Equations aux dérivées partielles

Par définition, une équation aux dérivées partielles (EDP) a pour inconnue une fonction de
plusieurs variables (alors qu’une équation différentielle ordinaire a pour inconnue une fonction
d’une seule variable). L’analyse (mathématique et) numérique des EDP est un vaste domaine,
que nous aborderons ici sous I’angle de trois équations type (linéaires) et de deux méthodes
numériques de base : différences finies et éléments finis.

Le Laplacien On « rappelle » que, pour une fonction v : {2 — R"™ deux fois différentiable sur

un ouvert ) de R¢,
g
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L’ opérateur différentiel A est appelé Laplacien.
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Trois EDP-type

Equation de Poisson Etant donnée une fonction f : Q — R”, on appelle équation de Poisson
de terme source f :

—Au = f.

Cette équation est qualifiée d’elliptique (par analogie avec 1’équation générale d’une el-
lipse & /a* + & /b* = 1).

Equation de la chaleur Etant donné un réel positif «, on appelle équation de la chaleur, ou
équation de diffusion pour le coefficient de diffusion & :

ou = kAu .

Cette équation est qualifiée de parabolique (par analogie avec I’équation générale d’une
parabole y = &£2/a?).

Equation des ondes Etant donné un réel positif ¢, on appelle équation des ondes pour la vitesse
c:
Oiu — *Au = 0.

Cette équation est qualifiée d’hyperbolique (par analogie avec I’équation générale d’une
hyperbole &2 /a® — £2/b* = 1).

Les équations des ondes et de la chaleur sont dites d’évolution car elles modélisent en
général un phénomene instationnaire, évoluant avec le temps ¢. L’équation de Poisson est quant
a elle stationnaire : elle modélise en général un phénomene a 1’équilibre dans I’espace R
Les trois équations sont linéaires, c’est-a-dire qu’elles dépendent linéairement de 1’inconnue
u. Nous n’étudierons pas ici d’équation non-linéaire. Les équations de Poisson et de la cha-
leur modélisent des phénomenes de diffusion, comme celle de la chaleur (!), de la matiere (par
exemple un polluant dans une riviere, ou des bactéries dans un organe, etc.), ou encore d’une
charge électrique. L’ équation de Poisson pour f = 0, aussi appelée équation de Laplace, peut
étre vue comme un cas particulier d”’equation de la chaleur lorsque 1’équilibre est atteint, c’est-
a-dire lorsque I’'inconnue u ne dépend plus de ¢. L’ équation des ondes modélise des phénomenes
de propagation, comme celle du son, de la lumiere.



TAB. 1 — Quelques unités physiques

quantité unité S.I.
masse kilogramme (kg)
longueur metre (m)
temps seconde ()
température Kelvin (K)
vitesse m.s!
force Newton, 1 N = 1kg.m.s2
pression Pascal, 1 Pa = 1kg.m .57
énergie Joule, 1J = 1kg.m?.s72
intensité électrique Ampere (A)
charge électrique Coulomb, 1C = 1 A.s
potentiel électrique Volt (V)

Eléments de modélisation Les modeles mentionnés ci-apres utilisent divers types de quan-
tités physiques. Pour mémoire, quelques unités du systeme international (unités S.1.) sont « rap-

pelées » dans le tableau 1.

Diffusion Les modeles de phénomenes diffusifs ont en commun d’étre régis par une loi em-
pirique exprimant que le flux 7 par unité de surface et de temps d’une certaine quantité n est
proportionnel au gradient de cette quantité. Par ailleurs, la conservation de cette quantité n

s’exprime dans ce que 1’on appelle I’ équation de continuité :

(1) Om + divi = 0,

ou div désigne la divergence en espace :

3
k=1

On comprend facilement I’équation de continuité si n est par exemple une densité de particules
(c’est-a-dire le nombre de particules par unité de volume) : le nombre de particules dans un

domaine (régulier, borné) 2 de R? a I’instant ¢ est égal a

fff n(t, x1, T2, r3) drydasdes,
Q
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tandis qu’a ’instant ¢ + 0t il est égal a

jjj n(t + 0t, x1, x9, v3) dridzedas
Q

3
~ ffj n(t, x1, x9, x3) doydredrs — jj ij(t, T1, Lo, T3) Ng(T1, T, x3)do (21, o, X3) ,
Q a0 k=1
ou o désigne la mesure sur la surface 02, n le vecteur normal unitaire extérieur a 2, et I’ap-
proximation est valable si dt est assez petit pour que j ne varie pas trop entre ¢ et ¢ + dt. Or par
la formule de Stokes

3 3
_U ij(t, T1, T2, x3) N (21, Ta, 3)do (21, T2, 3) = fff Z Ojr(t, 21, T2, x3) doidaodrs .
0" k=1

o k=1

En divisant par dt et en passant a la limite 4 — 0 on obtient

fff(atn + divy)(t, x1, e, x3) drdosdes .
Q

Ceci étant vrai quel que soit €2, on en déduit 1’équation locale (1). Voici trois exemples de
modeles de diffusion.

Particules Comme expliqué ci-dessus, si n est une densité de particules et j est son flux,
I’évolution de ces quantités est régi par 1’équation (1). De plus, la loi de Fick s’écrit
j = —DVn,ou D > 0 est un coefficient empirique, appelé coefficient de diffusion, de
sorte que n doit satisfaire I’EDP :

8tn = DAn.

