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1. INTRODUCTION 

The important role of the effects of dispersion on the description of linear 
and nonlinear wave motion is well known. Perhaps the most familiar 
problems in which dispersive effects are present come from the classical 
problem of water waves, and the long wave descriptions given by the 
Boussinesq and the Korteweg-de Vries (KdV) equations. In this paper we 
discuss a linear version of the latter equation 

a,24 = a(x, t) qu, (1.1) 

for which the coefficient of dispersion is allowed to vary in space and time. 
We will describe several mathematical results for the initial value problem 
for (1.1 ), as well as give a brief description of the application of the method 
of geometrical optics to describe the propagation of wave packet solutions, 
and its mathematical justification in several cases. The method of geometri- 
cal optics provides a heuristic description of what is perhaps the most 
interesting phenomenon, the effect of dispersive smoothing of solutions. 
Basically, for spatially localized initial data the solution operator acts as a 
smoothing operator. In this paper, we give the heuristics as well as the 
rigorous proof of this fact for the problem (1.1). In the last several years 
other authors have discussed this effect in related settings; for the KdV 
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equation or related generalizations we refer to the work of T. Kato [S], 
A. Cohen [l], R. Sachs [lo], T. Kappeler [6], G. Ponce [9], and 
P. Constantin and J. C. Saut [2, 31. 

Versions of the KdV equation or its linearization arise in the description 
of the slow variation of a wave front in coordinates moving with the wave. 
Equations of the form (1.1) arise through the linearization of problems 
with nonlinear dispersion, or in situations in which the wavefront travels 
through heterogeneous media, such as through liquid-gas or liquid-liquid 
interface, whose surface tension is varying due to inhomogeneities, tem- 
perature variations, or other effects. An important example is the KdV 
equation with a variable coefficient of surface tension which takes the form 

(1.2) 

Problems with nonlinear dispersion, such as 

a, u = a( U) a: u + lower order terms (1.3) 

invariably arise in many other contexts; the following example was com- 
municated to us by David Levermore. The difference equations 

model the differential equation 

a,u=d,~ (1.4) 

with the sequence Uj serving as an approximation to u(j dx). The “modified 
equation” is a differential equation that describes the difference between 
(1.8) and (1.9); its solutions will describe the error committed when 
modelling (1.8) with Eq. (1.9). Letting uj(t) = u(jdx, t) for some smooth 
function u, one finds that for small Ax, 

Dropping the higher order terms yields the modified equation 

a typical example of an equation with nonlinear dispersion. 
We begin by presenting a formal geometrical optics expansion for solu- 
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tions to Eq. (1.1 ), with which one describes the propagation of oscillatory 
wave packets. To start, we consider solutions whose oscillation will be 
much more rapid than the variation of the coefficient. Letting a = a(&~, et) 
and scaling the independent variables x’ = EX, t’st, the equation becomes 

a,, 24 = E2U(X’, t’) a;. u. (1.7) 

For convenience of notation the primes are dropped. 
The proper ansatz is u(x, t) = A(x, t; E) exp(i/e) S(x, t). Putting this into 

Eq. (1.7) and equating terms with like powers of E, an expression for the 
solution is generated by solving a hierarchy of partial differential equations. 
This is the usual procedure: 

a,s+a(x, t)(a,q3=o (1.8) 

is the eiconal equations. Letting A = c,!YO &jAj, the first transport equation 
is 

L(a,S)A,r8,A,+3a(x, ~)c?~((&S)~A,-J=O. (1.9) 

All higher transport equations involve inhomogeneous problems for the 
operator L(u, S), whose right hand sides involve only previously computed 
quantities and their derivatives, 

L(u, S) Aj = I?,($ A,; 0 < i < j). (1.10) 

Equation (1.8) is a Hamilton Jacobi equation, which can be solved by the 
method of characteristics. Define the Hamiltonian system by 
H(s, t, k, co) = o + u(x, t) k3; 

i = ak H = 3u(x, t) k2 

k = -a,H = -a,ukJ 

i=a,H= 1 
(1.11) 

03 = -a, H = -a,uk? 

Orbits of (1.11) describe the change in oscillation and the spatial location 
of a wave packet, and the phase function S(x, t) can be recovered by the 
integration of k dx + w  dt from the initial surface t = 0. The trajectories x(t) 
are known as group lines, describing the spatial position of the packet. 
Differentiating (1.8) with respect to k gives 

a,(d,s) + 34x, f)(a,s)2 a,(+s) = 0 (1.12) 

from which we see that points at which the phase is stationary propagate 
with the group velocity 3u(x, t) k2, with location described by the trajec- 
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tories x(t). Since Eqs. (1.9) and (1.10) involve the same hyperbolic differen- 
tial operator as (1.12), this formal expansion procedure predicts that all 
phase and amplitude information propagate with the group velocity, along 
the trajectories x(t) of the system (1.11). 

