
Propagation d’ondes
Il existe bon nombre d’ouvrages de référence traitant de la propagation des ondes, voir

par exemple [1, 2, 3, 4, 5]. L’objet de ces notes est d’en présenter quelques aspects, en
vue de l’épreuve de modélisation à l’agrégation.

Partie I

L’équation des ondes en dimension 1

On appelle équation des ondes (linéaire) l’ÉDP d’évolution, du second ordre en temps (t)
et en espace (x),

∂2
tt u − c2 ∂2

xxu = 0 ,

où c est un nombre réel positif donné, homogène à une vitesse. Cette ÉDP apparâıt
naturellement dans beaucoup de problèmes physiques, dont on donne quelques exemples
ci-après.

1 Quelques modèles physiques

Pour information on mentionnera entre { } la dimension des quantiés physiques mises en
jeu, selon la table suivante

symbole signification unité S.I.

m masse kilogramme (kg)

l longueur mètre (m)

t temps seconde (s)

T température Kelvin (K)

v vitesse m.s−1

f force Newton, 1 N = 1 kg.m.s−2

p pression Pascal, 1 Pa = 1 kg.m−1.s−2

e énergie Joule, 1 J = 1 kg.m2.s−2

1.1 Cordes vibrantes

Le déplacement d’une corde en tension obéit, au moins au premier ordre, à une équation
des ondes, comme l’avait déjà montré D’Alembert au XVIIIème siècle. Les paramètres
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physiques mis en jeu sont la densité linéaire ρ0 {m.l−1}, reliée à la densité ω0 (ou masse
volumique {m.l−3}) par

ρ0 = σ0 ω0 ,

où σ0 {l2} est la section de la corde, et T0 la tension initiale de la corde, nombre > 0
homogène à une force.

Soit u(x, t) ∈ R3 le déplacement transversal de la corde à l’instant t, par rapport à
une position de référence x e1 ∈ R3, x ∈ R. On suppose le déplacement longitudinal
négligeable. Autrement dit, le point situé en x e1 dans la position de référence se retrouve
en w(x, t) = x e1 + u(x, t), et u(x, t) ⊥ e1.

Soit T (x, t) la tension de la corde en w(x, t). C’est un nombre positif tel qu’un morceau
de corde [x, x + δx] (δx > 0) soit soumis à la force

T (x + δx, t) θ(x + δx, t) − T (x, t) θ(x, t) ,

où θ(x, t) = ∂xw(x, t) est tangent à la corde en w(x, t).
L’accélération de la corde au point w(x, t) est simplement ∂2

ttw(x, t) = ∂2
ttu(x, t).

La relation fondamentale de la mécanique, ou loi de Newton (F = mγ) appliquée au
morceau de corde [x, x + δx] s’écrit donc, pour la composante parallèle à e1 :

T (x + δx, t) − T (x, t) = 0 ,

et pour la composante orthogonale à e1 :

T (x + δx, t) ∂xu(x + δx, t) − T (x, t) ∂xu(x, t) =

∫ x+δx

x

ρ0 ∂2
ttu(y, t) dy .

Par suite, T (x, t) = T0(t) est indépendant de x, et en faisant tendre δx vers 0 dans la
seconde équation, on obtient

T0 ∂2
xxu = ρ0 ∂2

ttu .

Si T0 est de plus supposé indépendant de t, on a bien une équation des ondes, avec

c =

√
T0

ρ0

,

à condition que T0 soit effectivement positif (une corde qui n’est pas en tension s’affaisse
et ne peut pas pas vibrer!).

1.2 Barres élastiques

À l’inverse d’un corde, dans une barre élastique rigide, on peut ne considérer que les
déplacements longitudinaux, c’est-à-dire qu’un point situé en x e1 dans la position de
référence se retrouve après compression ou étirement en w(x, t) = x e1 + u(x, t) avec
u(x, t) ‖ e1.

On définit encore T (x, t) la tension de la barre en w(x, t), mais cette fois elle n’a pas
de signe défini (la barre pouvant être indifféremment en compression ou en étirement).
Une loi de l’élasticité affirme que pour faire varier de δl un morceau de longueur l0 il faut
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une variation de tension δT proportionnelle à δl/l0. Quantitativement, on définit E0 le
module d’Young du matériau tel que

δT = E0 σ0
δl

l0
.

Par définition, E0 est un nombre positif homogène à une pression. En appliquant cette
loi à un morceau [x, x + δx], qui devient [x + u(x, t), x + δx + u(x + δx, t)], on obtient

T (x, t) − T0(x) = E0 σ0
u(x + δx, t)− u(x, t)

δx
,

d’où à la limite lorsque δx tend vers 0 :

T (x, t) = T0(x) + E0 σ0 ∂xu .

D’autre part, d’après la loi de Newton appliquée au morceau de corde [x, x + δx] :

T (x + δx, t) − T (x, t) =

∫ x+δx

x

ρ0 ∂2
ttu(y, t) dy ,

d’où à la limite lorsque δx tend vers 0 :

∂xT = ρ0 ∂2
ttu .

En supposant la tension de référence T0 homogène, c’est-à-dire indépendante de x, on
en déduit que u (ainsi que T d’ailleurs, par dérivation) satisfait l’équation des ondes de
vitesse

c =

√
E0

ω0

.

Si l’on s’intéresse à la densité ρ le long de la barre, on voit assez facilement qu’elle est
donnée par

ρ(x, t) = ρ0 ( 1 − ∂xu ) .

En effet, pour chaque morceau de longueur initiale l0 on a

ρ l = ρ0 l0 d’où
δρ

ρ0

+
δl

l0
= 0 .

En appliquant cette relation au morceau [x, x + δx] et en faisant tendre δx vers 0, on en
déduit

ρ − ρ0

ρ0

+ ∂xu = 0 .

Par suite, en supposant la densité initiale ρ0 homogène, on voit par dérivation que ρ
satisfait la même équation des ondes que u (et T ).

