
Équations aux dérivées partielles

Par définition, une équation aux dérivées partielles (EDP) a pour inconnue une fonction de
plusieurs variables (alors qu’une équation différentielle ordinaire a pour inconnue une fonction
d’une seule variable). L’analyse (mathématique et) numérique des EDP est un vaste domaine,
que nous aborderons ici sous l’angle de trois équations type (linéaires) et de deux méthodes
numériques de base : différences finies et éléments finis.

Le Laplacien On « rappelle » que, pour une fonction u : Ω→ Rn deux fois différentiable sur
un ouvert Ω de Rd,

∆u =
d∑
j=1

∂2u

∂x2
j

.

L’opérateur différentiel ∆ est appelé Laplacien.

Trois EDP-type
Équation de Poisson Étant donnée une fonction f : Ω → Rn, on appelle équation de Poisson

de terme source f :
−∆u = f .

Cette équation est qualifiée d’elliptique (par analogie avec l’équation générale d’une el-
lipse ξ2

1/a
2 + ξ2

2/b
2 = 1).

Équation de la chaleur Étant donné un réel positif κ, on appelle équation de la chaleur, ou
équation de diffusion pour le coefficient de diffusion κ :

∂tu = κ∆u .

Cette équation est qualifiée de parabolique (par analogie avec l’équation générale d’une
parabole y = ξ2/a2).

Équation des ondes Étant donné un réel positif c, on appelle équation des ondes pour la vitesse
c :

∂2
ttu − c2 ∆u = 0 .

Cette équation est qualifiée d’hyperbolique (par analogie avec l’équation générale d’une
hyperbole ξ2

1/a
2 − ξ2

2/b
2 = 1).

Les équations des ondes et de la chaleur sont dites d’évolution car elles modélisent en
général un phénomène instationnaire, évoluant avec le temps t. L’équation de Poisson est quant
à elle stationnaire : elle modélise en général un phénomène à l’équilibre dans l’espace Rd.
Les trois équations sont linéaires, c’est-à-dire qu’elles dépendent linéairement de l’inconnue
u. Nous n’étudierons pas ici d’équation non-linéaire. Les équations de Poisson et de la cha-
leur modélisent des phénomènes de diffusion, comme celle de la chaleur (!), de la matière (par
exemple un polluant dans une rivière, ou des bactéries dans un organe, etc.), ou encore d’une
charge électrique. L’ équation de Poisson pour f = 0, aussi appelée équation de Laplace, peut
être vue comme un cas particulier d”equation de la chaleur lorsque l’équilibre est atteint, c’est-
à-dire lorsque l’inconnue u ne dépend plus de t. L’équation des ondes modélise des phénomènes
de propagation, comme celle du son, de la lumière.
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TAB. 1 – Quelques unités physiques

quantité unité S.I.

masse kilogramme (kg)

longueur mètre (m)

temps seconde (s)

température Kelvin (K)

vitesse m.s−1

force Newton, 1N = 1 kg.m.s−2

pression Pascal, 1Pa = 1 kg.m−1.s−2

énergie Joule, 1 J = 1 kg.m2.s−2

intensité électrique Ampère (A)

charge électrique Coulomb, 1C = 1A.s

potentiel électrique Volt (V )

Éléments de modélisation Les modèles mentionnés ci-après utilisent divers types de quan-
tités physiques. Pour mémoire, quelques unités du système international (unités S.I.) sont « rap-
pelées » dans le tableau 1.

Diffusion Les modèles de phénomènes diffusifs ont en commun d’être régis par une loi em-
pirique exprimant que le flux j par unité de surface et de temps d’une certaine quantité n est
proportionnel au gradient de cette quantité. Par ailleurs, la conservation de cette quantité n
s’exprime dans ce que l’on appelle l’équation de continuité :

(1) ∂tn + divj = 0 ,

où div désigne la divergence en espace :

divj =
3∑

k=1

∂kjk .

On comprend facilement l’équation de continuité si n est par exemple une densité de particules
(c’est-à-dire le nombre de particules par unité de volume) : le nombre de particules dans un
domaine (régulier, borné) Ω de R3 à l’instant t est égal à

y

Ω

n(t, x1, x2, x3) dx1dx2dx3 ,
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tandis qu’à l’instant t+ δt il est égal à
y

Ω

n(t+ δt, x1, x2, x3) dx1dx2dx3

'
y

Ω

n(t, x1, x2, x3) dx1dx2dx3 −
x

∂Ω

3∑
k=1

jk(t, x1, x2, x3)nk(x1, x2, x3)dσ(x1, x2, x3) ,

où σ désigne la mesure sur la surface ∂Ω, n le vecteur normal unitaire extérieur à Ω, et l’ap-
proximation est valable si δt est assez petit pour que j ne varie pas trop entre t et t+ δt. Or par
la formule de Stokes
x

∂Ω

3∑
k=1

jk(t, x1, x2, x3)nk(x1, x2, x3)dσ(x1, x2, x3) =
y

Ω

3∑
k=1

∂kjk(t, x1, x2, x3) dx1dx2dx3 .

En divisant par δt et en passant à la limite δt→ 0 on obtient
y

Ω

(∂tn + divj)(t, x1, x2, x3) dx1dx2dx3 .

Ceci étant vrai quel que soit Ω, on en déduit l’équation locale (1). Voici trois exemples de
modèles de diffusion.

Particules Comme expliqué ci-dessus, si n est une densité de particules et j est son flux,
l’évolution de ces quantités est régi par l’équation (1). De plus, la loi de Fick s’écrit
j = −D∇n, où D > 0 est un coefficient empirique, appelé coefficient de diffusion, de
sorte que n doit satisfaire l’EDP :

∂tn = D∆n .