The mathematical results of this paper are in part a justification of this 
asymptotic description of solutions to (1.1). In Section 2, two explicit and 
instructive examples are presented, for which the geometrical optics expan- 
sion leads to an exact solution. The simple case is of course the Airy equa- 
tion, for which we review the construction of a fundamental solution and 
the justification of the method of stationary phase. The more interesting 
case involves a variable coefficient of dispersion. Two options differ by a 
choice of sign; in one distributional initial data become analytic for any 
positive t, while the other choice of sign (solve the problem with time 
reversed) leads to singularity formation in finite time even for initial data 
analytic, of exponential type. 

Sections 3 and 4 contain the existence, uniqueness, and regularity results 
for solutions to Eq. (1.1 ), and are based on energy estimates using weighted 
Sobolev norms. It is shown in Lemma 3.1 that if a(x, t) is sufficiently 
smooth, and does not change sign, then the initial value problem is well- 
posed in appropriate Sobolev spaces. This kind of dispersive problem 
exhibits the interesting phenomenon of dispersive smoothing; that is, if 
initial data are effectively spatially localized, then the solution at any time 
t # 0 is much smoother than the data. There is a simple heuristic argument 
for this effect based on the formal geometrical optics expansion. One 
decomposes the initial data into oscillatory components, for example, with 
a partition of unity on the Fourier transform side. The effect of the solution 
operator is to propagate components with different oscillation at different 
speeds; the more oscillation the higher the velocity. When initial data are 
localized to the right half-line, this effect propagates all highly oscillatory 
components out of any finite set, and the solution is C”. A quantitative 
statement of the effect of dispersive smoothing appears in Lemma 3.5. This 
is, in fact, a general phenomenon among dispersive evolution equations 
with the property that lim,, + cD I&J+% = cc. These results for the non- 
linear but constant dispersion case have been previously discussed by 
A. Cohen [l], R. Sachs [lo], and T. Kappeler [6] for the KdV equation 
using methods of inverse scattering theory, and for a class of generalized 
KdV equations by T. Kato [S] using energy estimates and by 
G. Ponce [9] using commutator estimates. Our approach was devised 
independently of, but most closely resembles, that of Kato. 

Of the remaining sections, 4 discusses briefly the periodic case, and 
Section 5 discusses further including the questions of well-posedness and 
ill-posedness when the coefficient a(x, t) changes sign. 

We would like to remark that this article concerns a simple linear partial 
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differential equation, for which the machinery of Fourier integral operators 
is often well suited. However, for these problems, the solution operator is 
S-“, or better in some cases, and the techniques are less useful in describ- 
ing the smoothness properties of solutions. We have chosen to proceed 
with the quite simple weighted Sobolev estimates for these problems of 
variable dispersion. 

A preprint of this paper was written and circulated in Spring 1985; 
however, it was never submitted for publication. Since then there has been 
a growth of interest in the field, including many new developments. In par- 
ticular, the phenomenon of dispersive smoothing is being discussed is many 
settings, both linear and nonlinear. Using the techniques of Section 3 of 
this paper, fully nonlinear ‘versions of the phenomenon of dispersive 
smoothing have been obtained ; these will appear in an article by W. Craig, 
T. Kappeler, and W. Strauss. 

The authors thank Russell Caflisch and Peter Lax of the Courant 
Institute, Joseph B. Keller of Stanford University, Gustav0 Ponce of the 
University of Chicago, and Jean Claude Saut of the Universite de 
Paris-Sud for many useful discussions. 

2. Two INSTRUCTIVE EXAMPLES 

There are two examples of dispersive equations of the class under 
consideration which are explicitly solvable, and which are instructive to 
present. The first is the constant coefficient Airy equation 

a,u-aa~u=o, -a3<<<<, O<t<co 

4x, 0) = S(x) initial data 
(2.1) 

whose solution can be represented conveniently either as a superposition of 
Airy functions 

u(x, t) = - $ w *f) ($=)Y at (2.2) 

or directly by the Fourier transform 

u(x, ~)=~~~e’(*II-,.)+O*“)f(y)dydk. (2.3) 

Since this is a constant coefficient equation the geometrical optics expan- 
sion in this case is exact and gives rise to expression (2.3). 
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The second example is an equation with a variable coefficient of disper- 
sion 

a,u+xa;u=o, -co<<<<, O<t<oo 

4x9 0) = f(x). 
(2.4) 

It turns out that in this case as well the geometrical optics expansion gives 
the exact solution and can be applied to give an expression similar to (2.3). 
From this representation we will see that the difference in sign in (2.4) 
changes drastically the character of the solution operator; the positive sign 
is stable, for which the initial value problem is well-posed, and the solution 
operator is a smoothing operator for all positive t. On the other hand the 
problem with the negative sign is ill-posed, generating solutions for even 
analytic initial data which develop infinite oscillation in finite time. 

