Propagation d’ondes

Il existe bon nombre d’ouvrages de référence traitant de la propagation des ondes, voir
par exemple [1, 2, 3, 4, 5]. L’objet de ces notes est d’en présenter quelques aspects, en
vue de I’épreuve de modélisation a l'agrégation.

Partie I
L’équation des ondes en dimension 1

On appelle équation des ondes (linéaire) VEDP d’évolution, du second ordre en temps (¢)
et en espace (z),
Oiu — 0% u =0,

ou ¢ est un nombre réel positif donné, homogene a une vitesse. Cette EDP apparait
naturellement dans beaucoup de problemes physiques, dont on donne quelques exemples
ci-apres.

1 Quelques modeles physiques

Pour information on mentionnera entre { } la dimension des quantiés physiques mises en
jeu, selon la table suivante

symbole | signification unité S.1.
m masse kilogramme (kg)
l longueur metre (m)
t temps seconde (s)
T température Kelvin (K)
v vitesse m.s™ 1
f force Newton, 1 N = 1kg.m.s2
P pression | Pascal, 1 Pa = 1kgm™'.s72
e énergie Joule, 1J = 1kgm?.s2

1.1 Cordes vibrantes

Le déplacement d'une corde en tension obéit, au moins au premier ordre, a une équation
des ondes, comme 'avait déja montré D’Alembert au XVIIleme siecle. Les parametres



physiques mis en jeu sont la densité linéaire py {m.[7'}, reliée & la densité wy (ou masse
volumique {m.[73}) par
Po = OoWo,

olt g {I*} est la section de la corde, et Ty la tension initiale de la corde, nombre > 0
homogene a une force.

Soit u(x,t) € R? le déplacement transversal de la corde & l'instant ¢, par rapport a
une position de référence re; € R3, o € R. On suppose le déplacement longitudinal
négligeable. Autrement dit, le point situé en x e; dans la position de référence se retrouve
en w(z,t) = ey + u(z,t), et u(x,t) L e.

Soit T'(z, t) la tension de la corde en w(z,t). C’est un nombre positif tel qu'un morceau
de corde [z, z + dx] (6= > 0) soit soumis a la force

T(x+ dz,t)0(x + ox,t) — T'(x,t)6(x,t),

ou f(z,t) = d,w(x,t) est tangent a la corde en w(x,t).

L’accélération de la corde au point w(z,t) est simplement Oiw(z,t) = O3u(z,t).
La relation fondamentale de la mécanique, ou loi de Newton (F' = m~y) appliquée au
morceau de corde [z, x + dx] s’écrit donc, pour la composante parallele a e; :

T(x+ éx,t) — T(z,t) = 0,

et pour la composante orthogonale a e; :
z+ox
T(x+ dz,t) Opu(x + dz,t) — T(x,t) Opu(x,t) = / po O4u(y,t)dy.

Par suite, T'(z,t) = Ty(t) est indépendant de z, et en faisant tendre dz vers 0 dans la
seconde équation, on obtient
Ty 0% u = podiu.

Si Tp est de plus supposé indépendant de ¢, on a bien une équation des ondes, avec

1o
c=4/—,
Po

a condition que Ty soit effectivement positif (une corde qui n’est pas en tension s’affaisse
et ne peut pas pas vibrer!).

1.2 Barres élastiques

A Tinverse d’un corde, dans une barre élastique rigide, on peut ne considérer que les
déplacements longitudinaux, c’est-a-dire qu’'un point situé en ze; dans la position de
référence se retrouve apres compression ou étirement en w(z,t) = we; + u(z,t) avec
u(z,t) || e;.

On définit encore T'(z,t) la tension de la barre en w(x,t), mais cette fois elle n’a pas
de signe défini (la barre pouvant étre indifféremment en compression ou en étirement).
Une loi de I'élasticité affirme que pour faire varier de 6/ un morceau de longueur [, il faut



une variation de tension §7 proportionnelle & §l/ly. Quantitativement, on définit Ey le
module d’Young du matériau tel que
ol
(ST = EO gg 5 -
lo
Par définition, Fy est un nombre positif homogene a une pression. En appliquant cette
loi & un morceau [z, x + dz|, qui devient [z + u(x,t), x + 0z + u(z + dx,t)], on obtient

u(x + oz, t) —u(z,t)
ox ’

T(m,t) — To(%) = EO (o))
d’ou a la limite lorsque dx tend vers O :
T(xz,t) = To(x) + EoopOzu.

D’autre part, d’apres la loi de Newton appliquée au morceau de corde [z, x + dx] :

x+0x
T+ 0,0) - Tt) = [ moRuly.t)dy.
d’ou a la limite lorsque dz tend vers O :
0. T = po a,iu.

En supposant la tension de référence Ty homogene, c’est-a-dire indépendante de x, on
en déduit que u (ainsi que 7" d’ailleurs, par dérivation) satisfait I’équation des ondes de

vitesse
Ey
c = —.
Wo

Si I'on s’intéresse a la densité p le long de la barre, on voit assez facilement qu’elle est
donnée par

pla,t) = po(1 — dpu).