Charges électriques Si n est une densité volumique de charges électriques et j est la densité de
courant associée on a encore l’équation (1). De plus, la loi d’Ohm exprime que j = σE,
où σ est la conductivité du matériau et E est le champ électrostatique. Si ce dernier dérive
d’un potentiel V , c’est-à-dire si E = −∇V , on a alors j = −σ∇V . En particulier à
l’équilibre, c’est-à-dire pour ∂tn = 0, l’équation de continuité implique l’équation de
Laplace (c’est-à-dire l’équation de Poisson avec terme source nul) pour V : ∆V = 0. Si
f est une source extérieure de charge électrique, on a l’équation de Poisson ∆V = f/σ.

Chaleur Si u(t, x1, x2, x3) désigne la température dans un matériau à l’instant t au point de co-
ordonnées (x1, x2, x3), la loi de Fourier exprime que le flux de chaleur par unité de surface
et par unité de temps est proportionnel au gradient de température∇u = (∂1u, ∂2u, ∂3u)t,
le coefficient de proportionnalité λ étant appelé conductivité thermique du matériau :

j = −λ∇u .

Par ailleurs, siQ est la chaleur par unité de volume, ∂tQ = ρ cp ∂tu, où ρ désigne la masse
volumique du matériau et cp sa chaleur massique. Ainsi u doit vérifier l’équation

∂tu = κ∆u

avec κ := λ/(ρcp). Si f représente une source extérieure de chaleur par unité de volume,
l’équation de continuité doit être modifiée en

∂tQ + divj = f .
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Propagation
Cordes vibrantes Considérons une corde tendue entre ses deux extrémités, suffisamment fine

pour pouvoir négliger les variations de tension dans sa section (et les variations de section
dûes à son élasticité !). Les paramètres physiques mis en jeu sont sa section σ0 (aire), sa
densité linéaire ρ0, reliée à sa densité volumique ω0 par

ρ0 = σ0 ω0 ,

et T0 sa tension « au repos », nombre positif homogène à une force. Soit u(t, x) ∈ R3

le déplacement transversal de cette corde à l’instant t, par rapport à une position de
référence x e1 ∈ R3, x ∈ R. On suppose le déplacement longitudinal négligeable. Au-
trement dit, le point situé en x e1 dans la position de référence se retrouve en w(t, x) =
x e1 + u(t, x), et u(t, x) ⊥ e1. La tension de la corde T (t, x) au point w(t, x) est un
nombre positif tel qu’un morceau de corde correspondant au segment [x, x+δx] (δx > 0)
soit soumis à la force

T (t, x+ δx) θ(t, x+ δx) − T (t, x) θ(t, x) ,

où θ(t, x) := ∂xw(t, x) (noter que θ(t, x) est tangent à la corde enw(t, x)). L’accélération
de la corde au point w(t, x) est simplement ∂2

ttw(t, x) = ∂2
ttu(t, x). La relation fonda-

mentale de la mécanique, ou loi de Newton (F = mγ) appliquée au morceau de corde
[x, x+ δx] s’écrit donc, pour la composante parallèle à e1 :

T (t, x+ δx) − T (t, x) = 0 ,

et pour la composante orthogonale à e1 :

T (t, x+ δx) ∂xu(x+ δx, t) − T (t, x) ∂xu(t, x) =

∫ x+δx

x

ρ0 ∂
2
ttu(y, t) dy .

Par suite, T (t, x) = T0(t) est indépendant de x, et en faisant tendre δx vers 0 dans la
seconde équation, on obtient

T0 ∂
2
xxu = ρ0 ∂

2
ttu .

Si T0 est indépendant de t (ce qui revient à supposer que la tension exercée aux extrémités
est fixe), on a bien une équation des ondes pour u, en une dimension d’espace, avec

c =

√
T0

ρ0

,

à condition que T0 soit effectivement positif (une corde qui n’est pas en tension s’affaisse
et ne peut pas vibrer !).

Barres élastiques À l’inverse d’un corde, dans une barre élastique rigide, on peut ne considérer
que les déplacements longitudinaux, c’est-à-dire qu’un point situé en x e1 dans la position
de référence se retrouve après compression ou étirement en w(t, x) = x e1 + u(t, x)
avec u(t, x) ‖ e1. La tension de la barre T (t, x) en w(t, x), n’a pas de signe défini (la
barre pouvant être indifféremment en compression ou en étirement). Une loi de l’élasticité
affirme que pour faire varier de δl un morceau de longueur l0 il faut une variation de
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tension δT proportionnelle à δl/l0. Quantitativement, on définit E0 le module d’Young du
matériau tel que

δT = E0 σ0
δl

l0
.

Par définition, E0 est un nombre positif homogène à une pression. En appliquant cette loi
à un morceau [x, x+ δx], qui devient [x+ u(t, x), x+ δx+ u(t, x+ δx)], on obtient

T (t, x) − T0(x) = E0 σ0
u(x+ δx, t)− u(t, x)

δx
,

d’où à la limite lorsque δx tend vers 0 :

T (t, x) = T0(x) + E0 σ0 ∂xu .

D’autre part, d’après la loi de Newton appliquée au morceau [x, x+ δx] :

T (t, x+ δx) − T (t, x) =

∫ x+δx

x

ρ0 ∂
2
ttu(y, t) dy ,

d’où à la limite lorsque δx tend vers 0 :

∂xT = ρ0 ∂
2
ttu .

En supposant la tension de référence T0 homogène, c’est-à-dire indépendante de x, on
en déduit que u (ainsi que T d’ailleurs, par dérivation) satisfait l’équation des ondes de
vitesse

c =

√
E0

ω0

.

Si l’on s’intéresse à la densité ρ le long de la barre, on voit assez facilement qu’elle est
donnée par

ρ(t, x) = ρ0 ( 1 − ∂xu ) .

En effet, pour chaque morceau de longueur initiale l0 on a

ρ l = ρ0 l0 d’où
δρ

ρ0

+
δl

l0
= 0 .

En appliquant cette relation au morceau [x, x + δx] et en faisant tendre δx vers 0, on en
déduit

ρ − ρ0

ρ0

+ ∂xu = 0 .

Par suite, en supposant la densité initiale ρ0 homogène, on voit par dérivation que ρ satis-
fait la même équation des ondes que u (et T ).