We first give a description of the solution operator for the simplest 
example (2.1). The Airy function (at)-“3Ai(x/(at)-1’3) is the fundamental 
solution, giving rise to the expression (2.2). The first remark is that the 
fundamental solution, which is a Dirac mass at t = 0, by virtue of the effect 
of dispersive smoothing, for all nonzero t is a real analytic function of x. 
This smoothing is not, however, accompanied by a loss of “energy,” or L2 
norm. If a solution possesses CI many L2(R) derivatives, then by integration 
by parts for p<a-- 3 

a, jm (~Y$)~dx=2 jm a$aa!+3Udx 
-m -cl2 

5 

cc 
= a~,(~~+1u)2dx=0; 

--co 

that is, the solution operator preserves all Sobolev norms. Of course for a 
constant coefficient equation, it is best to do Fourier analysis. To continue 
our point of view make the ansatz that u(x, t) = exp(iS(x, t)) A(x, t). The 
eiconal equation is 

~,S+~(C?~S)~=O, 8x, 0) = w  - Y), (2.5) 

and the first transport equation is 

a,A +3a~,((~,S)2A)=0. (2.6) 

Hamilton Jacobi theory can be used to solve (2.5) by the method of 
characteristics; set H(x, t, k, o) = o + ak3 and solve the system 

.t=akH, k = -a,H, (2.7) 
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whose trajectories represent “group lines,” along which wave packets 
propagate. In the constant coefficient case, the solution of (2.5) and (2.7) 
is simply 

x(t) = x(0) + 3ak*t, k(t) = k(0) 

S(x, t) = k(x - y) - ak3t. 

These group lines are exhibited in Fig. 1. Clearly 8,s = -ak3 = o(k) gives 
the dispersion relation. Solving the transport equation (2.6) with initial 
data A(x, 0) = 1 results in an expression for the fundamental solution, and 
in this roundabout manner, gives the expression (2.3). 

To finish this discussion we will give a simple justification of the method 
of stationary phase for the solution operator, which gives the result of the 
propagation of wave packets along the characteristics of (2.7). 

LEMMA 2.1. Consider initial data f(x) of Schwartz class, such that 
suppf(k) cc [b,, b2], where 0 d b, <b,. There are constants Cpys such that 
the solution u(x, t) of (2.1) satisfies 

Furthermore, if b I > 0 then 

14x, t)l < Co(l + t)-“2 (2.9) 

t 

FIGURE 1 
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while if b, = 0 then in general, the weaker estimate holds 

lu(x, t)l < C,( 1 + t)y3. 

ProojI The results of the lemma are precisely the behavior of the lead- 
ing term in the method of stationary phase, and the proof as usual consists 
of integration by parts. From (2.3) 

Consider x/t $ [8w/ak](bl), dw/ak(b,)] so that for any k E (b,, b2), 
d,(kx - o(k) t) = (x - &u/akt) # 0. Integration by parts involves the 
operator L(k) = ia,((x - CJkot)-‘); 

u(x, t) = - vfZ;;/b~+kk i’k”-wr))(x-aak~t)-~(k)dk 

=+1 
eickx ~ O’) L(k) fdk 

i(k.x- 00 L”(k)@ (2.10) 

Each application of L(k) adds to the spatial decay, since 

ILB(k)fl G c, IX - a,utl -B C a,(d,)jSI. 

i 

The same computation applies to derivatives of u(x, t); this proves (2.8). 
Statements (2.9) follow from similar simple considerations. 1 

The second example (2.4) has a variable coefficient of dispersion, and the 
solution operator is more interesting. With the ansatz u(x, t) = exp(iS)A, 
we obtain the eiconal and transport equations 

a,srX(a,q3=0, S(x, 0) = 4x - y), 
a,A T 3x a,((a,s)54)=0. 

(2.11) 

By Hamilton Jacobi theory one obtains the Hamiltonian H(x, t, k, o) = 
o T xk3, and the system 

i=a,H= f3xk2 

I;= -a,H= +k3. 
(2.12) 
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There is a closed form solution to this given by 

k(t)=5(1T2&-“2, k(O) = < 

x(t)=x(O)(l T 25%)3'2 

S(x, k, t) = (x - y) k( 1 T 2k2t) - “*. 

(2.13) 

The cases of + in (2.4) have clearly different behavior, in particular for 
a(x) = -x the group lines x(t) focus to zero in finite time, t = l/2<* while 
the associated wave numbers k(t) become infinite. In the stable case 
a(x) = x, the group lines diverge, while the associated wave numbers k(t) 
all lie within the envelope k= k(2t)-‘12. 