En effet, pour chaque morceau de longueur initiale [y on a

5p 6l
pl = poly don 22+ % — 0.
po o

En appliquant cette relation au morceau [z, z + dx] et en faisant tendre dx vers 0, on en
déduit
P — Po
Po
Par suite, en supposant la densité initiale p, homogene, on voit par dérivation que p
satisfait la méme équation des ondes que u (et T').

+ O,u = 0.

1.3 Tuyaux sonores

Pour un fluide, un peu d’intuition physique montre que la tension 7" est reliée a la pression
pparp = —T/oy. Do,
or  op 1 v

Ty Po Xo Yo ’



ou xo est le coefficient de compressibilité (sans dimension), et v le volume. Or dans un
tube de section constante,

ov _ al

Vo lo ‘
Donc on a une loi analogue a celle de 1’élasticité, avec

_ P

Ey .
X0

En particulier, pour un gaz parfait adiabatique,
pv? = cte,
d’ott xo = 1/7 et Ey = vpo. On trouve comme vitesse de propagation
_ /7Po
c=4/—.
Wo
C’est I’expression bien connue de la vitesse du son.

Application numérique. Dans l'air, assimilé a un gaz di-atomique, on a approxima-
tivement 7 = 7/5 (on obtient ce nombre en raisonnant sur le nombre n de degrés de
liberté des molécules; de fagon générale, v = (5 +n)/(3 +n)). La loi des gaz parfaits

wRT
M b

R = 83144 J K tmol™, M = 28,8107 kg.mol ™",

/| RT
c = fyw ~ 332m.s"!

a une température de 273 K, ce qui correspond tres bien a la réalité !

p:

permet de calculer

1.4 Approche variationnelle

On peut aussi obtenir I’équation régissant le déplacement d’un matériau élastique monodi-
mensionnel au moyen d’une approche variationnelle, sans distinguer la partie transversale
de la partie longitudinale.

On note comme précédemment w(x,t) la position a I'instant ¢ du point initialement
situé en z ey, sans rien présager de la direction de u(z,t) = w(x,t) — ze;. Pour sim-
plifier on suppose la densité linéaire du matériau py homogene et constante. Considérons
I’énergie cinétique globale

1 L
£t) = 50 / | By, ) |2 de

On suppose que 1’énergie potentielle dépend, de facon éventuellement non-linéaire, de
O, -

Ex(t) ::/O f(Opw)dx,



ou f est donnée par une loi comportementale, appelée loi de Hooke, et supposée convexe.
Par exemple,

f) = fo(llyll = a)?,
ou fo > 0eta €]0, 1[. On définit alors I'intégrale d’action

t1

Alw] = / E(t) — &y(¢t) dt,
to

que lon cherche & minimiser a w(0,t), w(L,t), w(x,ty), w(z,t;) fixés. Une condition

nécessaire est

d
5./4[10 + 50520 = 0
quel que soit v tel que

v(0,t) = v(L,t) = v(z,ty) =v(z,t1) = 0.
Or on calcule facilement

t1 L
%A[w%—sv]so = / / po Oyw - O — df(O,w) - Opv daxdt.
to 0

En supposant les les fonctions assez régulieres et en intégrant par parties on obtient donc

t1 L
/ / (—podjw + & f(Opw) - 2w ) - v dz dt
to 0

(ot par un léger abus de notation on a identifié la forme linéaire d?f(d,w) - 92, w &
un vecteur; on peut aussi définir d?f(9,w) comme la matrice Hessienne de f en 0,w,
auquel cas il n'y a pas d’abus de notation). Ceci étant vrai quel que soit v (tel que
0(0,t) = v(L,t) = v(x,ty) = v(z,t1) = 0), on en déduit 'EDP non-linéaire du second
ordre, dite équation des ondes non linéaire :

poOow — d*f(Q,w) - 92w = 0.

On voit ici apparaitre l'intérét de supposer f convexe. FEn effet, on peut déterminer
la nature de cette EDP d’évolution en étudiant 'EDP linéaire obtenue en “gelant les
coefficients”, c¢’est-a-dire en regardant d,w = y comme une donnée. D’apres le lemme de
Schwarz, si f est au moins de classe C%, d®f(y) est symétrique donc diagonalisable (dans

’

une base orthonormée). Par conséquent, I'EDP
poJjw — d*f(y) - 95w = 0
est équivalente a une collection d’équations
Jpw; — Aj Ozw; = 0,

olt pg A; sont les valeurs propres de d?f(y). Si f n’était pas convexe, I'un des ); serait
négatif, ce qui donnerait une équation d’évolution elliptique !

Dans le cas ou w est scalaire, par exemple si 'on suppose le déplacement seulement
longitudinal, ’EDP non linéaire satisfaite par w s’écrit encore

poOhw + 0(f'(Osw)) = 0,
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dont une forme plus courante s’obtient en posant
v = d,w,
u = Ow.
Les nouvelles inconnues (v, u) satisfont alors le systéeme du premier ordre

ov — Oyu = 0,
ou — pioﬁxf’(v) =0

Ce systeme est connu sous le nom de p-systeme. 1l apparait en élasticité comme on vient
de le voir. Mais c’est aussi un modele d’écoulement de fluide compressible, de pression
p = — pio f’, en formulation Lagrangienne (v repésentant alors le volume spécifique du
fluide, u sa vitesse, et = la coordonée Lagrangienne de masse {m.[=2}). C’est d’ailleurs
a cela qu’il doit son nom. Pour revenir a notre EDP du second ordre, voyons ce qu’elle
donne pour la loi

fy) = folllyl = a)*.

