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Derivation of high order absorbing boundary conditions for the
Helmholtz equation in 2D.

Résumé : Nous présentons des conditions aux limites absorbantes (CLA) d’ordre élevé pour l’équation de
Helmholtz en 2D, s’adaptant à une surface régulière quelconque. Les nouvelles CLAs sont dérivées grace à la
technique de micro-diagonalisation afin d’approcher l’opérateur Dirichlet-to-Neumann. Des résultats numériques
sur plusieurs formes d’obstacle et de frontière illustrent le comportement des nouvelles CLAs dans un contexte
d’éléments finis.

Mots-clés : conditions aux limites absorbantes, équation de Helmholtz, approximation d’ordre élevé, éléments
finis
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1 Motivation

Numerical simulation of wave propagation raises the issue of dealing with outgoing waves. In most of the
applications, the physical domain is unbounded and an artificial truncation needs indeed to be carried out for
applying numerical methods like finite element approximations. Adapted boundary conditions that avoid the
reflection of outgoing waves and provide a well-posed mathematical problem must then be derived. With ideal
boundary conditions, the solution on the new mixed boundary valued problem in the truncated domain would
actually be equal to the restriction of the mathematical solution in the unbounded domain. However, such ideal
boundary conditions, called “transparent boundary conditions”, can be shown to be nonlocal, which leads to
dramatic computational overcosts. The seek of local boundary conditions, called “absorbing boundary condi-
tions” (ABC), has been the object of numerous works trying to perform efficient conditions based on different
techniques of derivation. Among them, the technique of micro-diagonalisation has been employed to the wave
equation and more generally to hyperbolic systems in [8], leading to a hierarchy of absorbing local boundary
conditions based on the approximation of the Dirichlet-to-Neumann map. A comprehensive review of different
used strategies and higher order conditions can be found in [15]. One desirable property of ABCs is that the
reflection of the waves on the artificial boundary generates an error of the same order as the one generated by the
spatial discretization inside the domain. The computational effort is thus optimized in terms of modeling and
numerical inaccuracies. Moreover, the ABC must fit the artificial boundary chosen by the user of the method.
In the context of high order spatial discretization (spectral finite elements [6], Interior Penalized Discontinuous
Galerkin [1]), there is nowadays a need for high order ABCs that can adapt on non flat geometries since these
methods prove very efficient for capturing arbitrary shaped domains.

The aim of the present work is to develop high order ABCs for the Helmholtz equation, that can adapt to
regular shaped surfaces. A classical way of designing ABCs is to use Nirenberg theorem [12] on the second order
formulation of the Helmholtz equation, which enables us to decompose the operator as a product of two first
order operators. Here our approach is to rewrite the Helmholtz equation as a first order system of equations
before developing ABCs using M.E. Taylor’s micro-diagonalisation method [14]. Then an asymptotic truncation
must be performed in order to make the ABC local, and we will see that the high frequency approximation
will lead to more usable ABCs than the one stating that the angle of incidence is small. During the process,
while increasing the degree of the pseudo differential operator decomposition along with the order of asymptotic
truncation, we retrieve classical ABCs that have been found with other techniques by other authors. For now,
we have restricted ourselves to two dimensions of space, but despite the fact that 3D generalization should
obviously generate more calculation, no further theoretical difficulties are expected.

(a) Freq = 0.5 Hz (b) Freq = 5 Hz

Figure 1: Diffracted filed obtained for the scattering of a plane wave on a circular obstacle of radius R1 = 2
using an absorbing boundary condition on the circle of radius R2 = 5.

In the following section, we recall the general approach and steps needed to apply the micro-diagonalization
technique on the Helmholtz equation. Then a section is devoted to the derivation of a first family of ABCs
based on a rough truncation of the pseudo-differential symbol of the operator. Next, a section aims at designing
higher order ABCs using a more complete truncation of the symbol. Throughout the report, each ABC will be
illustrated with examples. When not specifically said, theses examples will be modeling the scattering of a plane
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4 Barucq, Bergot, Chabassier & Estecahandy