It is remarkable that the geometrical optics expansion for (2.4) is exact. 
To demonstrate this consider the Fourier transform of (2.4), 

i?,li i &(k3ti) = 0. (2.14) 

Because of the simple nature of the coefficient, the result is a first order 
linear hyperbolic equation, which can be solved by the method of charac- 
teristics. 

ti(k, t)=(l +2k2t)-3’2f(k(l +2k*t))“*). 

Thus 

eik”(l + 2k2t)-3’2](k(l f 2k2t)-“2) dk 

(2.15) 

which verifies the geometrical optics derivation of S(x, t, k) = 
xk(1 T2k2t)- , “2 ,4(x t k) = 1 for the fundamental solution of the problem. 
The characteristics for’ the hyperbolic problem (2.14) are of course the 
trajectories k(t) of the Hamiltonian system (2.12), whose orbits projected 
onto the x-variable give the group lines. Sketches of these trajectories in the 
stable and unstable cases appear as Figs. 2a and 2b. Inspection of this 
explicit solution provided the following lemma. 

LEMMA 2.2. (i) For a(x) =x, the stable case, the initial value problem 
is well-posed. For distributional initial data, a unique solution exists which is 
analytic, of exponential type R = (2t)-‘I2 for any t > 0. 

(ii) On the other hand, for the unstable case a(x) = -x the initial value 
problem is ill-posed. Even for initial data of exponential type, whose Fourier 



LINEAR DISPERSIVE EQUATIONS 47 

a t 
t 

FIG. 2. Trajectories in the (a) stable and (b) unstable cases. 
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transform thus has bounded support, the solution becomes singular in finite 
time. If R=max{lkl;kEsuppf}, then for any E, 

IW, fNu,3,2+e + 00 
1 

as TF 

3. SOBOLEV ESTIMATES ON THE LINE 

In this section we present the rigorous results of an existence and unique- 
ness theory for the initial value problem. 

cY,u = a(x, t) aiu, -co<<<<, o<t<co 

u(x,O)=f(x)~ H'(R). 
(3.1) 

This will follow from Sobolev estimates for the solution and its higher 
derivatives with respect to x and t. The basic tool is a weighted energy 
inequality, with a weight constructed from the variable coefficient a(x, t). 
In this regular case, we assume that for a constant 1 d c, l/c < a(x, t) d c, 
and that a(x, t) E CD(R) for some integer 3 </I < +co. It is clear that the 
method is not confined to problem (3.1). In particular, it carries over to the 
case in which lower order terms are present as well. 

In this section we will prove two theorems. The first is an existence, 
uniqueness, and regularity result for the class of Sobolev initial data 
without conditions of spatial decay. 

THEOREM 3.1. For c1< fl let u(x, 0) = f(x) E H"(R) be initial data for the 
initial value problem (3.1). A unique solution u(x, t) exists, which satisfies the 
estimate 

llu(x~ tNH,or G G exp(CIt) Ilf(xNH,x. (3.2) 

When initial data are given which are appropriately spatially localized, 
the solution operator for problem (3.1) is smoothing; this is due to the dis- 
persive nature of the equation. This effect of dispersive smoothing can be 
explained roughly as follows: if the initial data were decomposed into con- 
stituents whose Fourier transforms were supported on disjoint intervals, 
the solution operator would propagate their principal contributions at dif- 
ferent velocities. In particular, high frequency components propagate very 
rapidly, and pass out of any bounded region after a small initial time inter- 
val. A precise statement of the effect of dispersive smoothing is the follow- 
ing theorem. 
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THEOREM 3.2. Let u(x, 0) =f(x) E L*(R) such that in addition 

J m (1+x{ ..o,blr)f2(4dx-. -n (3.3) 

Then for each r](x) E C;(R) a cutoff function there are constants CI, C, 
such that for y < c( 

I Cc 
JJ li?;ul rYq(x) dx dz < C,(l + t’) exp(C, t). 

0 --CD 

If furthermore (3.3) holds for all a and a(x, t) E C”(R) then for any time 
t > 0 the solution u(x, t) E C”(R). 

The results of existence, uniqueness, and regularity follow in a 
straightforward fashion from the Sobolev estimates that appear in Lem- 
mas 3.1 and 3.4. Both results use weighted Sobolev estimates. The results of 
dispersive smoothing follow from the estimate of Lemma 3.5. 

We start by deriving weighted Sobolev estimates for the L*(R) norm of 
a smooth solution. Putting in a bounded weight function 5(x, t) E C”, a 
smooth solution U(X, t) which vanishes with it first two derivatives as 
x -+ &cc satisfies the identity 

o= Jm u(a ,u-a(x,t)diu)<dx 
52 

=$a, jm u*<dx-;j-, u*a,tdx 
-cc -02 

= $ a, lo; u’[(x) dx-; irn &(at)(&u)* dx 

1 
-3 Jm u2irttdx+fJa a$zg)u*dx. 