Charges électriques Sin est une densité volumique de charges électriques et j est la densité de
courant associée on a encore 1’équation (1). De plus, la loi d’Ohm exprime que j = o E,
ou o est la conductivité du matériau et £ est le champ électrostatique. Si ce dernier dérive
d’un potentiel V, c’est-a-dire si £ = —VV, on a alors j = —o VV. En particulier a
I’équilibre, c’est-a-dire pour 0;n = 0, I’équation de continuité implique 1’équation de
Laplace (c’est-a-dire 1’équation de Poisson avec terme source nul) pour V' : AV = 0. Si
f est une source extérieure de charge électrique, on a 1’équation de Poisson AV = f/o.

Chaleur Siu(t, 1, x9, x3) désigne la température dans un matériau a ’instant ¢ au point de co-
ordonnées (x1, T2, x3), la loi de Fourier exprime que le flux de chaleur par unité de surface
et par unité de temps est proportionnel au gradient de température Vu = (0yu, dyu, A3u)",
le coefficient de proportionnalité A étant appelé conductivité thermique du matériau :

j = —AVu.

Par ailleurs, si () est la chaleur par unité de volume, 0,(Q) = p ¢, 9,u, ou p désigne la masse
volumique du matériau et ¢, sa chaleur massique. Ainsi u doit vérifier I’équation

ou = kAu

avec Kk := A\/(pc,). Si f représente une source extérieure de chaleur par unité de volume,
I’équation de continuité doit étre modifiée en

8,Q + divj = f.



Propagation

Cordes vibrantes Considérons une corde tendue entre ses deux extrémités, suffisamment fine
pour pouvoir négliger les variations de tension dans sa section (et les variations de section
ddes a son élasticité !). Les parametres physiques mis en jeu sont sa section oy (aire), sa
densité linéaire py, reliée a sa densité volumique wy par

Po = OpWo,

et Ty sa tension « au repos », nombre positif homogene a une force. Soit u(t,z) € R?
le déplacement transversal de cette corde a I’instant ¢, par rapport a une position de
référence ze; € R?, 2 € R. On suppose le déplacement longitudinal négligeable. Au-
trement dit, le point situé en = e; dans la position de référence se retrouve en w(t, x) =
re; + u(t,z), et u(t,x) L e;.La tension de la corde 7'(¢,x) au point w(¢,x) est un
nombre positif tel qu’un morceau de corde correspondant au segment [x, x+dz| (dz > 0)
soit soumis a la force

T(t,x+dz)0(t,x + ox) — T(t,z)0(t,x),

oud(t,z) == d,w(t,z) (noter que f(t, x) est tangent a la corde en w(t, z)). L’ accélération
de la corde au point w(t, z) est simplement 03w(t,z) = Ou(t, ). La relation fonda-
mentale de la mécanique, ou loi de Newton (F' = my) appliquée au morceau de corde
[z, x + dx] s’écrit donc, pour la composante parallele a e; :

T(t,x+dzx) — T(t,z) = 0,

et pour la composante orthogonale a e; :
z+ox
T(t,x + dz) Opu(x + dz,t) — T(t,x) Opu(t,z) = / po Oiu(y,t) dy.

Par suite, T'(t,z) = Ty(t) est indépendant de x, et en faisant tendre dx vers O dans la
seconde équation, on obtient
Ty 02 u = poOiu.

Si Ty est indépendant de ¢ (ce qui revient a supposer que la tension exercée aux extrémités
est fixe), on a bien une équation des ondes pour u, en une dimension d’espace, avec

Ty
c=4/—,
Po

a condition que T soit effectivement positif (une corde qui n’est pas en tension s’ affaisse
et ne peut pas vibrer !).

Barres élastiques A I’inverse d’un corde, dans une barre élastique rigide, on peut ne considérer
que les déplacements longitudinaux, c¢’est-a-dire qu’un point situé€ en = e; dans la position
de référence se retrouve aprés compression ou étirement en w(t,z) = xe; + u(t,x)
avec u(t,x) || e;. La tension de la barre T'(t,z) en w(t, x), n’a pas de signe défini (la
barre pouvant étre indifféremment en compression ou en étirement). Une loi de 1’élasticité
affirme que pour faire varier de 4/ un morceau de longueur [, il faut une variation de



tension §’7" proportionnelle a §/l,. Quantitativement, on définit £y le module d’Young du
matériau tel que

Par définition, Ej est un nombre positif homogene a une pression. En appliquant cette loi
a un morceau [z, x + dz], qui devient [z + u(t, x), z + dz + u(t, z + 0x)], on obtient

u(z + dz,t) — u(t, z)

T(t,l’) — T()(l') = Eo (o) 51: s

d’ou a la limite lorsque dx tend vers O :
T(t,z) = To(x) + EyopOzu.

D’autre part, d’apres la loi de Newton appliquée au morceau [z, x + 0x] :

z+ox
T(t,x+dx) — T(t,x) = / po Oru(y,t) dy,
d’ou a la limite lorsque dx tend vers O :
0, T = pyOiu.

En supposant la tension de référence 7, homogene, c’est-a-dire indépendante de z, on
en déduit que u (ainsi que 7' d’ailleurs, par dérivation) satisfait I’équation des ondes de

vitesse
Ey
c = 4/—.
Wo

Si I’on s’intéresse a la densité p le long de la barre, on voit assez facilement qu’elle est
donnée par

plt.x) = po(1 — dpu).