wave field on a circle obstacle of radius R1 = 2 (homogeneous Neumann boundary conditions). In this simple
configuration, analytic solutions can be computed via Hankel expansion of the solution in the open domain
{R ≥ R1}, or in the truncated domain {R1 ≤ R ≤ R2} with a concentric and circular ABC imposed on the
artificial boundary of radius R2. The value of R2 will be set to several values, testing the sensibility of the ABC
with respect to the distance between the obstacle and the artificial boundary. Two frequencies are considered :
0.5 Hz and 5 Hz, in order to test the sensibility of the ABCs with respect to the frequency. A last section will
present numerical simulations using the newly designed ABCs in realistic and difficult contexts where analytical
computations are no longer available. Since a great variety of parameters will be introduced in this report, we
do not aim at providing a thorough test cases zoology, but rather at illustrating the performance and behavior
of each ABC. As a matter of fact, a definitive conclusion will not be reached as for the supremacy of the newly
designed high order ABCs over other possible techniques.

2 General approach

The first step of the micro-local approximation is to rewrite the equation in a local coordinate system near
the artificial boundary that we will call Σ in the following. The Helmholtz equation written in the same local
coordinate system as [2] (tangent coordinate s and radial coordinate r to the boundary Σ) reads:

(iω)2

c2
u− ∂2ru− κr ∂ru− h−1∂s

(
h−1∂su

)
= 0 (2.1)

where κ(s) is the curvature of the boundary Σ, h = 1 + r κ(s) and κr = h−1 κ(s). In order to involve only first
order derivatives, and apply Taylor’s theorem, we introduce an auxiliary unknown v such that

iω v + ∂ru = 0 (2.2)

If we introduce the vectorial unknown U = t(u, v), the system reads

∂rU = LU (2.3)

where the symbol of the pseudo-differential operator L is given by

L = σ(L) =

 0 −iω

− iω
c2
− h−3∂s(h)

ξ

ω
− h−2 ξ2

iω
−κr

 (2.4)

This symbol can be decomposed as a sum of two symbol L1 +L0 where L1 is homogeneous of degree 1 and L0

of degree 01. The principal symbol is the less regularizing part of the operator, here we have:

σp(L) = L1 =

 0 −iω

− iω
c2
− h−2 ξ2

iω
0

 , L0 =

(
0 0

−∂sh ξ
h3ω

−κ
h

)
(2.5)

where ξ is the dual variables associated to s.

Remark 2.1
The symbol is, in general, different from the principal symbol. The order p of a pseudodifferential operator
is the greatest homogeneity degree of its symbol. The principal operator is exactly of order p. We will call
σp(A) the principal symbol of an operator A, σr(A) the rest of order p− 1, and σj(A) the part of the symbol
being of order j. Finally, σ∗j (A) will denote the symbol of the part of the operator of exactly order j. For
commodity, we will denote OPp(A) := OP

(
σp(A)

)
as well as OPj(A) := OP

(
σj(A)

)
.

Remark 2.2

Notice that on the boundary (r = 0), we have

∂2r û =

(
iω

c

)2

û− κ ∂rû+ ξ2 û (2.6)

Our aim is to find:
1The lower the degree, the more regularizing the operator.

Inria



High order ABCs 5

. a diagonal pseudo-differential operator Λ such that Λ = Λ1 + Λ0 + Λ−1 + . . .

where σ(Λj) = Dj is homogeneous of degree exactly j.

. a pseudo-differential operator P such that P = P0 + P−1 + P−2 + . . .

where σ(Pj) = Pj is homogeneous of degree j.

such that V = PU and (2.3) is equivalent to
∂rV = ΛV (2.7)

We will then end up with a diagonal system, in which the first component of the auxiliary unknown V corresponds
to the ingoing wave, while the second component stands for the outgoing wave. Hence, the exact absorbing
boundary condition will be obtained by ordering the first component to vanish on Σ. As this condition is non
explicit, non local and therefore inconvenient, an approximation process will be done step by step : our approach
will consist in describing P as a factor of correcting terms of decreasing order. Each step will allow us to write
an “approximate ABC” involving only first order derivatives.
Remark 2.3

Recall that the symbol of a product of operators (see [10]) is computed as:

σ(AB) =
∑
k∈N

(−i)k

k!
∂ksσ(A)∂kξ σ(B)

= σ(A)σ(B)− i∂sσ(A)∂ξσ(B)− 1

2
∂2sσ(A)∂2ξσ(B) + . . .

