore its limit exists, and equal to
Vi<, i By Fact 1.5, if every countable family has a least upper bound, so does in
fact every family.

Conversely, assume that &/ admits countable least upper bounds, and therefore
greatest lower bounds as well. We can define for an arbitrary sequence (a;):

limsupa; = /\ \/ a; liminf a; = \/ /\ a;

n<w nli<w n<w nli<w

Now let (a;) be a Cauchy sequence. If it has a converging sub-sequence then
it converges as well, so we may assume that d(a;,a;1) < 27°. It follows that
max{d(an, \,<;c, @) d(an, \ cic, @)} < 27", so limsupa; = liminf a;, and the se-
quence converges to this common value. QED; 4

Thus a complete probability algebra is the analogue of a o-algebra equipped with a
o-additive probability measure.
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Remark 1.7. One could try to define an abstract o-algebra as a pure boolean algebra
where every countable family has a lowest upper bound. However, we do not see how
this could work out:

(i) As we said above, without measure we can say that b > a; for all i, but
using finitary logic we cannot say that b is minimal as such. One undesirable
consequence is that if .27 is a pure boolean algebra and b = \/,; a; in the sense
of &7, but b cannot be expressed as a finite sub-disjunction, then there is a
boolean algebra &7 < /" and ¢ € &/’ such that ¢ = \/,; a; in the sense of .&7’,
and ¢ # b. Thus, even though \/,.; a; may have a value in one pure boolean
algebra, it is meaningless in the category of boolean algebras.

(i) If one tries to prove that an abstract o-algebra thus defined is equal to a o-
algebra of sets, one may run into difficulties, and in fact we do not know if
this is in general true. On the other hand, we prove below that a probability
algebra is equivalent to a concrete probability space, modulo null-measure sets.

We find this reason enough to claim that in the abstract setting, the measure is an

essential part of the structure of a g-algebra, not to mention that the measure allows
us to remove the “o-" prefix without any loss.

The following is more or less evident:

Proposition 1.8. Let (2,8, 1) be a probability space. Then (B, 1) is a probability
semi-measure algebra, and (B /=, p) is a complete probability algebra.

The converse is somewhat more tricky: we know that (%8/=y, ) does not determine
(2,8, 1), just as a boolean algebra can have several distinct representations as a
boolean algebra of sets.

Recall that the Stone space of a boolean algebra o7, which will be denoted here by .7,
is the set of all ultrafilters on 7. For every a € o/ we define d = {u € & : a € u} C o
the family of sets {a: a € &/} forms a clopen basis for a totally disconnected topology
on <. In particular, o/ has a canonical representation as an algebra of sets, namely
as the algebra of clopen sets in o .

This suggests that if (&7, 1) is a probability algebra, we might try and present it as
(B(/) /=0, i), where B(7) is the algebra of Borel sets in & and /i is a probability
measure on it. Of course, (B(4/)/=0, fi) would necessarily be complete, but up to this
limitation everything works fine:

Theorem 1.9. Let (o, p) be a probability algebra (not necessarily complete). Let o
denote the Stone space of o, and let %(,Q%) denote the family of Borel sets in <f ; for
a € 9, let a C of be the corresponding clopen set.

(i) There is a unique Borel measure fi on o such that for every a € o

(2) fua) = p(a)
And for every A € B():
(3) fi(A) =sup{ia(F): closed F C A}

= inf{a(U): open U O A}
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Moreover, if U is open then i(U) = sup{u(a): a C U} and if F is closed then
A(F) =inf{pu(a): a O F}.
In particular, (@Z’ ‘B(Jz/), i) is a probability space.

(i) If (7, ) is complete, then every Borel set (or for that matter, every Lebesgue-
measurable set) A C o is =g-equivalent to a unique clopen set a, C . In
particular, identifying a € o with a/=,, we have (B() /=y, i) = (A, 11).
Moreover, if U C o is open, then U C ay, and if F' C o/ is closed then
FDap. )

(iii) If (o7, ) is not complete then (B()/=o, 1) is its completion, namely the
minimal complete probability algebra extending (<7, ).

Proof. (i) Define an appropriate Riemann integral [ f du of complex-valued func-

tions f: o/ — C using finite partitions of &7 into clopen sets: since the clopen
sets are precisely those of the form a for a € 7, they have an associated mea-
sure. Restricted to continuous functions, the Riemann integral always exists
(just as in the case of functions from finite intervals of the reals) and forms
a positive functional. By the Riesz representation theorem [Rud66, Theorem
2.14] there is a (unique) Borel measure ji on & such that [ fdu = [ fdj
for every continuous f, which in addition satisfies (3) (since / is compact
and the total measure is finite). As characteristic functions of clopen sets are
continuous, we immediately obtain (2). This shows that fi exists.
We know that in a Stone space, if ' C U are closed and open, respectively,
then there is a € o7 such that F' C a C U. Using this fact, the moreover part
follows from (3); along with (2) and (3) it determines fi entirely, whence the
uniqueness.

(ii)) We assume now that (<7, u) is complete. We need to prove that for every
A € B(/) there exists ay € & such that A =, d4: if one exists then it is
unique. B
Consider first the case of U C & open, and let ay = \/;-;a. Then U C ay,
and p(ay) = sup{u(a): @ C U} = ji(U), whereby U = ay. This also yields
the moreover part (for closed sets, pass to complement).

We now proceed by induction on the construction of Borel sets. If A =y a4
then & \ A =y a5, so a;_, = a4. If Ay =¢ aa, for every i < w, then

UAi =0 Uaa, =0 Vaa,, so aya, =\ aa,. This shows that all Borel sets are
clopen modulo =.

(iii) Finally, assume that (o7, u) C (&', 1) where (&', i) is complete, but (<7, )
maybe not so. Then the inclusion &/ — 7’ induces a projection &’ — o
which in turn induces an inclusion B(&7) — B(=/"). From p C i we easily
get fu C [, whereby (B()/=0, 1) € (B(A")/=0, i) = (", ).

QEDq g

Compare this now with the point-oriented approach: if p is additive, but not o-
additive, on some o-algebra B, say p(J,., Ai) > lim p(lJ,_,, Ai), then this just means
that there are missing points whose measure should have been the difference. Thus,

points are not only unnecessary, they can be simply misleading.
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When (&7, 1) is complete, the measure space (Jzi , 53(42; ), ft) is particularly nice.

Corollary 1.10. Assume that (<7, p) is complete.
(i) For every Borel set A:

o

i(A) = sup{p(a): a € A} = (A
— inf{p(a): @ 2 A} = i(A)

(ii) The meager sets ideal and the zero measure sets ideal coincide in . In fact,
a set is meager if and only if it is nowhere-dense.

Proof. (i) We know that for open U C «7: U C ay and ji(U) = p(ay). Therefore:
A(A) < inf{ju(a): 3 2 A}
< inf{p(ay): U is open and ay O A}
<inf{u(ay): U is open and U D A}
=inf{f(U): U is open and U D A}
= [i(4)
And fi(A) = sup{p(a): @ C A} is obtained by passing to the complement.
The two other equalities are obtained from these and a C ;1 <~ a C A,
a2 A<= a2 A. )
(ii) Let A be a Borel set. Then ji(A) = 0 <= ji(A) = 0 & (A) = 0 <

A = @. Thus a set has zero measure if and only if it is nowhere-dense. Since
the zero measure sets form a o-ideal, so do the nowhere-dense ones in this
case. In general, the family of meager sets is the o-ideal generated by the
nowhere-dense sets, so here the two notions agree.