En effet, pour chaque morceau de longueur initiale [y on a

o ol
pl:pglo d’Oﬁ—p+—:O
po o
En appliquant cette relation au morceau [z, z + dz| et en faisant tendre dz vers 0, on en
déduit
pP—ro + O,u = 0.
Po

Par suite, en supposant la densité initiale po homogene, on voit par dérivation que p satis-
fait la méme équation des ondes que u (et 7).

Tuyaux sonores Pour un fluide, un peu d’intuition physique montre que la tension 7’ est reliée

ala pression p parp = —T'/0y. D’o,
o op 1 v
Ty Do Xo Vo

ou X est le coefficient de compressibilité (sans dimension), et v le volume. Or dans un

tube de section constante,
ov ol

Vo lo '
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Donc on a une loi analogue a celle de I’élasticité, avec

_ P

Ey .
Xo

En particulier, pour un gaz parfait adiabatique,
pv? = cte,

d’ott yo = 1/yet Ey = 7 po. On trouve comme vitesse de propagation

_ /7Po
c = —_—
Wo

C’est I’expression bien connue de la vitesse du son.

Application numérique. Dans 1’air, assimilé a un gaz di-atomique, on a approximative-
ment 7 = 7/5 (on obtient ce nombre en raisonnant sur le nombre n de degrés de liberté
des molécules ; de fagon générale, v = (5 +n)/(3 + n)). La loi des gaz parfaits

wRT
M )

R = 83144 J K Ymol™, M = 28,810 3kg.mol™",

/| RT
c = fyﬁ ~ 332m.s"!

a une température de 273 K, ce qui correspond tres bien a la réalité !

p:

permet de calculer

Acoustique Les équations de I’acoustique portent sur les variations de pression p et de vitesse

v du gaz ambiant (généralement ’air !) par rapport a son état au repos. Elles s’écrivent
Oy p + wock dive = 0,
1
v+ —Vp =0,
wo
ol wy la densité volumique du gaz et ¢ est la vitesse du son (¢cg = /ypo/wo), dive =

3 . 2 . L . A N
> ;=1 9;v;. En prenant la divergence de la seconde équation et en €liminant divv grace a
la premiere, on obtient 1I’équation des ondes pour p :

Gip— ¢ Ap — 0.



Schémas aux différences finies

Le principe des schémas aux différences finies repose sur la formule de Taylor, permettant
d’approcher les dérivées de la fonction inconnue par des « dérivées discretes ».

Si u est une fonction réguliere de x et Ax > 0 est un pas d’espace (destiné a tendre vers 0),
on peut discrétiser de plusieurs manieres différentes sa dérivée :

o différence décentrée avant :

u(r + Azx) — u(z)
Ax

= Jyu(z) + O(Ax),

e différence décentrée arriere :
u(z) —u(z — Ax)
Az

= Ou(z) + O(Ax),

e différence centrée :
u(x + Az) — u(z — Ax)
2Ax
Pour la dérivée seconde, une discrétisation « naturelle » est
u(z + Ax) — 2u(x) + u(z — Azx)
(Az)?

= dyu(z) + O(Az?).

= 02 u(z) + O(Az?).
La formule de Taylor avec reste intégral donne en effet, pour une fonction de classe 6,

u(z £ Az) = u(z) £ Az d,u(z) + %(Am)z 0% u(r) + é(Ax)S 02 u(z)

Txrxr

1
+ =~ (Ax)* / (1—0)*0},, ulx+0Az)do.
0

[ =

Probleme aux limites elliptique Considérons pour commencer le probléme aux limites sui-
vant,ou k > 0, o, f € R, et f : & € [a,b] — f(x) € R sont des données :

— k02 u=f, x€lal],
@ {u<a>=a, u(b) = .

Noter que méme si la premiere équation est une équation différentielle ordinaire, ce n’est
pas ce que 1’on appelle un probleme de Cauchy (pour lequel il faudrait prescrire u et sa dérivée
premiere en un méme point, par exemple en a ou en b). C’est un probléme de Dirichlet, car
I’équation dans le domaine [a, b] est complétée par la donnée des valeurs au bord ({a} U {b})
de la solution : on parle de conditions au bord de Dirichlet.

Bien slir on a ici une équation différentielle réduite a sa plus simple expression, que I’on peut
résoudre analytiquement si f est continue au prix du calcul de primitives, et les deux conditions
au bord permettent de déterminer les constantes d’intégration. Le probleme (2) va néanmoins
servir de modele pour présenter les schémas aux différences finies.