1.3 Tuyaux sonores

Pour un fluide, un peu d’intuition physique montre que la tension T est reliée à la pression
p par p = −T/σ0. D’où,

δT

T0

=
δp

p0

= − 1

χ0

δv

v0

,
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où χ0 est le coefficient de compressibilité (sans dimension), et v le volume. Or dans un
tube de section constante,

δv

v0

=
δl

l0
.

Donc on a une loi analogue à celle de l’élasticité, avec

E0 =
p0

χ0

.

En particulier, pour un gaz parfait adiabatique,

p vγ = cte ,

d’où χ0 = 1/γ et E0 = γ p0. On trouve comme vitesse de propagation

c =

√
γ p0

ω0

.

C’est l’expression bien connue de la vitesse du son.

Application numérique. Dans l’air, assimilé à un gaz di-atomique, on a approxima-
tivement γ = 7/5 (on obtient ce nombre en raisonnant sur le nombre n de degrés de
liberté des molécules; de façon générale, γ = (5 + n)/(3 + n)). La loi des gaz parfaits

p =
ω R T

M
, R = 8, 3144 J.K−1.mol−1 , M = 28, 8.10−3 kg.mol−1 ,

permet de calculer

c =

√
γ

R T

M
' 332 m.s−1

à une température de 273 K, ce qui correspond très bien à la réalité !

1.4 Approche variationnelle

On peut aussi obtenir l’équation régissant le déplacement d’un matériau élastique monodi-
mensionnel au moyen d’une approche variationnelle, sans distinguer la partie transversale
de la partie longitudinale.

On note comme précédemment w(x, t) la position à l’instant t du point initialement
situé en x e1, sans rien présager de la direction de u(x, t) = w(x, t) − x e1. Pour sim-
plifier on suppose la densité linéaire du matériau ρ0 homogène et constante. Considérons
l’énergie cinétique globale

Ec(t) :=
1

2
ρ0

∫ L

0

‖ ∂tw(x, t) ‖2 dx .

On suppose que l’énergie potentielle dépend, de façon éventuellement non-linéaire, de
∂xw :

Ep(t) :=

∫ L

0

f(∂xw) dx ,

4



où f est donnée par une loi comportementale, appelée loi de Hooke, et supposée convexe.
Par exemple,

f(y) = f0 ( ‖y‖ − a )2 ,

où f0 > 0 et a ∈ ] 0 , 1 [. On définit alors l’intégrale d’action

A[w] :=

∫ t1

t0

Ec(t) − Ep(t) dt ,

que l’on cherche à minimiser à w(0, t), w(L, t), w(x, t0), w(x, t1) fixés. Une condition
nécessaire est

d

ds
A[ w + s v ] |s=0 = 0

quel que soit v tel que

v(0, t) = v(L, t) = v(x, t0) = v(x, t1) = 0 .

Or on calcule facilement

d

ds
A[ w + s v ] |s=0 =

∫ t1

t0

∫ L

0

ρ0 ∂tw · ∂tv − df(∂xw) · ∂xv dx dt .

En supposant les les fonctions assez régulières et en intégrant par parties on obtient donc

∫ t1

t0

∫ L

0

(− ρ0 ∂2
ttw + d2f(∂xw) · ∂2

xxw
) · v dx dt

(où par un léger abus de notation on a identifié la forme linéaire d2f(∂xw) · ∂2
xxw à

un vecteur; on peut aussi définir d2f(∂xw) comme la matrice Hessienne de f en ∂xw,
auquel cas il n’y a pas d’abus de notation). Ceci étant vrai quel que soit v (tel que
v(0, t) = v(L, t) = v(x, t0) = v(x, t1) = 0), on en déduit l’ÉDP non-linéaire du second
ordre, dite équation des ondes non linéaire :

ρ0 ∂2
ttw − d2f(∂xw) · ∂2

xxw = 0 .

On voit ici apparâıtre l’intérêt de supposer f convexe. En effet, on peut déterminer
la nature de cette ÉDP d’évolution en étudiant l’ÉDP linéaire obtenue en “gelant les
coefficients”, c’est-à-dire en regardant ∂xw = y comme une donnée. D’après le lemme de
Schwarz, si f est au moins de classe C2, d2f(y) est symétrique donc diagonalisable (dans
une base orthonormée). Par conséquent, l’ÉDP

ρ0 ∂2
ttw − d2f(y) · ∂2

xxw = 0

est équivalente à une collection d’équations

∂2
ttwj − λj ∂2

xxwj = 0 ,

où ρ0 λj sont les valeurs propres de d2f(y). Si f n’était pas convexe, l’un des λj serait
négatif, ce qui donnerait une équation d’évolution elliptique !

Dans le cas où w est scalaire, par exemple si l’on suppose le déplacement seulement
longitudinal, l’ÉDP non linéaire satisfaite par w s’écrit encore

ρ0 ∂2
ttw + ∂x( f ′(∂xw) ) = 0 ,
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dont une forme plus courante s’obtient en posant

{
v = ∂xw ,
u = ∂tw .

Les nouvelles inconnues (v, u) satisfont alors le système du premier ordre

{
∂tv − ∂xu = 0 ,
∂tu − 1

ρ0
∂xf

′(v) = 0 .

Ce système est connu sous le nom de p-système. Il apparâıt en élasticité comme on vient
de le voir. Mais c’est aussi un modèle d’écoulement de fluide compressible, de pression
p = − 1

ρ0
f ′, en formulation Lagrangienne (v repésentant alors le volume spécifique du

fluide, u sa vitesse, et x la coordonée Lagrangienne de masse {m.l−2}). C’est d’ailleurs
à cela qu’il doit son nom. Pour revenir à notre ÉDP du second ordre, voyons ce qu’elle
donne pour la loi

f(y) = f0 ( ‖y‖ − a )2 .

Un petit exercice de calcul différentiel montre que

d2f(y) · h = 2 f0

( ‖y‖ − a

‖y‖ h + a
(y · h)

‖y‖3
y

)
.