QED1 19

Definition 1.11. Let 9t denote the category of probability algebras, where morphisms
are morphisms of boolean algebras, which in addition preserve the measure.

Thus the category 2t considers the measure a part of the information contained in a
probability algebra &7 € M, so we omit u from the notation. If we want to be explicit
about it, we may still write u. for the measure of <.

We write o < A to say that o C Z and the inclusion is a morphism.

1.2. Measurable functions. We recall that a positive measurable function defined on
a probability space (2,9, i) is a function f: Q — [0, 00] such that for every ¢ € [0, oo]
the set {z: f(x) > t} is measurable. We may denote this set simply by {f > t}.
Clearly, it suffices to require this for every t € Q*. Two functions are said to be equal
almost everywhere (a.e.) if they differ on a zero measure set.

The analogous definition is:

Definition 1.12. A positive function on a complete probability algebra .7 is a de-
creasing sequence f = (fy: t € QV) satisfying f; = /o, f;. We write (with some
abuse) f: o7 — [0, 0.

The event fy is also called the support of f, also denoted supp f.
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If o7 is not complete, then a positive function on 7 is defined as a positive functions
on its completion.

Intuitively, we view f; as the event {f > t}, whence the definition of support and
the requirement that f, =\/,_, fs.
It is quite reassuring that the two notions agree:

Proposition 1.13. Let (2,8, u) be a probability space and (B /=y, 1) the associated

probability measure algebra. If f: Q0 — [0, 00] is measurable, define f as the sequence
({f > t}/=o: t € Q") in B/=y. Then the map f — f is a bijection between the
set of positive measurable functions on 0 modulo equality a.e. and the set of positive
functions on B /=,.

Proof. 1t f,g: Q — [0, 00| are equal a.e. then {f >t} =¢ {g > t} for every ¢, whereby
f = ¢. Thus the map f — f is well-defined even if f is only known modulo equality
a.e.. Since r >t <= (35 > 1) (r > s), f is a positive function on B/=,.

Conversely, assume that a positive function g = (g;: t € QT) is given on B/=,.
Every g; is of the form A;/=, for some A; € B. Define f(x) = sup{t: z € A;} (we
convene that in this context, sup@ = 0). Then f(z) > t <= (Is > t) (x € Ay), so
{f >t} =U,;r As and {f > t}/=0 = (Usoy 45)/=0 = V421 95 = g¢. Thus f = g, and
the map is surjective.

Finally, assume that f and g are not equal a.e.. Then u({f # g}) > 0, and we
may assume that u({f > g}) > 0. Since {f > g} = Uycq+{f >t} N {g < t} and
this is a countable union, there is t such that u({f > t} N {g < t}) > 0. Therefore

{f >t} #o{g >t} and f # 9. QEDq 13

As before, the situation is even nicer when the probability space under consideration
is the Stone space of a complete probability algebra:

Proposition 1.14. If o/ is a complete probability algebra then every positive measur-
able function on o is equal a.e. to a unique continuous function f: o — [0, 00]. Thus,
the set of positive functions on <f is in bijection with the set of continuous functions
from o/ to [0, 00].

Proof. 1t suffices to show that if g = (g;) is a positive function on <7 then there exists
a continuous function f: & — [0, 00| satisfying f = g.

Define f(x) = sup{t: z € g}, and we already know from the proof of Proposition 1.13
that f = g. Moreover, {f > t} = U,s¢ §s which is open, and similarly {f > t} =
(Ns<: Js» which is closed, so f is continuous. QED; 14

From now on assume that @7 is a complete probability algebra.
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If f: o/ — [0,00] is a positive functions on &/ and B C [0, 0] is a Borel set, then
we can define the event {f € B} € & by induction on the complexity of B:

{feay={f<a}=N\F

t>a

{fela, 0} ={f>a}=\/ /i

t<a

{f €[0,00]\ B} = {f € B}
{f € mBi}:/\{fEBi}

1<w ?
(Since every closed set in [0, 00| is a countable intersection of finite unions of closed
intervals, this is enough.)
If @« < w, f; are positive functions for i < a, and B C [0,00]* is a Borel set, the
event {f € B} is constructed in a similar manner. If ¢: [0,00]® — [0,00] is Borel-
measurable, then g = @ o f: & — [0, 00] is defined by:

{9>1} ={f e ((t,q])}
For example, if f,g: o/ — [0,00] and p > 0 we have:

{f+9>ty="\ (fsing)

s+r>t
{fg>t3 =\ (/s Ag)
{(rr>t=\/r

Similarly, if f;: &/ — [0, 00] for i < w then:
{sup fi > t} = \/{fi > 1}

{inf f; > t} = \//\{fi > s}
lim sup f; = inf sup f;

n i>n

lim inf f; = sup igf fi

If limsup f; = liminf f;, then lim f; is the common value. We leave it as an easy
exercise to the reader to verify that these are indeed the notions corresponding to
pointwise supremum, infimum and limit of sequences of ordinary measurable functions
up to equality a.e..

We may extend the definition of functions to other ranges:

Definition 1.15. (i) A real-valued positive function f: o/ — [0,00) is a positive
function satisfying A, f; = 0 (that is to say that {f = oo} is empty).

(i) A real-valued function f: o — Risapair f = (f*, f7), where f and f~ are

positive real-valued functions with disjoint supports. Intuitively, f = f*— f~,

and fT = f* =max{f,0}, /- = max{—f,0}.
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(iii) A complez-valued function f: of — C is a pair f = (u,v), where u and v are
real-valued functions. Intuitively, f = u + iv.

It follows from Proposition 1.13 that if &/ is the probability measure algebra of a
probability space (€2,B, 1), then the set of real-valued positive (real-valued, complex-
valued) functions on . is in bijection with the [0, c0)-valued (R-valued, C-valued)
measurable functions on €2, up to equality a.e..

Let X € {[0,00),R,C}, and f;: & — X for i < a < w. Then events of the form
{f € B} where B C X is a Borel set, as well as the composition ¢ o f: &7 — X for
a Borel function ¢: X® — X are defined as in the case X = [0, oo].

For example, for f,g: & — [0,00):

{f=g>t}= \/(fs\gr) (where x =y = max{zx — y,0})

s—r>t

And for f,g9: o — R:
frg=((fT+g) =+ ) ((fT+g)=(fT+g")
fo=(Tg"+fg)—(fT9 +fg)
fl=f"+f".
Etc.

Addition, multiplication, absolute value and limits extend to complex-valued functions
in a natural manner.

We may now translate to this terminology the basics of the theory of integration
given in [Rud66], leaving it to the reader to follow the analogy.

For a € &/, we define its characteristic function x, by Xa: = a for 0 < ¢ < 1 and
Xat = 0 for 1 < ¢. A function of the form f = >, aixa, where a; € [0,00] and
a; € of is called simple, and we can always write it such that the a; be disjoint. If
f =i, QiXa; is simple we define [ f = >"._ a;u(a;), and this is a value in [0, 0o]
which does not depend on the particular representation of f as a simple function. For
[/ — [0,00] we define [ f = sup;s, gmpe J 9 (here f > g if fi > g, for all ¢, or
equivalently, if g = f = 0).

