Groupes et Géométries

Rappels du cours:

On suppose que G est un groupe qui agit sur un ensemble X.

- a) Montrer que les stabilisateurs de points d'une même orbite sont conjugués (et donc isomorphes).
- b) Montrer que le cardinal d'une orbite $O = O_x$ est le quotient de |G| par $|G_x|$.
- c) Montrer que $\sum_{x \in X} |G_x| = \sum_{g \in G} |Fix(g)|$.
- d) Montrer la formule de Burnside: le nombre d'orbites de G est donné par $|G|^{-1} \sum_{g \in G} |Fix(g)|$.

Exercice 1.

- 1. On fait agir S_3 sur lui meme par conjugaison, quelles sont les orbites? Idem pour S_4 .
- 2. On fait agir Q_8 le groupe des quaternions sur lui même par conjugaison, quelles sont ses orbites?
- 3. On fait agir $GL_n(\mathbf{C})$ sur lui même par conjugaison, quelles sont les orbites?
- 4. Soit p le plus petit diviseur de |G|. Montrer que tout sous-groupe d'indice p est distingué. (Indication : on pourra considérer l'action naturelle de H sur G/H.)

Exercice 2.

On fait agir un groupe d'ordre 143 sur une ensemble de cardinal 108. Montrer qu'il existe un point fixe pour cette action.

Exercice 3.

Soient $n \in \mathbb{N}^*$ et p un entier premier. On considère un ensemble C de n couleurs et des colliers constitués de p perles, chacune pouvant être coloriée de l'une des n couleurs. Deux colliers sont considérés comme étant identiques lorsqu'on obtient l'un à partir de l'autre par rotation (mais pas par symétrie...). Combien existe-t-il de tels colliers ? Meme question, p n'étant plus supposé premier.

Exercice 4.

Quelle est le groupe d'isométrie du tétraèdre? du cube? (Pour le dernier, on regardera d'abord les isométries directe, qui agiront sur les grandes diagonales du cube).

Exercice 5 (p-groupes)

Soit p un nombre premier. On dit qu'un groupe fini G est un p- groupe si $|G|=p^r$ pour un entier naturel $r \ge 1$.

Soit

$$G\times G\to G:(g,x)\mapsto i_g(x)=gxg^{-1}$$

l'action par conjugaison.

1. Reconnaitre l'ensemble des points fixes de cette action.

- 2. En vous servant de l'équation aux classes, montrer que le centre Z(G) d'un p-groupe G est d'ordre > 1.
- 3. Montrer que tout groupe G d'ordre p^2 est abélien. (Indication: par l'absurde en supposant Z(G) d'ordre p et en raisonnant sur le stabilisateur de $x \in G \setminus Z(G)$.)
- 4. Que peut-on dire d'un groupe d'ordre p^3 ?

Exercice 6 (Un théorème de Cauchy)

Soit G un groupe fini d'ordre n, p un facteur premier de n et E le sous-ensemble de G^p défini par

$$E = \{(x_1, x_2, \dots, x_p) \in G^p \mid x_1 x_2 \cdots x_p = e\}.$$

1. Quel est le cardinal de E?

Pour tout élément $\zeta = (x_1, x_2, \dots, x_p) \in E$ on pose $\sigma(\zeta) = (x_2, x_3, \dots, x_p, x_1)$.

2. Vérifier que σ conserve E et que l'application

$$\phi: \mathbf{Z}/p\mathbf{Z} \times E \to E: (\overline{k}, \zeta) \mapsto \sigma^k(\zeta)$$

est une action du groupe $(\mathbf{Z}/p\mathbf{Z}, +)$ sur E.

- 3. Montrer que ζ est un point fixe de l'action si et seulement si $\zeta = (x, x, \dots, x)$, où $x^p = e$.
- 4. Montrer que toute orbite est de cardinal 1 ou p.
- 5. En vous servant de la partition de E en orbites, montrer le théorème de Cauchy: si p est un facteur premier de l'ordre d'un groupe fini G, alors G contient un élément d'ordre p.

Un peu de géométrie projective.

Soit K un corps. On note $\mathbf{P}^n(K)$ l'espace projectif de dimension n, ensemble des droites vectorielles de K^{n+1} . On notera [z] la droite engendrée par z.

Exercice 7.