Tuyaux sonores Pour un fluide, un peu d’intuition physique montre que la tension T est reliée
à la pression p par p = −T/σ0. D’où,

δT

T0

=
δp

p0

= − 1

χ0

δv

v0

,

où χ0 est le coefficient de compressibilité (sans dimension), et v le volume. Or dans un
tube de section constante,

δv

v0

=
δl

l0
.
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Donc on a une loi analogue à celle de l’élasticité, avec

E0 =
p0

χ0

.

En particulier, pour un gaz parfait adiabatique,

p vγ = cte ,

d’où χ0 = 1/γ et E0 = γ p0. On trouve comme vitesse de propagation

c =

√
γ p0

ω0

.

C’est l’expression bien connue de la vitesse du son.
Application numérique. Dans l’air, assimilé à un gaz di-atomique, on a approximative-
ment γ = 7/5 (on obtient ce nombre en raisonnant sur le nombre n de degrés de liberté
des molécules ; de façon générale, γ = (5 + n)/(3 + n)). La loi des gaz parfaits

p =
ωRT

M
, R = 8, 3144 J.K−1.mol−1 , M = 28, 8.10−3 kg.mol−1 ,

permet de calculer

c =

√
γ
RT

M
' 332m.s−1

à une température de 273K, ce qui correspond très bien à la réalité !

Acoustique Les équations de l’acoustique portent sur les variations de pression p et de vitesse
v du gaz ambiant (généralement l’air !) par rapport à son état au repos. Elles s’écrivent

∂t p + ω0 c
2
0 divv = 0 ,

∂t v +
1

ω0

∇p = 0 ,

où ω0 la densité volumique du gaz et c0 est la vitesse du son (c0 =
√
γp0/ω0), div v =∑3

j=1 ∂jvj . En prenant la divergence de la seconde équation et en éliminant divv grâce à
la première, on obtient l’équation des ondes pour p :

∂2
tt p − c2

0 ∆p = 0 .
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Schémas aux différences finies

Le principe des schémas aux différences finies repose sur la formule de Taylor, permettant
d’approcher les dérivées de la fonction inconnue par des « dérivées discrètes ».

Si u est une fonction régulière de x et ∆x > 0 est un pas d’espace (destiné à tendre vers 0),
on peut discrétiser de plusieurs manières différentes sa dérivée :
• différence décentrée avant :

u(x+ ∆x)− u(x)

∆x
= ∂xu(x) + O(∆x) ,

• différence décentrée arrière :
u(x)− u(x−∆x)

∆x
= ∂xu(x) + O(∆x) ,

• différence centrée :
u(x+ ∆x)− u(x−∆x)

2∆x
= ∂xu(x) + O(∆x2) .

Pour la dérivée seconde, une discrétisation « naturelle » est

u(x+ ∆x)− 2u(x) + u(x−∆x)

(∆x)2
= ∂2

xxu(x) + O(∆x2) .

La formule de Taylor avec reste intégral donne en effet, pour une fonction de classe C 4,

u(x±∆x) = u(x) ± ∆x ∂xu(x) +
1

2
(∆x)2 ∂2

xxu(x) ± 1

6
(∆x)3 ∂3

xxxu(x)

+
1

6
(∆x)4

∫ 1

0

(1− θ)3 ∂4
xxxxu(x+ θ∆x) dθ .

Problème aux limites elliptique Considérons pour commencer le problème aux limites sui-
vant, où κ > 0, α, β ∈ R, et f : x ∈ [a, b]→ f(x) ∈ R sont des données :

(2)
{
−κ ∂2

xxu = f , x ∈ [a, b] ,
u(a) = α , u(b) = β ,

Noter que même si la première équation est une équation différentielle ordinaire, ce n’est
pas ce que l’on appelle un problème de Cauchy (pour lequel il faudrait prescrire u et sa dérivée
première en un même point, par exemple en a ou en b). C’est un problème de Dirichlet, car
l’équation dans le domaine [a, b] est complétée par la donnée des valeurs au bord ({a} ∪ {b})
de la solution : on parle de conditions au bord de Dirichlet.

Bien sûr on a ici une équation différentielle réduite à sa plus simple expression, que l’on peut
résoudre analytiquement si f est continue au prix du calcul de primitives, et les deux conditions
au bord permettent de déterminer les constantes d’intégration. Le problème (2) va néanmoins
servir de modèle pour présenter les schémas aux différences finies.

Une façon simple d’approcher ce problème est de diviser l’intervalle [a, b] en (N+1) mailles
[xj, xj+1] pour j ∈ {0, . . . , N}, avec x0 = a, xN+1 = b, et xj+1 − xj = ∆x, et de résoudre le
système discret

(3)

 −κ
uj+1 − 2uj + uj−1

(∆x)2
= f(xj) , j ∈ {1, . . . , N},

u0 = α , uN+1 = β .
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Ce système peut se mettre sous forme matricielle (et c’est comme cela qu’on le résout avec
un logiciel comme Scilab1, ou Matlab2) : si U désigne le vecteur de RN de composantes
u1, . . . , uN ,

κAU = (∆x)2 F , A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 , F =


f(x1) + κ

(∆x)2
α

f(x2)
...

f(xN−1)
f(xN) + κ

(∆x)2
β

 .

Dans la matrice A, les coefficients qui ne sont pas précisés sont nuls. On voit facilement que A
est définie positive : en effet, si l’on note U− ∈ RN−1 le vecteur de composantes (u1, . . . , uN−1)
et U+ ∈ RN−1 celui de composantes (u2, . . . , uN),

〈U,AU〉 = 2 ‖U‖2 − 2 〈U−, U+〉 = u2
1 + u2

N + ‖U+ − U−‖2 ≥ 0

avec égalité si et seulement si

u1 = 0, uN = 0 , U− = U+ ,

ce qui implique U = 0. Par suite, le système linéaire κAU = (∆x)2 F admet une solution U
unique, que l’on peut calculer numériquement par diverses méthodes que l’on détaillera pas ici.