For a complex-valued function f: &/ — C and p € [1, o0] we define:

i1, = ( |f|”)1/p p# oo

I fllec = sup{t € Q": f; # 0}
Ly(o)={f: o — C: ||fl]l, < oo}

Since the total measure is finite, p < ¢ = L (mf) D Ly(7), and if o7 is infinite then
the inclusion is strict. For f = u +iv € Li(&/) we say that f is integrable, and define

Jo=fle i o= fur furei feri fo

This is a well-defined complex value.
If a € & is an event and f is either positive or in Ly, then [ f = [ fxa.
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As the definitions we gave coincide with classical definitions when passing to measur-
able functions on &7, we obtain in particular that the monotone convergence theorem,
Fatou’s lemma, and the dominated convergence theorem all hold.

We will also need the following tool:

Definition 1.16. Let &/ < % be complete probability algebras, and f: % — |0, 0]
or f € Li(#) a function. We say that a function g: &/: — [0,00] or g € Ly(),
accordingly, is the conditional expectation of f with respect to 7, in symbols g =
E[f |</], if for every a € o:

(4) /agz/af.

If be # and g = E [y, |97], we also call g the conditional probability of b with respect
to &7, in symbols g = P [b|</].

Fact 1.17. Let o7 < A be complete probability algebras.
(i) For all f as in Definition 1.16 E[f |/ | exists and is unique. In particular,
Pb|ef ] exists for all b € A.
(11) [fanflz '@ - [07 OO] and go, 91 lQ{ - [0,00], or anfl € Lp('%) and g0, 91 S
L,(&7), for some pair of conjugate exponents p,q, then:

Elgofo+gif1|e ] = gl [fo || + giE[f1]<].
(iii) The monotone convergence theorem holds over &, i.e., if f,: B — [0,00] are

increasing and f = lim f,, pointwise then E[f |«/] = imE[f, |</]. Similarly
for Fatou’s lemma and dominated convergence.

Proof. See [Fre03, Section 233]. QED1 .17

2. THE CATEGORY OF PROBABILITY ALGEBRAS

The results of the previous section provide sufficient justification to replace the classic
context of probability spaces with that of (complete) probability algebras.

2.1. Free amalgamation. Recall that a boolean ring is a unitary ring where every el-
ement is idempotent. This implies in particular that it is commutative of characteristic
2. Moreover:

Fact 2.1. The giving of a boolean algebra structure (<7, A, V,€) and of a boolean ring
structure (&, -, @) are equivalent, where the passage in one direction is given by ab =
aNb, a®b= (aVb)~(aAb), and the other by aNb = ab, aVb=a®b®ab, a° = 1Da.

We therefore identify boolean algebras with the corresponding boolean rings and
vice versa.

Fact 2.2. Let A be a commutative unitary ring, and idem(A) the set of idempotents
in A. For a,b € idem(A) define a Nb = ab, aVb =a+b—ab, a® =1—a and
a®b=a+b—2ab. Then (idem(A),A,V,€) is a boolean algebra, and (idem(A), -, ®)
15 the corresponding boolean ring.
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Proof. One way to see this is to observe that (idem(A), A, V, €) is precisely the boolean
algebra of clopen sets in Spec(A), and that (idem(A), -, @) is the corresponding boolean
ring.

Alternatively, one can verify “by hand” that (idem(A),-, @) is a ring, since then it is
a boolean ring and (idem(A), A, V,¢) is the corresponding boolean algebra. Clearly,
0,1 € idem(A), and it is closed for products. The rest is verified as follows:

(a®b)® = (a+b—2ab)* =a®+b* +4a’V” + 2ab — 4a*b — 4ab?
=a+b—2ab=a@b
(a®b)®dc=a+b+c—2ab— 2ac—2bc+ dabc = a @ (b & c)
ad0=a+0-0=a
(a @ b)e = ac+ be — 2abc = ac @ be

QEDg o

Construction 2.3. Recall that 99 denotes the category of probability measure alge-
bras, whose morphisms preserve the boolean structure as well as the measure (Def-
inition 1.11). Let &/, %,% € M, and let f: € — &, g: € — P be morphisms.
Identifying them with the corresponding boolean rings, we can define ¥ = & ®¢ %:
then 2 is also a boolean ring, and we identify it with the corresponding boolean
algebra. Define D = L> (%) @ (¢) L°(%), and consider the sequence:

2 2 idem(D) — Dp ] L=(%)
a®b = Xa®Xp feg = E[fI€]E[g|?¢]

where " and E' [—|%’] are induced by the appropriate - and L>(%)-bilinear maps,
respectively, and the inclusion in the middle serves as a means to pass from character-
istic 2 to characteristic 0.

For h € D we can define ["h = [E'[h|€], and for d € Z define u(d) = [ /. Then:

@ ) = [0V = [ 06+ X = o) = ) + ) — el

It is easy to verify that u(1 ® 1) = 1 and (0 ® 0) = 0, so p is a semi-measure. As
every element of & can be written as the sum of disjoint elements of the form a ® b,
in order to verify that p is a measure it would suffice to show that if u(a ® b) = 0
then a®b=0. But ula®b) = [Elx, || E[x,|€], and this is zero only if E [y, |€]
and E [y, |¢'] have disjoint supports (since these are positive functions). In this case
there is ¢ € € (say the support of E[x,|€]) such that a < f(c¢) and b < g(c)€, so
a®b=(aN f(c) @b=a® (bA g(c)) =0 as required.

Define k: & — 2 by a — a®1. Then pu(k(a)) = pu(a®1) = [Exq|€] = [ xa = u(a),
so k is a morphism of probability algebras. Similarly for [: 8 — & defined by b +— 1®b,
and moreover ko f =[og.

We call Z = o ®¢ A (equipped with k, ) the free amalgam (in the sense of probability
algebras) of &7 and % over €.

It should be noted about the difference in approach between model theory and
analysis that [Fre04] contains the construction of the free amalgam of two measure
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algebras over nothing (i.e., over the trivial algebra), whereas we require amalgamation
over non-trivial algebras as well.

Convention 2.4. From now on, all the probability algebras under consideration are
sub-algebras of an ambient probability algebra.

For the time being, until we prove the existence of a universal domain, this ambient
algebra may vary and we assumed it is part of the context.

Notation 2.5. If o/, % are boolean algebras then &/ A % is the boolean algebra
generated (in the ambient algebra) by </ U A.

Definition 2.6. Assume that € < &7, % are boolean algebras. We say that o7 J/% B
if o NB=A R¢ B

Lemma 2.7. Let € < o/, B. Then the following are equivalent:
(i) o« L, %
(ii) For every a € & and b e A:
Planb|€]|=Pla|€]P[b|?¢].
(iii) For every two functions f: o/ — [0,00], g: B — [0,00] or f € L,(),
g € L,(A) (where p and q are conjugate exponents):
(5) Elfg|¢] =E[f|€]E]g|?]

Proof. (i) = (ii). Since & |, %, we may identify &/ A # with &/ @4 %. Then,
with the notations of Construction 2.3, we have for all a € &7, b € % and
cET:

JERIFIER 6] = [ XE R IE N 16] = [ B €1E 6
= [ N = #la® A e) =ulla® ) A (18 BA)

:,u(a/\b/\c):/xa/\b

(ii) = (iii). Since (5) holds for characteristic functions, by positive linearity it
holds for positive simple functions; by the monotone convergence theorem, for
arbitrary positive functions; and by C-linearity, for functions whose product
is Ll-

(iii) = (i). The mapping (a,b) — a A b is €-bilinear, and induces a morphism of
boolean algebras o: & ®y B — o N AB. 1t is clearly onto, and

p(a A b) = /XaXb: /E[XaXbW]

~ [Eal¢1E 1] = nlaob)
Therefore ¢ is an isomorphism of probability algebras.
QEDg 7

Lemma 2.8. Let o7 and € < A be boolean algebras (note that here we do not require
that € < < ), and let of' = o/ N€. Then the following are equivalent:
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(i) «" |, %
(i) If f: &/ — [0,00] or f € Li(A), and we consider it as defined on </ N B,
then:
(6) E[f|€] =E[f|#]

(So in particular, E[f | 2] is €-measurable.)
(iii) (6) holds for characteristic functions (of events in < ).