Ainsi, l’ÉDP linéaire avec y = e1 (correspondant précisément à la linéarisation au voisi-
nage de la position de référence w = x e1) :

ρ0 ∂2
ttw + d2f(e1) · ∂2

xxw = 0

s’écrit encore

∂2
ttw − A∂2

xxw = 0 , A = 2
f0

ρ0

( I − aP ) ,

où
P = I − e1 ⊗ e1

est simplement la projection orthogonale sur e⊥1 (on a bien sûr supposé e1 unitaire). En
décomposant

w = w1 + w2 , w1 ‖ e1 , w2 ⊥ e1 ,

on obtient pour w1 et w2 des équations des ondes de vitesses différentes

∂2
ttw1 − 2

f0

ρ0

∂2
xxw1 = 0 ,

∂2
ttw2 − 2

f0

ρ0

( 1 − a ) ∂2
xxw2 = 0 .
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1.5 Termes d’ordre inférieur

À l’équation des ondes de base

∂2
tt u − c2 ∂2

xxu = 0 ,

on peut ajouter des termes d’ordre inférieur (en nombre de dérivations), prenant en compte
certains phénomènes supplémentaires. Dans l’équation

∂2
tt u − c2 ∂2

xxu + r ∂t u + k u = 0

par exemple, r est un nombre positif {t−1} représentant la résistance du milieu ambiant
(typiquement, l’air dans le cas de la corde vibrante). On verra au §2.1 qu’il introduit
une dissipation d’énergie. Quant au nombre k {t−2} , il représente l’action d’une tension
transversale, comme dans le cas d’un ressort. On verra qu’il revient à ajouter un terme
(précisément lié à cette tension transversale !) dans l’énergie potentielle. L’équation avec
r = 0, k > 0 :

∂2
tt u − c2 ∂2

xxu + k u = 0

est connue sous le nom de Klein-Gordon. C’est une équation dispersive, contrairement
à l’équation des ondes ordinaire. En effet, si l’on cherche une solution particulière de la
forme u(x, t) = exp i ( ξ x − λ t ), on trouve la relation de dispersion :

λ2 − c2 ξ2 − k = 0 .

Lorsque k = 0, on trouve λ = ± c ξ, ce qui n’est pas surprenant (l’équation des ondes
propage l’information à la vitesse c). Mais pour k > 0, on trouve

λ = ±
√

c2 ξ2 + k .

Autrement dit, la vitesse de propagation de l’onde exp i ( ξ x − λ t ),

v :=
λ

ξ
= ±

√
c2 + k/ξ2

dépend de sa longueur d’onde 1/ξ. Cette vitesse de propagation est appelée vitesse de
phase. Elle est ici différente de la vitesse de groupe, définie par

vg =
dλ

dξ
= ± c2

√
c2 + k/ξ2

.

2 Analyse de base

On se limite ici à l’équation des ondes linéaire. L’étude des équations d’ondes non linéaires
demande des outils spécifiques, hors du cadre de ces notes.
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2.1 Estimations d’énergie

Un bagage minime en mécanique indique que l’énergie totale

E = Ec + Ep ,

Ec désignant comme au §1.4 l’énergie cinétique et Ep l’énergie potentielle, doit être con-
servée au cours du mouvement. On retrouve effectivement cette propriété “à la main”,
en faisant le petit calcul suivant. Multiplions (scalairement) l’équation

∂2
tt u − c2 ∂2

xxu = 0

par ∂tu et intégrons en espace. Pour simplifier, on suppose l’équation posée sur toute la
droite réelle R, et la solution suffisamment régulière, tendant suffisamment vite vers 0 à
l’infini. On obtient après intégration par parties du second morceau :

d

dt

∫

R

1

2
‖∂tu‖2 dx +

d

dt

∫

R

c2

2
‖∂xu‖2 dx = 0 .

Ceci signifie exactement que l’énergie totale E = Ec + Ep est constante, avec

Ec :=

∫

R

1

2
‖∂tu‖2 dx , Ep :=

∫

R

c2

2
‖∂xu‖2 dx .

(Au facteur ρ0 près, Ec est analogue à l’énergie cinétique définie au §1.4, et Ep est l’énergie
potentielle correspondant à la fonction

f(y) =
1

2
c2 ‖y‖2 .)

Donc on a
E(T ) = E(0)

quel que soit T ≥ 0. Voyons comment se trouve modifiée cette estimation d’énergie
lorsqu’on inclut les termes d’ordre inférieur du §1.5. On trouve en faisant la même
opération :

d

dt

∫

R

1

2
‖∂tu‖2 dx +

d

dt

∫

R

c2

2
‖∂xu‖2 dx +

∫

R
r ‖∂tu‖2 dx +

d

dt

∫

R

k

2
‖u‖2 dx = 0 .

Par suite, si r ≥ 0, on en déduit que l’énergie modifiée de sorte que

Ep =

∫

R

c2

2
‖∂xu‖2 dx +

∫

R

k

2
‖u‖2 dx ,

est non plus conservée (sauf si r = 0) mais décroissante, c’est-à-dire que

E(T ) ≤ E(0)

quel que soit T ≥ 0. Ainsi r est à l’origine d’une dissipation d’énergie, tandis que k
introduit un terme supplémentaire dans l’énergie potentielle.
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2.2 Formules de résolution explicites

L’équation des ondes homogène

∂2
tt u − c2 ∂2

xxu = 0

se résout en fait explicitement. On peut le voir de différentes manières.
La première consiste à remarquer la décomposition de l’opérateur des ondes (appelé

aussi D’Alembertien) en

∂2
tt − c2 ∂2

xx = ( ∂t − c ∂x ) ( ∂t + c ∂x ) .

Par suite, pour résoudre
∂2

tt u − c2 ∂2
xxu = 0

il suffit de résoudre successivement

( ∂t − c ∂x ) v = 0 ,

( ∂t + c ∂x ) u = v .