Attachons nous à montrer que cette approximation fournit une famille de solutions numé-
riques, notées u∆x, qui converge, dans un sens à préciser, vers la solution exacte. Nous allons
nous placer dans l’espace L2([a, b]) des fonctions de carré intégrable sur [a, b], muni de la norme
définie par

‖u‖L2 =

(∫ b

a

|u(x)|2 dx

)1/2

.

(Si u est à valeurs vectorielles, dans Rp disons, | · | désigne la norme euclidienne.) Sachant
qu’une solution numérique u∆x est en fait donnée par un vecteur de RN+2 (de composantes
u0, . . . , uN+1) il faut naturellement munir RN+2 d’une norme dépendant de N et de ∆x =
(b− a)/(N + 1), disons ‖ · ‖N,∆x, de sorte que, pour une fonction suffisamment régulière,

‖(u(a), u(a+ ∆x), . . . , u(b−∆x), u(b))‖N,∆x → ‖u‖L2

lorsque N tend vers +∞ et ∆x = (b− a)/(N + 1) tend vers 0. Rappelons pour cela la formule
des trapèzes, pour une fonction f : [a, b]→ Rd de classe C 2 :∫ b

a

f(x) dx = (b− a)
f(a) + f(b)

2
+ O((b− a)3) .

La démonstration repose évidemment sur la formule de Taylor. Considérons p la fonction affine
définie par p(x) := f(a) + f(b)−f(a)

b−a (x− a). Alors∫ b

a

f(x) dx − (b− a)
f(a) + f(b)

2
=

∫ b

a

(f(x) − p(x)) dx ,

1logiciel libre développé à l’INRIA
2logiciel commercialisé par Mathworks
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et, si l’on note c = (a+ b)/2, la formule de Taylor avec reste intégral appliquée à f − p donne

f(x) − p(x) = f(c) − p(c) + (f ′(c)−p′(c)) (x−c) +

∫ 1

0

(1−θ) f ′′(c+θ(x−c)) (x−c)2 dθ .

Notons r(x) :=
∫ 1

0
(1−θ) f ′′(c+θ(x−c)) (x−c)2 dθ. En appliquant la formule ci-dessus à x = a

et x = b en particulier, on en déduit (puisque f(a) = p(a), f(b) = p(b), et a− c+ b− c = 0)

f(c) − p(c) = − r(a) + r(b)

2
.

Par suite,

f(x) − p(x) = r(x) − r(a) + r(b)

2
,

d’où ∫ b

a

(f(x) − p(x)) dx =

∫ b

a

r(x) dx − (b− a)
r(a) + r(b)

2
.

Si l’on note C := maxξ∈[a,b] |f ′′(ξ)|, on a donc∣∣∣∣∫ b

a

r(x) dx − (b− a)
r(a) + r(b)

2

∣∣∣∣ ≤ C

2

∫ b

a

(x− c)2 dx +
C

8
(b− a)3 = C

(b− a)3

6
.

Par suite, ∣∣∣∣∫ b

a

f(x) dx − (b− a)
f(a) + f(b)

2

∣∣∣∣ ≤ (b− a)3

6
max
ξ∈[a,b]

|f ′′(ξ)| .

(En fait on peut améliorer cette inégalité en remplaçant 1/6 par 1/12 lorsque f est à valeurs
scalaires, par application du théorème de Rolle à la dérivée seconde de f − p2, où p2 est le
polynôme du second degré coı̈ncidant avec f en a, b et x, pour tout x ∈ [a, b].)

Ainsi, pour une fonction u de classe C 2 sur [a, b], d’après la formule des trapèzes appliquée
à la fonction |u|2 sur chaque maille [xj, xj+1] de taille ∆x = (b− a)/(N + 1), on a∫ b

a

|u(x)|2 dx =
N∑
j=0

(
|u(xj)|2 + |u(xj+1)|2

2
+ O(∆x3)

)

= ∆x
|u(x0)|2 + |u(xN+1)|2

2
+ ∆x

N∑
j=1

|u(xj)|2 + O(∆x2) .

Cette expression nous conduit à définir

‖(u0, . . . , uN+1)‖N,∆x =

(
∆x
|u0|2 + |uN+1|2

2
+ ∆x

N∑
j=1

|uj|2
)1/2

.

En admettant l’existence d’une solution pour le problème exact (2), nous sommes mainte-
nant en mesure de montrer le résultat de convergence suivant.

Théorème 1 Soient κ > 0, f ∈ C 2([a, b]; Rd), α, β ∈ Rd, et u ∈ C 4([a, b]; Rd) solution de (2).
Alors les solutions u∆x, de composantes u0, . . . , uN+1, de (3) sont telles que

‖(u(a), u(a+ ∆x), . . . , u(b−∆x), u(b)) − (u0, u1, . . . , uN , uN+1)‖N,∆x → 0

lorsque N tend vers +∞.
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Dém. La démonstration repose (comme pour le problème de Cauchy et le schéma d’Euler)
sur une majoration de l’erreur de consistance (locale)

R(x, u,∆x) := −κ u(x+ ∆x)− 2u(x) + u(x−∆x)

(∆x)2
− f(x) ,

et sur la stabilité de la méthode numérique. Pour l’erreur de consistance, on a (comme déjà vu)

R(x, u,∆x) = −κ ∂2
xxu(x) − f(x) + O(∆x2) = O(∆x2)

puisque u est solution du problème exact. Pour la stabilité, on va avoir recours au lemme 1
ci-après. L’erreur globale

E(∆x) := ‖(u(a), u(a+ ∆x), . . . , u(b−∆x), u(b)) − (u0, u1, . . . , uN , uN+1)‖N,∆x

vaut par définition

E(∆x) =

(
∆x

N∑
j=1

|u(xj)− uj|2
)1/2

.