Proof. (i) = (ii). Let f: & — [0,00] or f € Li(«). Then we need to verify that
for all b € %:

/bE[frw =/E[xbmf|%1 |<5]=/E[f|m[xb|w=/E[fxbrg]

- [ro=[1

(il) = (iii). Clear.
(iii) = (i). Fora e &, be A and c € ¢

E XarcXs [€] = XE [E [XaXs | D8] €] = XE [XoE [Xa | D] €]
= XCE [Xb]E [Xa ‘(g] ’(g] =K [Xa/\c ’(g] E [Xb |C€]

As every @’ € &/’ is a disjoint union of events of the form a A ¢, we obtain (5)
for xur.

QEDg g

2.2. Constructing a cat. Starting with the category 91, we look for an underlying
logical structure following the method described in [Ben03a, Section 2.3].

The category 9 of probability algebras is a concrete category [Ben03a, Defini-
tion 2.26], which satisfies in addition:

Injectiveness: Since a = 0 <= u(a) = 0, measure-preserving morphisms have
to be injective.

Tarski-Vaught property: This one says that if &, < ¥ and & C £ as
sets, then &7 < Z. It should be clear from the definitions.

Elementary chain property: If («: i € I) is an increasing chain (according
to <), then «7; <, o for every j, and |J, # is minimal as such.

Amalgamation: Any two probability measure algebras can be amalgamated
over a common sub-algebra: use free amalgams, for instance.

Thus, the type of a tuple [Ben03a, Definition 2.30] is precisely the isomorphism type
of the probability algebra it generates. For every set of indices I, S;(90) is the set
of all I-types, i.e., types of I-tuples (this is indeed a set and not a proper class). If
f: 1 — Jis any mapping, the it induces a mapping: f*: S;(9) — S;(9M) sending the
type of a J-tuple (a;: j € J) to the type of (as;): i € I). This defines a contravariant
functor S(9) from sets to sets.

The type of a finite tuple is determined by the probabilities of the atoms of the
algebra it generates. Let us convene that a° = a, a' = ¢, and if a., is a finite

tuples and &€ € 2" then @& = A,_,a;', i.e., the atom corresponding to &. Then we
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obtain a bijection between the set of all n-types (i.e., types of n-tuples) S,,(9) and the
(2" — 1)-dimensional simplex:

Sn<m) = {ZT} € [07 1]27i: Zéezn Weg = ]-}

tp(acy) — (n(@): €2
Let us identify S, (9) with the simplex as above. If f: m — n is any map, then
f50 Su(OM) — S, (M) is given by.

fH(w)s = > we
56277‘ : (5f(0) 7~~76f(7n—1)):5

Thus, considering each S, (9) with the topology induced from R2", it is clear that
every f* is continuous and therefore closed.

By the characterisation of types above, the type of an infinite tuple is determined by
the types of its finite sub-tuples, so 9 has locality of types [Ben03a, Definition 2.32].
By [Ben03a, Lemma 2.35], S(ON) is a set type-space functor [Ben03a, Definition 2.18].
With the topological structure induced on S,,(90t) as real simplexes, S,,(9) is a compact
topological type-space functor, and so 91 is a compact abstract elementary category.

The locality of types tells us that the functor S(90t) is determined by its restriction
to finite index sets. To be more precise, for every set I we have a natural bijection:

Sr(M) = lim Sr, ().
IpClI finite
(Since the family of finite subsets of I with inclusions forms a directed system, its image
under S(9) forms an inverse system, and there is always a mapping from left to right;
by locality of types it is injective, and by [Ben03a, Remark 2.34] it is surjective.) This
defines on S;(9M) a compact and Hausdorff topology, as the inverse limit of compact
and Hausdorff spaces.

Forn <w, £ € 2" and r, s € Q, define an n-ary predicate P, s, s(Z); let £ be the set
of all such predicates, and let A be the generated positive fragment, i.e., the set of all
positive quantifier-free £-formulas. We understand the predicate P, z, (%) as saying
that s < u(z°) < r: this defines a natural interpretation of every probability measure
algebra as an L-structure. The type of an n-tuple in a probability measure algebra
determines which predicates of this form it satisfies, and therefore which A-formulas it
satisfies: thus every ¢ € A in n free variables defines a subset [¢] C S,,(9t). Moreover,
it is fairly straightforward to verify that these sets form a basis of closed sets for the
topology on S,,(90) viewed as a real simplex.

Having defined A, a II(A)-sentence is a sentence of the form Vz —¢(Z) where p € A.
By Thya)(90t) we mean the set of all II(A)-sentences true in every probability measure
algebra (viewed as an L-structure according to the interpretation given above).

Theorem 2.9. Let T™ = Thya)(9M). Then T™ is a positive Robinson theory (see
[Ben03a, Section 2.1]), and S(T™) = S(IM) with the topology induced from R. In
particular, T™ is Hausdorff (i.e., its type spaces are Hausdorff). Moreover, every e.c.
model of T™ is a probability measure algebra.

Proof. Most of this comes from [Ben03a, Theorem 2.38]. Its statement and proof
are actually for a signature containing an n-ary predicate for every closed subset of
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Sn(9) (see the proof of [Ben03a, Theorem 2.23] on which it relies); but any signature
containing a predicate symbol for each member of a basis of closed sets for S, (1)
would do just as well, and our signature L is such.

Since S(T™) = S(IM) as topological functors, S(T™) is Hausdorff, so T™ is.

The said theorem promises us that every e.c. model of 7™ is a subset of a probability
algebra, so we have to show that it is closed for boolean combinations. But y = ¢
is defined by p(z Ay) = 0A p(z° Ay®) =0, and z = x Ay is defined by u(z A z°) =
0Ap(zAYy®) = 0Apu(xAyAz) = 0, so any e.c. model is closed for boolean combinations.
(By “u(xAy) = 07 we actually mean the formula Ps (0,0)0,0(2,y), “u(z°Ay¢) = 0” means
Ps 11)00(2,y), etc. Using this technique we may work as if the boolean operations
were function symbols in the language.) QEDy

Finally, we characterise types:

Proposition 2.10. Let & be a complete probability algebra, and a an element. Then
tp(a/AB) determines and is determined by the conditional probability P |a |A]. If A is
any set of events, then tp(A/A) (determines and) is determined by the types over A
of every event in the algebra generated by A.

Proof. Given our language and the fact that £ is an algebra (rather than just a set)
it should be clear that tp(a/%) determines, and is determined by, the mapping b —
p(a AD) for b € B. But the same can be said of f = Pla|#], as it is the unique
P-measurable function satisfying fb f=pland) for all b € A.