(2.8)

We follow a three-step approach that we describe now.

Step 1. The symbol L1 admits two eigenvalues ±λ1 with

λ1 =
√
h−2ξ2 − c−2ω2. (2.9)

The frequencies (ω, ξ) are in R2 and the square root is defined according to the sign of h−2ξ2 − c−2ω2. If (ω, ξ)
belongs to the hyperbolic region, h−2ξ2 − c−2ω2 is negative and λ1 matches a propagating wave. In that case,
λ1 should be written as where

λ1 = i
√
c−2ω2 − h−2ξ2 (2.10)

In the event of h−2ξ2 − c−2ω2 being positive, the frequencies (ω, ξ) follow the elliptic region and λ1 matches
evanescent waves. In the following, we restrict our study to the case where (ω, ξ) belong to the hyperbolic region
or “propagating cone”, letting λ1 being purely imaginary.

We introduce the change of basis operator P0 such that

σ(P0) = P0 =
1√
2

−λ1iω 1

1
iω

λ1

 , P−10 =
1√
2

−iωλ1 1

1
λ1
iω

 (2.11)

We have:
P0L1P−10 = D1 =

(
λ1 0
0 −λ1

)
⇒ L1 = P−10 D1P0 (2.12)

We denote
V0 = P0 U (2.13)

Then

∂rV0 = ∂r(P0 U) (2.14)
= (∂rP0)U + P0∂rU (2.15)

= (∂rP0)P−10 V0 + P0LP
−1
0︸ ︷︷ ︸

P0L1P
−1
0 + P0L0P

−1
0

V0 (2.16)

= D1 V0 +R0 V0 (2.17)

where

RR n° 8632



6 Barucq, Bergot, Chabassier & Estecahandy

. D1 is the principal symbol of the operator P0L1P
−1
0 ,

. R0 is the operator of order 0 having symbol σr(P0L1P
−1
0 ) + σ((∂rP0)P−10 ) + σ(P0L0P

−1
0 )

Step 2. We seek V1 such that
∂rV1 = (D1 +D0)V1 +R−1 V1 (2.18)

We set V1 under the following form:
V1 = (1 +K−1)P0U (2.19)

and we are going to construct K−1 such that D0 is a diagonal operator of order 0 exactly. Operator K−1 is of
order −1 and can be determined so that (2.18) is true.

A simplest ABC can be found (as in [5]) by stating that the first component of V1 must vanish on the boundary
(when r = 0) and taking the symbol of order −1.

Step 3. We now seek V2 such that

∂rV2 = (D1 +D0 +D−1)V2 +R−2 V2 (2.20)

We set V2 under the following form:

V2 = (1 +K−2)(1 +K−1)P0U (2.21)

such that D−1 is a diagonal operator of order −1 and K−2 is an operator of order −2 that we will determine so
that (2.20) is true.

When all the operators Kj and Dj have an explicit expression, we will state that the first component of V2
must vanish on the boundary, which will lead us to a second approximate boundary condition after taking the
symbol of order −2. Obviously, the process can be iterated as long as necessary to design higher order conditions
(see [3]).

3 A first family of ABCs

3.1 Derivation of K−1
By definition,

∂rV0 = D1V0 +R0 V0 where R0 = (∂rP0)P−10 + OP
(
σr(P0L1P

−1
0 ) + σ(P0L0P

−1
0 )

)
(3.1)

We will need the commutator notation : {A ; B} = AB −BA.

∂rV1 = ∂r

[
(I +K−1)V0

]
(make V0 appear)

= ∂r(I +K−1)V0 + (I +K−1)∂rV0

= ∂r(K−1)V0 + (I +K−1)
[
D1 +R0

]
V0 (use the knowledge on V0)

= ∂r(K−1)(I +K−1)−1V1 +
[
D1 +R0

]
V1 + {(I +K−1) ; D1 +R0} (I +K−1)−1V1

(return to V1 to identify terms)
= D1V1 +D0V1 +R−1V1

where by identification,

D0 = OPp
(
∂r(K−1)︸ ︷︷ ︸
order -1

(I +K−1)−1︸ ︷︷ ︸
order 0︸ ︷︷ ︸

order -1

+R0 + {I +K−1 ; D1 +R0}︸ ︷︷ ︸
{K−1 ; D1}︸ ︷︷ ︸

order 0

+ {K−1 ; R0}︸ ︷︷ ︸
order -1

(I +K−1)−1
)