Un petit exercice de calcul différentiel montre que

lyll — a (y-h) )
A2f(y)-h=2f (2 :
) fo ( "t e Y

Ainsi, 'EDP linéaire avec y = e; (correspondant précisément & la linéarisation au voisi-
nage de la position de référence w = wey) :

po Jpw + d f(er) - 97,w = 0

s’écrit encore

Ohw — AP w =0, A= 2@(1 —aP),
Po
ol
P=1-e®e¢e

est simplement la projection orthogonale sur e (on a bien siir supposé e; unitaire). En

décomposant
w = w; +wy, w || e, wy L ey,

on obtient pour w; et wy des équations des ondes de vitesses différentes

fo

81521511}1 — 2—8§mw1 = 0,
Po

Olwy — QE(I —a)dw, = 0.
Po



1.5 Termes d’ordre inférieur

A Déquation des ondes de base
Ru— 0% u=0,

on peut ajouter des termes d’ordre inférieur (en nombre de dérivations), prenant en compte
certains phénomenes supplémentaires. Dans I’'équation

Opu — 0l u+rou+ ku=0

par exemple, r est un nombre positif {¢~1} représentant la résistance du milieu ambiant
(typiquement, I’air dans le cas de la corde vibrante). On verra au §2.1 qu’il introduit
une dissipation d’énergie. Quant au nombre k {¢t=2} , il représente I'action d’une tension
transversale, comme dans le cas d'un ressort. On verra qu’il revient a ajouter un terme
(précisément lié a cette tension transversale !) dans I’énergie potentielle. L’équation avec
r=0,k>0:

Oiu — 2Pu+ku=0

est connue sous le nom de Klein-Gordon. C’est une équation dispersive, contrairement
a 1’équation des ondes ordinaire. En effet, si ’'on cherche une solution particuliere de la
forme u(z,t) = expi({x — At), on trouve la relation de dispersion :

A2 =2 k=0,

Lorsque k£ = 0, on trouve A = +c¢&, ce qui n’est pas surprenant (’équation des ondes
propage l'information a la vitesse ¢). Mais pour k£ > 0, on trouve

A=+ + k.

Autrement dit, la vitesse de propagation de 'onde expi({x — At),

v o= g =t/ + k/&

dépend de sa longueur d’onde 1/£. Cette vitesse de propagation est appelée vitesse de
phase. Elle est ici différente de la vitesse de groupe, définie par

d\ c?

Vg = — = =&

d¢ NCEYIZE
2 Analyse de base

On se limite ici a I’équation des ondes linéaire. L’étude des équations d’ondes non linéaires
demande des outils spécifiques, hors du cadre de ces notes.



2.1 Estimations d’énergie

Un bagage minime en mécanique indique que 1’énergie totale
E=E+E,

&, désignant comme au §1.4 'énergie cinétique et &, ’énergie potentielle, doit étre con-
servée au cours du mouvement. On retrouve effectivement cette propriété “a la main”,
en faisant le petit calcul suivant. Multiplions (scalairement) 1’équation

2 2 02 —
Opu — c O ,u =0

par dyu et intégrons en espace. Pour simplifier, on suppose 1’équation posée sur toute la
droite réelle R, et la solution suffisamment réguliere, tendant suffisamment vite vers 0 a
I'infini. On obtient apres intégration par parties du second morceau :

d 1 9 d c?
4/ : dr + = [ S o.ulPds = 0.
i) 3 |1 Opu]| do + a /. 2 ||0zul|*dx = 0

Ceci signifie exactement que ’énergie totale £ = &£, + &, est constante, avec

1 9 c? 9
E = —|Ow|*dx, &, = — || Opul]” dz .
R 2 R 2

(Au facteur pg pres, &, est analogue a ’énergie cinétique définie au §1.4, et &, est I'énergie
potentielle correspondant a la fonction

F&) = 5 Iyl )

Donc on a

E(T) = £(0)

quel que soit 7' > 0. Voyons comment se trouve modifiée cette estimation d’énergie
lorsqu’on inclut les termes d’ordre inférieur du §1.5. On trouve en faisant la méme
opération :

d [ 1, . d [ & , , d [k,
I de + = [ £ d dr + = [ Zju)?de = 0.
A |Opu||* dz + a3 |0,ul|” dz + /R r||Opu||* dx + T |lu||*dz = 0

Par suite, si r > 0, on en déduit que I'énergie modifiée de sorte que

c? 2 k 2
&= [ ShoalPdr+ [ Eulas,
R R

est non plus conservée (sauf si » = 0) mais décroissante, c’est-a-dire que
E(T) < £(0)

quel que soit T" > 0. Ainsi r est a l'origine d’une dissipation d’énergie, tandis que k
introduit un terme supplémentaire dans ’énergie potentielle.



2.2 Formules de résolution explicites

L’équation des ondes homogene
Ru— 9 u=0

se résout en fait explicitement. On peut le voir de différentes manieres.
La premiere consiste a remarquer la décomposition de 1'opérateur des ondes (appelé
aussi D’Alembertien) en

02 — 0%, = (0, — c0,) (0 + c0,).
Par suite, pour résoudre
Oiu — 202 u =0

il suffit de résoudre successivement
(0 — cOz)v =10,
(O + cOp)u =v.

