Limites, continuité, dérivabilité, Théorème de Rolle et accroissements finis,

1 Limites, continuité

Exercice 1 Montrer que l'application f de \mathbb{R}^* dans \mathbb{R} définie par $f(x) = \sin(1/x)$ pour tout $x \neq 0$ n'a pas de limite quand x tend vers 0. (On pourra utiliser les suites $u_n = \frac{1}{n\pi}$ et $v_n = \frac{1}{2n\pi + \pi/2}$.)

Exercice 2 Pour chacune des fonctions f suivantes, déterminer si f admet une limite en a et le cas échéant calculer cette limite :

$$(i) \ f(x) = \frac{3x^2 - 1}{4x + 7}, \ a = \pm \infty, \qquad (ii) \ f(x) = \frac{x^3 - 1}{x^2 - 1}, \ a = 1, \qquad (iii) \ f(x) = x^2 + \frac{\sqrt{x^2}}{x}, \ a = 0,$$

$$(iv) \ f(x) = \frac{x}{\sqrt{1 + x^2} - 1}, \ a = \pm \infty; \quad (v) \ f(x) = \frac{1}{\sqrt{1 + x^2} - 1}, \ a = 0, \quad (vi) \ f(x) = \frac{1}{\sqrt{1 + x} - 1}, \ a = 0,$$

$$(vii) \ f(x) = \sqrt{x + \sqrt{x} + \sqrt{x}} - \sqrt{x}, \ a = +\infty, \quad (viii) \ f(x) = \sqrt{x^2 + 5x} + 3 - \sqrt{x^2 - 1}, \ a = -\infty.$$

Exercice 3 Pour chacune des fonctions f suivantes calculer la limite de f en 0:

(i)
$$f(x) = \frac{\sin x}{\sqrt{x}}$$
; (ii) $f(x) = \frac{\sin x}{\sin 3x}$; (iii) $f(x) = \frac{x^2 \sin(1/x)}{\sin x}$.

Exercice 4 Les applications suivantes de \mathbb{R}^* dans \mathbb{R} peuvent-elles êtres prolongées en des applications continues de \mathbb{R} dans \mathbb{R} ?

$$u_1(x) = \frac{1}{|x|};$$
 $u_2(x) = x|1 + \frac{1}{x}|;$ $u_3(x) = x\cos(1/x).$

Exercice 5 Déterminer si les assertions suivantes sont vraies.

- (a) La somme de deux fonctions continues en un point est continue en ce point.
- (b) La somme d'une fonction continue en un point et d'une fonction discontinue en ce point est discontinue en ce point.
- (c) La somme de deux fonctions discontinues en un point est discontinue en ce point.
- (d) La somme de deux fonctions discontinues en un point est continue en ce point.
- (e) Le produit de deux fonctions continues en un point est continue en ce point.
- (f) Le produit d'une fonction continue en un point et d'une fonction discontinue en ce point est discontinue en ce point.

Exercice 6 Soit la fonction

Déterminer l'ensemble des points $x \in \mathbb{R}$ où f est continue. Tracer son graphe.

Exercice 7 La fonction définie sur $\mathbb{R}\setminus\{-1,0\}$ par $f(x)=1-x-\frac{2x\ln|x|}{x+1}$ peut-elle être prolongée par continuité en -1 et en 0?

Exercice 8 Si $f : \mathbb{R} \to \mathbb{R}$ est une fonction continue, montrer que |f| est une fonction continue. La réciproque est-elle vraie?

Exercice 9 Soit $f:[0,1] \to \mathbb{R}$ une application continue sur [0,1] telle que f(0) = f(1). Montrer que pour tout entier n > 0, il existe $x_n \in [0,1]$ tel que l'on ait $f(x_n) = f(x_n + 1/n)$.

- **Exercice 10** (a) Soit f une fonction de \mathbb{R} vers \mathbb{R} . On suppose d'une part que f est périodique et d'autre part que f admet une limite en $+\infty$. Montrer que f est constante.
 - (b) Soit $f: \mathbb{R} \to \mathbb{R}$ une application dont les restrictions à \mathbb{Q} et à $\mathbb{R} \setminus \mathbb{Q}$ sont constantes. On suppose de plus que f est continue en 0. Montrer que f est constante sur \mathbb{R} .
- **Exercice 11** (a) Soit f une application de \mathbb{R} dans \mathbb{R} .