Similarly, tp(A/%) is determined by the mapping (a,b) — p(a A b) where b € £
and a in the algebra generated by A. QED> 1

2.3. Additional properties. For every n < w consider the inclusion f,: n <—n+1,
and the corresponding restriction map f: S,11(9) — S, (9). Then:

i (we: o €2 = (wrg + w7 €27),

which is clearly an open mapping. Thus, by definition of an open cat [Ben03c, Sec-
tion 3.4]:

Proposition 2.11. 9 is open; equivalently, the language we gave above for M elimi-
nates not only the existential quantifier, but also the universal one.

We recall from [Benb] that a definable metric on a sort of the universal domain
is one such that the properties d(z,y) > r and d(z,y) < r are type-definable. We
further recall that every Hausdorff cat with a countable language admits a definable
metric which is unique up to uniform equivalence. In our case, the natural metric
d(a,b) = p(a @ b) is definable, and we only conclude that it is uniformly equivalent to
any other definable metric.

We recall from [Benb| that a complete model is a subset M of the universal domain
which is complete with respect to one (any) definable metric, and the types over M
realised in M are dense in S(M) (we also recall that in an open cat, it suffices to verify
this property for 1-types). The complete model play the role of elementary sub-models
of the universal domain in the first order context.

Proposition 2.12. (i) The complete models of T™ are precisely the complete
atomless probability algebras.
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(ii) The complete models of T™ are w-saturated in the classical sense (there is a
discussion in [Benb] of a weaker notion of w-saturation which is sometimes
required, but this is not the case here).

(iii) T™ is w-categorical (i.e., all its complete models which are separable in the
metric topology are isomorphic). Moreover, it remains w-categorical when one
adds finitely many elements as constants to the language (unlike for first order
theories, the moreover part does not follow in general from w-categoricity for
cats; see [BBH] for an example).

Proof. Clearly, a complete model has to be atomless. Conversely, let o7 be a complete
atomless algebra. Then for every finite tuple a., € &7, every l-type over a., is
realised in & (i.e., for every choice of Az € [0, u(a®)] for & € 2™, there is b € &7 such
that p(b A a®) = Az for all € € 2™). Since every open set in S;(%7) contains (the set of
extensions of) a complete types over a finite tuple, the types realised in 7 are dense
in S1<E£Z{)

This argument shows also that every complete atomless algebra is w-saturated. It
follows that T™' expanded by finitely many constants is w-categorical: by standard
back-and-forth one constructs a partial isomorphism between two dense sets of sepa-
rable models, which extends uniquely to an isomorphism. QEDy 19

By Maharam’s theorem [Fre04, 332B], if & is a complete model of T™ i.e., a
complete atomless probability algebra, then there exists a partition of 1 € & into
(finitely or) countably many disjoint non-empty events {a;: i < a} (where a < w),
and distinct infinite cardinals {k;: ¢ < a}, such that for inside each a;, 7 is isomorphic
to the measure algebra of {0, 1}", shrunk by a factor of u(a;). In other words, if we

define a semi-measure p;(a) = % and let 7 o = (o, 1;), o = < o/=o, then o is
isomorphic to the measure algebra of {0,1}". In this case, the density character of <
(the least cardinality of a dense subset) is sup k;.

Thus the isomorphism type of &7 is determined by a mapping i — (u(a;), ki), and
in density character x there are at most (k + 2¥)¥ = k*“ models.

In case k = w, we must have @« = 1, ayp = 1 and k9 = w, which is an alternative
proof that every complete separable atomless probability algebra is isomorphic to that

of {0,1}¥, which is in turn isomorphic to that of [0, 1].

3. RANDOM VARIABLES

It should be observed first that the property y = \/,__ ; is not type-definable, since
it would require us to know the rate at which u(\/,_, #;) converges to u(y). It follows
that the property of being (the representation of) a function is not definable, as it
includes the requirement that f, =\/,_, fs.

If we remove this problematic requirement, we are left with the class of all decreasing
Q*-sequences Fy = {(fi: t € Q"): f, < f; for all s > t}. On the one hand, for every
f € Fy there is a unique positive function g such that {g > t} < f, < {g > t} for
all t € Q. On the other, if u({f = t}) > 0, this does not determine f; entirely.
Define Ep(Z,7) = Nsoilre > ys Aye > x]: then Ep is an equivalence relation on Fj,
and two tuples f, f’ represent the same function if and only if Ex(f, f'). It follows

that F' = Fyy/Ep is in a natural bijection with the set L} of all positive functions, and
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we will identify a function f with the equivalence class f/Er € F that represents it
(sometimes, with some ambiguity, we may identify f with f).

We recall that in general, a property pg(zg) of an hyperimaginary variable xtp = z/F
is type-definable if and only if the property pg(Z/E), as a property of the tuple Z (i.e.,
the pull-back of pg to the home sort) is type-definable. The same rule applies for
properties of several variables, possibly in several different hyperimaginary sorts (see
[Ben03a, Example 2.16)).

For the case of realisations of F', we have a more useful criterion. For every n-tuple
of positive functions f° ..., f"! and Borel set X C [0, 00|, we defined the event

{/=r e X}.

Lemma 3.1. For every closed K C [0,00]™ and r € R, the property p({z<" € K}) > r
is type-definable (in F™).

Proof. Let KC,, denote the family of all subsets K C [0, 00| for which the statement
hold.

For simplicity, let us first consider the case where n = 1 and K = [a,b] for some
a,b C [0,00], and let a random variable f be represented by (f;: ¢ € QT). Then
{feK}={a< f<b}, and pu({f € K}) > r if and only if:

F 3z /\ 2< fe| A /\ 2 < fi| Au(z) =

t<a,teQt t>b,teQt

since the maximal event satisfying the conditions on z is precisely {a < f < b}.
(We remind the reader that an existential quantification of a partial type is logically
equivalent to a partial type.)

Now let n be any natural number, and K a union of m closed boxes: K =
Uicm [j<nlaij, bij] € [0,00]". Then by the same reasoning, u({f<" € K}) > r if and
only if, for some (any) representatives (f7: j < n), there exist events (z;;: i < m, j < n)
such that:

(i) For all < m and j < n:

N wm<iin] N wm<U)

t<aij ,tEQJr t>bij,t€Q+

(ii) And in addition:

u(\/ /\z]> > .

<m j<n

This is a type-definable property of the representatives (f/: j < n). Thus u({f<" €
K}) > ris a type-definable property of f<", and every finite union of closed boxes is
in C,,.

Assume now that K; € K, for every i < w, (K;: i < w) is a decreasing intersection,
and K = (), K;. Then {f~" € K} = A,_ {f" € K}, and p({f" € K}) =
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infi<w{f<” € Kz} Thus

p{f e KY) > re= \p({f e K}) =1,
<w
and the latter is type-definable by assumption on the K;. As every closed set K C

[0, 00]™ is the intersection of a countable decreasing sequence of finite union of closed
boxes, we proved that /C,, contains every closed set. QED3 ¢

We leave it to the reader to verify that the arithmetic operations we considered
above for positive functions are type-definable on F' (i.e., their graphs are).

More restricted classes of functions, such as real-valued ones, or L,, are not type-
definable, since they do not impose any uniform bound on the distribution. On the
other hand, if we are given a uniform bound on the distribution in the form of a positive
real-valued function f, then the class

By = {g: o —C: N\ p({lgsl > s}) < u({f > t})}

s>t

s>t

:{g: o — C: /\M({|gs| <s}) > 1—#({f>t})}

is type-definable by Lemma 3.1 (without parameters: we don’t really need f, we only
need its distribution). Moreover, if f € L, then By C L,, and if f € L; then integration
is definable on By, by which we mean that for every closed subset X C C, the set
{9 € By: [¢g € X} is type-definable. We leave this to the reader as an exercise,
pointing out that the way integration will be defined must depend on the distribution
of f.