Or on a pour tout j ∈ {1, . . . , N}, en notant pour simplifier vj := u(xj)− uj ,

−κ (vj+1 − 2vj + vj−1) = (∆x)2R(xj, u,∆x) ,

d’où en prenant le produit scalaire dans Rd par vj/∆x et en sommant sur j,

−κ
N∑
j=1

〈vj, vj+1 − vj〉+ 〈vj, vj−1 − vj〉
∆x

= ∆x
N∑
j=1

〈vj,R(xj, u,∆x)〉 .

En faisant une translation d’indice et en utilisant que v0 = 0 et vN+1 = 0, on remarque que le
membre de gauche s’écrit encore

κ
N∑
j=0

|vj+1 − vj|2

∆x
,

et est donc minoré par

2κ

(b− a)2

N∑
j=1

∆x |vj|2 =
2κ

(b− a)2
E(∆x)2

d’après le lemme 1. Par ailleurs, l’inégalité de Cauchy-Schwarz permet de majorer le membre
de droite :

∆x
N∑
j=1

〈vj,R(xj, u,∆x)〉 ≤ E(∆x)

(
∆x

N∑
j=1

|R(xj, u,∆x)|2
)1/2

≤ C
√
b− a (∆x)2 E(∆x) ,

où la constante C provient de la majoration |R(xj, u,∆x)| ≤ C (∆x)2, uniforme pour xj ∈
[a, b]. Par suite,

E(∆x) ≤ C
(b− a)5/2

2κ
(∆x)2 .
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Lemme 1 (« inégalité de Poincaré discrète » ) Si ∆x = (b − a)/(N + 1), quels que soient
v1, . . . , vN ∈ Rd

N∑
j=1

∆x |vj|2 ≤
(b− a)2

2

N−1∑
j=0

|vj+1 − vj|2

∆x
,

où l’on a posé v0 = 0. De façon symétrique, en posant vN+1 = 0,

N∑
j=1

∆x |vj|2 ≤
(b− a)2

2

N∑
j=1

|vj+1 − vj|2

∆x
.

Dém. Puisque v0 = 0 on a quel que soit j ∈ {1, . . . , N},

vj =

j−1∑
k=0

(vk+1 − vk) ,

d’où par l’inégalité triangulaire dans Rd,

|vj|2 ≤

(
j−1∑
k=0

|vk+1 − vk|

)2

,

puis par l’inégalité de Cauchy-Schwarz dans Rj ,

|vj|2 ≤ j

(
j−1∑
k=0

|vk+1 − vk|2
)
,

et donc
N∑
j=1

∆x |vj|2 ≤ (∆x)

(
N∑
j=1

j

) (
N−1∑
k=0

|vk+1 − vk|2
)

= (∆x)2 N(N + 1)

2

N−1∑
k=0

|vk+1 − vk|2

∆x

≤ (b− a)2

2

N−1∑
k=0

|vk+1 − vk|2

∆x
.

La méthode des différences finies décrite précédemment s’étend assez facilement à d’autres
problèmes, et pour commencer au problème avec des conditions aux limites dites « mixtes » :

(4)
{
−κ ∂2

xxu = f , x ∈ [a, b] ,
u′(a) = γ , u(b) = β .

Noter que si f ∈ C 2([a, b]) et κ > 0 le problème (4) admet (comme (2)) une solution unique
u ∈ C 2([a, b]), qui s’exprime sous forme intégrale :

u(x) = β − (b− x)u′(a) +

∫ b

x

∫ y

a

f(z) dz dy .

Dans l’approximation par différences finies, il faut cependant discrétiser avec soin la nou-
velle condition u′(a) = γ. Considérons d’abord une simple discrétisation décentrée

u1 − u0

∆x
= γ .
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Le schéma utilisé précédemment aux nœuds xj pour j ∈ {1, . . . , N} et la discrétisation de la
condition au bord comme ci-dessus reviennent au système, si U désigne maintenant le vecteur
de RN+1 de composantes u0, u1, . . . , uN ,

AU =
(∆x)2

κ
F , A =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 , F =


− κ

∆x
γ

f(x2)
...

f(xN−1)
f(xN) + κ

(∆x)2
β

 .

Cette nouvelle matrice A (de taille N + 1) est telle que

〈U,AU〉 = u2
N +

N−1∑
j=0

(uj+1 − uj)2 ≥ 0

avec égalité si et seulement si uN = 0 et uj = uj+1 quel que soit j, ce qui implique U = 0.
On obtient donc sans problème une solution numérique. Cependant, la discrétisation décentrée
de la condition au bord introduit une erreur de consistance trop importante : en reprenant la
démonstration du théorème 1 on voit qu’il faut tenir compte de l’erreur locale de consistance
supplémentaire

R̃(x0, u,∆x) := − κ

∆x

(
u(x0 + ∆x)− u(x0)

∆x
− γ

)
,

car

κ
N∑
j=0

|vj+1 − vj|2

∆x
= −κ

N∑
j=1

〈vj, vj+1 − vj〉+ 〈vj, vj−1 − vj〉
∆x

− κ

∆x
〈v0, v1 − v0〉 =

∆x
N∑
j=1

〈vj,R(xj, u,∆x)〉 + ∆x 〈v0, R̃(x0, u,∆x)〉 .

Or si u est solution exacte de (4) (on rappelle que x0 = a),

R̃(x0, u,∆x) = − κ
2
u′′(a) + O(∆x) =

1

2
f(a) + O(∆x) ,

ce qui ne tend donc pas vers 0 lorsque ∆x tend vers 0 (sauf dans le cas particulier f(a) = 0).
Une façon de remédier à ce problème est de définir une « valeur fictive » u−1 par la discrétisation
centrée

u1 − u−1

2∆x
= γ ,

et d’utiliser cette valeur dans le schéma « intérieur »

−κ uj+1 − 2uj + uj−1

(∆x)2
= f(xj)

en j = 0, ce qui donne
κ

∆x

u1 − u0

∆x
=

1

2
f(a) − κ

∆x
γ .