On suppose que f est continue en a et que f(a) > 0.

Montrer qu'il existe $\eta > 0$, tel que pour tout $x \in [a - \eta, a + \eta], f(x) > 0$.

(b) Soient f et g deux applications continues de \mathbb{R} dans \mathbb{R} et soit h l'application de \mathbb{R} dans \mathbb{R} définie, pour $x \in \mathbb{R}$, par $h(x) = \operatorname{Max}(f(x), g(x))$.

Montrer que h est continue sur \mathbb{R} .

- **Exercice 12** 1. Soient a et b deux nombres réels tels que a < b et soit f une application continue de l'intervalle [a,b] dans lui-même. Montrer qu'il existe $\alpha \in [a,b]$ tel que $f(\alpha) = \alpha$.
 - 2. Soient f et g deux applications continues de [0,1] dans lui-même telles que $f \circ g = g \circ f$.
 - (a) On pose $Y = \{y \in [0,1] \mid f(y) = y\}$. Montrer que Y possède une borne supérieure et une borne inférieure que l'on notera respectivement M et m.
 - (b) Soit $(y_n)_{n\geq 0}$ une suite d'éléments de Y qui converge vers a. Montrer que $a\in Y$.
 - (c) Montrer que $M \in Y$ et $m \in Y$.
 - (d) Montrer que $g(Y) \subset Y$.
 - (e) Montrer que $g(M) \leq f(M)$ et que $f(m) \leq g(m)$.
 - (f) En déduire qu'il existe $\beta \in [0,1]$ tel que $f(\beta) = g(\beta)$.

Exercice 13 Soient f et g deux applications continues de [0,1] dans \mathbb{R} telles que, pour tout $x \in [0,1]$, on ait

$$0 < f(x) < q(x)$$
.

- 1. Pour $x \in [0,1]$, on pose h(x) = f(x)/g(x). Montrer que $h([0,1]) \subset]0,1[$.
- 2. En déduire qu'il existe deux nombres réels m et M de]0,1[tels que, pour tout $x \in [0,1]$, on ait

$$m \le h(x) \le M$$
.

- 3. Soit $(x_n)_{n\geq 0}$ une suite quelconque d'éléments de [0,1]. Pour tout entier $n\geq 0$, on pose $y_n=(h(x_n))^n$. Montrer que la suite $(y_n)_{n\geq 0}$ est convergente et préciser sa limite.
- 2 Dérivées Concepts élémentaires.

Exercice 14 Déterminer si les assertions suivantes sont vraies.

- (a) Toute fonction dérivable en un point est continue en ce point.
- (b) Toute fonction continue en un point est dérivable en ce point.
- (c) La dérivée d'une fonction dérivable sur \mathbb{R} est continue sur \mathbb{R} .
- (d) Toute fonction non dérivable en un point est discontinue en ce point.
- (e) La somme de deux fonctions dérivables en un point est dérivable en ce point.
- (f) La somme de deux fonctions non dérivables en un point est dérivable en ce point.

Exercice 15 Les fonctions suivantes, définies sur \mathbb{R} , sont-elles dérivables en 0?

$$f_1(x) = \frac{x}{1+|x|}$$
, $f_2(x) = \frac{|x|}{1+x^2}$.

Exercice 16 Préciser pour chacune des fonctions suivantes en quels points elles sont dérivables, dérivables à droite, dérivables à gauche, et les valeurs de leurs dérivées, dérivées à droite, dérivées à gauche.

$$(i) f(x) = \cos(\cos x);$$
 $(ii) g(x) = \sqrt{|\sin x|};$ $(iii) h(x) = \sqrt{1 + \cos x}.$

Exercice 17 Calculer, là où elles sont définies, les dérivées des fonctions suivantes.