Or la premiere équation est une simple équation de transport, dont la solution ne dépend
que de (z + ct). Pour s’en convaincre, il suffit de vérifier que

d
Ev(y —ct,t) = Ov — cOyv =0,

et donc v(y — ct,t) = v(y,0) quel que soit y. En renversant les notations, on a
v(x,t) = v(z + ct,0) quel que soit . Notons plus simplement h(y) = v(y,0). Il faut
ensuite résoudre I'équation de transport avec terme source :

(O + Oy ) u(x,t) = h(z + ct).

La solution générale de I’équation homogene est u(x,t) = g(x — ct) (par le méme argu-
ment que ci-dessus). De plus, en notant f une primitive de h/2c, on a une solution parti-
culiere “évidente” u(x,t) = f(xr + ct). Finalement, par linéarité, la solution recherchée
est de la forme :

u(z,t) = flx + ct) + glx — ct).

Une autre méthode consiste a faire le changement de variables
(x,t) — (y,2) = (x + ct,x — ct).

On a
Op =0, +0,, 0O =c(0,—0,),
d’ou
0L — *0?, =¢* ((8y —0,) — (0, + 82)2) = —202852.
On doit donc résoudre le probleme
2.0 =0

dans les nouvelles variables, dont la solution est évidemment de la forme

u(y,z) = fly) + 9(2).



2.2.a Probleme de Cauchy sur R

Soit a résoudre le probleme de Cauchy :
Ru— 0 u=0
u(z,0) = o(x),

Oyu(x,0) = ¢¥(x).

Il s’agit d’exprimer les fonctions f et g apparaissant dans la forme générale de la solution
en fonction de ¢ et 1. Les deux équations a satisfaire sont

{ o(x) = f(z) + g(x),
P(r) = cf'(x) = cgd'(z).

En dérivant la premiere, on en déduit

{ 2¢ f'(x)

c¢'(x) + p(x),

2eg/(x) = co/(x) — w(a)

d’ou ) . .
fla) = 500 + 50 | vl)dy + oste,
ola) = 500 = 5 [ vy + et

Finalement, en revenant a I’équation non dérivée ¢(x) = f(x) + g(z), on en déduit

W t) = flz + ct) + glo — ct) = % (6(z + ct) + ¢z — ) + — /Wt o) dy.

2c —ct
Cette formule est appelée formule de D’Alembert. Réciproquement, si ¢ est au moins
deux fois dérivable, et ¢ au moins une fois dérivable, la formule de D’Alembert fournit la
solution cherchée.

On peut également résoudre le probleme de Cauchy pour I’équation des ondes avec
terme source :

Ru— % u=f.

La encore diverses méthodes sont possibles. La plus directe consiste a utiliser la formule
de Green. Etant donné (xg,ty), considérons son “cone” de dépendance, qui est en fait le

triangle
A= {(x,t); w0 —clto—t) <o < xo+c(to—1t)}.

On a
/ (Opu— FO7u) = —/ (Opudz + 20, udt) .
A oA

On décompose bien siir cette intégrale en trois morceaux. L’'un vaut simplement

[ v

o—ct
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| X

X0

D’autre part, le long du segment

{(z,t); x = 29 — c(t — to)},

on a

Oudr + A 0pudt = —c(Qyudt + d,udx).
Donc l'intégrale correspondante vaut
—c(u(zo,to) — ¢(zo + cto) ).

De la méme fagon, l'intégrale restante vaut

—c(u(zo,to) — d(xg — cto) ).
En additionnant, on obtient donc
xo+ct
/ (Ofu — 07,u) dedt = / V() dy —2cu(wo, to) +c(@(xo +cto) +¢(xo —cto) ),
A xro—ct

d’ou la formule

zo +cto
u(wo, to) = 5 (@(xo + cto) + ¢(xo — clo)) + i / y)dy + - / fdzdt.

2c

N | —

o—cto

2.2.b Probléme de Dirichlet sur R*

La résolution du probléeme de Dirichlet homogene
( Zu — 2P u=0, v >0,
u(z,0) = ¢(z), x>0,

Oyu(z,0) = ¢(x) x>0,

w(0,t) = 0, t>0,

lorsque ¢ et 1) satisfont les conditions de compatibilité ¢(0) = 0 et ¢(0) = 0, se ramene
a celle du probleme de Cauchy par la méthode dite des images. En effet, si u est solution,
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alors (z,t) — u(—=x,t) est solution du probléme symétrique, posé sur R~ avec ¢ et ¢
prolongées en des fonctions impaires : ¢(x) = —¢(—x) et P(z) = —y(—x). Donc la
fonction u définie comme la superposition des deux solutions est une solution sur R tout
entier, sauf peut-étre en 0. Réciproquement, soit

r+ct
u(et) = 5 (9l +et) + o —c)) + 5 [ v dy.

DN | —

Cette fonction satisfait I’équation des ondes partout ou elle est deux fois dérivable. C’est
le cas si ¢ et 1) sont respectivement deux fois et une fois dérivable sur R™, sauf peut-étre
sur le cone caractéristique

{(z,t); © £ ¢t = 0}.