--oo -02 
(3.4) 

With the choice of { such that - 3/2(al) 2 0, a useful differential inequality 
is obtained 

atjm u*t dx < J m la$z<) - c?,Q u* dx 
-* -cc 
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resulting in the energy estimate 

jm u2(t9 xl 5(x) dx~exp(tI(ai(u5)-a,5)/rlLm) jm f*(x) t(x) dx. 
-cc --a0 

Several choices of weight function t(x) are appropriate; the first is obviosly 
5(x, t) a solution to the adjoint problem a,< - a:(&) = 0, which gives the 
proper weight for which the L* norm is nonincreasing time. Here the more 
practical choice 5(x, t) = l/a(x, t) results in the upper bound on the 
exponential growth rate by the factor I(8,/a,)/allm. 

LEMMA 3.1. Sufficiently smooth solutions to Eq. (3.1) satisfy the energy 
estimate 

I:_ u2(x, t) u(x, t) dx < exp(t latda*l,m) I_“, f 2(x) &- (3.6) 
9 

Solutions to Eq. (3.1) in fact are smoother for t > 0 than the initial data; 
this was discussed for the instructive examples presented in Section 2. The 
simplest indication of this phenomenon of smoothing due to dispersive 
effects from another choice of weight function. Let 5(x, t) satisfy the dif- 
ferential inequality 

- ; a,(&) 2 q(x) 2 0 (3.7) 

for a localizing C” cutoff function q(x). It follows from (3.4) that 

jm (d,u)*)?dxd;jrn I(a~(ug)-a,~)l u2dx-ta,jrn u25dx. 
-cc --m -‘x2 

Integrating twice in t and using Lemma 3.1 we obtain the estimate 

I cc 
ss (~,u)’ TV dx dt 

0 -cc 
t a3 

1 
<z Sf (1+~I(~~(a~)-~,5)/51~m)u25dxd~ 0 -cc 

~fexp(tl(t~~~-d,~)/~l~-)~m f’(x)<dx. (3.8) 
-cc 

LEMMA 3.2. For sufficiently smooth solutions to Eq. (3.1), the following 
energy estimate holds: 

I’ I” (aXu)*~q dxdT<iexp(tCl)jm f*(x)r dx. 
0 -cc --m 

(3.9) 
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This represents an increased regularity of the solution over the initial 
data. 

To complete the proof of this lemma, we construct a satisfactory solution 
of the differential inequality (3.7); set r(x) = (C, + jr, v(y) &)/a(~, Z) 
with C,, > 2 IIqIIL~. The constant C, = 1(~(8,)2~ - a,r)/51,m. The same proof 
gives weighted Sobolev estimates, with weight functions <, q satisfying (3.7) 
but which are not necessarily bounded. Such weight functions will be intro- 
duced in the proof of Lemma 3.5 below. Versions of this lemma on the 
increased regularity of solutions to dispersive problems have been discussed 
by others. In particular, Constantin and Saut [3] handle very general 
constant coefficient dispersive problems. 

Higher Sobolev regularity of solutions is obtained by estimates of higher 
derivatives of Eq. (3.1), combined with the choice of a hierarchy of weight 
functions. To start, assume that a solution U(X, t) E C’( [O, T]; Ha+3) and 
set v(x, t) = ~CU(X, t). The function u(x, t) satisfies 

a,v=aa:v+aa,.a:v+(;)a:.a,v+(;)a:..+F,(o,u). (3.10) 

One first estimates the error terms F,. 

LEMMA 3.3. (i) IIF,Il.~~C&)l4x~ Olc,,I14~~ OIIH,.-I. 
A more refined estimate which involves the weight functions <, is 

The use of (ii) is in the effort to control the dependence of the estimate on 
order of dlyferentiation a. 

Proof: The Leibniz rule describes the remainder 

Thus 

F,(a, u)= i a 
0 v=4 v 

iY’,a ay+b. 

Estimates (i) and (ii) then follow immediately. m 

The higher Sobolev estimates are contained in this lemma. 

(3.11) 

LEMMA 3.4. Suppose that a, a,ae C”. Let v(x, t) = a;u(x, t), where 
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u(x, t) E C’( [O, T], Hmt3) is a solution of (3.1) in the time interval [0, T]. 
Then there exist constants C,(a), C,(a) such that v(x, t) = a:u(x, t) satisfies 
the higher Sobolev estimate 

Ilv(x, t)llL2G C2(a)exP(tCl(a)) Ilf(x)llH,ar. 

The constant 

C,(a)< C,(a3+ 1) C2a/3-2(/ulc,3+ \8,a\.,). 