Une fagon simple d’approcher ce probleme est de diviser I’intervalle [a, b] en (N +1) mailles
[z, xj11] pour j € {0,..., N}, avec g = a, xy41 = b, et 2,41 — x; = Awx, et de résoudre le
systeme discret

Ujp1 — 2U; + Uj—
3) - (ij)j I = f(z;), jefl,....N},

g =, uyi1=p0




Ce systeme peut se mettre sous forme matricielle (et c’est comme cela qu’on le résout avec
un logiciel comme Scilab!, ou Matlab?) : si U désigne le vecteur de R de composantes
Uy ..., UN,

2 -1 f<x1> + (AI;)Q «
-1 2 -1 f(x2)
kAU = (Az)*F, A= . F = .
-1 2 -1 flzn_1)
Dans la matrice A, les coefficients qui ne sont pas précisés sont nuls. On voit facilement que A
est définie positive : en effet, si’on note U_ € RN~ le vecteur de composantes (U1, ..., Un_1)
et U, € RV~! celui de composantes (usy, . . ., uy),

(U,AU) = 2||U|I* — 2(U-,Uy) = uj + uy + Uy —U-|* = 0
avec égalité si et seulement si
u =0, uy =0, U_. = Uy,

ce qui implique U = 0. Par suite, le systeme linéaire k AU = (Ax)? F admet une solution U
unique, que I’on peut calculer numériquement par diverses méthodes que I’on détaillera pas ici.

Attachons nous a montrer que cette approximation fournit une famille de solutions numé-
riques, notées ua,, qui converge, dans un sens a préciser, vers la solution exacte. Nous allons
nous placer dans I’espace L?([a, b]) des fonctions de carré intégrable sur [a, b], muni de la norme

définie par
b
e = ( / |u<x)|2das)

(Si u est a valeurs vectorielles, dans R? disons, | - | désigne la norme euclidienne.) Sachant
qu’une solution numérique un, est en fait donnée par un vecteur de RV "2 (de composantes
U, . . ., Un41) il faut naturellement munir R¥+2 d’une norme dépendant de N et de Az =
(b—a)/(N + 1), disons || - || x,az, de sorte que, pour une fonction suffisamment réguliere,

[(u(a), u(a + Az), ..., u(b = Az), u(b))|[n a0 — [l

1/2

lorsque N tend vers +oo et Ax = (b—a)/(IN + 1) tend vers 0. Rappelons pour cela la formule
des trapézes, pour une fonction f : [a, b] — R? de classe € :

/f dx—b—a)f() IO 4 o - ay.

La démonstration repose ev1demment sur la formule de Taylor. Considérons p la fonction affine
définie par p(z) := f(a) + f IO (5 — g). Alors

b
/f das—b—a)f””” [ 0@ = sy,

'ogiciel libre développé a I'INRIA
ogiciel commercialisé par Mathworks




et, si ’on note ¢ = (a + b)/2, la formule de Taylor avec reste intégral appliquée & f — p donne

f(@) = p(z) = flc) = plc) + (f'(c)=p'(¢) (x—c) +/0 (1=0) f"(c+0(z—c)) (x—c)*db.

Notons r(x fo (1-0) f"(c+6(x—c)) (x—c)? df. En appliquant la formule ci-dessus a z = a
etx =ben partlcuher on en déduit (puisque f(a) = p(a), f(b) = p(b),eta —c+b—c=0)
r(a) +r(b
16 — ple) = - AT
Par suite, )
r(a) +r(b
f(@) = pla) = r(a) — "D

d’ou
/ab(f(ac) — plz))dz = /ab r(z)dz — (- a) O F 1)

Sil’on note C' := maxeejqp) | f”(£)], on a donc

/abr(x)dx - (b_a>M' < g/ab(ﬂﬁ—C)de £ Soap = e

2 - 2 8 6
Par suite, ,
fla ) f(b) (b—a) p
/ flx)dz — (b—a) —F—— _ng[%lf(é)l

(En fait on peut améliorer cette inégalité en remplagant 1/6 par 1/12 lorsque f est a valeurs
scalaires, par application du théoréme de Rolle a la dérivée seconde de f — po, ou p, est le
polyndme du second degré coincidant avec f en a, b et x, pour tout x € [a, b].)

Ainsi, pour une fonction u de classe ¢ sur [a, b], d’apres la formule des trapezes appliquée
a la fonction |u|? sur chaque maille [x;, ;1] de taille Az = (b —a)/(N + 1), ona

/ P = 3 (|u<:vj>|2 UG a)

7=0

|u(zo)” + [u(rn ) P

5 + Az Y fu(z;)|? + O(A2?).

Jj=1

= Ax

Cette expression nous conduit a définir

N 1/2
A ol + |un 1] A 2
[(uo, - - - s uni1) lvae = x 5 + Az Z ;] :

J=1

En admettant 1’existence d’une solution pour le probleme exact (2), nous sommes mainte-
nant en mesure de montrer le résultat de convergence suivant.

Théoreme 1 Soient k > 0, f € €*([a,b];R?), a, B € RY, et u € €*([a, b]; RY) solution de (2).
Alors les solutions ua., de composantes uyg, . . ., un.1, de (3) sont telles que

|(u(a), u(a + Ax),...,ulb—Azx),u(d)) — (uo,u1,...,un, Un+1)||naz — 0

lorsque N tend vers +oc.



Dém. La démonstration repose (comme pour le probleme de Cauchy et le schéma d’Euler)
sur une majoration de 1’erreur de consistance (locale)

u(r + Azx) — 2u(z) + u(x — Ax) ot
- o).