Let us return to the type-definable set F© = L% of all positive functions (that is,
valued in [0, 00]). We recall from [Benb] that the set F' carries a natural topology,
namely the logic topology, which is the one induced by any definable metric, as long
as one exists. Moreover, since the language is countable, a definable metric exists on
every countable hyperimaginary sort, and in particular on that of F', and we might as
well look for a natural one.

First, for every real number ¢ > 0 define

0c = {(z,y) € [0,00]: [z —y| <eVa,y >1/e},

noting that whatever value we may assign to |oo — oo/ is irrelevant to the definition of
de. Moreover, if we interpret 1/0 = oo, then dy is also well-defined and is precisely the
diagonal of [0, 00]%. For ¢ > 0, ¢, is a neighbourhood of this diagonal, and the family
{6:: € €(0,1)} is a basis for its neighbourhoods.

For f,g € LY define:

d(f,9) <e <= pu({(f.9)€d:})=1—¢
d(f,g) =inf{e € [0,1]: d(f,g) < &}.

Note that the event {(f, g) € d.} is by definition equal to {|f —g| < e} V{f,g > 1/e},
and that the infimum is actually attained, by continuity of the measure.
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It is fairly straightforward to verify that d(f, g) > ¢ if and only if:

WAl —gl ZebA({f < Shv g < o) 2

Thus, by Lemma 3.1, both d(f,g) < ¢ and d(f,g) > ¢ are type-definable properties,
and d is a definable metric.

It should be clear from the definition that if f has values in [0, 00), then d(gn, f) — 0
if and only if g, — f in measure. Since every two definable metrics are uniformly
equivalent, this property holds for every definable metric d on F'.

4. STABILITY

We prove that 901 is stable, and in fact w-stable, and characterise dividing indepen-
dence.

4.1. Independence. Let a,b,c be tuples of events, and &/, & and ¥ the boolean
algebras generated by ca, cb and ¢, respectively. Define a J/C bif of | v AB.
Then this relation satisfies:

Symmetry: Clear by Lemma 2.7.

Transitivity: Clear by Lemma 2.8.

Extension and stationarity: By this we mean that given a, b and ¢, there is
a’ such that tp(a’/c) = tp(a/c) and @’ | b, and that these two properties
determine tp(a’/bc). For this we may replace each of a, b and ¢ by o7, # and
€ as above. Let 2 = & @4 A, and embed it in the universal domain sending
the copy of Z in & back to %. Then the copy of &7 in & gets sent to some
' and a gets sent to some a’ satisfying the conditions. Conversely, by the
uniqueness of the free amalgam, if tp(a”/c) = tp(a/c) and a” | b, and " is
generated from a”’c, then &/ A A is isomorphic over £ to &/ N B, whereby
a = a".

Finite character: Let A be an infinite set of events, and .7 generated by AU% .
If A | » %, then clearly Ay L » & for every (finite) A9 € A. Conversely, if
a € o/, then a is generated by % and some finite Ay C A, so it suffices to
know that Ay | 2 to conclude that E[x, |2] = E [x.|€].

Local character: Let ./ be and % be boolean algebras, and assume at first
that £ is complete.

For every a € & define f, = E[x,|#]| € L>®(A), and let € < XA be the
boolean algebra generated by all the events of the form {f, > t} for t € Q%
(in other words, € is the minimal boolean algebra by which all the f, are
measurable). In particular, E [y, |%Z] = f. = E[x.|%] for every a € &, so
o |, % by Lemma 2.8, and |[¢| < || + w.

If A is not complete, then every event of the form { f, > ¢} is in the completion
of A, but not necessarily in 4 itself. In that case, it is in the completion of
a countable sub-algebra, and we can take @ < % to be generated by all of
those: then we still have that every f, is ¥-measurable and || < |&7| 4+ w, so
the same argument goes through.

Which implies:
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Theorem 4.1. 9 is stable, non-dividing coinciding with the classical notion of inde-
pendence of events.

Moreover, every type over a set of events is stationary: therefore, every set of events
15 boundedly closed.

Proof. Stationarity implies the independence theorem for types over sets of events,
and thus in particular for Lascar strong types. Therefore, by [Ben03b, Theorem 1.51],
9M is simple, with all types being extendible (by the extension property; it is also
proved in [Ben03c] that in a simple Hausdorff cat every type is necessarily extendible).
Stationarity is also a special case of types having bounded multiplicity, so by [Ben03b,
Theorem 2.8], 9 is stable.

For the moreover part, stationarity of types of tuples of events over sets of events
implies the stationarity of types of hyperimaginary elements over sets of events. Thus,
if A is a set of events and a € bdd(A) is possibly hyperimaginary, then every extension
of tp(a/A) to a type over Aa is non-dividing. By stationarity, tp(a/Aa) is the unique
such extension, whereby a € dcl(A). Thus bdd(A) = dcl(A) and A is boundedly
closed. QEDy

4.2. Entropy.

Definition 4.2. Let a.,, be a finite set of events, B any set, and let % be the complete
algebra it generates. The entropy of a over B is defined as:

H(a/B) =~ [ Y Pla"|#)lg, P [a" | 5],
gean
where we extend x1g, x by continuity to 0lg, 0 = 0. In other words, if &7 is the finite
algebra generated by a, then the sum is taken over all the atoms of o7

Fact 4.3. For any finite tuples @ and b, and for possibly infinite sets C and D, the

following hold:
(i) (Monotonicity) H(a/C) > H(a/CD), and equality holds if and only if
al.D.

(i) H(a/ U, Ci) = limp—.oc H(a/ -, Ci)-

(iii) The complete algebra generated C' contains a if and only if H(a/C) = 0.

(iv) (Additivity) H(ab/C) = H(a/Cb) + H(b/C).

(v) (Symmetry) Let 1(a;b/C) = H(a/C)— H(a/Cb). Then I(a;b/C) = I(b;a/C),

and it is equal if and only if a \I/o b.

(vi) We always have H(a<,/C) < n, and equality holds if and only if a | C and

all the a; are independent of probability %

Proof. Most of this is proved in [Wal82, Chapter 4].

A proof that H(a/CD) = H(a/C) = a |, D only appears there where C' = ;
however, replacing probability with conditional probability one can translate the proofs
of [Wal82, Theorems 4.4 and 4.8] to work over the algebra generated by any set C.

Symmetry is a consequence of additivity.

For n =1 and C = &, the last item is basic calculus, and the general case follows
by additivity and monotonicity. QED, 3
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It follows that entropy serves as a real-valued dimension function, and independence
is characterised by non-decreasing dimension. The information function I(a; b/C) gives
a numerical value to the dependence between a and b over C.

4.3. Miscellanea.
Proposition 4.4. M is w-stable (as defined in [Benb]).

Proof. We need to prove that for every countable set A there is a separable (with
respect to the metric) set B realising every 1-type over A. Let X and Y, respectively,
be two copies of [0, 1] equipped with the Lebesgue measure. Let &7 = B(X)/= and
B =B(X xY)/=q, where B(X) means the algebra of Borel sets in X. The projection
X XY — X induces an embedding && < %. Now, the set A can be embedded in
a separable atomless complete algebra, which by w-categoricity is isomorphic to 7.
Since & is separable, it would suffice to prove that it realises every type over <.