Proof. As usual one integrates Eq. (3.10) against v<%, with an 
appropriate weight function. Upon integrating by parts, the identity is 
obtained 

(3.12) 

One constructs a weight function so that the quantity 

- ; a,(t,a) + at, a,a = qJs, t) 2 0. 

The choice for the present lemma will be that qo! = 0, leading to the delini- 
tion of 5, = a2013 - ’ (x, t). It is then straightforward to estimate 

1ca,e, - a;(La) + a a3hx axa) - ata - 1 

< &(a3 + 1) c2a’3-2 
( 

la(x, t)(c,3 + 

Thus the energy estimate is obtained 

rm ^ rm _ 

da 
II> at., . 

for some constant C,(a). Integrating this differential inequality and using 
Lemma 3.3, 
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The constant C,(a) bounded terms v = 0, 1,2, and 3 of (3.11) as well as the 
supremum norms of the weight functions for v < 01, and thus can be chosen 
as in the statement of the lemma. 1 

When the initial data are not necessarily smooth, but instead possess cer- 
tain decay properties as x -+ --co, the solution for any positive time is 
smoother than the initial data. This phenomenon is due to the dispersive 
property of the differential equation, which propagates different frequency 
components of the initial data at different velocities. Roughly, if the data 
are localized, then after a short time interval all high frequency components 
of the solution will have traveled out of any bounded set. To state this 
precisely, we have the following lemma: 

LEMMA 3.5. Let la(x, t)l,,, < 00, and assume that the initial data 
u(x, 0) =f(x) E L2(R) satisfy the weighted estimate 

s m f2(x) q,-,(x) dx = e(f) < co. (3.16) 
-cc 

The weight functions gy are one sided; that is, 

Idx)l - t1 + Ix/)’ i 
for x20 
for x GO. 

(3.17) 

Then the solution u(x, t) satisfies the estimate 

I a3 

SI I@(x, z)12rrq-l(x)dxdz<e(f) C(cc)(l +t?exp(Gt), 
0 -cc 

If (3.16) holds for any GI, then L’(R) data give rise to Cm(R) solutions for 
any positive time t. 

Of course the equation is time reversible; to be smoothing for negative 
time the condition (3.16) must hold with weight uy( -x). These smooth 
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solutions do not decay as fast as an integer power of the left (respectively 
on the right) half-line; if so, running time backwards would produce 
contradictory smoothness properties at t = 0. 

Proof. One starts wil the higher energy estimate (3.12), proceeding in 
an induction that starts with Lemma 3.2. Let ~=a$, with any P-CCC. For 
any weight function 5 (one will be chosen below), 

Define q-r(x) = sech(px) or some other cutoff function such that 
Icl(x)l -ev(-pl-4) as x + fro. Then recursively construct 

For the induction a scale of weight functions tp, is constructed so that 

where this time the non-zero ‘1, are used. By (3.19) we see that 
tbr=a 28’3-1(x, t) q,(x). Use rsr in (3.18) and integrate 6 + l-many times 
with respect to t. The resulting estimate is 

(3.20) 
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The weight functions have been chosen to satisfy two properties: 

0) ~&CAP)Y~~+~ 
(3.21) 

By a) + P w,, axa) - a&, a:4 

The lemma will follow from a double induction on /J and y. Let y > -1 and 
6 2 0, and assume that there exists C,(a, y, 6) such that 

holds for all (T < /I. Turn to (3.20) and use properties (3.21) to estimate the 
right hand side. The result is that 

< 51 ’ (d+~)C,(p) ~afc.u~2f-1yly+,dxdz 
0 

(3.23) 

That is, one additional derivative is estimated in terms of lower derivatives 
and lower powers of r, at the cost of a more stringent weight, qr + 1. 

Finally, use Lemma 3.3, the fact that 6 a/?, and the induction hypothesis 
to conclude that 

gC~(B+1,~,6)j~jlul’(l+r”)‘l~+~+ldxdr. 
0 

An easy double induction in fi and y, keeping 6 >/J proves the lemma. The 
induction argument continues through indices /I, y until j? = ~1, when either 
(3.16) fails to hold or a;a loses smoothness. If all derivatives are able to be 
estimated in Sobolev norm, the Sobolev inequality provides supremum 
norm estimates on the solution for any time 1~ 0. i 

For coefficient a(x, t) which are analytic in x in the strip lim x( < p, it can 
be shown that C,(a, y, 6) N (IX!)~C’*/~@. In fact, for a(x, t) = LI, a constant, 
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one finds that C,(a) m C”. With Lemma 3.5 this provides a roundabout 
proof that the Airy function, or any solution to the Airy equation with L* 
initial data supported on the right l/2 line, is analytic for any positive t. It 
remains open whether the solution U(X, t) to problem (3.1) becomes 
analytic whenever the coefficient a(x, t) is taken to be real analytic. 