R(z,u,Azx) = — kK

et sur la stabilité de la méthode numérique. Pour I’erreur de consistance, on a (comme déja vu)
R(x,u,Az) = — k02 u(z) — f(r) + O(A2?) = O(Az?)

puisque u est solution du probleme exact. Pour la stabilité, on va avoir recours au lemme 1
ci-apres. L' erreur globale

E(Az) = |[(u(a),u(a+ Az),...,u(b— Az),u(b)) — (ug,u1,...,un,un+1)||N Az

vaut par définition

N 1/2
E(Azx) = (Aa: > ulxy) - uj|2> .
j=1
Oron apourtout j € {1,..., N}, en notant pour simplifier v; := u(x;) — u;,
— Kk (V31 — 205 +v;1) = (Az)? R(zj,u, Ax),

d’ol en prenant le produit scalaire dans R par v;/Ax et en sommant sur j,

N N
e Z <UJ7UJ+1 — U]>A‘:U<UJ7”J 1 = Z v, R(xj,u, Az)) .
=1 !

En faisant une translation d’indice et en utilisant que vy = 0 et vxy41 = 0, on remarque que le
membre de gauche s’écrit encore

N
o Z V11 — Uj|2
A Ax ’
7=0

et est donc minoré par

ZAM%F—( e E(Az)?

d’apres le lemme 1. Par ailleurs, I'inégalité de Cauchy-Schwarz permet de majorer le membre
de droite :

N N 1/2
Az > (v, Rlxj,u, Az)) < E(Ax) (A:z: > m(xj,u,m)\?) < CVb—a(Az)?E(Ax),

j=1 j=1

ou la constante C' provient de la majoration |R(x;,u, Az)| < C(Ax)? uniforme pour z; €
[a, b]. Par suite,
(b _ a)5/2

<
E(Ax) < C o

(Ax)?.
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Lemme 1 (« inégalité de Poincaré discrete » ) Si Ax = (b — a)/(N + 1), quels que soient

Ul,...,UNG]Rd
N 9 N—1 9
3 > _ (b—a) 3 vj+1 — vy
: Ar” < 2 ; Ax ’
J=1 3=0

out I’on a posé vy = 0. De facon symétrique, en posant vy 1 = 0,

> e s G55 b ult

Dém. Puisque vy = 0 on a quel que soit j € {1,..., N},

j—1

v = Y (Uke1 — v,

k=0

d’ol par 1’inégalité triangulaire dans R,

-1 2
o, < (Z V1 — Uk\) ;
k=0

puis par 'inégalité de Cauchy-Schwarz dans R/,

j—1
lo;[* < j (Z | VK41 —Uk\2> :

k=0
et donc
N N N-1 N-1
ZAx |Uj|2 < (AJ}) (Z ]) (Z ‘Uk—i-l . Uk|2> (AIL’ |Uk:+1 - Uk;|
j=1 j=1 k=0 k=0

Nf
< (b— a)2 Zl |Vk1 — Uk|2
- 2 —~ Az

La méthode des différences finies décrite précédemment s’étend assez facilement a d’autres
problémes, et pour commencer au probleme avec des conditions aux limites dites « mixtes » :

{—f@@ﬁxu:f, z € [a,b],
u'(a)=~, u(d)=p.

Noter que si f € €?([a,b]) et & > 0 le probléme (4) admet (comme (2)) une solution unique
u € €*([a,b]), qui s’exprime sous forme intégrale :

w@) = B — (b—12)u //f )dzdy.

Dans I’approximation par différences finies, il faut cependant discrétiser avec soin la nou-
velle condition «’(a) = 7. Considérons d’abord une simple discrétisation décentrée

4)

Uy — Ug

Axr
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Le schéma utilisé précédemment aux nceuds z; pour j € {1,..., N} et la discrétisation de la
condition au bord comme ci-dessus reviennent au systeme, si U désigne maintenant le vecteur
de RV*! de composantes g, U1, . . ., Un,

1 -1 257
-1 2 -1 (x )
2
Av =B p 4o P =
K
-1 2 -1 ( TN-1)
-1 2 flan) + @ P
Cette nouvelle matrice A (de taille N + 1) est telle que
N-1
(U, AU) + Z(UJH u;)” = 0
§=0

avec égalité si et seulement si uy = 0 et u; = w41 quel que soit j, ce qui implique U = 0.
On obtient donc sans probleme une solution numérique. Cependant, la discrétisation décentrée
de la condition au bord introduit une erreur de consistance trop importante : en reprenant la
démonstration du théoreme 1 on voit qu’il faut tenir compte de 1’erreur locale de consistance
supplémentaire

_ B k[ u(xe+ Azx) — u(zo)
R(xo, u, Az) = As ( Ar v
car
N N
o1 —vi* (0, vipr —0j) +{vj, v —vj) K _
" Z Ax - " ]Zl Ax Ax (vo, 01 = o) =
N ~
Ax Z(vj,R(xj,u, Ax)) + Az (v, R(xo, u, Ax)) .
j=1

Or si u est solution exacte de (4) (on rappelle que g = a),

R(ro,u, Az) = — = u'(a) + O(Ax) = % fa) + O(Az) .

ce qui ne tend donc pas vers 0 lorsque Ax tend vers 0 (sauf dans le cas particulier f(a) = 0).
Une facon de remédier a ce probleme est de définir une « valeur fictive » u_; par la discrétisation

centrée
U1 — U

=7
2Ax ’
et d’utiliser cette valeur dans le schéma « intérieur »
Ujp1 — 2Uj + Uj—1