Alors la nouvelle erreur locale de consistance

R̃(x0, u,∆x) := − κ

∆x

(
u(x0 + ∆x)− u(x0)

∆x
− γ

)
− 1

2
f(a)

est en O(∆x), ce qui est moins bon qu’à l’intérieur mais tend quand même vers zéro.
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Éléments finis

L’élaboration d’une méthode d’éléments finis (terme souvent abrégé en FEM dans les références
anglophones) repose sur des ingrédients
• d’analyse fonctionnelle, permettant de donner une formulation variationnelle du problème

exact, que l’on ramène alors (formellement) à un problème en dimension finie par la
méthode de Galerkin ;
• de géométrie et d’algèbre, consistant à construire un maillage du domaine physique, as-

socié à des fonctions de base définissant l’espace d’approximation de Galerkin.
L’implémentation d’une méthode d’éléments finis nécessite par ailleurs un algorithme de résolution
de grands systèmes linéaires dont on ne parlera pas ici. On abordera en revanche l’analyse de la
convergence des méthodes d’éléments finis, sur un exemple simple.

Considérons le problème modèle suivant (problème de Dirichlet homogène) :

(5)
{
−κ∆u = f ,
u|∂Ω = 0 ,

où Ω est un ouvert borné de Rn, de bord ∂Ω régulier (c’est-à-dire qu’au voisinage de chaque
point, ∂Ω est l’image d’une fonction régulière Rn−1 → Rn). Pour définir une formulation va-
riationnelle de ce problème, on se contentera d’un terme source f ∈ L2(Ω). Notons D(Ω)
l’ensemble des fonctions C∞ sur Ω, à support compact inclus dans Ω (ayant donc un prolonge-
ment continu nul sur ∂Ω). Si u ∈ D(Ω) est solution de (5), alors quel que soit v ∈ D(Ω) on a
−κ
∫

Ω
v∆u =

∫
Ω
fv, d’où par la formule de Green (ce qui revient à intégrer par parties dans

chaque direction, les termes de bord étant nuls puisque v est nulle sur ∂Ω)

(6) κ

∫
Ω

∇u · ∇v =

∫
Ω

fv .

Rappelons que ∇u (gradient de u) désigne la fonction à valeurs dans Rn dont les compo-
santes sont les dérivées partielles ∂iu de u par rapport aux coordonnées xi. Ainsi ∇u · ∇v =∑n

i=1(∂iu)(∂iv). Il se trouve que l’équation (6) a un sens pour u et v ∈ H1(Ω) := {v ∈
L2(Ω) ;∇v ∈ L2(Ω)}. Dans cette définition de l’espace H1(Ω) il faut entendre ∇v comme
le gradient au sens faible, défini par

∫
Ω
φ ∂iv = −

∫
Ω
v ∂iφ pour tout φ ∈ D(Ω). L’espace

vectoriel H1(Ω) est un espace de Hilbert pour la norme définie par

‖v‖2
H1 = ‖v‖2

L2 + ‖∇v‖2
L2 =

∫
Ω

|v|2 +
n∑
i=1

∫
Ω

(∂iv)2 .

Cependant, si l’on se contente de chercher u dansH1(Ω), on perd la condition au bord u|∂Ω = 0.
C’est pourquoi il est naturel de chercher u dansH1

0 (Ω), défini comme l’adhérence de D(Ω) dans
H1(Ω) (cette définition apparemment compliquée est liée au fait que l’on ne peut pas « bruta-
lement » imposer la condition u|∂Ω = 0 à un élément u de H1(Ω), car il n’a pas nécessairement
de trace au bord, sauf en dimension n = 1). Un outil essentiel pour la suite est l’inégalité de
Poincaré (qui se démontre en dimension 1 de façon tout à fait analogue au lemme 1, et que l’on
admettra en dimension supérieure) : l’ouvert Ω étant borné, il existe C > 0 tel que pour tout
u ∈ H1

0 (Ω),
‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) .

Comme conséquence, on voit que

‖u‖H1
0 (Ω) := ‖∇u‖L2(Ω)
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définit une norme sur H1
0 (Ω), équivalente à celle de H1(Ω). En effet, pour tout u ∈ H1

0 (Ω),

1√
1 + C2

‖u‖H1(Ω) ≤ ‖∇u‖L2(Ω) ≤ ‖u‖H1(Ω) .

Ce cadre fonctionnel étant posé, a(u, v) := κ
∫

Ω
∇u·∇v définit une forme bilinéaire (symétrique)

continue sur H1
0 (Ω), car d’après l’inégalité de Cauchy-Schwarz,

|a(u, v)| ≤ κ ‖∇u‖L2‖∇v‖L2 = κ ‖u‖H1
0 (Ω)‖v‖H1

0 (Ω) ,

De plus, comme a(u, u) = κ ‖u‖2
H1

0 (Ω)
, si κ > 0 on dit que a est coercive. Ces propriétés vont

permettre d’appliquer le résultat fondamental suivant.

Théorème 2 Soit a une forme bilinéaire continue et coercive sur un espace de Hilbert V . Si `
est une forme linéaire continue sur V , il existe un unique u ∈ V tel que

(7) a(u, v) = `(v) quel que soit v ∈ V .

Dém. Le théorème de représentation de Riesz-Fréchet affirme qu’il existe f ∈ V tel que
`(v) = 〈f, v〉 quel que soit v ∈ V , où 〈·, ·〉 est le produit scalaire dans V . (Si ` ≡ 0 alors
f = 0. Sinon, on prend f = `(g)g, où g est un vecteur unitaire orthogonal à l’hyperplan
`⊥ := {w ∈ V ; `(w) = 0}, lui-même obtenu comme (g0 − g1)/‖g0 − g1‖ avec g0 /∈ `⊥ et g1

l’image de g0 par la projection orthogonale sur `⊥.) Pour la même raison, quel que soit u ∈ V ,
l’application v 7→ a(u, v) étant une forme linéaire continue, il existe un vecteur Au tel que
a(u, v) = 〈Au, v〉 quel que soit v ∈ V . De plus, l’application A : u 7→ Au est linéaire continue,
sa norme étant

9A9 := sup
u6=0

‖Au‖
‖u‖

≤ 9a9 := sup
u,v 6=0

|a(u, v)|
‖u‖‖v‖

.

