
Calcul différentiel, TD 6

Différentielles d’ordre ≥ 2, formules de Taylor

1. Si E1, . . . , Ep, F sont des espaces normés (sur le même corps K = R ou C), Lp(E1 ×
. . . × Ep, F ) désignera l’espace vectoriel normé des applications p-linéaires continues de
E1 × . . . × Ep dans F .

Montrer que si n ≥ 2 et 1 ≤ m ≤ n − 1, si E1, . . . , En, F sont des K-espaces normés,
l’application Φ, qui à toute f ∈ Lm(E1 × . . . × Em,Ln−m(Em+1 × . . . × En, F )) associe
l’application

Φ(f) : E1 × . . . × En → F définie par Φ(f)(x1, . . . , xn) = f(x1, . . . , xm)(xm+1, . . . , xn),

est une isométrie de Lm(E1×. . .×Em,Ln−m(Em+1×. . .×En, F )) sur Ln(E1×. . .×En, F ).

En déduire par récurrence sur n que L(E1,L(E2, . . . ,L(En, F ) . . .)) est canoniquement
isométrique à Ln(E1 × . . . × En, F ).

2. On munit Rn du produit scalaire usuel 〈., .〉 et de la norme euclidienne associée ||.||. On
posera, pour simplifier les écritures, f(x) = ||x||, ∀x ∈ Rn.

(a) Montrer que f est de classe C∞ sur R
n \ {0} et que f n’est pas différentiable en 0.

(b) Calculer, pour x ∈ R
n \ {0} et (u, v, w) ∈ (Rn)3, dfx(u), d2fx(u, v), d3fx(u, v, w).

(c) Les applications x 7→ cos f(x) et x 7→ sin f(x) sont-elles de classe C∞ sur Rn?

3. On dit qu’une partie C d’un R-espace vectoriel E est un cône si, ∀x ∈ C, ∀α ∈ R∗

+,
αx ∈ C. On dit qu’une application f d’un cône C de E dans un R-espace vectoriel F est
homogène de degré m ∈ R si ∀x ∈ C, ∀t > 0, f(tx) = tmf(x).

Soient E et F des R-espaces vectoriels normés.

(a) Soit C un cône ouvert de E et f : C → F une application homogène de degré m ∈ R,
différentiable sur C. Montrer que l’application df : C → L(E, F ) est homogène de
degré m − 1.

(b) Soit f : E → F une application homogène de degré m ∈ N
∗ et de classe Cm. Montrer

que f est de classe C∞ et que dnf = 0 si n > m.

(c) Soit f : E → F une application homogène de degré m ∈ N∗ et de classe C∞.

i. Montrer que dpf0 = 0 si 1 ≤ p < m.

ii. Montrer que dmfx(x, . . . , x) = m!f(x), ∀x ∈ E. Indication : considérer, pour
x ∈ E fixé, la fonction G : R → F définie par G(t) = f(tx) et montrer par
récurrence sur p ∈ {1, . . . , m} que G(p)(t) = dpftx(x, . . . , x).

4. Soit f : R3 → R2 définie par f(x, y, z) = (x2y2 + z4, yex).
Calculer d3f(x,y,z)((ξ1, η1, ζ1), (ξ2, η2, ζ2), (ξ3, η3, ζ3)).

5. Soient E un espace normé et f : E → R une fonction de classe C2 sur E telle que
f(x) > 0, ∀x ∈ E. On suppose qu’il existe M > 0 tel que ||d2fx|| ≤ M , ∀x ∈ E.
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(a) Montrer que si h ∈ E et λ ∈ R, on a, ∀x ∈ E, 0 < f(x) + λdfx(h) +
λ2

2
M ||h||2.

Indication : appliquer la formule de Taylor avec reste intégral à f entre x et x + λh.

(b) En déduire que ||dfx|| ≤
√

2Mf(x), ∀x ∈ E.

6. Soient E un espace normé et U un ouvert convexe de E. On dit qu’une fonction g : U → R

est convexe si, ∀(a, b) ∈ U2, ∀t ∈ [0, 1],

g(ta + (1 − t)b) ≤ tg(a) + (1 − t)g(b). (1)

Soit f : U → R une fonction de classe C1 sur U .

(a) On suppose que f est convexe. Soit (x, y) ∈ U2. On remarquera que l’on peut définir
sur un intervalle ouvert I de R contenant 0 l’application t 7→ Φ(t) = f(y + t(x− y)).
Montrer que Φ′(0) ≤ f(x) − f(y) et en déduire que

f(x) − f(y) ≥ dfy(x − y). (2)

(b) On suppose que f vérifie l’inégalité (2) pour tout couple (x, y) ∈ U2. Montrer que
f est convexe.

(c) On suppose que f est de classe C2 sur U .

i. Montrer que si d2fx(h, h) ≥ 0, ∀x ∈ U , ∀h ∈ E, f est convexe. (Utiliser la
formule de Taylor avec reste intégral).

ii. Réciproquement, on suppose que f est convexe. Montrer que d2fx(h, h) ≥ 0,
∀x ∈ U , ∀h ∈ E. (Raisonner par l’absurde et utiliser la formule de Taylor-
Young).
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