— K (Am)2 = f([L'])

en j = 0, ce qui donne
K U1 — Ug 1 K

I TAC Ry v
Alors la nouvelle erreur locale de consistance

ﬁ(xo,u,Ax) = —& (u($O+A§I)_u(xO) — ’Y) - %f(cﬂ

esten O(Ax), ce qui est moins bon qu’a I’intérieur mais tend quand méme vers zéro.
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Eléments finis

L’ élaboration d’une méthode d’éléments finis (terme souvent abrégé en FEM dans les références
anglophones) repose sur des ingrédients
e d’analyse fonctionnelle, permettant de donner une formulation variationnelle du probleme
exact, que 1’on ramene alors (formellement) a un probléme en dimension finie par la
méthode de Galerkin ;
e de géométrie et d’algebre, consistant a construire un maillage du domaine physique, as-
socié a des fonctions de base définissant 1’espace d’approximation de Galerkin.
L’implémentation d’une méthode d’éléments finis nécessite par ailleurs un algorithme de résolution
de grands systemes linéaires dont on ne parlera pas ici. On abordera en revanche 1’analyse de la
convergence des méthodes d’éléments finis, sur un exemple simple.
Considérons le probleme modele suivant (probleme de Dirichlet homogene) :

{—/{Au:f,

up =0,

)

ou €2 est un ouvert borné de R", de bord 0f2 régulier (c’est-a-dire qu’au voisinage de chaque
point, 9 est I'image d’une fonction réguliere R"~* — R"). Pour définir une formulation va-
riationnelle de ce probleme, on se contentera d’un terme source f € L?(). Notons Z(1)
I’ensemble des fonctions €’ sur (2, a support compact inclus dans €2 (ayant donc un prolonge-
ment continu nul sur 99). Si u € Z(12) est solution de (5), alors quel que soit v € Z(£2) on a
—K fQ vAu = fQ fv, d’ou par la formule de Green (ce qui revient a intégrer par parties dans
chaque direction, les termes de bord étant nuls puisque v est nulle sur 0f2)

(6) H/Vu-Vv:/fv.
Q Q

Rappelons que Vu (gradient de u) désigne la fonction a valeurs dans R™ dont les compo-
santes sont les dérivées partielles 0;u de u par rapport aux coordonnées x;. Ainsi Vu - Vv =
S (9iu)(9w). 1 se trouve que 1’équation (6) a un sens pour u et v € H'(Q) = {v €
L*(Q); Vv € L*(Q)}. Dans cette définition de I’espace H'(2) il faut entendre Vo comme
le gradient au sens faible, défini par [, ¢ 0v = — [, v0;¢ pour tout ¢ € Z(Q). Lespace
vectoriel H'(Q) est un espace de Hilbert pour la norme définie par

lelB = llollZ + Vel = / o2 + 3 / (Or0)?.
=1

Cependant, si I’on se contente de chercher u dans H'(£2), on perd la condition au bord g = 0.
C’est pourquoi il est naturel de chercher u dans H{ (€2), défini comme I’adhérence de Z((2) dans
H(Q) (cette définition apparemment compliquée est liée au fait que 1’on ne peut pas « bruta-
lement » imposer la condition ujpq = 0 & un élément u de H*(2), car il n’a pas nécessairement
de trace au bord, sauf en dimension n = 1). Un outil essentiel pour la suite est 1’inégalité de
Poincaré (qui se démontre en dimension 1 de facon tout a fait analogue au lemme 1, et que I’on
admettra en dimension supérieure) : I’ouvert {2 étant borné, il existe C' > 0 tel que pour tout
u € HY(Q),
[ullL2(@) < ClIVullr2q) -

Comme conséquence, on voit que
[ull ) = Vull2 )
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définit une norme sur H} (), équivalente a celle de H'(2). En effet, pour tout u € HJ (1),

1
—— |lullm) < [|[Vullrz) < |ulla@) -
V14 C?

Ce cadre fonctionnel étant posé, a(u, v) = & fQ Vu-Vu définit une forme bilinéaire (symétrique)
continue sur H{ (€2), car d’apres 'inégalité de Cauchy-Schwarz,

la(u,0)] < £ Vall 2 Vollze = & ull gy 10l o

De plus, comme a(u,u) = & Hu||§{1(ﬂ), si £ > 0 on dit que a est coercive. Ces propriétés vont
0
permettre d’appliquer le résultat fondamental suivant.

Théoreme 2 Soit a une forme bilinéaire continue et coercive sur un espace de Hilbert V. Si {
est une forme linéaire continue sur V, il existe un unique u € V tel que

(7) a(u,v) = l(v) quel que soitv € V.

Dém. Le théoreme de représentation de Riesz-Fréchet affirme qu’il existe f € V tel que
l(v) = (f,v) quel que soit v € V, ou (-,-) est le produit scalaire dans V. (Si ¢ = 0 alors
f = 0. Sinon, on prend f = ¢(g)g, ou g est un vecteur unitaire orthogonal a I’hyperplan
¢t = {w € V; {(w) = 0}, lui-méme obtenu comme (go — g1)/||g0 — g1 ]| avec go & ¢+ et g
I’image de g, par la projection orthogonale sur /*.) Pour la méme raison, quel que soit u € V/,
I’application v +— a(u,v) étant une forme linéaire continue, il existe un vecteur Au tel que
a(u,v) = (Au,v) quel que soit v € V. De plus, I’application A : u — Auwu est linéaire continue,