- 1. Montrer que l'on peut définir une action de GL(n+1,K) sur $\mathbf{P}^n(K)$ telle que, pour tous $A \in GL(n+1,K)$ et $z \in \mathbf{P}^n(K)$, A.[z] = [Az].
- 2. Quel est le noyau du morphisme induit $GL(n+1,K) \to Aut(\mathbf{P}^n(K))$? On le notera H.
- 3. En déduire une action non triviale de PGL(n+1,K) := GL(n+1,K)/H sur $\mathbf{P}^n(K)$.
- 4. On définit également PSL(n, K) comme le quotient de SL(n + 1, K) par son centre. Quelle relation y a-t-il entre PSL et PGL?

Exercice 8.

On prend $K = \mathbf{F}_p$ avec p un nombre premier, le corps à p éléments et n > 1.

- 1. Montrer qu'il existe un morphisme injectif $PGL(n,K) \to S_N$ avec $N := (p^n 1)(p 1)^{-1}$.
- 2. Pour p = 2, 3, 5, identifier PGL(n, K) et PSL(n, K) avec des groupes déjà connus. (Pour p = 5, on démontrera en amont que les sous-groupes de S_6 d'indice 6 sont isomorphes S_5)

Exercice 9.

1. Montrer que PGL(2, K) agit de manière transitive et fidèle sur $\mathbf{P}^1(K)$.

- 2. Montrer que PGL(2, K) agit de manière transitive sur les couples d'éléments distincts de $\mathbf{P}^1(K)$ (on dit que cette action est 2-transitive).
- 3. Montrer que l'action de PGL(2, K) sur $\mathbf{P}^1(K)$ est 3-transitive. Est-elle 4-transitive?
- 4. En déduire que pour 4 points distincts p_1, p_2, p_3, p_4 dans $\mathbf{P}^1(K)$, leur orbite admet un unique représentant de la forme ([1 : 0], [0 : 1], [1 : 1], [z : 1]). On appelle z le birapport de ces quatre points, et on le note $z = [p_1, p_2, p_3, p_4]$.
- 5. Vérifier que le birapport est un invariant projectif des quadruplets de points distincts dans $\mathbf{P}^1(K)$ (i.e. est préservé par l'action de PGL(2,K)), puis donner une expression de $[p_1,p_2,p_3,p_4]$ en fonction des coordonnées de p_1,p_2,p_3,p_4 .

Exercice 10.

On pose $K = \mathbf{C}$. On rappelle que \mathbf{C} s'identifie à la partie de $\mathbf{P}^1(\mathbf{C})$ formée des éléments de la forme [z, 1].

- 1. Montrer que les homographies conservent l'ensemble des cercles et droites (réels) de C.
- 2. Montrer que 4 points sont alignés ou cocycliques si et seulement si leur birapport est réel.
- 3. Montrer qu'il existe une action de S_4 sur $\mathbf{P}^1(\mathbf{C})$ qui au birapport d'un quadruplet de points associe le birapport de leur permutation.

Exercice 11.

- 1. Montrer que l'action naturelle de $PGL(2, \mathbf{C})$ sur $\mathbf{P}^1(\mathbf{C})$ se restreint en une action du groupe $PSL(2, \mathbf{Z})$ sur le demi-plan de Poincaré $H = \{z \in \mathbf{C} : Im(z) > 0\} \subset \mathbf{P}^1(\mathbf{C})$.
- 2. Montrer que cette action est fidèle. Identifier le stabilisateur de $i \in H$.
- 3. Soit G un groupe agissant sur un espace topologique X. Une partie F de X est appelée domaine fondamental pour l'action de G sur X si elle vérifie:

$$(i) \ \overline{F^{\circ}} = F, \quad (ii) \ X = \bigcup_{h \in G} hF, \quad (iii) \ \forall g \in G \setminus \{1\}, F^{\circ} \cap (gF)^{\circ} = \emptyset.$$

Soit $D = \{z \in H, 2|Re(z)| \le 1, |z| \ge 1\}.$

- (a) En maximisant la partie imaginaire des éléments d'une orbite $PSL2(\mathbf{Z}) \cdot z$, montrer que D vérifie la propriété (ii).
- (b) Montrer que D est un domaine fondamental pour l'action de $PSL2(\mathbf{Z})$ sur H.
- (c) En déduire que les matrices $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ engendrent $SL2(\mathbf{Z})$.