Chapitre V

Le produit direct et semi-direct

Le quotient de groupe, dont nous avons discuté dans le chapitre précédent, permet de « décomposer » (d'une maniere) un groupe G en
deux groupes plus simples (d"une maniere, encore), les groupes N et G/ N (sous I'’hypothese que N < G). Dans ce chapitre nous discuterons
de la question inverse : peut-on reconstruire G a partir de ces deux « blocs »? Bien évidemment, cette derniere question suppose que G est
connu. Lorsque G n’est pas connu, on peut encore se demander quels sont les groupes que l'on peut construire a partir de deux groupes
donnés (qui joueront les roles de N et de G/ N, respectivement).

1. Le produit direct : externe, puis interne

Commengons avec la version la plus facile de cette question : on nous donne deux groupes H et K, et c’est tout. Que pouvons-nous
construire avec?

Définition V.1.1. Soit H et K deux groupes. Nous munissons le produit cartésien
HxK={(xy):x€H,yecK}
de la loi
(x,y) - (u,0) = (xu,yo).

On appelle H x K, muni de cette loi, le produit direct (externe) de H et K.
Comme c’est un produit cartésien, il est muni également de deux projections canoniques

m: Hx K — H, m(x,y) = x,
m: Hx K — K, m(x,y) =y.

(Ces projections pourront également étre notées 71 et 712, ou avec toute autre notation non ambigué.)
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60 V. LE PRODUIT DIRECT ET SEMI-DIRECT

Proposition V.1.2. L'ensemble G = H x K, muni de cette loi, est un groupe, dans lequel le neutre est (e, e) (c’est a dire, (ep, ex)), et l'inverse est
-1 -1 -1
(xl ]/) = (x 4 y )
Les projections canoniques 71 et 115 sont des épimorphismes (morphismes surjectifs).

Remarque V.1.3. Nous pouvons construire G = Hy X Hy X - - - X H, = []i_; H; de la méme maniere, avec projections canoniques 7t;: G —
H; pour chaque 1 <i < n.

Exemple V.14. (R?%,+) = (R, +) x (R, +), et plus généralement, (R*™", +) = (R", +) x (R™, +)
Voici une maniére alternative de définir le produit direct H x K. Elle peut sembler étre bien trop compliquée, mais elle a ses avantages.

Définition V.1.5. Soit H, K et G des groupes, et soit ¢1: G: — H et ¢o: G — K des morphismes. On dit que le triplet (G, ¢1, ¢,) vérifie la
propriété universelle du produit direct H x K si pour tout autre triplet (L, 1, ¢,), ot 1: L — H et ¢,: L — K sont des morphismes, il
existe un unique morphisme p: L — G qui rend le diagramme suivant commutatif :

1 H
o
1
I soieh ©
N
P2 K

Autrement dit, il existe un unique p: L — G qui vérifie ¢ = ¢;0op pouri =1,2.

Dans ’Exercice V.2 on montre que (H x K, 71y, 712) vérifie cette propriété universelle, et de surcroit, ce triplet est caractérisé, a isomor-
phisme unique pres, par la propriété universelle. Dans le contexte des catégories, que nous ne définirons pas ici, une caractérisation a
isomorphisme unique pres est le mieux que 'on peut espérer, et la propriété universelle est la définition du produit direct — qui n’est plus
juste le groupe H x K, mais le triplet (H x K, 71, 712).

Etudions un peu plus ce triplet (H x K, 711, 772 ). Que peut-on dire de 771 : H x K — H, par exemple ? Calculons sont image et sont noyau :

— img r; = H. Autrement dit, 717 est surjectif. Bon, on le savait déja, rien de nouveau ici.

— ker 7t; = {e} x K. Ca c’est plus intéressant — le noyau est isomorphe a K, et de surcroit par un isomorphisme canonique, qui est juste

la restriction de 715 :

(e y) = y-
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L’application inverse de cet isomorphisme est le plongement canonique de K dans H x K:
1n: K— H xK, n(y) = (ey).

— De la méme maniére, ker 1o = H x {e} est canoniquement isomorphe a H : dans un sens par la restriction de 71, et dans le sens
inverse par le plongement canonique

1n: H— HXxK, 11(x) = (x,e).

Puisque H est canoniquement isomorphe au sous-groupe H x {e} < H x K, nous aurons tendance a faire abstraction de la distinction.
Autrement dit, nous allons prétendre que x € H est le méme que (x,¢) € H x K, de sorte que H < H x K, et méme H < H X K, puisque
c’est le noyau de 715. De la méme manieére, nous allons prétendre que y € K est le méme que (¢, y) € H x K, de sorte que K < H x K.

