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Les calculatrices, ordinateurs, tablettes et téléphones portables sont interdits durant l’épreuve ainsi
que les notes de cours et TD.
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Question 1. Vrai ou faux? Justifier en moins d’un paragraphe, en donnant un argument cours, évo-
quant un résultat du cours (ou du TD), ou en donnant un exemple / contre-exemple, selon ce qui
convient.

1. Si G est un groupe fini et x ∈G , alors ord(x) divise |G|.
2. Si G est un groupe fini et A ⊆G est une partie, alors |A| divise |G|.
3. Si G est un groupe fini et H ≤G est un sous-groupe, alors l’indice [G : H ] divise |G|.
4. Si G et H sont deux groupes non-triviaux (c’est à dire, G ̸= {eG } et H ̸= {eH }), alors il existe un

morphisme ϕ : G → H qui n’est pas trivial (n’est pas constamment égal à eH ).

Question 2. Soit G un groupe. On note Aut(G) l’ensemble des automorphismes de G . Montrer que
Aut(G) est un groupe, pour la loi de composition.
Pour cette question, aucun résultat du CM ou du TD n’est autorisé – vous devez tout démontrer.

Soit G , H et K des groupes. On rappelle que H ×K (le produit direct des groupes H et K ) est un
groupe, pour la loi (h,k) · (h′,k ′) = (hh′,kk ′).

Question 3. 1. Soit α : G → H et β : G → K deux morphismes de groupes. Montrer que

ϕ(g ) =
(
α(g ),β(g )

)
définit un morphisme G → H ×K .

2. Réciproquement, montrer que si ϕ : G → H ×K est un morphisme, alors il s’exprime comme
plus haut pour une unique paire de morphismes α,β.

Question 4. 1. Soit α : H → G et β : K → G deux morphismes de groupes, et supposons de sur-
croît que

α(h)β(k) =β(k)α(h) ∀h ∈ H , k ∈ K (*)

Montrer que

ϕ(h,k) =α(h)β(k)

définit un morphisme H ×K →G .

2. Réciproquement, montrer que si ϕ : H ×K → G est un morphisme, alors il s’exprime comme
plus haut pour une unique paire de morphismes α,β, et que cette paire vérifie (*).

Question 5. Soit G un groupe et soit H et K deux sous-groupes de G tels que HK =G , et

hkh−1k−1 = e ∀h ∈ H , k ∈ K .

Montrer que H et K sont des sous-groupes distingués de G .
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