sa norme étant
|| Aul|

ANl = sup Z—= < [l[a]l| := sup :
uzo U] woro [[ufl[[v]
Par suite, le probleme (7) est équivalent au probleme Au = f. Montrer que ce dernier a une
solution unique revient a montrer que A est un isomorphisme de V. Or, d’apres la coercivité
de a, il existe k > 0 tel que (Au,u) = a(u,u) > k||ul|? quel que soit u € V. Ceci implique
que A est injective (si Au = 0 alors u = 0). Par ailleurs, cette inégalité et celle de Cauchy-
Schwarz impliquent que ||Au|| > &||u|| quel que soit u € V. On en déduit que 1'image de A
est fermée (si (Au,),en est une suite de Cauchy alors (u,),en aussi). On peut ensuite conclure
que cette image est égale a V' tout entier : sinon il existerait wy € V\ImA, que I’on pourrait
projeter orthogonalement en w; # wy sur le sous-espace vectoriel fermé Im A ; on aurait alors
(Au, wy — wy) = 0 quel que soit u € V, et en particulier(A(wy — wy), wy — wy) = 0, ce qui
contredirait (puisque wy # w1) 1'inégalité (A(wy — w1), wy — wy) > K|lwe — wy||?.
L’idée de la méthode de Galerkin consiste alors a résoudre le probleme approché

|a(u, v)|

(8) a(up,vp) = €(vy) quel que soit v, € Vj, ,

dans V},, ott (V},)n0 est une famille de sous-espaces fermés (et en pratique de dimension finie)
de V, supposés « tendre » vers V' lorsque le parametre i tend vers 0. D’apres le théoreme de
Lax-Milgram appliqué dans V/},, on sait que le probleme (8) a une solution unique. Si de plus V},
est de dimension finie V), et engendré par une famille (¢4, ..., ¢y, ), alors le probleme (8) se
réduit (en cherchant u;, = Z;V:hl X;¢;) alarésolution du systeme linéaire M}, X} = Y}, ou

My, = (alp), i) )i<ij<ng, s Yn = (1), - (o))"

Puisqu’il y a une solution unique, la matrice M}, est inversible. Comme annoncé plus haut, on
ne discutera pas la fagon de résoudre le systeme M, X}, = Y},.
Nous allons maintenant nous concentrer sur deux questions essentielles :
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i). comment définir V/}, : ce sera 1’occasion, apres avoir vu un exemple simple en dimension
n = 1, de définir les éléments finis de Lagrange de maniere formelle puis sur deux grandes
classe déléments finis (dits Py et Q) ;

ii). comment montrer que la famille de solutions « approchées » wu;, tend vers la solution
exacte.

Gréce au lemme suivant, la seconde question se rameéne en fait a I’estimation de ||u — IT,ull,
ou 11, est un projecteur (par exemple orthogonal) de V' sur V},. (Rappelons qu’un projecteur 11,
est par définition un opérateur linéaire idempotent, c’est-a-dire tel que II, o II, = II,. Il est
orthogonal si (IT,u, u — IIpu) = 0 pour tout u € V'.)

Lemme 2 (Céa) Soit a une forme bilinéaire continue et coercive sur un espace de Hilbert V.
1l existe C' > 0 tel que, pour toute forme linéaire continue {, pour tout sous-espace vectoriel V},
de V, si u est la solution de (7) et uy, la solution de (8),

— < C inf — .
Ju—wnll < C it flu— v

Dém. Par définition de uy, et u, a(uy,v,) = £(vy) quel soit v, € V},, et comme V}, C V,
a(u,vy) = {(vy,). En faisant la différence on en déduit par bilinéarité de a que a(u —up,vy) = 0
quel soit v, € V},. Par suite, puisque V}, est un sous-espace vectoriel (u;, — v, € V3), en utilisant
a nouveau la bilinéarité de a on peut écrire a(u — up, u — up) = a(u — up, u — vy,). D’ol

fllu —un® < alw —up, w—up) = a(u —up,u—wvy) < [l lu—wupl flu—onll,

et par conséquent

e —well < M s =
vpEVR

Voyons maintenant un exemple d’espace d’approximation V;, C H{ (Ja, b[) (adapté au probleme
modele (6) en dimension n = 1). On définit des nceuds x; € [a,b] avec xp = a, xy,+1 = bet
0<zjs1—x; < hpourje{0,...,Ny}, et V), = Vect(pr,...,pn,) avec

r—Tj1 .
— S1X € |T;_ i
) — 2 T € [zj1, 7],
. — T —T; )
SO,](‘%‘) - —]H Sl € [xj7 x]+1] ,
Lj = Tj+1
0 sinon .

Ces fonctions affines par morceaux (leur graphe étant en forme de « chapeau chinois ») sont
continues, s’annulent en xy = a et xy, 11 = b, et I’on vérifie aisément que ce sont des éléments
de H;(]a,b[). On remarque de plus que ¢;(x;) # 0 si et seulement si i = j, et ;(x;) = 1. Ceci
permet de définir le projecteur 11, par

n

Mhu =Y u(w;) ;.

