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1 Projet POems, INRIA Rocquencourt, Le Chesnay, France.
2 Projet Scalapplix, INRIA Bordeaux, Bordeaux, France.

∗Email: morgane.bergot@inria.fr

Abstract

An arbitrarily high-order finite element space is
given for pyramidal elements, such that these ele-
ments can be used in hybrid meshes which include a
high percentage of hexahedra, and some tetrahedra,
wedges and pyramids. Numerical results are given to
demonstrate the efficiency of these new elements.

Introduction

Highly efficient finite element methods using hex-
ahedral meshes have been developed by Cohen and
others, but currently the only way to automatically
generate unstructured hexahedral meshes for a com-
plex geometry is to generate a tetrahedral mesh, and
split each tetrahedron into four hexahedra, which in-
troduce needlessly substantial increase in the cost.
However, some mesh generators are able to produce
hexahedral-dominant meshes that include a minor
number of tetrahedra, wedges and pyramids. The
aim here is to study finite element methods on hy-
brid meshes in order to preserve the efficiency of the
method developed for hexahedra.

Finite elements for tetrahedra, hexahedra and
wedges are detailed in Hesthaven [2], Cohen [1] and
Šoĺın [3]. In this work, the main effort is devoted
to the construction of pyramidal finite elements, pre-
serving conformity with the other types of elements.
Only few papers are dealing with pyramidal elements
(Bedrosian [4], Graglia [5], Chatzi [6], Nigam and
Phillips [7]) since obtaining a proper base for these
elements is a tricky point.

1 Arbitrary High-Order Pyramidal Element

1.1 A Pyramidal Finite Element Space of Order r

We consider the transformation F given by
Bedrosian [4] using rational fractions, transforming
the reference pyramid K̂ (taken as the unit symmet-
rical pyramid, centered at the origin, whose apex is
on the z-axis) into any pyramid K of the mesh.

The finite element space Vh on an open set Ω of R3

is given by

Vh = {u ∈ H1(Ω) | u|K ∈ V F
r },

where V F
r is the real space of order r for an element

K of the mesh defined by

V F
r = {u | u ◦ F ∈ V̂r},

and the finite element space V̂r of order r on K̂ is Pr

when K is a tetrahedron, Qr when K is a hexahe-
dron, Pr(x̂, ŷ) ⊗ Pr(ẑ) when K is a wedge, and is as
defined below when K is a pyramid.

To obtain a method of order r, the real space V F
r

for a pyramidal element K of the mesh must be such
that

Pr(x, y, z) ⊂ V F
r .

We prove that this inclusion implies that V̂r is defined
by

V̂r = Pr(x̂, ŷ, ẑ) +
∑

0≤k≤r−1

(

x̂ŷ

1 − ẑ

)r−k

Pk(x̂, ŷ),

and is of dimension

dim V̂r =
1

6
(r + 1)(r + 2)(2r + 3).

With this choice of V̂r for pyramidal elements, we
check that a function u in Vh is continuous across the
interface between elements, whatever the type of the
elements adjacent to the face, and therefore belongs
to H1(Ω). The same local space V̂r will be used for
pyramidal elements for discontinuous Galerkin meth-
ods.

1.2 Location of the Degrees of Freedom

To link pyramids with other elements of the mesh,
interpolatory basis functions are used with Gauss-
Lobatto points on each quadrangle and Hesthaven
points on each triangle [2]. The number of degrees of
freedom on the faces nf is

nf = 3r2 + 2.

We add ni degrees of freedom inside the pyramid,
placed on (r−2) parallel planes of k2 degrees of free-
dom

ni =
1

6
(r − 1)(r − 2)(2r − 3) =

∑

1≤k≤r−2

k2.



The total number of degrees of freedom ne = ni +
nf for the pyramidal element is then equal to the

dimension of V̂r.

2 Numerical Results

2.1 Dispersion

In order to study the pyramidal elements, a dis-
persion analysis is performed on the wave equation,
relying on the computation of the phase error on infi-
nite periodic meshes. The periodic cell is a cube that
can be made of a single hexahedron; of two wedges;
of two pyramids and two tetrahedra (hybrid); or of-
six tetrahedra. The analysis has been carried out on
periodic cells made up of distorted cubes in order to
check the consistency of our method when the base
of the pyramid is not a parallelogram : we obtain
an O(h2r) phase error for both regular and distorted
meshes.

2.2 Stability

The stability condition (CFL) is also computed on
a periodic infinite mesh. The CFL for each type of
element is given in Table 1 for discontinuous Galerkin
methods, up to order 3.

Table 1: CFL for regular meshes with discontinuous
elements

Element Order 1 Order 2 Order 3

Hexahedron 0.1583625 0.0745356 0.0442645

Wedge 0.1168082 0.0632206 0.0399083

Hybrid 0.0718421 0.0446415 0.0286480

Tetrahedron 0.0621769 0.0353414 0.0227479

2.3 Numerical Experiments

Numerical experiments are performed on the scalar
wave equation. The scattering of a cone-sphere with
an incident plane wave striking its tip is shown in the
Fig. 1.

Whereas a pure hexahedral mesh (made of split
tetrahedra) of order 3 with 1,077,000 degrees of free-
dom provides an error of 9.0 %, the hybrid mesh with
247,000 degrees of freedom gives an error of 7.7 %.

The elements have been extensively studied for the
time-domain wave equation by using discontinuous
Galerkin methods. In this case, not only does the
hybrid mesh contains fewer degrees of freedom, but
also the CFL of the hybrid mesh is larger than the

Figure 1: Real part of the field diffracted by a
cone-sphere

CFL of the hexahedral mesh. A local time stepping
scheme will be tested on these new elements.

Conclusion

Highly efficient pyramidal elements of any order
are constructed using the finite element space V̂r.
Tested up to order 6, these new elements are charac-
terized by a low phase error, a quite good CFL, and
a very good behaviour in a hybrid mesh.
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