$$f_1(x) = (x^2 + 1)\sqrt{x^3 - 1}; \quad f_2(x) = \frac{x^n}{1 + x^n}; \quad f_3(x) = x^x; \quad f_4(x) = \ln(\ln(x)).$$

$$f_5(x) = \frac{x}{2} \left[\sin(\ln(x)) - \cos(\ln(x)) \right]; \quad f_6(x) = \ln \frac{\sqrt{1 + x^2} - 2}{\sqrt{1 + x^2} + 2}; \quad f_7(x) = e^{(1/x)} \sqrt{x(x + 1)}.$$

Exercice 18 Soit f une fonction dérivable en un point a. Montrer que, lorsque $h \longrightarrow 0$,

$$\frac{f(a+h)-f(a-h)}{2h} \longrightarrow f'(a).$$

Exercice 19 Etudier la continuité et la dérivabilité de la fonction

$$f : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} e^x - x & si & x < 0; \\ \cos^2(\pi x) & si & 0 \le x \le 1; \\ 1 + \frac{\ln x}{x} & si & x > 1. \end{cases}$$

Exercice 20 (Exercice extrait de l'épreuve de janvier 2001). Soit $f : \mathbb{R} \to \mathbb{R}$ l'application définie par :

$$f(x) = \begin{cases} chx & si & x \le 0\\ \frac{1}{1+x} & si & x \in]0,1]\\ \frac{2-\ln x}{4} & si & x > 1 \end{cases}$$

- (a) En quels points de \mathbb{R} la fonction f est-elle continue?
- (b) En quels points de \mathbb{R} la fonction f est-elle dérivable? En chacun de ces points, préciser la valeur de la fonction dérivée.

Exercice 21 Pour chacune des applications f, g et h de \mathbb{R} vers \mathbb{R} définies comme suit :

$$f(x) = \begin{cases} \sin\frac{1}{x} & si & x \neq 0 \\ 0 & si & x = 0 \end{cases} \quad g(x) = \begin{cases} x\sin\frac{1}{x} & si & x \neq 0 \\ 0 & si & x = 0 \end{cases} \quad h(x) = \begin{cases} x^2\sin\frac{1}{x} & si & x \neq 0 \\ 0 & si & x = 0 \end{cases}$$

déterminer l'ensemble des points où elle est continue, puis l'ensemble des points où elle est dérivable, et enfin l'ensemble des points où sa dérivée est elle-même continue.

Exercice 22 Soit $f:[0,1] \to \mathbb{R}$ une application continûment dérivable sur [0,1]. On suppose de plus que f(0) = 0 et que, pour tout $x \in [0,1]$, on ait f'(x) > 0. Montrer qu'il existe un nombre réel m > 0 tel que, pour tout $x \in [0,1]$, on ait $f(x) \ge mx$.

Exercice 23 Montrer par récurrence sur n que pour chaque $n \in \mathbb{N}^*$, il existe une fonction polynomiale f_n telle que pour tout réel x tel que $\cos x \neq 0$, on ait :

$$\tan^{(n)}(x) = f_n(\tan x).$$

(où on note $g^{(n)}$ la dérivée n-ème d'une fonction g). Calculer explicitement f_1 , f_2 , f_3 , f_4 et f_5 . En déduire la valeur de la dérivée 5-ème de tan en 0. **Exercice 24** On désigne par I l'ensemble des applications $f: \mathbb{R} \to \mathbb{R}$ dérivables sur \mathbb{R} et telles que : f(0) = 0, f'(0) > 0 et pour tout $x \in \mathbb{R}$, f'(x).f'(f(x)) = 1.

- 1. Montrer que l'application identité $1_{\mathbb{R}}$ appartient à I.
- 2. Soit $f \in I$. On considère l'application $g : \mathbb{R} \to \mathbb{R}$ définie par

$$g(x) = f(f(x)) - x.$$

- (a) Montrer que pour tout $x \in \mathbb{R}$, g(x) = 0. En déduire que f est strictement croissante.
- (b) On suppose qu'il existe un nombre réel x_0 tel que $f(x_0) \neq x_0$. Montrer que $g(x_0) \neq 0$. Conclure.