Or la première équation est une simple équation de transport, dont la solution ne dépend
que de (x + c t). Pour s’en convaincre, il suffit de vérifier que

d

dt
v(y − c t , t ) = ∂t v − c ∂x v = 0 ,

et donc v(y − c t , t ) = v(y, 0) quel que soit y. En renversant les notations, on a
v(x, t) = v(x + c t, 0) quel que soit x. Notons plus simplement h(y) = v(y, 0). Il faut
ensuite résoudre l’équation de transport avec terme source :

( ∂t + c ∂x ) u(x, t) = h(x + c t) .

La solution générale de l’équation homogène est u(x, t) = g(x − c t) (par le même argu-
ment que ci-dessus). De plus, en notant f une primitive de h/2c, on a une solution parti-
culière “évidente” u(x, t) = f(x + c t). Finalement, par linéarité, la solution recherchée
est de la forme :

u(x, t) = f(x + c t) + g(x − c t) .

Une autre méthode consiste à faire le changement de variables

(x, t) 7→ (y, z) := ( x + c t , x − c t ) .

On a
∂x = ∂y + ∂z , ∂t = c ( ∂y − ∂z ) ,

d’où
∂2

tt − c2 ∂2
xx = c2

(
( ∂y − ∂z )2 − ( ∂y + ∂z )2

)
= − 2 c2 ∂2

yz .

On doit donc résoudre le problème
∂2

yz ũ = 0

dans les nouvelles variables, dont la solution est évidemment de la forme

ũ(y, z) = f(y) + g(z) .
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2.2.a Problème de Cauchy sur R

Soit à résoudre le problème de Cauchy :





∂2
tt u − c2 ∂2

xxu = 0

u(x, 0) = φ(x) ,

∂tu(x, 0) = ψ(x) .

Il s’agit d’exprimer les fonctions f et g apparaissant dans la forme générale de la solution
en fonction de φ et ψ. Les deux équations à satisfaire sont

{
φ(x) = f(x) + g(x) ,
ψ(x) = c f ′(x) − c g′(x) .

En dérivant la première, on en déduit

{
2c f ′(x) = c φ′(x) + ψ(x) ,
2c g′(x) = c φ′(x) − ψ(x) ,

d’où 



f(x) =
1

2
φ(x) +

1

2c

∫ x

0

ψ(y) dy + cste ,

g(x) =
1

2
φ(x) − 1

2c

∫ x

0

ψ(y) dy + cste’ ,

Finalement, en revenant à l’équation non dérivée φ(x) = f(x) + g(x), on en déduit

u(x, t) = f(x + c t) + g(x − c t) =
1

2
( φ(x + c t) + φ(x − c t) ) +

1

2c

∫ x + c t

x− c t

ψ(y) dy .

Cette formule est appelée formule de D’Alembert. Réciproquement, si φ est au moins
deux fois dérivable, et ψ au moins une fois dérivable, la formule de D’Alembert fournit la
solution cherchée.

On peut également résoudre le problème de Cauchy pour l’équation des ondes avec
terme source :

∂2
tt u − c2 ∂2

xxu = f .

Là encore diverses méthodes sont possibles. La plus directe consiste à utiliser la formule
de Green. Étant donné (x0, t0), considérons son “cône” de dépendance, qui est en fait le
triangle

∆ := { (x, t) ; x0 − c (t0 − t) ≤ x ≤ x0 + c (t0 − t) } .

On a ∫

∆

(
∂2

tt u − c2 ∂2
xxu

)
= −

∫

∂∆

(
∂t u dx + c2 ∂x u dt

)
.

On décompose bien sûr cette intégrale en trois morceaux. L’un vaut simplement

∫ x0+ct

x0−ct

ψ(y) dy .
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0

x

t

t

x

∆

0

D’autre part, le long du segment

{ (x, t) ; x = x0 − c (t − t0)} ,

on a
∂t u dx + c2 ∂x u dt = − c (∂t u dt + ∂x u dx ) .

Donc l’intégrale correspondante vaut

− c ( u(x0, t0) − φ(x0 + c t0) ) .

De la même façon, l’intégrale restante vaut

− c ( u(x0, t0) − φ(x0 − c t0) ) .

En additionnant, on obtient donc

∫

∆

(
∂2

tt u − c2 ∂2
xxu

)
dx dt =

∫ x0+ct

x0−ct

ψ(y) dy − 2 c u(x0, t0) + c ( φ(x0 + c t0) + φ(x0− c t0) ) ,

d’où la formule

u(x0, t0) =
1

2
( φ(x0 + c t0) + φ(x0 − c t0) ) +

1

2c

∫ x0 + c t0

x0− c t0

ψ(y) dy +
1

2c

∫

∆

f dx dt .

2.2.b Problème de Dirichlet sur R+

La résolution du problème de Dirichlet homogène





∂2
tt u − c2 ∂2

xxu = 0 , x > 0 ,

u(x, 0) = φ(x) , x > 0 ,

∂tu(x, 0) = ψ(x) x > 0 ,

u(0, t) = 0 , t > 0 ,

lorsque φ et ψ satisfont les conditions de compatibilité φ(0) = 0 et ψ(0) = 0, se ramène
à celle du problème de Cauchy par la méthode dite des images. En effet, si u est solution,
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alors (x, t) 7→ u(−x, t) est solution du problème symétrique, posé sur R−, avec φ et ψ
prolongées en des fonctions impaires : φ(x) = −φ(−x) et ψ(x) = −ψ(−x). Donc la
fonction u définie comme la superposition des deux solutions est une solution sur R tout
entier, sauf peut-être en 0. Réciproquement, soit

u(x, t) =
1

2
( φ(x + c t) + φ(x − c t) ) +

1

2c

∫ x + c t

x− c t

ψ(y) dy .

Cette fonction satisfait l’équation des ondes partout où elle est deux fois dérivable. C’est
le cas si φ et ψ sont respectivement deux fois et une fois dérivable sur R+, sauf peut-être
sur le cône caractéristique

{ (x, t) ; x ± c t = 0} .