Jj=1

Proposition 1 Si u € €*([a,b]), u(a) = u(b) = 0, et ,u est défini comme ci-dessus, alors
lw — Hpul| g1 gap) tend vers 0 lorsque h tend vers .
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Dém. On a par définition de la norme sur H{,

Tj+1

b N
[|u — HhUH?{&qa,b[) = / |(u — M) (2)]* da = Z / [(w — M) () |* da .
a j=0 v Tj

Or par définition de IIj, pour x € [z}, ;1]

T — T T — X;
Myu(z) = u(z;) —2% + u(z; = 9
h ( ) ( J)$j — 2 ( ]+1)xj+1 —
donc
(Hhu)’(x) _ U(l’j+1> B u(

. 1
n) / u'(z; + 0(xj01 — ;) do
0

(d’apres la formule de Taylor avec reste intégral a ’ordre 1, ce qui évite d’avoir recours a
la formule des accroissements finies, limitée aux fonctions a valeurs réelles). Ainsi pour x €

[, Zj41]5

1 1 x
(0= M) (0) = [ () =y + Oy 200 = [ [ W'(y) dy do,
0 0 Jzj+0(zjr1—z;5)

Tj+1 —

d’ou
(= Tpu) ()] < b _max Ju"(y)].
yelr; 1]
On en déduit ,
[ = @) do < (0= )42 s 0" ()
a y€la,

ce qui tend bien vers 0 lorsque h tend vers 0.

Lorsque €2 C R™ avec n > 2, il y a diverses fagons de le découper géométriquement en
« mailles », et donc de définir V},. Bien que 1’on ait supposé au départ le bord de {2 régulier,
on va ici supposer que €2 est polyhédral, de sorte que 1’on puisse le découper en mailles elles
aussi polyhédrales. Dans le cas n = 2 on considerera par exemple des mailles triangulaires ou
rectangulaires. Avant cela, donnons une définition générale.

Définition 1 On appelle élément fini de Lagrange dans R" la donnée d’un compact K C R",

d’un ensemble ¥ = {ay, ..., ay} de points de K et d’un espace P de fonctions K — R telles
que pour tout (ay,. .. ,ay) € RY, il existe une unique fonction p € P telle que p(a;) = o
pour tout j € {1,..., N}. On appelle fonctions de base les éléments py, ..., py (formant une

base) de P tels que p;(a;) = 0sii # j et p;(z;) = 1.

Exemples en dimension n = 1

e Lesensembles K = [a,b], Y = {x1,...,zx} et P = Vect (¢1,...,py) ol les fonctions
; sont celles définies précédemment, définissent un élément fini de Lagrange.
e Lesensembles K = [a,b], ¥ = {z1,...,xy} et

P := {fonctions polynomiales de degré au plus N — 1}

définissent un élément fini de Lagrange, de fonctions de base les polynomes d’interpola-
tion de Lagrange :
_ Hi;éj (z — ;)

Pie) = Tl — )
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En dépit des apparences, le premier exemple est un cas particulier du second, appliqué pour N =
1 dans chaque maille [z, z;11]. C’est en fait I’idée pour construire un espace d’approximation
V. en toute dimension : définir un élément fini sur une maille K de référence, et obtenir un
élément fini sur toutes les autres mailles par transformation affine.

En dimension n arbitraire Comme on I’a déja dit, le maillage peut revétir diverses formes.
Par ailleurs, il n’y a plus de notion « absolue » de degré pour les fonctions polynomiales : on
peut notamment parler de degré total, ou de degré partiel.

Lorsque la maille de référence est le cube unité [0, 1]”, il est (sur le papier) assez facile de
définir un élément fini. Pour £ € N* on considere

Q)i := {fonctions polynomiales de degré partiel au plus k& dans chaque variable} .
Sa dimension N := (k + 1)™ est exactement le cardinal de I’ensemble
Y :={a€[0,1]"; a; € {0,1/k,2/k,..., 1} pourtout j € {1,...,n} }.

(Attention, ici a; désigne la j-iéme composante du point a, et non un point de R™.) On montre
que ([0, 1]™, Xk, Q) est un élément fini de Lagrange. Par exemple pour n = 2, les éléments de
¥, sont les quatre sommets du carré [0, 1]%, et les fonctions de base sont

p(z) =1 —21)(1 —x3), po(z) = 21(1 — x2), p3(x) = 122, Pa(x) = 22(1 — 7).

Considérons maintenant comme maille de référence un simplexe de R", c’est-a-dire 1’enve-
loppe convexe de (n + 1) points by, ..., b, € R™:

n+1 n+1
S:{JZZZ/\JZ)J,)\JE[O,l]CtZA]:]_}
j=1 j=1

Pour z € S, on appelle coordonnées barycentriques les nombres \; = \;(x) € [0, 1] de somme
égale a 1 tels que ©x = Z?:ll A;b;. Les fonctions = +— \;(x) sont affines, car on peut voir par
exemple \i(x), ..., \,(x) comme les coordonnées de g& dans la base gby, ..., by, ol gestle
centre de gravité de S, de coordonnées barycentriques 1/(n+1), et Ay () = 1=3"7, Aj(z).

On montre que
Py, := {fonctions polynomiales de degré total au plus k}
est de dimension (n + k)!/(n!k!), c’est-a-dire exactement le cardinal de
A, ={xeS; \(z)€{0,1/k,2/k,...,1} pourtout j € {1,...,n+1}}.

et que (S, A, Py) est un élément fini de Lagrange. Par exemple pour n = 2, les éléments de A;
sont les sommets du triangle et les fonctions de base sont les coordonnées barycentriques A,

)\2 et )\3.
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