3 Rolle et accroissements finis

Exercice 25 Démontrer les inégalité suivantes :

- (a) $|\sin x \sin y| \le |x y|$ pour tous réels x et y.
- (b) $\frac{x}{1+x^2} < \arctan x < x \text{ pour tout réel } x > 0.$
- (c) $\frac{2x}{\pi} \le \sin x \le x$ pour tout réel $x \in [0, \pi/2]$.

Exercice 26 Soient f et g deux fonctions continues sur [a,b], dérivables sur [a,b]. Montrer qu'il existe c dans [a,b[tel que

$$(f(b) - f(a)) g'(c) = (g(b) - g(a)) f'(c)$$
.

Exercice 27 Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par :

$$f(x) = \frac{3-x^2}{2} si \ x < 1 \ et \ f(x) = \frac{1}{x} si \ x \ge 1.$$

Montrer qu'il existe un $c \in]0,2[$ tel que f(2)-f(0)=2f'(c), puis déterminer toutes les valeurs possibles de c.

Exercice 28 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur [a,b] et qui ne prenne que des valeurs strictement positives.

Montrer qu'il existe un réel $c \in]a,b[$ tel que l'on ait :

$$f(a) = f(b)e^{(a-b)\frac{f'(c)}{f(c)}}.$$

Exercice 29 Soit f de [a,b] vers \mathbb{R} une application dérivable sur [a,b] telle que f'(a) > 0 et f'(b) < 0.

- 1. Montrer qu'il existe x_1 dans a_1, b tel que a_2, b tel que a_1, b tel que a_1, b tel que a_2, b tel que a_1, b tel que a_2, b tel que a_1, b tel que a_1, b tel que a_2, b tel que a_1, b tel que a_1, b tel que a_1, b tel que a_1, b tel que a_2, b tel que a_1, b tel que a_1, b tel que a_1, b tel que a_1, b tel que a_2, b tel que a_1, b tel que a_1
- 2. Montrer qu'il existe c dans [a,b] tel que f'(c)=0.

Exercice 30 Soit f de \mathbb{R} vers \mathbb{R} une application deux fois dérivable. On suppose que pour tout x réel, on a:

$$|f(x)| \le 1$$
 et $|f''(x)| \le 1$.

Montrer pour tout x réel, on a :

Exercice 31 1. Donner un exemple de fonction $f:[0,1] \to \mathbb{R}$ dérivable sur]0,1[et telle que f(1) - f(0) > f'(c) pour tout $c \in]0,1[$.

2. Donner un exemple de fonction $f:[0,1] \to \mathbb{R}$ continue sur [0,1], dérivable sur $[0,\frac{1}{2}[\cup]\frac{1}{2},1[$, telle que f(0)=f(1)=0 et telle que $f'(c)\neq 0$ pour tout $c\in]0,\frac{1}{2}[\cup]\frac{1}{2},1[$.

Exercice 32 Soit $f:]a, b[\to \mathbb{R}$ une fonction dérivable. Peut-on avoir simultanément : $f(x) \to \infty$ quand $x \to a$ et $|f'(x)| \le M$ où M est une constante fixe?

4 Problèmes

Exercice 33 Soit un entier n > 1. On considère l'application polynômiale $f_n : \mathbb{R} \to \mathbb{R}$ définie par :

$$f_n(x) = x^n + x^{n-1} + \dots + x^2 + x - 1.$$

- 1. Montrer qu'il existe un unique $\xi_n \in \mathbb{R}_+^*$ tel que $f_n(\xi_n) = 0$.
- 2. On considère la suite $(\xi_n)_{n>1}$ de nombres réels strictement positifs. Montrer qu'elle est convergente et calculer sa limite.

Exercice 34 1. Soit un entier n > 0. Montrer que $\frac{1}{n+1} < \ln(n+1) - \ln(n) < \frac{1}{n}$.

2. On définit la suite $(u_n)_{n>0}$ de nombres réels en posant

$$u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n).$$

Montrer que la suite $(u_n)_{n>0}$ est strictement décroissante. En déduire qu'elle est convergente et que, si $\gamma = \lim_{n\to\infty} u_n$, on a $0 \le \gamma < 1$. (C'est la célèbre constante d'Euler dont on ignore encore si elle est rationnelle ou non. Elle vaut environ $\gamma \simeq 0.57721566490153286...$)