(Si φ satisfait la condition de compatibilité supplémentaire φ′(0) = 0, il n’y pas de
problème.) De plus, lorsque φ et ψ sont impaires, il en est de même de u. Par conséquent,
c’est bien une solution du problème de Dirichlet homogène, sauf peut-être sur la demi-
droite { x = c t}. Lorsque x > c t, les fonctions φ et ψ sont évaluées en des points
positifs. Lorsque x < c t, on peut vouloir exprimer u(x, t) à l’aide des fonctions φ et ψ
originales, définies sur R+. On trouve ainsi la formule

u(x, t) =
1

2
( φ(c t + x) − φ(c t − x) ) +

1

2c

∫ c t + x

c t−x

ψ(y) dy .

2.2.c Problème de Dirichlet sur un intervalle borné [0, L]

La “méthode des images” s’applique comme précédemment : il suffit cette fois de prolonger
φ et ψ en fonctions impaires et 2L-périodiques,

L0−L 2L 3L

et à nouveau calculer u par la formule de D’Alembert :

u(x, t) =
1

2
( φ(x + c t) + φ(x − c t) ) +

1

2c

∫ x + c t

x− c t

ψ(y) dy .

Cela fournit bien une solution de l’équation des ondes, en dehors de

{ (x, t) ; x ± c t ∈ LZ } .

Cette solution est impaire et 2L-périodique, donc satisfait les conditions de Dirichlet
homogènes en x = 0 et x = L.

On peut aussi utiliser la méthode de séparation des variables , tout aussi classique.
On cherche des solutions particulières de la forme

u(x, t) = X(x) T (t) ,

12



ce qui revient à trouver une constante λ telle que

X ′′ + λX = 0 , T ′′ + c2 λT = 0 .

Si λ est négatif, la solution générale de l’équation différentielle du second ordre en X ′′ +
λX = 0 est une superposition d’exponentielles, que ne peut satisfaire les conditions de
Dirichlet X(0) = X(L). En revanche on trouve des solutions pour

λ =
(nπ

L

)2

,

proportionnelles à

X : x 7→ sin
(nπ x

L

)
.

La solution T correspondant à cette valeur de λ est de la forme

T (t) = an cos

(
nπ c t

L

)
+ bn sin

(
nπ c t

L

)
.

Réciproquement, si les conditions initiales φ et ψ admettent des développements en série
de Fourier de la forme

φ(x) =
∑

n∈N
an sin

(nπ x

L

)
, ψ(x) =

∑

n∈N

nπ c

L
bn sin

(nπ x

L

)
,

alors la solution du problème de Dirichlet est donnée par :

u(x, t) =
∑

n∈N

{
an cos

(
nπ c t

L

)
+ bn sin

(
nπ c t

L

)}
sin

(nπ x

L

)
,

sous réserve que cette série converge et que l’on puisse dériver deux fois sous le signe
somme par rapport à x et t, ce qui demande suffisamment de régularité sur φ et ψ.

3 Approximation numérique

3.1 Schéma de base

Une méthode élémentaire de discrétisation de l’équation des ondes est celle des différences
finies, consistant à remplacer les dérivées exactes par des dérivées approchées discrètes
au moyen de la formule de Taylor. En effet, pour toute fonction f de classe C2, la formule
de Taylor permet d’écrire

f ′′(y) =
f(y + h) − 2 f(y) + f(y − h)

h2
+ O(h) .

Étant donnés un pas d’espace ∆x et un pas de temps ∆t, on cherche à calculer un
j , supposé

approcher la solution exacte au point (xj, t
n), avec xj+1 − xj = ∆x et tn+1 − tn = ∆t.

En appliquant la formule précédente dans la direction du temps et dans la direction de
l’espace, et en substituant les approximations ainsi obtenues dans l’équation des ondes

∂2
tt u − c2 ∂2

xxu = 0 ,

on obtient le schéma centré :

un+1
j − 2 un

j + un−1
j

∆t2
− c2

un
j+1 − 2 un

j + un
j−1

∆x2
= 0 .

13



3.1.a Ordre

Par construction le schéma centré est d’ordre 1, puisque l’erreur de troncature, obtenue
en appliquant le schéma à la solution exacte, est

u(xj, t
n+1) − 2 u(xj, t

n) + u(xj, t
n−1)

∆t2
− c2 u(xj+1, t

n) − 2 u(xj, t
n) + u(xj−1, t

n)

∆x2

= O(∆t) + O(∆x) .

3.1.b Stabilité

Il est crucial lorsqu’on souhaite mettre en œuvre un schéma aux différences finies de
vérifier, ou plus exactement trouver une condition assurant sa stabilité. On dispose pour
cela d’un outil très commode pour étudier la stabilité `2, la transformation de Fourier
discrète.

Transformation de Fourier discrète. On sait associer à toute fonction f de carré
sommable sur [− π , π [ sa série de Fourier, de coefficients

cj :=
1

2π

∫ π

−π

f(ω) ei j ω dω .

D’après la formule de Parseval

1

2 π

∫ π

−π

|f(ω)|2 dω =
∑

j∈Z
|cj|2 ,

c’est-à-dire que l’opérateur
f 7→ (cj)j∈Z

est une isométrie de L2([−π , π [ ; dω
2 π

) sur `2(Z). Ce qu’on appelle transformation de
Fourier discrète n’est rien d’autre que l’opérateur inverse

c = (cj)j∈Z 7→
(

f : ω 7→
∑

j∈Z
cj e− i j ω

)
.

(Il y a là un petit abus de notation , puisque la série
∑

cj e− i j ω n’est pas nécessairement
convergente.) On notera ĉ la fonction obtenue par cette transformation. Les deux pro-
priétés que nous utiliserons sont

‖ĉ‖L2([−π , π [ ; dω
2 π

) = ‖c‖`2(Z) ,

et, si T désigne l’opérateur de “shift” :

T : c = (cj)j∈Z 7→ d = (dj := cj+1)j∈Z ,

T̂ · c (ω) = ei ω ĉ(ω) .