(Si ¢ satisfait la condition de compatibilité supplémentaire ¢'(0) = 0, il n’y pas de
probleme.) De plus, lorsque ¢ et 1) sont impaires, il en est de méme de u. Par conséquent,
c’est bien une solution du probleme de Dirichlet homogene, sauf peut-étre sur la demi-
droite {x = ct}. Lorsque z > ct, les fonctions ¢ et 1 sont évaluées en des points
positifs. Lorsque x < ct, on peut vouloir exprimer u(z,t) a l'aide des fonctions ¢ et ¢
originales, définies sur R*. On trouve ainsi la formule

ct+x

(dlet +0) = dlet = 0) + 5= [ v dy.

t—x

u(z,t) =

N | =

2.2.c Probléeme de Dirichlet sur un intervalle borné [0, L]

La “méthode des images” s’applique comme précédemment : il suffit cette fois de prolonger
¢ et 1 en fonctions impaires et 2L-périodiques,

et a nouveau calculer u par la formule de D’Alembert :

DO | —

w(e,t) = L (6 + et) + oa — ) + = / by dy.

20 —ct
Cela fournit bien une solution de 1’équation des ondes, en dehors de
{(x,t); x £ ct € LZ}.

Cette solution est impaire et 2L-périodique, donc satisfait les conditions de Dirichlet
homogenes en x =0 et x = L.

On peut aussi utiliser la méthode de séparation des variables , tout aussi classique.
On cherche des solutions particulieres de la forme

u(z,t) = X(z)T(t),
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ce qui revient a trouver une constante \ telle que
X'+ XX =0, T'+NT =0.

Si A est négatif, la solution générale de I’équation différentielle du second ordre en X" +
A X = 0 est une superposition d’exponentielles, que ne peut satisfaire les conditions de
Dirichlet X (0) = X(L). En revanche on trouve des solutions pour

- (5

nwx)
L

La solution 7' correspondant a cette valeur de A est de la forme

t t
T(t) = a, cos (THZC ) + b, sin <n7rLc ) :

Réciproquement, si les conditions initiales ¢ et ¢ admettent des développements en série
de Fourier de la forme

o(z) = Z a, sin (nzx) , Y(x) = Z % by, sin <n7Lr:1:> ,
neN N

ne

proportionnelles a

X:x»—>sin<

alors la solution du probleme de Dirichlet est donnée par :

u(z,t) = Z {an cos (nzct) + b, sin (T”;Ct) } sin <n71i$> )

neN

sous réserve que cette série converge et que 'on puisse dériver deux fois sous le signe
somme par rapport a x et t, ce qui demande suffisamment de régularité sur ¢ et 1.

3 Approximation numérique

3.1 Schéma de base

Une méthode élémentaire de discrétisation de 1’équation des ondes est celle des différences
finies, consistant a remplacer les dérivées exactes par des dérivées approchées discretes
au moyen de la formule de Taylor. En effet, pour toute fonction f de classe C2, la formule
de Taylor permet d’écrire

f//(y) _ f(y+h) B Q{L(Qy) + f(y_h) + O(h)

Etant donnés un pas d’espace Az et un pas de temps At, on cherche a calculer u7, supposé
approcher la solution exacte au point (x;,t"), avec z;11 — x; = Az et t"t — " = At.
En appliquant la formule précédente dans la direction du temps et dans la direction de
I’espace, et en substituant les approximations ainsi obtenues dans 1’équation des ondes

2 2092
Oru — ¢ 0yu =0,
on obtient le schéma centré :
n+l n n—1 n _ n n
uj 2uj +uj o U1 — 2uf + uj,

J
_ ~ 0.
AL2 ¢ Az?

13



3.1.a Ordre

Par construction le schéma centré est d’ordre 1, puisque ’erreur de troncature, obtenue
en appliquant le schéma a la solution exacte, est

ey, ") = 2ulwy, ) + u(zp ") pulrge, ) = 2u(@g, ) + ulzg, )
At? Ax?
_ O(Al) + O(Ax).

3.1.b Stabilité

Il est crucial lorsqu’on souhaite mettre en ceuvre un schéma aux différences finies de
vérifier, ou plus exactement trouver une condition assurant sa stabilité. On dispose pour
cela d'un outil tres commode pour étudier la stabilité €2, la transformation de Fourier
discreéte.

Transformation de Fourier discrete. On sait associer a toute fonction f de carré
sommable sur [— 7, 7 [ sa série de Fourier, de coefficients

1 g .
¢ = 5o / flw)e’* dw.

