Calcul différentiel, TD 7

Extrema

- 1. Trouver les extrema de $f: \mathbb{R}^3 \to \mathbb{R}$ définie par $f(x,y,z) = x^2 + y^2 + z^2 2xyz$.
- 2. On considère la fonction $f: \mathbb{R}^3 \to \mathbb{R}$ définie par $f(x,y,z) = x^2 + y^2 + z^2 + xy + yz + zx$.
 - (a) Déterminer ses extrema relatifs.
 - (b) f a-t-elle un maximum absolu et un minimum absolu sur \mathbb{R}^3 ?
- 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = 2x^3 y^2 + 2xy + 1$.
 - (a) Déterminer les extrema relatifs de f.
 - (b) f a-t-elle un maximum absolu et un minimum absolu sur \mathbb{R}^3 ?
 - (c) Soit $T = \{(x, y) \in \mathbb{R}^2; \ x + y \le 1, \ x \ge 0, \ y \ge 0\}$. Déterminer $M = \sup_{(x, y) \in T} f(x, y)$ et $m = \inf_{(x, y) \in T} f(x, y)$.
- 4. On considère dans \mathbb{R}^3 l'ellipsoïde d'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Trouver, parmis les parallélépipèdes rectangles de côtés parallèles aux axes, inscrits dans cet ellipsoïde, celui dont le volume est maximum.

- 5. Soient f et g les applications de \mathbb{R}^3 dans \mathbb{R} définies par f(x,y,z) = 2(xy + yz + zx), g(x,y,z) = xyz 1000. On pose $P = (]1,1000[)^3$, $A = \{(x,y,z) \in (\mathbb{R}^*_+)^3; g(x,y,z) = 0\}$, $B = P \cap g^{-1}(0)$, $f_P = f|_P$.
 - (a) Montrer que A est un fermé de \mathbb{R}^3 , que $A \cap \bar{P}$ est compact et que le minimum de $f_{A \cap \bar{P}}$ n'est atteint en aucun point de $(A \cap \bar{P}) \setminus (A \cap P)$.
 - (b) Trouver les extrema de $f_P|_B$.
 - (c) En déduire les dimensions d'une boîte parallélépipédique rectangle ayant pour volume 1000 et d'aire minimale.
- 6. On considère \mathbb{R}^2 muni de la norme euclidienne ||.|| et de la distance euclidienne d. Soient Γ le cercle d'équation $x^2+y^2=1$ et Δ la droite d'équation x+y=4. Trouver les points $P\in\Gamma$ et $Q\in\Delta$ tels que d(P,Q) soit minimum. Indications : on remarquera que, si ces points existent, ils sont nécessairement dans $K=\bar{D}((0,0),5)$; on montrera qu'ils existent effectivement ; enfin on ramènera leur recherche à la détermination des extrema liés d'une certaine application de $U=\overset{o}{K}\times\overset{o}{K}=\overset{o}{D}((0,0),5)\times\overset{o}{D}((0,0),5)$ dans \mathbb{R} .

1