4. PERIODIC RESULTS 

Consider the variable coefficient a(x, t) to be 2n-periodic in the spatial 
variable, and consider the initial value problem on the interval with peri- 
odic boundary conditions. 

a,u = a(x, t) a& 06t<al 

4x, 0) = f(x) initial data (4.1) 

u(x, t) = u(x + 271, t). 

The existence, uniqueness, and Sobolev regularity theorem, the analog of 
Theorem 3.1, can be demonstrated via parallel arguments to those of 
Lemmas 3.1, 3.3, and 3.4. 

THEOREM 4.1. Let (a(~, t)(C,a, latuJLMm, for a b 3. For f(x) E H”(S’) 
there exists a unique solution to the initial value problem (4.1), satisfying the 
Sobolev estimate 

if the coefficient u(x, t) and the data f(x) are C”, then the solution is also. 

The analog of Lemma 3.2 also holds in the periodic case; that is, there 
is a mild increase in smoothness of the solution over the initial data. There 
is, however, no analog of the dispersive smoothing of Theorem 3.2. In fact, 
the spatially periodic nature of the solutions precludes this. Much the same 
regularity results hold for the nonlinear KdV equation [ 1, 51. In the first 
reference, for distributional initial data of compact support on the line, 
solutions of the KdV equation become C” for any positive time; this is 
demonstrated by the inverse spectral transform. However, within the class 
of periodic solutions the Sobolev regularity of the solution of the KdV is 
identical to the regularity of the initial data. 

5. ADDITIONAL CASES 

The second example of Section 2, (2.4), is a special case of a dispersive 
problem where the coefficient of dispersion may vanish. This happens in 
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various physical problems, including (1.3), the KdV with varying surface 
tension. In this section, we present well-posedness and ill-posedness results 
for the initial value problem 

a,24 = u(x) a;u, XER, t>O 

4x, 0) =fb), 
(5.1) 

where the dispersion coefficient changes sign at x = 0. As one expects, these 
parallel the result of Lemma 2.2, in that the problem is ill-posed if 
a,a(O) > 0, and only well-posed if a,a(O) ~0, and x = 0 is the only sign 
change in a(x). Problems for which a(x) changes sign more than once are 
thus ill-posed. 

LEMMA 5.1. Let U(X)E C”(R) be coefficient of dispersion for problem 
(5.1), which changes sign at x = 0, with a(O) = 0, a,a(O) = 1. Then the initial 
value problem is ill-posed. That is, for any choice of indices 312 < j3 < y and 
any interval [O, T) there is no continuous functions C,,(t) E C( [0, T)) such 
that 

IIu(x, t)llH,p6 C,,(t) Ilfbmf,y. (5.2) 

Proof The simplest demonstration is via a contradiction argument, 
comparing solutions u(x, t) with closed form solutions v(x, t) to the 
problem (2.4) in which a(x) =x. Suppose that estimate (5.2) with y ~2. 
For f(x) E HY(R) such that f(k) E C”(R), supp(f) E C-R, R], let u(x, t) 
be the solution to the initial value problem (5.1) and let v(x, t) solve (2.4). 
The difference between them w(x, t) = (U - u)(x, t) satisfies 

a,w - u(x) iqw = (u(x) - x) u(x, t) 
w(x, 0) = 0. 

(5.3) 

Duhamel’s principle is used to express w(x, t) in terms of u(x, t): 

w(x, t) = J; qt - T)(U(X) -x) v(x, T) dz, 

where S(t) is the solution operator for (5.1). Using estimate (5.2) 

II~(X~ t)ll ff,p d J ,: C,,(t-~)ll(a(x)-x)vll,,,d~. 
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The explicit solution for u(x, t) is used to analyze the right hand side. Write 
a(x) - x = b(x) x0, with r~ > 2 and b(x) bounded. Then 

Usung that exp(ixt/(l -212t)‘/2)=((1 -2[2t)3/2/i~)a,exp(ix5/(1 -252t)1/2), 
integrate by parts a-many times in (5.4) 

-2t2t), &)&)d& (5.5) 

The term p,(<, q, 8,) is a canonical polynomial in (<, q, 8,) of at most 
order 30 in d,, containing an overall factor of (1 - 2t2t)“12. Since each 
x-derivative brings from the exponent a factor of it/( 1 - 2t2t)r12, we can 
control azb(x) x%(x, t); 

Ilb(x)fG, t)ll,,y~ CyllU + I4‘7f(x)II~,y+3c7, 

for O<y<a. Thus 

(5.6) 

’ C IINX, %,&6 o s f ly (t-r) IW) f’u(x, ~)llH,y dz 

d,yWllU + Ix13”)f(mf,y+a. 