Par suite, le problème (7) est équivalent au problème Au = f . Montrer que ce dernier a une
solution unique revient à montrer que A est un isomorphisme de V . Or, d’après la coercivité
de a, il existe κ > 0 tel que 〈Au, u〉 = a(u, u) ≥ κ‖u‖2 quel que soit u ∈ V . Ceci implique
que A est injective (si Au = 0 alors u = 0). Par ailleurs, cette inégalité et celle de Cauchy-
Schwarz impliquent que ‖Au‖ ≥ κ‖u‖ quel que soit u ∈ V . On en déduit que l’image de A
est fermée (si (Aup)p∈N est une suite de Cauchy alors (up)p∈N aussi). On peut ensuite conclure
que cette image est égale à V tout entier : sinon il existerait w0 ∈ V \ImA, que l’on pourrait
projeter orthogonalement en w1 6= w0 sur le sous-espace vectoriel fermé ImA ; on aurait alors
〈Au,w0 − w1〉 = 0 quel que soit u ∈ V , et en particulier〈A(w0 − w1), w0 − w1〉 = 0, ce qui
contredirait (puisque w0 6= w1) l’inégalité 〈A(w0 − w1), w0 − w1〉 ≥ κ‖w0 − w1‖2 .

L’idée de la méthode de Galerkin consiste alors à résoudre le problème approché

(8) a(uh, vh) = `(vh) quel que soit vh ∈ Vh ,

dans Vh, où (Vh)h>0 est une famille de sous-espaces fermés (et en pratique de dimension finie)
de V , supposés « tendre » vers V lorsque le paramètre h tend vers 0. D’après le théorème de
Lax-Milgram appliqué dans Vh, on sait que le problème (8) a une solution unique. Si de plus Vh
est de dimension finie Nh et engendré par une famille (ϕ1, . . . , ϕNh

), alors le problème (8) se
réduit (en cherchant uh =

∑Nh

j=1 Xjφj) à la résolution du système linéaire MhXh = Yh, où

Mh := (a(ϕj, ϕi))1≤i,j≤Nh
, Yh := (`(ϕ1), . . . , `(ϕNh

))t .

Puisqu’il y a une solution unique, la matrice Mh est inversible. Comme annoncé plus haut, on
ne discutera pas la façon de résoudre le système MhXh = Yh.

Nous allons maintenant nous concentrer sur deux questions essentielles :
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i). comment définir Vh : ce sera l’occasion, après avoir vu un exemple simple en dimension
n = 1, de définir les éléments finis de Lagrange de manière formelle puis sur deux grandes
classe déléments finis (dits Pk et Qk) ;

ii). comment montrer que la famille de solutions « approchées » uh tend vers la solution
exacte.

Grâce au lemme suivant, la seconde question se ramène en fait à l’estimation de ‖u − Πhu‖,
où Πh est un projecteur (par exemple orthogonal) de V sur Vh. (Rappelons qu’un projecteur Πh

est par définition un opérateur linéaire idempotent, c’est-à-dire tel que Πh ◦ Πh = Πh. Il est
orthogonal si 〈Πhu, u− Πhu〉 = 0 pour tout u ∈ V .)

Lemme 2 (Céa) Soit a une forme bilinéaire continue et coercive sur un espace de Hilbert V .
Il existe C > 0 tel que, pour toute forme linéaire continue `, pour tout sous-espace vectoriel Vh
de V , si u est la solution de (7) et uh la solution de (8),

‖u− uh‖ ≤ C inf
vh∈Vh

‖u− vh‖ .

Dém. Par définition de uh et u, a(uh, vh) = `(vh) quel soit vh ∈ Vh, et comme Vh ⊂ V ,
a(u, vh) = `(vh). En faisant la différence on en déduit par bilinéarité de a que a(u−uh, vh) = 0
quel soit vh ∈ Vh. Par suite, puisque Vh est un sous-espace vectoriel (uh− vh ∈ Vh), en utilisant
à nouveau la bilinéarité de a on peut écrire a(u− uh, u− uh) = a(u− uh, u− vh). D’où

κ‖u− uh‖2 ≤ a(u− uh, u− uh) = a(u− uh, u− vh) ≤ 9a 9 ‖u− uh‖ ‖u− vh‖ ,

et par conséquent

‖u− uh‖ ≤
9a9
κ

inf
vh∈Vh

‖u− vh‖ .

Voyons maintenant un exemple d’espace d’approximation Vh ⊂ H1
0 (]a, b[) (adapté au problème

modèle (6) en dimension n = 1). On définit des nœuds xj ∈ [a, b] avec x0 = a, xNh+1 = b et
0 < xj+1 − xj ≤ h pour j ∈ {0, . . . , Nh}, et Vh = Vect(ϕ1, . . . , ϕNh

) avec

ϕj(x) =


x− xj−1

xj − xj−1

si x ∈ [xj−1, xj] ,

x− xj+1

xj − xj+1

si x ∈ [xj, xj+1] ,

0 sinon .

Ces fonctions affines par morceaux (leur graphe étant en forme de « chapeau chinois ») sont
continues, s’annulent en x0 = a et xNh+1 = b, et l’on vérifie aisément que ce sont des éléments
de H1

0 (]a, b[). On remarque de plus que ϕj(xi) 6= 0 si et seulement si i = j, et ϕj(xj) = 1. Ceci
permet de définir le projecteur Πh par

Πhu =
n∑
j=1

u(xj)ϕj .

Proposition 1 Si u ∈ C 2([a, b]), u(a) = u(b) = 0, et Πhu est défini comme ci-dessus, alors
‖u− Πhu‖H1

0 (]a,b[) tend vers 0 lorsque h tend vers 0.
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Dém. On a par définition de la norme sur H1
0 ,

‖u− Πhu‖2
H1

0 (]a,b[) =

∫ b

a

|(u− Πhu)′(x)|2 dx =

Nh∑
j=0

∫ xj+1

xj

|(u− Πhu)′(x)|2 dx .