Considérons donc notre schéma centré, réécrit sous la forme équivalente

un+1
j = s ( un

j+1 + un
j−1 ) + 2 ( 1 − s ) un

j − un−1
j , s := c2 ∆t2

∆x2
,
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(noter que s est un nombre sans dimension) ou encore, en posant vn
j := un−1

j :



vn+1
j

un+1
j


 =




0 1

−1 2 ( 1 − s ) + s (T + T −1 )







vn
j

un
j


 .

Par transformation de Fourier discrète (en espace seulement !), on obtient



v̂n+1(ω)

ûn+1(ω)


 = H(ω)




v̂n(ω)

ûn(ω)


 ,

où H(ω) est ce qu’on appelle la matrice d’amplification du schéma. Elle vaut simplement

H(ω) =




0 1

−1 2 ( 1 − s ) + s ( ei ω + e− i ω )


 =




0 1

−1 2 ( 1 − s ( 1 − cos ω ) )


 .

Le schéma ci-dessus se résout explicitement en



v̂n(ω)

ûn(ω)


 = H(ω)n




v̂0(ω)

û0(ω)


 .

On pourra donc contrôler la norme L2 de la solution à l’itération n en fonction de la norme
L2 initiale si et seulement si la norme de la norme de la matrice H(ω)n est uniformément
bornée (en n et ω). Par la propriété d’isométrie de la transformation de Fourier discrète,
ceci fournit une condition nécessaire et suffisante de stabilité `2 du schéma. Dans l’état,
elle n’est cependant pas très exploitable. On n’a pas précisé la norme matricielle à utiliser.
En fait, il suffit qu’il en existe une telle que H(ω)n soit bornée. Une condition nécessaire
pour cela, dite condition de von Neumann, est que le rayon spectral de H(ω) soit inférieur
ou égal à 1. Or les valeurs propres de H(ω) sont les racines de

λ2 − 2 b(ω) λ + 1 = 0 , b(ω) := 1 − s ( 1 − cos ω ) .

Le produit de ces racines vaut donc 1. Si jamais elles sont réelles, l’une sera nécessairement
de valeur absolue supérieure à 1, et la condition de von Neumann sera violée. Il faut donc
que le discriminant de cette équation soit négatif (ou nul), c’est-à-dire que |b(ω)| ≤ 1
quel que soit ω. Ceci revient à demander s ≤ 1. Réécrite en fonction de ∆ et ∆x, cette
condition est

c ∆t ≤ ∆x .

Ce type de condition, majorant le pas de temps en fonction du pas d’espace, est appelé
condition de Courant-Friedrichs-Lewy (CFL en abrégé). Par extension, le nombre sans
dimension c ∆t/∆x est souvent appelé nombre CFL

∆! Cependant, cette condition CFL est ici insuffisante pour assurer une borne uni-
forme de H(ω)n. Cela serait le cas si H(ω) était uniformément diagonalisable. Or H(0)
ne l’est pas, et la norme de H(0)n n’est effectivement pas bornée. Elle croit en O(n),
puisqu’on a (par récurrence)

H(0)n =




1− n n

−n n + 1


 .

15



Cette croissance est de loin beaucoup plus modérée que celle, exponentielle, que l’on aurait
si H avait une valeur propre de module strictement supérieur à 1. Elle n’exclut pas l’usage
du schéma centré, qui donne de bon résultats en pratique, sous la CFL

c ∆t ≤ ∆x .

Les meilleurs résultats sont en fait obtenus pour

c ∆t = ∆x .

Voici par exemple un programme Matlab qui utilise ce schéma pour résoudre le
problème de Dirichlet, et le problème de Neumann moyennant une petite modification.
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Explications Programme

Nettoyage clear all

(facultatif close all

mais conseillé)
Vitesse des ondes c=1

Longueur L= 100;

Borne inférieure xm = 0;

Borne inférieure xp = xm+L;

Nombre de points J=500;

Pas d’espace dx = L/(J-1);

Nœuds du maillage x=xm:dx:xp;

Condition initiale umax=1;

u0=2.*umax.*(L/2-umax.*abs(x-L./2))./L;

umax1=1;

u1=2.*umax1.*(L/2-umax1.*abs(x-L./2))./L;

Tracé initial plot(x,u0,’LineWidth’,2)

up=max(umax,umax1);

axis([xm xp -up up])

pause

CFL cfl = 1;

s = cfl̂ 2;

Pas de temps dt = cfl*dx/c;

Temps de calcul T = 1000*dt;

Démarrage temps = 0;

Début de boucle while temps<T

temps = temps+dt;

u1past = [u1(1) u1(1:J-1)];

u1forwd = [u1(2:J) u1(J)];

u = s.*(u1past+u1forwd)+2.*(1-s).*u1-u0;

Bord gauche u(1)=0;

Bord droit u(J)=0;

u0=u1;

u1=u;

Tracé plot(x,u0,’LineWidth’,2)

axis([xm xp -up up])

drawnow

Fin de boucle end

Ceci résout le problème de Dirichlet homogène. Pour le problème de Neumann ho-
mogène, seules les deux lignes concernant les conditions au bord changent, évidemment.
Elles sont simplement remplaçées par

u(1)=u(2);

u(J)=u(J-1);
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3.1.c Estimation d’énergie discrète

On peut aussi s’intéresser au comportement du schéma

un+1
j − 2 un

j + un−1
j

∆t2
− c2

un
j+1 − 2 un

j + un
j−1

∆x2
= 0

vis à vis de l’énergie du §2.1, et chercher s’il satisfait une estimation d’énergie discrète.
Pour cela, on multiplie l’égalité ci-dessus par (un+1

j − un−1
j ) et on fait la somme sur j.

On obtient

∑

j∈Z

un+1
j − un

j − ( un
j − un−1

j )

∆t2
( un+1

j − un
j + un

j − un−1
j )

− c2
∑

j∈Z

un
j+1 − un

j − ( un
j − un

j−1 )

∆x2
( un+1

j − un−1
j ) = 0 ,

d’où, après translation d’indice dans la deuxième somme :

∑

j∈Z

(un+1
j − un

j )2 − ( un
j − un−1

j )2

∆t2

− c2
∑

j∈Z

( un
j+1 − un

j ) ( un+1
j − un+1

j+1 )

∆x2

+ c2
∑

j∈Z

( un
j+1 − un

j ) ( un−1
j − un−1

j+1 )

∆x2
= 0 .