Take f(x) from among the initial data suggested above, with 
supp(j) G [-R, R] ; then the right hand side is bounded. On the other 
hand, IW, Oil H,B blows up as t --, 1/2R2, hence Ilu(x, t)ll H,B does as well, 
violating any possible constant in (5.2). 

This argument works for 3/2 < /I < y < cr. For any y -/I 6 (T one obtains 
a similar contradiction using a scaling argument as t + 1/2R2. To prove the 
lemma with a bigger gap in differentiability, y -B > 2, a related argument 
is used. However, one works with weighted norms in order to control the 
right hand side of (5.3). 1 

We use variations of the standard energy estimate of Section 3 to prove 
the well-posedness results. These results are possible if the coefficient of dis- 
persion a(x) changes sign at most once, and is otherwise bounded away 
from zero. 

LEMMA 5.2. Consider problem (5.1) with coefficient of dispersion 
U(X)E C”(R) such that a(O)=O, a,a(x)sO for - 1 Gxd 1, a(x)>0 for 
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x < 0 (respectively a(x) < 0 for x > 0) and there exists a constant C 2 1 such 
that l/C < a(x) ,< C for x < - 1, and - C < a(x) < -l/C for x > 1. Then the 
initial value problem is well-posed. In particular, the estimate holds 

II4x, tNL2~ex~(G14c,3~) llf(x)llL2. (5.7) 

ProojI We will just give an indication of the proof by deriving the basic 
weighted Sobolev estimates satisfied by solutions of (5.1). Let t(x) be a 
bounded smooth weight function, and U(X, t) a smooth solution. Then 

;a, 242(dx= 
s j~a,(ag)(a,24)2 dx-jf a;(ag)d dx. (5.8) 

2 

The basic criterion for a successful weight function is that a,(&) < 0. Let 

ME C,“(R), supp(q) E [- 1, l] be a cutoff function such that 
O<q(x)< 1 with q(O)= 1 and a,?(x) 20 for X-CO, a,q(x)gO for x>O. 
Define 5(x) = (1 - ~(x))/la(x)l + Q(x); then a,(&) = 0 for x+! [ - 1, 11. 
For -1bxdl 

a,(4 = a,w4x) + w(x)) + CC+) a,+). (5.9) 

If C>O is chosen sufficiently small so that maxlxlG, lCu(x)l < 1, then 
expression (5.9) is nonpositive, and estimate (5.7) follows from the identity 
(5.8). 

Sobolev estimates for higher derivatives proceed similarly; the method 
mimics the estimates of Section 3, using weight functions 
5, = (a(x) x(x))2”‘3- l + Q(x). The function x(x)= -tanh(x), or some 
other smooth approximation of -sgn(x). When ~12 2 the constant C= 0, 
and we obtain weighted Sobolev norms instead. The procedure is 
straightforward, following Section 3 so we omit the details here. The result 
is that 

bmx, t) C’211L2~evUU Ilfb)iiH,,. I (5.10) 

The last result that we discuss has to do with the localizing effect of zeros 
of the dispersion coeffkient. Dispersive problems such as (1.1) have infinite 
propagation speed, and we have seen that localized data for a dispersive 
problem have nonetheless a global effect on the solution. In fact, the global 
properties of the behavior of high frequency components of the solution are 
responsible for the dispersive smoothing effect. A zero of the dispersion 
coefficient modifies this global property, localizing solutions on one side or 
other of this point of degeneracy. 

LEMMA 5.3. Let a(x) E C”(R) vanish at the origin, with a,a(O) < 0 and 
a(x) <O for x > 0 (bounded as in the hypothesis of Lemma 5.2). If initial 
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data f(x) are given for problem (5.1) such that f(x) = 0 for x > 0, then the 
solution u(x, t) also vanishes to the right of the origin. 

Since dispersive eqautions of Airy type are third order, it might be 
thought that the coefficient need vanish to second order at its zero in order 
to achieve a localizing effect. In fact, in this well-posed case it suffices to 
have a simple zero. 

Proof: In the integrations by parts to achieve the identity (5.8), this 
time modify the procedure by integrating only over the positive half-line. 
The new identity is 

ta,jm 22~ dx 
0 

= 
5 O” $ a,(a~)(a,u)*- $ a;tag) U* dx 

0 

+ [(at)(a:uu + + (a,t#) - a,(ag)u a,2d + 4 a:(ag) 2211:. (5.11) 

Let q(x) E C”(R)+ be any smooth function which coincides with kx*/2 
near the origin, while a,q(x) > 0 otherwise; then define &j(x) = -r(x)/a(x), 
the appropriate weight function. Clearly a,(@ = -a, v < 0, and we have 
only to check that la~(a~)/<l,m < co, and that among smooth solutions 
U(X, t) all boundary terms vanish. Thus 

(5.12) 

and the uniqueness theorem follows. 1 
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