Or par définition de Πh, pour x ∈ [xj, xj+1],

Πhu(x) = u(xj)
x− xj+1

xj − xj+1

+ u(xj+1)
x− xj
xj+1 − xj

,

donc

(Πhu)′(x) =
u(xj+1)− u(xj)

xj+1 − xj
=

∫ 1

0

u′(xj + θ(xj+1 − xj)) dθ

(d’après la formule de Taylor avec reste intégral à l’ordre 1, ce qui évite d’avoir recours à
la formule des accroissements finies, limitée aux fonctions à valeurs réelles). Ainsi pour x ∈
[xj, xj+1],

(u− Πhu)′(x) =

∫ 1

0

(u′(x)− u′(xj + θ(xj+1 − xj)) dθ =

∫ 1

0

∫ x

xj+θ(xj+1−xj)

u′′(y) dy dθ ,

d’où
|(u− Πhu)′(x)| ≤ h max

y∈[xj ,xj+1]
|u′′(y)| .

On en déduit ∫ b

a

|(u− Πhu)′(x)|2 dx ≤ (b− a)h2 max
y∈[a,b]

|u′′(y)|2 ,

ce qui tend bien vers 0 lorsque h tend vers 0.
Lorsque Ω ⊂ Rn avec n ≥ 2, il y a diverses façons de le découper géométriquement en

« mailles », et donc de définir Vh. Bien que l’on ait supposé au départ le bord de Ω régulier,
on va ici supposer que Ω est polyhédral, de sorte que l’on puisse le découper en mailles elles
aussi polyhédrales. Dans le cas n = 2 on considèrera par exemple des mailles triangulaires ou
rectangulaires. Avant cela, donnons une définition générale.

Définition 1 On appelle élément fini de Lagrange dans Rn la donnée d’un compact K ⊂ Rn,
d’un ensemble Σ = {a1, . . . , aN} de points de K et d’un espace P de fonctions K → R telles
que pour tout (α1, . . . , αN) ∈ RN , il existe une unique fonction p ∈ P telle que p(aj) = αj
pour tout j ∈ {1, . . . , N}. On appelle fonctions de base les éléments p1, . . . , pN (formant une
base) de P tels que pj(ai) = 0 si i 6= j et pi(xi) = 1.

Exemples en dimension n = 1
• Les ensembles K = [a, b], Σ = {x1, . . . , xN} et P = Vect (ϕ1, . . . , ϕN) où les fonctions
ϕj sont celles définies précédemment, définissent un élément fini de Lagrange.
• Les ensembles K = [a, b], Σ = {x1, . . . , xN} et

P := {fonctions polynomiales de degré au plusN − 1}

définissent un élément fini de Lagrange, de fonctions de base les polynômes d’interpola-
tion de Lagrange :

pj(x) :=

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

.
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En dépit des apparences, le premier exemple est un cas particulier du second, appliqué pourN =
1 dans chaque maille [xj, xj+1]. C’est en fait l’idée pour construire un espace d’approximation
Vh en toute dimension : définir un élément fini sur une maille K de référence, et obtenir un
élément fini sur toutes les autres mailles par transformation affine.

En dimension n arbitraire Comme on l’a déjà dit, le maillage peut revêtir diverses formes.
Par ailleurs, il n’y a plus de notion « absolue » de degré pour les fonctions polynomiales : on
peut notamment parler de degré total, ou de degré partiel.

Lorsque la maille de référence est le cube unité [0, 1]n, il est (sur le papier) assez facile de
définir un élément fini. Pour k ∈ N∗ on considère

Qk := {fonctions polynomiales de degré partiel au plus k dans chaque variable} .

Sa dimension N := (k + 1)n est exactement le cardinal de l’ensemble

Σk := {a ∈ [0, 1]n ; aj ∈ {0, 1/k, 2/k, . . . , 1} pour tout j ∈ {1, . . . , n} } .

(Attention, ici aj désigne la j-ième composante du point a, et non un point de Rn.) On montre
que ([0, 1]n,Σk, Qk) est un élément fini de Lagrange. Par exemple pour n = 2, les éléments de
Σ1 sont les quatre sommets du carré [0, 1]2, et les fonctions de base sont

p1(x) = (1− x1)(1− x2) , p2(x) = x1(1− x2) , p3(x) = x1x2 , p4(x) = x2(1− x1) .

Considérons maintenant comme maille de référence un simplexe de Rn, c’est-à-dire l’enve-
loppe convexe de (n+ 1) points b1, . . . , bn+1 ∈ Rn :

S =

{
x =

n+1∑
j=1

λjbj ; λj ∈ [0, 1] et
n+1∑
j=1

λj = 1

}
.

Pour x ∈ S, on appelle coordonnées barycentriques les nombres λj = λj(x) ∈ [0, 1] de somme
égale à 1 tels que x =

∑n+1
j=1 λjbj . Les fonctions x 7→ λj(x) sont affines, car on peut voir par

exemple λ1(x), . . . , λn(x) comme les coordonnées de ~gx dans la base ~gb1, . . . , ~gbn, où g est le
centre de gravité de S, de coordonnées barycentriques 1/(n+1), et λn+1(x) = 1−

∑n
j=1 λj(x).

On montre que

Pk := {fonctions polynomiales de degré total au plus k}

est de dimension (n+ k)!/(n!k!), c’est-à-dire exactement le cardinal de

Λk := {x ∈ S ; λj(x) ∈ {0, 1/k, 2/k, . . . , 1} pour tout j ∈ {1, . . . , n+ 1}} .

et que (S,Λk, Pk) est un élément fini de Lagrange. Par exemple pour n = 2, les éléments de Λ1

sont les sommets du triangle et les fonctions de base sont les coordonnées barycentriques λ1,
λ2 et λ3.
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