Et voici une autre maniere (tentative, pour l'instant) de présenter un produit direct H x K, comme un groupe G dont H et K sont des
sous-groupes. Que peut-on en dire?

Définition V.1.6. Soit G et groupe et H et K deux sous-groupes. Alors on dit que G est un produit direct interne de H et K, que I'on notera
provisoirement par G = H x; K, si:

— HNK = {e}.

— G = HK.

— Let sous-groupes H et K commutent : si x € H ety € K, alors xy = yx.

Proposition V.1.7. Soit H et K deux groupes, et G = H x K leur produit directe (externe). Identifions H avec H x {e} et K avec {e} x K comme plus
haut. Sous cette identification, H et K sont des sous-groupes de G, et G = H x; K est leur produit direct interne.

Réciproquement, soit G un groupe, et H, K < G des sous-groupes de sorte que G = H x; K est le produit direct interne. Alors tout membre de G
s'écrit d'une maniere unique comme xy avec x € Hety € K, et six,u € Hety,v € K, alors :

(xy) (o) = (xu)(yv),  (xy)"' =x""y"!
(oit xu,x ' € Hetyo,y~ ' € K). Autrement dit, l'application
p:HxK—=G,  plxy)=xy=mxy)m(x,y)
est un isomorphisme H x K = G.
Démonstration. .... [}

Autrement dit, le produit direct externe est aussi un produit direct interne, et tout produit direct interne est canoniquement isomorphe
au produit direct externe. Dans la suite, nous ferons abstraction de la distinction, notant les deux par G = H x K.
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62 V. LE PRODUIT DIRECT ET SEMI-DIRECT

Remarque V.1.8. Soit G un groupe, H, K < G des sous-groupes, et supposons que les deux premieres conditions de la définitions d'un
produit directe interne sont vérifiées :

— HNK = {e}.

— G = HK.
Alors H et K commutent si et seulement si les deux sont des sous-groupes distingués.

Démonstration. Dans un sens, supposons que H et K commutent. Soient x € H, u € K, etw € G. Puisque G = HK,onaw = yvavecy € H
et v € K. Ainsi,

wxw ™ = yvxv_ly_1 = yxy_lvv_1 = yxy_1 e Il
wuw ! = yvzw_ly_1 = vuv‘lyy_l =ovuv ! € K.
Autrement dit, wHw ™! C H et wKw~! C K pour toutw € G,d’out H,K < G.
Pour la réciproque, supposons que H, K < G. Soit x € H et u € K, et étudions [x, u] = xux~'u~1 (cet élément s’appelle le commutateur

de x et u). Puisque H < G,ona ux 'u~! € uHu™! = H, donc [x,u] € H. D'une maniére similaire, xux~! € xKx~! = K, donc [x, u] € K.
Donc [x,u] € HNK = {e}, c’est a dire [x, u] = e. Autrement dit, xu = ux, et nous avons montré que H et K commutent. |

Par conséquent, G = H X; K si et seulement si :
— HNK = {e}.

— G = HK.

— H,K4G.

2. Le produit semi-direct : interne, puis externe

Le produit direct interne nous permet de dire que un groupe G est obtenu de deux sous-groupes H, K < G d'une maniere particuliere-
ment simple. Il s’avere étre tres utile d’affaiblir la définition en prenant que « la moitié » de la derniere condition :

Définition V.2.1. Soit G un groupe et H,K < G deux sous-groupes. Nous disons que G = H x K, ou que G est le produit semi-direct
interne de H avec K (l’ordre est important) si

— HNK = {e}.
—flng. (frt (- < H) Kﬂ
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ﬁ Notez bien que dans H x K et dans H < G, le triangle pointe vers H! On
On pourrait également définir G = H x K, en replagant H < G par K < G : le triangle pointe alors toujours vers K.

pourrait également définir G = H x K (triangle vers K) si HN K = {e}, HK = G, et K I G — autrement dit, si G = K x H.

Remarque V.2.2. Soit G un groupe, et H,K < G.Si H < G, alors Ng(H) = G, et en particulier, K < Ng(H). Réciproquement, d'apres le
2e théoreme d’isomorphisme (Théoreme I11.3.3), si K < Ng(H), alors H < HK = KH. Si on sait d’ailleurs que HK = G (ou que KH = G),
alors H < G.

Il en découle que dans Définition V.2.1 :

— La condition G = HK peut étre remplacée par G = KH.

— La condition H < G peut étre remplacée par K < Ng(H) (qui est, superficiellement, plus faible).

Lemme V.2.3. Soit G un groupe, et H, K < G des sous-groupes de sorte que G = H x K est le produit semi-direct interne. Pour x € Hety € K,
posons

py(x) =yxy~!