D’apres la formule de Parseval
L W| P dw = el
2m J_ . !
JEZ

c’est-a~dire que 'opérateur
f = (¢)jez

est une isométrie de L*([—m, 7 [; g—fr) sur (*(Z). Ce qu'on appelle transformation de

Fourier discrete n’est rien d’autre que l'opérateur inverse
. —ijw
c = (¢j)jez — <wa E cje )
JEZ

(Il y a 14 un petit abus de notation , puisque la série Y ¢; e "7“ n’est pas nécessairement
convergente.) On notera ¢ la fonction obtenue par cette transformation. Les deux pro-
priétés que nous utiliserons sont

[l 2, 22y = llellee
et, si 7 désigne I'opérateur de “shift” :
T :c = (¢)jez — d = (dj = ¢j1)jez,
T c(w) = e“aw).
Considérons donc notre schéma centré, réécrit sous la forme équivalente

) At2

W = s (ufy A+ oufy) +2(1 = s)ul — uf s = Ax2’

14



(noter que s est un nombre sans dimension) ou encore, en posant v} := u?_l :

,U;L—i-l 0 1 o

B

u -1 2(1—s)+s(T+7T71) u’

j j
Par transformation de Fourier discréte (en espace seulement !), on obtient
" (w) v (w)
=H (w) )

" (w) u™(w)

ou H(w) est ce qu’on appelle la matrice d’amplification du schéma. Elle vaut simplement

0 1 0 1
-1 2(1 —s) + s(e¥ + e ') -1 2(1 —s(1 — cosw))
Le schéma ci-dessus se résout explicitement en
" (w) °(w)
= H(w)"
" (w) u°(w)

On pourra donc controler la norme L? de la solution & I'itération n en fonction de la norme
L? initiale si et seulement si la norme de la norme de la matrice H(w)" est uniformément
bornée (en n et w). Par la propriété d’isométrie de la transformation de Fourier discrete,
ceci fournit une condition nécessaire et suffisante de stabilité £? du schéma. Dans 1’état,
elle n’est cependant pas tres exploitable. On n’a pas précisé la norme matricielle a utiliser.
En fait, il suffit qu’il en existe une telle que H(w)™ soit bornée. Une condition nécessaire
pour cela, dite condition de von Neumann, est que le rayon spectral de H(w) soit inférieur
ou égal a 1. Or les valeurs propres de H(w) sont les racines de

A = 2b(w)A+1=0, bw) :=1—s(1 — cosw).

Le produit de ces racines vaut donc 1. Si jamais elles sont réelles, 'une sera nécessairement
de valeur absolue supérieure a 1, et la condition de von Neumann sera violée. Il faut donc
que le discriminant de cette équation soit négatif (ou nul), c’est-a-dire que |[b(w)| < 1
quel que soit w. Ceci revient a demander s < 1. Réécrite en fonction de A et Az, cette

condition est
cAt < Ax.

Ce type de condition, majorant le pas de temps en fonction du pas d’espace, est appelé
condition de Courant-Friedrichs-Lewy (CFL en abrégé). Par extension, le nombre sans
dimension ¢ At/Ax est souvent appelé nombre CFL

A Cependant, cette condition CFL est ici insuffisante pour assurer une borne uni-
forme de H(w)". Cela serait le cas si H(w) était uniformément diagonalisable. Or H(0)
ne l'est pas, et la norme de H(0)" n’est effectivement pas bornée. Elle croit en O(n),
puisqu’on a (par récurrence)



Cette croissance est de loin beaucoup plus modérée que celle, exponentielle, que I'on aurait
si H avait une valeur propre de module strictement supérieur a 1. Elle n’exclut pas I'usage
du schéma centré, qui donne de bon résultats en pratique, sous la CFL

cAt < Ax.
Les meilleurs résultats sont en fait obtenus pour
cAt = Ax.

Voici par exemple un programme Matlab qui utilise ce schéma pour résoudre le
probleme de Dirichlet, et le probleme de Neumann moyennant une petite modification.
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Explications

Nettoyage
(facultatif

mais conseillé)
Vitesse des ondes
Longueur

Borne inférieure
Borne inférieure
Nombre de points
Pas d’espace
Noeuds du maillage
Condition initiale

Tracé initial

CFL

Pas de temps
Temps de calcul
Démarrage
Début de boucle

Bord gauche
Bord droit

Tracé

Fin de boucle

Programme

clear all
close all

c=1

L= 100;

xm = 0;

Xp = xm+L;

J=500;

dx = L/(J-1);

X=xXm:dx:Xp;

umax=1;
u0=2.*umax.*(L/2-umax.*abs(x-L./2))./L;
umax1=1;
ul=2.*umax1.x*(L/2-umaxl.*abs(x-L./2))./L;
plot(x,u0,’LineWidth’,2)
up=max (umax,umaxl) ;
axis([xm xp -up upl)

pause

cfl = 1;

cf12;

dt = cfl*xdx/c;

T = 1000*dt;

temps = 0;

while temps<T

temps = temps+dt;

ulpast = [ul(1) ul(1:J-1)];
ulforwd = [ul(2:J) ul(Jd)];
u = s.*(ulpast+ulforwd)+2.*(1-s).*ul-u0;
u(1)=0;

u(J)=0;

ul=ui;

ul=u;
plot(x,u0,’LineWidth’,2)
axis([xm xp -up upl)
drawnow

end

S:

Ceci résout le probleme de Dirichlet homogene. Pour le probleme de Neumann ho-

u(1)=u(2);
u(J)=u(J-1);

mogene, seules les deux lignes concernant les conditions au bord changent, évidemment.
Elles sont simplement remplagées par

17



3.1.c Estimation d’énergie discrete

On peut aussi s’intéresser au comportement du schéma

n+l n n—1 n _ n n
u; 2ui + uj 2 uiy — 2uy 4 oujy

At? Ax?

vis a vis de 'énergie du §2.1, et chercher s’il satisfait une estimation d’énergie discrete.