(3.2)

= OPp(R0) + OPp(K−1D1 −D1K−1) (3.3)

by writing that (I +K−1)−1 = I −K−1 + . . . At this point, we can give a necessary condition on K−1 so that
D0 is diagonal. Indeed, we can use formula 2.8 and only the first product will be of order 0:

σp(K−1D1 −D1K−1) = K−1D1 −D1K−1 =

(
0 −2λ1 (K−1)1,2

2λ1 (K−1)2,1 0

)
(3.4)

Inria
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The operator D0 will be diagonal if and only if the extradiagonal terms of the sum of this quantity with
σp(R0) = σ∗0(R0) are zero. This will give a “simple” relation between

(
(K−1)1,2, (K−1)2,1

)
and (ω, ξ), involving

the curvature and its derivatives. This calculation will be done hereafter.

3.2 Determination of a first ABC
We will write that the first component of V1 must vanish on the boundary (when r = 0):

V1 = (1 +K−1)P0
t(û, v̂) (3.5)

Since only the extradiagonal terms of K−1 are constrained by the fact that D0 is diagonal, we can take the
diagonal terms we want. We choose to consider γ and ζ such that

K−1 =


γ(s)

λ1

σ∗0(R0)1,2
2λ1

−σ
∗
0(R0)2,1

2λ1

ζ(s)

λ1

 (3.6)

where R0 was given in equation (3.1) and P0 in equation (2.11). It gives:(
1 +

γ

λ1

)(
−λ1
iω
û+ v̂

)
+
σ∗0(R0)1,2

2λ1

(
û+

iω

λ1
v̂

)
= 0 (3.7)

We use result (A.18) of appendix A to evaluate σ∗0(R0)1,2 for r = 0:

σ∗0(R0)1,2(r = 0) =
κω

2iλ1c2
(3.8)

We get the condition: [
1 +

γ

λ1

](
−λ1
iω
û+ v̂

)
+

κω

4iλ21c
2

(
û+

iω

λ1
v̂

)
= 0 (3.9)

Moreover, we recall that, from (2.3)
∂rû = −iω v̂

We obtain the following non local absorbing boundary condition:[
1 +

γ

λ1

](
−λ1
iω
û− ∂rû

iω

)
+

κω

4iλ21c
2

(
û− ∂rû

λ1

)
= 0 (3.10)

3.2.1 Asymptotic approximation: small “Angle of incidence”

A first approach is to introduce the “angle of incidence” δ = ξ/ω and suppose it is small. Retaining the first
terms of the approximation gives:

û

[(
−1

c
− γ(s)

iω
− κ

4iω

)
+
( c

2
− κ

4iω

)
δ2
]

+ ∂rû

[(
− 1

iω
+
cγ(s)

ω2
− κc

4ω2

)
+

(
c3γ(s)

2ω2
− 3κc3

8ω2

)
δ2
]

+O(δ4) = 0 (3.11)

A zeroth & first order condition. By neglecting the terms in O(δ) and in O(δ2), we obtain the same
condition:

û

[(
−1

c
− γ(s)

iω
− κ

4iω

)]
+ ∂rû

[(
− 1

iω
+
cγ(s)

ω2
− κc

4ω2

)]
= 0 (3.12)

We can now multiply by −iω to get:

û

[
iω

c
+ γ(s) +

κ

4

]
+ ∂rû

[
1 +

cγ(s)

iω
− κc

4iω

]
= 0 (3.13)

The first order ABC reads in frequency domain:

k =
ω

c
, (∂rû+ ik û) +

(
γ +

κ

4

)
û+

(
γ − κ

4

) ∂rû

ik
= 0 (3.14)

RR n° 8632



8 Barucq, Bergot, Chabassier & Estecahandy

Fig. 2 shows the relative L2 error of the trace of the solution on the obstacle with respect to the parameter
γ/κ. We have chosen to evaluate this quantity because it is independent of the size of the computational domain.
We indeed modify it by increasing the radius of the external boundary. If we had considered the L2-norm of
the numerical solution inside the whole computational box, we would have compared incomparable things. As
said in the introduction, analytical computations are made for this circular configuration, in an open domain
and in the truncated domain with ABC (3.14) on the artificial boundary. Left and right figures correspond to
frequencies 0.5 and 5 Hz. Different values of the artificial boundary radius R2 are considered and displayed in
different color curves. The legend indicates the value of R2/R1. It is clear from these figures that the ABC
performs better when the artificial boundary is far from the obstacle. No specific value of the parameter γ
seems to provide better results. The ABC performs as well for both frequencies.