Let a be any element in an ambient universal domain. We know that tp(a/<) is
determined by its conditional probability f = P[a|</]. This is a function f: & —
[0, 1], which we may identify with a measurable function f: X — Y. Let a’ C X XY be
the area under the graph of f. Then P[a’|</| = f by construction, whereby a' =, a.
Since a' € A, we are done. QEDy 4

Proposition 4.5. Let o7 and A be complete probability measure algebras, and let €
be the minimal complete sub-algebra of % with respect to which P [a|%] is measurable
for every a € o .

Then Cb(<f /B) (the canonical base of lstp(<f |AB), see [Ben03b, Section 3]) is in-
terdefinable with € .

Proof. Since @ | %, it would suffice to prove that Cb(«/ /%) is interdefinable with
%¢. We know that tp(«/ /%) is stationary, and therefore Lascar strong; therefore,
Ch(47 /%) is the class of (an enumeration of) ¥ modulo a type-definable equivalence
relation, and we wish to show that this equivalence relation is equality.

Going back to the construction of canonical bases, we see that it suffices to show
that for every 7, if 2 =, ¢ (for some fixed enumeration of 4" and %) and & |,
(in which case & | ¢ as well, by comparison of ranks), then ¢’ = 2 with the same
enumeration. Indeed, in this case we have Pla |€] =P[a|€ N Z] = P[a|Z] for every
a € o/. Since € =, 9, and tp(&/, %) says that € is a complete boolean algebra
generated by events of the form {P[a|%] > t}, we conclude that € = 2. QED, 5

Recall that if (G, -) is a type-definable group (i.e., its domain, as well as the graph
of the group operation, are type-definable by partial types) then g € G is generic if
for every a € G: a | g = ¢g-a | a. Recall also from [Ben03c| that in a simple
thick cat (and therefore, in a stable Hausdorff cat) type-definable groups have generic
types. A stable type-definable group is connected if it has no type-definable sub-groups
of bounded index, or equivalently if it has a unique generic type (this equivalence is
proved as for first order theories).

Fact 4.6. 9N interprets a group, namely the additive group of the underlying boolean
ring. This group is connected, and its (unique) generic type is that of the event of
probability %
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Proof. We know that generic elements exist. Let a be generic, and write x = u(a).
Assume that a | b, and write also y = p(b), assuming it is neither 0 nor 1. Then
a®b | b, whereby:

pla Ab) = p(a)u(b) =
(a@b) u(a)—l—u(b) 2 plaANb) =z +y—2xy
—xy = u(b) — p(a Ab) = p(b a)
p((a®b) Ab) = pla® ) (b) = y(z +y — 2zy)

r(2y° — 2y) =y —
1

> r = —
T

By Proposition 2.10, the fact that p(a) = 1 determines tp(a). As there is a unique
generic, the group is connected.
It follows that a is generic over &/ if and only if E [x, |#/] is the constant 5. QEDyg

This could be viewed as a re-statement of the common wisdom saying that if you have
absolutely no information on the probability of a given event, just call it fifty-fifty. ..

5. HYPERIMAGINARIES AND (GALOIS THEORY

We show that 7™ admits weak elimination of hyperimaginaries, but there are hy-
perimaginaries which cannot be eliminated even in favour of finitary ones.

In [BB04a] it was suggested that hyperimaginaries should be understood in two steps:
first, understand boundedly-closed hyperimaginaries (i.e., ones for which bdd(a) =
dcl(a)); then understand arbitrary hyperimaginaries via their Galois groups Gal(a) =
Aut(bdd(a)/a). Even though [BB04a] was written with the extremely easy case of
Hilbert spaces in mind, much of the development holds in arbitrary Hausdorff cats
(which are, we recall, cats whose type-spaces are Hausdorff).

5.1. Boundedly closed sets.

Definition 5.1. A cat T admits weak elimination of hyperimaginaries if for every
hyperimaginary a there exists a tuple b € bdd(a) in the home sort (a “real” tuple) such
that a € dcl(b); equivalently, if every boundedly closed hyperimaginary is interdefinable
with a real tuple.

The following result is proved implicitly in [BB04a] in the special case of Hilbert
spaces.

Proposition 5.2. Let T be a stable Hausdorff cat, and assume that for every two
tuples of real elements a and b, if tp(a/b) is stationary then Cb(a/b) is interdefinable
with a real tuple. Then T admits weak elimination of hyperimaginaries.

Proof. Let ag be the class of a real tuple @ modulo a type-definable equivalence relation
E, and assume that ag is boundedly closed. Then tp(a/ag) is stationary, and it is an
easy exercise to see that Cb(a/ag) = ap. Let b =,, a be such that a \LGE b. Then

tp(a/b) is stationary, and Cb(a/b) = ap, which is therefore interdefinable with a real
tuple. QEDj5 o
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Corollary 5.3. Every boundedly closed set is interdefinable with a (unique) complete
probability algebra.
Therefore, T™ admits weak elimination of hyperimaginaries.

Proof. Assume that bdd(a) = dcl(a). Then by Proposition 4.5 and Proposition 5.2, a
is interdefinable with a set A of real elements. Thus a is interdefinable with the set
of all real elements definable over A, which is simply the complete probability algebra
generated by A.

Clearly, two distinct complete boolean algebras cannot be interdefinable. QED5 3

The same reasoning yielded the same result for Hilbert space in [BB04b].

5.2. Galois theory. For the time being, we work in an arbitrary Hausdorff cat T

For an hyperimaginary a, we define Aut(a) as the group of all permutations of dcl(a)
induced by automorphisms of the universe. Aut(a) is an invariant of the interdefin-
ability class of a; we would like to render it a topological group.

Recall from [Benb| that the topology induced by the definable metrics (on a fixed
sort) is the one for which the type-definable sets (with parameters anywhere in the
universal domain) form a basis of closed sets. We call this the logic topology. A nice
feature of the logic topology is that if A is some subset of the universe (in a single
sort), then the type-definable subsets of A with parameters in A form a basis for the
induced topology on A. Also, if Z = (z;: i < «) is a tuple of variables in various sorts,
then the logic topology on the sort of z is the Tychonoff product of the logic topologies
on the sorts of the z; (if « is countable, this follows from the fact that we can combine
definable metrics on the sorts of the variables z; to a definable metric on the sort of
Z, which induces the product topology; if « is not countable then essentially the same
argument can still be carried through using the notion of an abstract distance defined
in [Benb]).

We define the topology on Aut(a) as that of pointwise convergence, i.e., as a subset
of dcl(a)?® in the power topology: this is clearly interdefinability invariant. Note
that ¢ € Aut(a) is completely determined by g(a), and for every other b € dcl(a),
p(z,y) = tp(a, b) defines the graph of a partial mapping which is continuous, sends a to
b, and commutes with every g € Aut(a). It follows that the topology on Aut(a) is that
of convergence on a, i.e., the minimal such that the mapping g — g(a) is continuous.
Thus, the family of all subsets of the form {g € Aut(a): F ¢(g(a),b)}, for any ¢(z,b),
forms a basis of closed sets for Aut(a). Since moreover g(a) € dcl(a) for all such g, if
we restrict this to the family of all sets of the form {g € Aut(a): F ¢(g(a),a)}, where
¢(x,y) is any formula both of whose variables are in the sort of a, we still have a basis
of closed sets.