(c’est la conjugaison par y). Alors
— L'application y — ¢y est un morphisme K — Aut(H )](’e'n particulier, chaque ¢, est un automorphisme de
— Tout membre de G s’écrit d'une maniére unique comme xy avec x € Hety € K, et six,u € Hety,v € K, alors :
(xy) (o) = (x@y () (yo),  (xy)™' = @1 (x Ny~

(oit x@y(u), p,1(x~ 1) € Het yo,y~ ' € K).
(Donc (x,y) — xy est une bijection entre pe produit cartésien H x K et G, bien que ce ne soit pas forcément un isomorphisme de groupes.)

Ainsi, si G = H x K, alors nous pouvons reconstruire G avec sa loi de H et K —a conditions de connaitre également I’application y — ¢,
Essayons de faire pareil mais sans connaitre G a I’avance.

Définition V.2.4. Soit H et K deux groupes, et soit #: K — Aut(H) un morphisme. Pour y € K, notons a(y) € Aut(H) plutét par a,, de

sorte que 1’on puisse écrire ay(x) pour x € H.
Le produit semi-direct externe de H et de K selon «, noté H x, K, consiste de l'ensemble H x K (le produit cartésien), muni de la loi
suivante :

(%, ) -« (u,0) = (xay, (1), yo).
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Ainsi, tout produit semi-direct interne est aussi un produit direct externe. La réciproque est vraie également :

Proposition V.2.5. Soit H et K deux groupes, et soit a: K — Aut(H) un morphisme.
(i) Le produit semi-direct externe H X, K = (H X K, -, ) est un groupe.
(ii) Les applications
11: H— HXK, 11(x) = (x,e),
1n: K— H x K, n(y) = (ey),

sont des plongements de H et K dans H %, K. Ainsi, identifiant x € H avec (x,e) et y € K avec (e, y), nous pouvons considérer que H et K
sont des sous-groupes de H X, K.

(iif) Awvec ces identifications, H x4 K est un produit semi-direct interne de H x K. En particulier, pour x € Hety € K :

et w est l'application y — @

Exemple V.2.6. Soit G le groupe diédral D,, pour n > 3. Soit H C D, les rotations, et soit s € D, une réflexion. Posons K = (s) = {e,s}.
Alors H et K sont des sous-groupes, H N K = {e} et HK = D,,. De surcroit, H < D,, (car tout sous-groupe d’indice 2 est distingué).
Ainsi, D, = H % K, en tant que produit directe interne. Nous pouvons calculer ¢, explicitement pour y € {¢,s} :

oy, et (font ol
~
r r/
En particulier, H et K ne commutent pas, donc D,, 22 H x K. f QA«L | ~e S=_ )
Lemme V.2.7. Soit (G, +) un groupe additif (donc abélien). Définissons a;: G — G pour i € Z/2Z par :
wg(x) = x, B %) = =%
Alors a; € Aut(G), et w: Z/2Z — Aut(G) est un morphisme.

Cecinous permet de construire D,, comme produit semi-direct externe : D, = Z/nZ x, Z/2Z, selon le « du Lemme V.2.7.
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Exercices

Exercice V.1. Montrer que si H =~ H' et K =2 K" alors H x K = H' x K.
Montrer que (H x K) x L= H x (K x L).
Exercice V.2. Soit H et K deux groupe, H x K leur produit direct, et 711 et 712 les projection canoniques. Montrer que :
— (H x K, 111, 112) vérifie la propriété universelle du produit direct (Définition V.1.5).
— Si (G, ¢1, ¢2) vérifie la propriété universelle du produit direct, alors il existe un unique isomorphisme p: G — H x K de sorte que
@; = ;0 p (et donc r; = @;0p7Y).
Exercice V.3 (Théoreme des restes chinois). Soit m et n sont premiers entre eux. Alors l'application a + mnZ +— (a + nZ,a + mZ) est un
isomorphisme Z/mnZ = Z/nZ x Z/mZ.

Indication : montrer que c’est un morphisme (en particulier, que c’est bien défini), et calculer son noyau.

:

Exercice V.4. Supposons que G = H x K.
) Lapplication 77: G — K, t(xy) =y (o x € H ety € K) est un épimorphisme. On l'appelle la projection canonique sur K.

(ii) Le noyau de la projection canonique sur est H.
(iif) Soits: K — G l'application identité. Alors c’est encore un morphisme (un plongement), et 77 o s = idg.

Exercice V.5. Montrer la réciproque de l'exercice précédent. Soit G un groupe, r: G — K un épimorphisme, et soit H = ker 7. Supposons
en outre que s: K — G est un morph1sme t[que 7t os = idk (on dit dans ce cas que s est une section de 7). Alors s est un plongement, de

sorte que imgs = K, et G = H x (imgs). H )Y [/&/
5

o

d (G —>»