Remark 3.1

Notice that the specific value γ(s) = κ(s)/4 leads to the following simplifications:

∂rû+ ik û+
κ

2
û = 0 (3.15)

which is (the sign of k is sometimes inverted in the definition) the so called “curvature-ABC” or “C-ABC”
well known in the literature ([13, 11, 9, 4]). Notice also that a coefficient 2 appears in 3d because of the
2d/3d difference of definition of κ.
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Figure 2: L2 relative error using ABC (3.14), dependency on the parameter γ. Legend : radius ratio R2/R1.

Remark 3.2
Since the variable r is in fact the normal oriented coordinate, we obtain after a invert Fourier transform in
time the following ABC:

1

c
∂t

(
∂nu+

1

c
∂tu

)
=

(
κ(x)

4
− γ(x)

)
∂nu−

1

c

(
κ(x)

4
+ γ(x)

)
∂tu , x ∈ Σ (3.16)

This condition was found with the same reasoning in [5].

A second order condition. We retain all terms up to O(δ2), we multiply by −iω and we replace δ with its
value. We get:

k =
ω

c
,

1 +
γ − κ

4
ik

 ∂rû −
γ − 3κ

4
2(ik)3

 ξ2∂rû +
[
ik + γ +

κ

4

]
û +

[
1

2ik
− κ

4(ik)2

]
ξ2û = 0 (3.17)
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This equation involves ξ2û and ξ2∂rû terms, which are in the primal variables the Laplace-Beltrami operator
applied to û and ∂rû. This means that to implement this condition, one has to evaluate the Laplace-Beltrami
of û, which implies more computational costs, but also to invert a surfacic operator of second order to retrieve
∂rû.

Fig. 3 shows the relative L2 error for ABC (3.17) in the same conditions as Fig. 2. As expected by the theory,
the performance of the ABC improves as the frequency increases. We can also observe that here the specific
value γ = κ/2 seems to give much better results, especially when the boundary is far from the obstacle.
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Figure 3: L2 relative error using ABC (3.17), dependency on the parameter γ. Legend : radius ratio R2/R1.

3.2.2 Asymptotic approximation : “High frequency”

In this second approach, we want to truncate equation (3.10) when ω tends to infinity, ξ being considered as a
parameter (not involved in the asymptotic). Let us recall equation (3.10):

û

[
κω

4iλ21c
2
− λ1 + γ

iω

]
− ∂rû

[
λ1 + γ

λ1 iω
+

κω

4iλ31c
2

]
= 0 (3.18)

We get

û

[
−1

c
+
c2ξ2

2ω2
+O

(
1

ω4

)
− γ

iω
− κ

4iω
+
c2κξ2

4iω3
+O

(
1

ω4

)]
− ∂rû

[
1

iω
+

γc

(iω)2
+O

(
1

ω4

)
+

κωc3

4ic2(iω)3
+O

(
1

ω4

)]
= 0 (3.19)

We can now multiply by −iω to get:

û

[
iω

c
+ γ +

κ

4
+
c2ξ2

2iω
+
c2κ

4ω2

]
+ ∂rû

[
1 +

γc

iω
− κc

4iω

]
= O

(
1

ω3

)
(3.20)

A zeroth order condition. Neglecting terms in O
(

1

ω

)
gives the following zeroth order ABC:

k =
ω

c
, ∂rû+ ik û+

(
γ +

κ

4

)
û = 0 (3.21)

Remark 3.3

The specific value γ(s) =
κ(s)

4
also leads to the “C-ABC” found in [13, 11, 9, 4].
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10 Barucq, Bergot, Chabassier & Estecahandy

A first order condition. Neglecting terms in O
(

1

ω2

)
gives the following first order ABC:

k =
ω

c
, ∂rû+ ik û+

(
γ(s) +

κ(s)