As a side remark, assume that a is an enumeration of a set B = {b;: ¢ < A}, and
every g € Aut(a) induces a permutation on B: then the topology on Aut(a) is that
of pointwise convergence of functions from B to itself. In the case studied in [BB04a],
when a is an enumeration of a Hilbert space, and Aut(a) is its unitary group equipped
with the strong operator topology.

For g € Aut(a), define p? € Siqx2(T) as tp(g(a), a). Then the preceding discussion
proves:
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Proposition 5.4. The mapping g +— p? is a topological embedding of Aut(a) in
Sjapxa(T).

It follows that:

Lemma 5.5. The map mq: Aut(a)? — Sjx3(T) defined by (g, h) — tp(gh(a), h(a),a)
15 a topological embedding.

Proof. The map is clearly injective, and we need to show that it is a homeomorphism
with its image.

The important part is the continuity. Fix a pair (g, h) € Aut(a)?, and let p(z,y, z) =
mo(g,h) = tp(gh(a),h(a),a). Consider a basic neighbourhood of p, defined by a
negative formula —p(x,y, z). Then p?(z,y) A p"(y, 2) A ¢(z,vy, 2) is contradictory, and
since T is Hausdorff there are neighbourhoods —1 of p?, and —x of p" such that
—(z,y) A =x(y,2) F —p(z,y,2). Let U and V be the pull-backs of —¢(x,y) and
—X(z,y) from Sjqx2(T) to Aut(a). Then U x V is a neighbourhood of (g, ) whose
image under mq is contained in —g(x,y,z). Thus mg is continuous at every point
(g,h) € Aut(a)?.

To see that it is actually an embedding, we observe that a basic closed set in Aut(a)?
is of the form ¢(z,y) X (x,y), where we identify Aut(a) with its image in Sj4|x2(7") and
a formula with the set of its realisations in the image. The image of p(z,y) X ¥(z,y) is
defined (in the image of mg) by ¢(z,y) A ¢ (y, z), which is closed as required. QEDj5

And we conclude:
Proposition 5.6. With the topology defined as above, Aut(a) is a topological group.

Proof. Inverse is clearly continuous. To see that product is continuous we use
Lemma 5.5 and the fact that p9"(z,y) = 32 p9(x, 2) A p(z,y), which defines a contin-
uous map Sjq|x3(T") = Sjajx2(T). QEDs5 ¢

This topology is not, in general, compact. However, the compact subgroups corre-
spond to hyperimaginaries:

Theorem 5.7. There is a Galois correspondence between compact subgroups of Aut(a)
and interdefinability classes of hyperimaginaries b satisfying:
(i) b € dcl(a) € bdd(b)
(ii) Ewvery automorphism fizing b (pointwise) fizes dcl(a) setwise.
(The first condition may be interpreted as saying that a is a bounded extension of b,
and the second as saying that it is a Galois extension.)
The correspondence associates to each such b the subgroup:

Aut(a/b) = {f € Aut(a): f(b) = b}.

Proof. Assume that b satisfies the conditions. If p(x,t) = tp(a,b), then Aut(a/b) is
defined in Sjqx2(T) by Jtp(x,t) Ap(y,t). It is therefore compact.

Given a compact subgroup G < Aut(a), it is defined in Sj4x2(7") by a partial type
G(z,y). Then G(z,y) is an equivalence relation on tp(a), and we can define b = a/G.
Then b € dcl(a) by definition, and the set of b-conjugates of a is {g(a): g € G}, which
is bounded, whereby a C bdd(b).
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Finally, we show the correspondence. First, let b satisfy the conditions, G =
Aut(a/b) and ¢ = a/G. Then an automorphism fixing b fixes dcl(a) setwise by as-
sumption, and acts on a as an element of G, whereby it fixes c¢. Conversely, if an
automorphism fixes ¢, it must send a to g(a) for some g € G: since b € dcl(a) and
g € Aut(a/b), b must be fixed. Thus b and ¢ are interdefinable as required.

In the other direction, let G < Aut(a) be compact and b = a/G. Then one verifies
easily that G = Aut(a/b). QEDj 7

Remark 5.8. As usual, if ¢ C a is a Galois extension and ¢ C b C a then b C a is always
a Galois extension, and ¢ C b is a Galois extension if and only if Aut(a/b) <Aut(a/c).

For every hyperimaginary a, define the (absolute) Galois group of a as:
Gal(a) = Aut(bdd(a)/a).

Corollary 5.9. For every hyperimaginary a, Gal(a) is a compact subgroup of
Aut(bdd(a)), and a is interdefinable with bdd(a)/Gal(a). Conversely, if a is boundedly
closed, G < Aut(a) is compact, and b = a/G, then Gal(b) = G.

(This was proved in the particular case of Hilbert spaces in [BB04a], using more
concrete means.)

5.3. The case of probability algebras. Previous results yield that every hyper-
imaginary is interdefinable with &/ /G, where o is a complete probability algebra,
and G < Aut(«/) is compact in the topology of pointwise convergence. Also, since
the language is countable, every hyperimaginary is interdefinable with a sequence of
countable hyperimaginaries (i.e., quotients of countable tuples).

We conclude by showing that this is indeed the best we can do: unlike Hilbert spaces,
we cannot eliminate hyperimaginaries to finitary ones.

Indeed, let a be a finitary hyperimaginary, say b, /E where b, is a finite tuple of
events and F an equivalence relation. Then bdd(a) is interdefinable with a complete
algebra o/, and o/ C bdd(b.,). Then in fact o is a sub-algebra of the one generated
by b<,, which is finite. It follows that Aut(</) is finite, and therefore so is Gal(a) =
Aut(</ /a).

Now let a be any hyperimaginary which is interdefinable with a tuple of finitary
ones, say a-,. For i < « let o = bdd(a;) be finite algebras as above. Then
bdd(a) C bdd(|J; #%). But since J, <% is a set of real elements and therefore boundedly
closed, we see that bdd(a) = <7, the complete algebra generated by |J; 7. Then every
g € Aut(«/) fixing a.,, pointwise restricts to an automorphism of each o7, and is deter-
mined by the restrictions g; = g [« € Gal(a;). Therefore Gal(a) = liane[a}@ Gal(aey)
is a pro-finite group.

On the other hand, let G be any compact group, and p its Haar measure. (The
following must be well-known, but I somehow failed to find a textbook where it is
done.) The Haar measure on G can be constructed via a positive integration functional
on continuous complex-valued function on . By the Riesz representation theorem
[Rud66, Theorem 2.14] it is regular, i.e., for every Borel set A:

w(A) =sup{u(F): F C Aclosed} = inf{u(U): A C U open}.
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Thus for every € > 0 there are a closed and an open sets ' C A C U such that
w(U)—u(F) < g, and a neighbourhood V' of the identity such that V- FUV ™. F C U.
If follows that for every g € V:

A S gA) < (U N gF)+ p(gU N F) < 2e.

This shows G acts continuously on every event in 7, and since the topology Aut(<7)
is that of pointwise convergence, the mapping G — Aut(«/) is continuous. Since G
is compact and Aut(«) Hausdorff, it is in fact an embedding, and G can be viewed
as a compact sub-group of Aut(«/). By Theorem 5.7, there is an hyperimaginary
a= /G, and Gal(a) = G.

Since G is not necessarily pro-finite, we see there are hyperimaginaries which are not
interdefinable with a tuple of finitary ones.
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