Pour cela, on multiplie I’'égalité ci-dessus par (u;-“r1 — u?‘l) et on fait la somme sur j.
On obtient
uttt — oy — ( u — unfl)
J J J J n+1 n n n—1
) AL (0™ = uf + uf —u)

JEZ.

no o — (u” —
2 Ujt1 uj (UJ Uj—1 ) n+1 n—1y __
—c (ul™ — ul™) =0,
, Ax?
JEZ
d’ou, apres translation d’indice dans la deuxieme somme :

) e R

(u
Z] JAt2J

JEL
o~ (i = ) (™ — i)
—C Z A2
JEZ
oy (W = w) (G — W)
te Z Ar2 o
JEL

Par suite, on a conservation de I'énergie discrete :

n+1 n\ 2 n n n+1 n+1
entl/z 1 Z uj T Uy X C_2 Z Ujiy — Uy Uiy — U
2 At 2 Az Az

JEZL JEZ

A L “énergie potentielle discrete” (c’est-a-dire le deuxieme morceau de £7+1/2) n’est
pas automatiquement positif, contrairement a 1’énergie potentielle exacte.

Termes d’ordre inférieur. Il est facile de discrétiser les termes d’ordre inférieur du

§1.5, par exemple en considérant le schéma :
n+1 n n—1 n n n n+1 n—1
w; = 22U+ ul ul , — 2ut + ul w; — u;
j j i 20 J izl iy kul = 0.

At? Ax? 2At

Dans ce cas on a une estimation pour ’énergie discrete modifiée :

2
+1 +1 +1
et/ 1 § : uiT — uf n 0_2 2: Uiy — Uy ujiy — uj
) At 2 Az Az

2
JEL J€L

n+1 n
;T o+ U
J J n
kz 2 Uj -

J
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En reprenant le calcul précédent, on montre en effet facilement que

n+1 n—1\ 2
entl/z _ gn=1/2 4 LAy Z Y T Y —0
= 2 At ’

et par conséquent
gn+1/2 < 51/2

quel que soit n.

4 Autres schémas

De nombreux autres schémas peuvent étre utilisés, en particulier si I’on réécrit 1’équation
des ondes sous forme d’un systéme du premier ordre, en posant v = 0, u, w = (1/¢) Oy u :

{ v = cOyw,

Orw = cO,v.

0 c
a=(26)

ce systeme s’écrit sous forme matricielle

En notant U = (v, w)" et

U = A0, U.

A 1 faut prendre garde a ne pas utiliser le schéma centré qui viendrait naturellement a
I’esprit :
At
n+l __ n n n
ujm =U' + mA( = Uly),

car il est inconditionnellement instable. La plupart des “bons” schémas proviennent cepen-
dant de celui-ci, en le modifiant pour le rendre stable.

La premiere méthode pour stabiliser un schéma est de le rendre implicite. Ici cela

donne AL
U™ = U + 57z AU = U,

qui s’avere étre inconditionnellement stable. En contrepartie, il est un peu couteux, car
il nécessite en pratique (lorsqu’on I'implémente) l'inversion d’une matrice. Pour éviter ce
probleme, on peut se contenter d’“impliciter” une seule des deux équations, ce qui donne
apres substitution un schéma explicite a 5 points, dont on montre qu’il est stable sous la
CFL

cAt < 2Ax.

Une autre méthode est de remplacer U} par une valeur moyenne, ce qui donne la classe
des schémas de type Lax-Friedrichs

aUr, + BUM +aUr, At

grtt =
J 20+ +2Ax

A( ;L+1 - anfl)7
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stables sous la CFL

2c0
cAt <
20+ 3
On peut aussi remplacer U" par U}“_l, et At par 2 At (car cela revient a approcher
0,U par une dérivée discrete centrée), ce qui donne le schéma saute-mouton (“leap-frog”
en anglais) :

Azx.

urtt = upt 4+ EA(U]-H - Ury).
Ce schéma est stable sous la CFL
cAt < Ax.

Il a I'inconvénient d’étre a deux pas, ce qui demande de faire appel a un autre schéma
pour calculer U?!.

Enfin, on peut ajouter un terme au schéma centré, qui le rende a la fois stable et
d’ordre 2. C’est ainsi que 1’on obtient le schéma de Lax-Wendroff

n+1 n At A n n AtQ A2 n n n
Il est stable sous la CFL
cAt < Azx.

Remarque 1 Pour tous ces schémas, la matrice d’amplification vaut ["identité en w = 0.
FElle ne présente donc pas le méme probléme que la matrice H(w) du §3.1. On peut méme
montrer qu’elle est uniformément diagonalisable. La condition de von Neumann est par
conséquent suffisante pour assurer la stabilité de ces schémas.
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Partie 11
L’équation des ondes en dimension
supérieure a deux

On appelle équation des ondes (linéaire) en dimension d 'EDP d’évolution, du second
ordre en temps (t) et en espace (z € R?),

Oiu — FAu =0,

ou ¢ est un nombre réel positif donné, homogene a une vitesse, et A est le Laplacien en
espace, défini par

d
_ 2
Au = E O, U
a=1

En dimension 3, on rencontre cette EDP dans divers probléemes physiques, comme en
élasticité (ou deux vitesses ¢ apparaissent, appelées vitesse de compression et vitesse de
cisaillement; elles sont liées aux aux coefficients de Lamé du matériau), en acoustique (ou
c est la vitesse du son), en électromagnétisme (ol ¢ est la vitesse de la lumiere). Les deux
premiers exemples généralisent ce qu'on a vu en dimension 1. Le dernier est typiquement
multidimensionnel.