Par suite, on a conservation de l’énergie discrète :

En+1/2 :=
1

2

∑

j∈Z

(
un+1

j − un
j

∆t

)2

+
c2

2

∑

j∈Z

(
un

j+1 − un
j

∆x

) (
un+1

j+1 − un+1
j

∆x

)
.

∆! L’“énergie potentielle discrète” (c’est-à-dire le deuxième morceau de En+1/2) n’est
pas automatiquement positif, contrairement à l’énergie potentielle exacte.

Termes d’ordre inférieur. Il est facile de discrétiser les termes d’ordre inférieur du
§1.5, par exemple en considérant le schéma :

un+1
j − 2 un

j + un−1
j

∆t2
− c2

un
j+1 − 2 un

j + un
j−1

∆x2
+ r

un+1
j − un−1

j

2 ∆t
+ k un

j = 0 .

Dans ce cas on a une estimation pour l’énergie discrète modifiée :

En+1/2 :=
1

2

∑

j∈Z

(
un+1

j − un
j

∆t

)2

+
c2

2

∑

j∈Z

(
un

j+1 − un
j

∆x

) (
un+1

j+1 − un+1
j

∆x

)

+ k
∑

j

un+1
j + un

j

2
un

j .

18



En reprenant le calcul précédent, on montre en effet facilement que

En+1/2 − En−1/2 + r ∆t
∑

j∈Z

(
un+1

j − un−1
j

2 ∆t

)2

= 0 ,

et par conséquent
En+1/2 ≤ E1/2

quel que soit n.

4 Autres schémas

De nombreux autres schémas peuvent être utilisés, en particulier si l’on réécrit l’équation
des ondes sous forme d’un système du premier ordre, en posant v = ∂x u, w = (1/c) ∂t u :

{
∂t v = c ∂x w ,
∂t w = c ∂x v .

En notant U = (v, w)t et

A =

(
0 c
c 0

)
,

ce système s’écrit sous forme matricielle

∂t U = A∂x U .

∆! Il faut prendre garde à ne pas utiliser le schéma centré qui viendrait naturellement à
l’esprit :

Un+1
j = Un

j +
∆t

2 ∆x
A ( Un

j+1 − Un
j−1 ) ,

car il est inconditionnellement instable. La plupart des “bons” schémas proviennent cepen-
dant de celui-ci, en le modifiant pour le rendre stable.

La première méthode pour stabiliser un schéma est de le rendre implicite. Ici cela
donne

Un+1
j = Un

j +
∆t

2 ∆x
A ( Un+1

j+1 − Un+1
j−1 ) ,

qui s’avère être inconditionnellement stable. En contrepartie, il est un peu coûteux, car
il nécessite en pratique (lorsqu’on l’implémente) l’inversion d’une matrice. Pour éviter ce
problème, on peut se contenter d’“impliciter” une seule des deux équations, ce qui donne
après substitution un schéma explicite à 5 points, dont on montre qu’il est stable sous la
CFL

c ∆t ≤ 2 ∆x .

Une autre méthode est de remplacer Un
j par une valeur moyenne, ce qui donne la classe

des schémas de type Lax-Friedrichs

Un+1
j =

α Un
j+1 + β Un

j + α Un
j−1

2 α + β
+

∆t

2 ∆x
A ( Un

j+1 − Un
j−1 ) ,
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stables sous la CFL

c ∆t ≤ 2α

2α + β
∆x .

On peut aussi remplacer Un
j par Un−1

j , et ∆t par 2 ∆t (car cela revient à approcher
∂tU par une dérivée discrète centrée), ce qui donne le schéma saute-mouton (“leap-frog”
en anglais) :

Un+1
j = Un−1

j +
∆t

∆x
A ( Un

j+1 − Un
j−1 ) .

Ce schéma est stable sous la CFL

c ∆t ≤ ∆x .

Il a l’inconvénient d’être à deux pas, ce qui demande de faire appel à un autre schéma
pour calculer U1.

Enfin, on peut ajouter un terme au schéma centré, qui le rende à la fois stable et
d’ordre 2. C’est ainsi que l’on obtient le schéma de Lax-Wendroff :

Un+1
j = Un

j +
∆t

2 ∆x
A ( Un

j+1 − Un
j−1 ) +

∆t2

2 ∆x2
A2 ( Un

j+1 − 2 Un
j + Un

j−1 ) .

Il est stable sous la CFL
c ∆t ≤ ∆x .

Remarque 1 Pour tous ces schémas, la matrice d’amplification vaut l’identité en ω = 0.
Elle ne présente donc pas le même problème que la matrice H(ω) du §3.1. On peut même
montrer qu’elle est uniformément diagonalisable. La condition de von Neumann est par
conséquent suffisante pour assurer la stabilité de ces schémas.
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Partie II

L’équation des ondes en dimension
supérieure à deux

On appelle équation des ondes (linéaire) en dimension d l’ÉDP d’évolution, du second
ordre en temps (t) et en espace (x ∈ Rd),

∂2
tt u − c2 ∆ u = 0 ,

où c est un nombre réel positif donné, homogène à une vitesse, et ∆ est le Laplacien en
espace, défini par

∆ u =
d∑

α=1

∂2
xαxα

u .

En dimension 3, on rencontre cette ÉDP dans divers problèmes physiques, comme en
élasticité (où deux vitesses c apparaissent, appelées vitesse de compression et vitesse de
cisaillement; elles sont liées aux aux coefficients de Lamé du matériau), en acoustique (où
c est la vitesse du son), en électromagnétisme (où c est la vitesse de la lumière). Les deux
premiers exemples généralisent ce qu’on a vu en dimension 1. Le dernier est typiquement
multidimensionnel.

