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We proposée (div) and H (curl) finite elements on hexahedra, prisms and pyramids base@d@l&t’s
first family, providing an optimal rate of the convergenceHiidiv) and H (curl)-norm respectively. A
comparison with other existing elements found in the lite@is performed. Numerical results show the
good behaviour of these new finite elements.

We studyH (curl) and H (div) elements of Nédélec’s first family which are well-knowntlire case
of tetrahedra, prisms, and hexahedra (see for example /8llen non-affine elements are considered,
neither H (curl) nor H(div) elements of the Nédélec’s first family are providing aniropl rate of the
convergence of the numerical solution toward the solutibthe exact problem it (curl)-norm and
H (div)-norm respectively. Following the principle set in [1] fasagrilateral elements, we propose new
finite element spaces for pyramids, prisms, and hexahedractiver the optimal convergence at any
order of approximation.

For the H(curl)-approximation, the same space as in [2] has been found ferl for hexahedral
elements. The prismatic space can also be found as a coimhis&bptimal quadrilateral and triangular
elements. The pyramidal optimal finite element spé,c(ef() is the following
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For H(div) elements, we have constructed super-optimal finite elesragatce satisfying the princi-
ples of [2], and also optimal finite elements such that theefislement space contaids. = P3| +
[z,y, 2]t P,_,. The latter spaces are simpler to use, and their dimensieerysclose to super-optimal
spaces.



“Nodal” basis functions and hierarchical basis functioaséhbeen constructed for all these spaces.
A pyramidal finite element space compatible with classieanedral and prismatic elements of the
Nédélec’s first family inH (curl) and H (div) can also be constructed.

A comparison of the dispersion error obtained with a meshenwdie repeated cell composed of non-
affine pyramids and affine pyramids for the finite element traosed for this space with other existing
elements found in the literature ([3], [4], [6], [7]) is perfned (see Fig. 1).

) Mi’)ﬂioﬁﬂxo
s g el -
£ 5 --© ¢
@ S _ - - 2
5 ] o = < o ¥
2 E o T
& v g B
<) S - o o ¥
3 - 3 =% < ¥- _
] 5 —+—Optimal, order 1 2 10 P~ ——Nigam, order 1 |}
< “ g - ¥ -G~ Optimal, order 1
o - ©-Optimal, order 2 - e ptimal, order
-1ap ’—17@/ —#—Nigam 1, order 1 N7 —- Optimal, order 2
AO//(\ —# Nigam 1, order 2 —25Fo - # jg,ngam 1, order 2|
—16p " - E1-Nigam 2, order 2 M nggm 2 order 2
- Graglia, order 2 —— Zgainski, order 2
Zgainski, order 2 ) ) ) ) ) Graglia, order 2
18 . T _ . !
-3 -2.5 -15 -0.5 0 s -1.7 -1.6 -1.4 -13 -1.2 -11 -1
log, (kh/r) log, (h/r)

Figure 1: Dispersion error in log-log scale (left) aff{curl)-error in log-log scale with a Gaussian
source inside a cubic cavity for Maxwell’s equations (rjght

Our finite elements have been tested on general hybrid méstidaxwell’s equations and Helmholtz
equation and give accurate results as expected.
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