L’analyse de I'équation des ondes multidimensionnelle est assez compliquée. On va
se contenter de donner I’analogue de la formule de D’Alembert, en dimension 3 d’abord,
puis 2. Cela permettra notamment de mettre en évidence le principe d’Huygens :

e en dimension impaire, la solution u(zy, tg) dépend seulement des conditions initiales

¢ = u(-,0) et v = 0,(+,0) sur la sphere
{z; |z — x| = cto},
e en dimension paire, la solution u(zy,ty) dépend des conditions initiales ¢ et i sur

la boule
{z; ||z — x| < cto}.

5 Formules de Kirchhoff

5.1 Probleme de Cauchy sur R3

Soit a résoudre le probleme de Cauchy :

Pu—cAu=0, zeR ¢t >0,
u(z,0) = ¢(z), z € R?,

Owu(x,0) = Y(z), zeR3.
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On va utiliser la méthode des moyennes sphériques, qui permet de se ramener a un
probleme en dimension 1, que l'on sait résoudre d’apres la premiere partie. Pour cela
on associe a u la fonction de (r,t) € RT x R

_ 1
u(r,t) == pp /S u,

Sp = {z eR% |lz| = r}.

ou S, est la sphere de rayon r :

Pour obtenir I’équation satisfaite par u, on applique la formule de Green sur la boule

B, == {xzx e R?; lz|| < 7},
Au = %,
B, Sy an

ou n est le vecteur normal unitaire sur S, = 9 B, sortant de B,.. Pour que u soit solution
de I’équation des ondes, il faut donc que

ou
2. _ 2 ou
/Tattu c /s,« o

En utilisant les coordonnées sphériques habituelles

cette égalité s’écrit de fagon équivalente :

r 2w pm 2m pm
// / 0% u p* sinf dfdpdp = 027"2/ / 0-u sinf dfdy.
0oJo Jo 0o Jo

Or, par définition,
1 2w P
U = — / u sinf dfdy.
47 Jo Jo

On déduit donc de I’équation précédente :
/ p?OLudp = r?o,u.
0
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D’ou, en dérivant une fois par rapport a r :
P Oiu =0, (r*o,u),

c’est-a-dire )

Ot — 0% u — 28 9.1 =0.
T

(Ceci n’est rien d’autre que 1'équation des ondes axisymétrique.) En posant v := ru, on
se ramene a une équation des ondes monodimensionnelle ordinaire :

v — 92 v=0.

Puisque v doit s’annuler en r = 0, cela revient a chercher la solution du probleme de
Dirichlet dans R*, avec v(r,0) = r¢(r), 0;v(r,0) = ri(r) et les notations évidentes

- 1 - 1
1) = s [ o0 00 = s [

On a une formule explicite pour v :

(ct+n) det+n) = et=rdlet—r)+ 5 [ Y by, 0 << et

DO | —

v(r,t) =

que l'on peut réécrire
1 ct+r _ 1 ct+r _
t)y =0 | — — dy .
w0 =0 (g [ wiw) v g [ vy
On récupere ensuite u(0,t) = w(0,t) par dérivation, puisque @(0,t) = 9,v(0,t). Comme

ct+r
ar(i/ My))uoztwcw: ! "

2¢ Jor—» dmc?t Jg.

avec la méme formule pour ¢, on en déduit

1 1
0.t) = 0 .
u(0,1) t (47rc2t /Sct ¢) + drnct Jg., v

Bien siir, on a la méme formule lorsqu’on translate 0 en zy. Finalement, on a obtenu la
formule générale, dite de Kirchhoff :

1 1
u(m,t)za(—/ ¢)+—/ v
0 t 4t lz—zol|=ct 4t |lz—xol|=ct

5.2 Probléeme de Cauchy sur R?

On va se servir de la formule de Kirchhoff en dimension 3 pour obtenir une formule
en dimension 2. Il suffit en effet de résoudre le probleme étendu a R3, avec ¢ et
indépendantes de la troisieme variable z3 =: z ! Or, pour une fonction v dépendant
seulement de (z1,x2) =: (x,y), 'intégrale double fSr 1 se décompose en

w=2/ v,
Sr Srﬂ{z>0}
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et la demi-sphere S, N {z > 0} est paramétrée par (z,vy) :

S,N{z >0} = {(z,y,2); 2 +y* <retz =12 — 22 — 42},

I’élément de surface étant .

dxdy .
r2 — a2 — g2

o= ar Y(z,y)
Sy x24y2<r r2 — a2 — y2

drdy.

On en déduit la formule explicite en dimension 2 :

1
u(zo, Yo, to) = 0O —/ Hz,4) dz dy
2mece (z—m0)2+(y—y0)2 <242 \/02t2 — 2 y2

1

27 Jmmopt-pze /17— 2% — y
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