L’analyse de l’équation des ondes multidimensionnelle est assez compliquée. On va
se contenter de donner l’analogue de la formule de D’Alembert, en dimension 3 d’abord,
puis 2. Cela permettra notamment de mettre en évidence le principe d’Huygens :

• en dimension impaire, la solution u(x0, t0) dépend seulement des conditions initiales
φ = u(·, 0) et ψ = ∂t(·, 0) sur la sphère

{ x ; ‖x − x0 ‖ = c t0 } ,

• en dimension paire, la solution u(x0, t0) dépend des conditions initiales φ et ψ sur
la boule

{x ; ‖ x − x0 ‖ ≤ c t0 } .

5 Formules de Kirchhoff

5.1 Problème de Cauchy sur R3

Soit à résoudre le problème de Cauchy :





∂2
tt u − c2 ∆ u = 0 , x ∈ R3 , t > 0 ,

u(x, 0) = φ(x) , x ∈ R3 ,

∂tu(x, 0) = ψ(x) , x ∈ R3 .
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On va utiliser la méthode des moyennes sphériques, qui permet de se ramener à un
problème en dimension 1, que l’on sait résoudre d’après la première partie. Pour cela
on associe à u la fonction de (r, t) ∈ R+ × R+

ū(r, t) :=
1

4 π r2

∫

Sr

u ,

où Sr est la sphère de rayon r :

Sr := { x ∈ R3 ; ‖x‖ = r } .

Pour obtenir l’équation satisfaite par u, on applique la formule de Green sur la boule

Br := { x ∈ R3 ; ‖x‖ ≤ r } ,
∫

Br

∆ u =

∫

Sr

∂u

∂n
,

où n est le vecteur normal unitaire sur Sr = ∂ Br, sortant de Br. Pour que u soit solution
de l’équation des ondes, il faut donc que

∫

Br

∂2
tt u = c2

∫

Sr

∂u

∂n
.

En utilisant les coordonnées sphériques habituelles

��θ

r
ϕ

cette égalité s’écrit de façon équivalente :

∫ r

0

∫ 2π

0

∫ π

0

∂2
tt u ρ2 sin θ dθ dϕ dρ = c2 r2

∫ 2π

0

∫ π

0

∂r u sin θ dθ dϕ .

Or, par définition,

ū =
1

4 π

∫ 2π

0

∫ π

0

u sin θ dθ dϕ .

On déduit donc de l’équation précédente :
∫ r

0

ρ2 ∂2
tt ū dρ = c2 r2 ∂r ū .
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D’où, en dérivant une fois par rapport à r :

r2 ∂2
tt ū = c2 ∂r ( r2 ∂r ū ) ,

c’est-à-dire

∂2
tt ū − c2 ∂2

rr ū − 2
c2

r
∂r ū = 0 .

(Ceci n’est rien d’autre que l’équation des ondes axisymétrique.) En posant v := r ū, on
se ramène à une équation des ondes monodimensionnelle ordinaire :

∂2
tt v − c2 ∂2

rr v = 0 .

Puisque v doit s’annuler en r = 0, cela revient à chercher la solution du problème de
Dirichlet dans R+, avec v(r, 0) = r φ̄(r), ∂t v(r, 0) = r ψ̄(r) et les notations évidentes

φ̄(r, t) :=
1

4 π r2

∫

Sr

φ , ψ̄(r, t) :=
1

4 π r2

∫

Sr

ψ .

On a une formule explicite pour v :

v(r, t) =
1

2
( (c t + r) φ̄(c t + r)− (c t− r) φ̄(c t− r) ) +

1

2c

∫ c t + r

c t− r

y ψ̄(y) dy , 0 ≤ r ≤ c t ,

que l’on peut réécrire

v(r, t) = ∂t

(
1

2c

∫ c t + r

c t− r

y φ̄(y)

)
+

1

2c

∫ c t + r

c t− r

y ψ̄(y) dy .

On récupère ensuite u(0, t) = ū(0, t) par dérivation, puisque ū(0, t) = ∂rv(0, t). Comme

∂r

(
1

2c

∫ c t + r

c t− r

y ψ̄(y)

)
|r=0 = t ψ̄(c t) =

1

4 π c2 t

∫

Sc t

ψ ,

avec la même formule pour φ, on en déduit

u(0, t) = ∂t

(
1

4 π c2 t

∫

Sc t

φ

)
+

1

4 π c2 t

∫

Sc t

ψ .

Bien sûr, on a la même formule lorsqu’on translate 0 en x0. Finalement, on a obtenu la
formule générale, dite de Kirchhoff :

u(x0, t) = ∂t

(
1

4 π c2 t

∫

‖x−x0‖=ct

φ

)
+

1

4 π c2 t

∫

‖x−x0‖=ct

ψ .

5.2 Problème de Cauchy sur R2

On va se servir de la formule de Kirchhoff en dimension 3 pour obtenir une formule
en dimension 2. Il suffit en effet de résoudre le problème étendu à R3, avec φ et ψ
indépendantes de la troisième variable x3 =: z ! Or, pour une fonction ψ dépendant
seulement de (x1, x2) =: (x, y), l’intégrale double

∫
Sr

ψ se décompose en

∫

Sr

ψ = 2

∫

Sr∩{z > 0}
ψ ,
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et la demi-sphère Sr ∩ {z > 0} est paramétrée par (x, y) :

Sr ∩ {z > 0} = { (x, y, z) ; x2 + y2 < r et z =
√

r2 − x2 − y2 } ,

l’élément de surface étant
r√

r2 − x2 − y2
dxdy .

D’où ∫

Sr

ψ = 2 r

∫

x2+y2≤r

ψ(x, y)√
r2 − x2 − y2

dx dy .

On en déduit la formule explicite en dimension 2 :

u(x0, y0, t0) = ∂t

(
1

2 π c

∫

(x−x0)2+(y−y0)2≤c2t2

φ(x, y)√
c2t2 − x2 − y2

dx dy

)

+
1

2 π c

∫

(x−x0)2+(y−y0)2≤c2t2

ψ(x, y)√
r2 − x2 − y2

dx dy .
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