4

)
û+

ξ2

2 ik
û+

(
γ(s)− κ(s)

4

)
∂rû

ik
= 0 (3.22)

which can be written in the following form

k =
ω

c
,

1 +
γ − κ

4
ik

 ∂rû+
[
ik + γ +

κ

4

]
û+

ξ2

2 ik
û = 0 (3.23)

Fig 4 shows the relative L2 error for ABC (3.23) in the same conditions as Fig. 2. The performance of the
ABC seems to improve as the frequency increases. Here again the specific value γ = κ/2 seems to give much
better results, especially when the boundary is far from the obstacle.
Remark 3.4

Notice that the specific value γ(s) =
κ(s)

4
leads to the well known ABC formulated in the primal variables

(ξ2 ↔ −∆⊥):

∂nu+ iku+
κ(s)

2
u− 1

2ik
∆⊥u = 0 (3.24)
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Figure 4: L2 relative error using ABC (3.23), dependency on the parameter γ. Legend : radius ratio R2/R1.

Remark 3.5

It is not equivalent to multiply (3.10) by λ1 and then perform the high frequency asymptotic. Indeed, in
this case, the equation becomes:

− ∂nû
[
λ1 + γ

iω
+

κω

4iλ21c
2

]
+ û

[
κω

4iλ1c2
− (λ1 + γ)

λ1
iω

]
= 0 (3.25)

− ∂nû
[

1

c
+

c

iω

(
γ(s)− κ(s)

4

)
+O

(
1

ω2

)]
+ û

[(
−γ(s)

c
− κ(s)

4c

)
− iω

c2
− ξ2

iω
+O

(
1

ω2

)]
= 0 (3.26)

Multiplying by c and neglecting all terms in O(
1

ω2
) we get the following ABC:

û

[
iω

c
+ γ(s) +

κ(s)

4
+
cξ2

iω

]
+ ∂nû

[
1 +

c

iω

(
γ(s)− κ(s)

4

)]
= 0 (3.27)

which differs from (3.23) by a factor
1

2
in the last term in ξ2.
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A second order condition. By neglecting terms in O
(

1

ω3

)
, we obtain the following second order ABC:

k =
ω

c
,

1 +
γ − κ

4
ik

 ∂rû+
[
ik + γ +

κ

4

]
û+

[
1

2 ik
− κ

4 (ik)2

]
ξ2û = 0 (3.28)
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Figure 5: L2 relative error using ABC (3.28), dependency on the parameter γ. Legend : radius ratio R2/R1.

Fig 5 shows the relative L2 error for ABC (3.28) in the same conditions as Fig. 2. The performance of the ABC
seems to improve as the frequency increases. Here again the specific value γ = κ/2 seems to give much better
results, especially when the boundary is far from the obstacle.

The obtained ABCs (3.23) and (3.28) involve the Laplace-Beltrami operator on û but not on ∂rû (as opposed
to the ABC (3.17)), which avoids the inversion of a second order operator on the boundary.

Remark 3.6

The reader can notice the fact that the ABC (3.17), (3.23) and (3.28) show a super convergence behavior
when the parameter γ is chosen equal to κ/2. The last one can be explained by the remark 4.2.

4 A second ABC

4.1 Calculation of K−2
With the same approach as in 3.1, we find that

∂rV2 = (∂rK−2)(I +K−1)−1 V2 + (D1 +D0 +D−1)V2

+ [{K−2 ; D1}+ {K−2 ; D0}+ {K−2 ; D−1}] (I +K−2)−1 V2 (4.1)

and by definition, on the other hand,

∂rV2 = (D1 +D0 +D−1)V2 +R−2 V2 (4.2)

Identifying terms gives
D−1 = σ∗−1(R−1) +K−2D1 −D1K−2 (4.3)

As before,

K−2D1 −D1K−2 =

(
0 −2λ1 (K−2)1,2

2λ1 (K−2)2,1 0

)
(4.4)

We can give a necessary condition on K−2 so that D−1 is diagonal : the sum of this quantity with σ∗−1(R−1)
must have null extradiagonal terms.

RR n° 8632



12 Barucq, Bergot, Chabassier & Estecahandy

4.2 Determination of a second ABC
We deduce from above considerations that

K−2 =

 θ(s)

λ1

σ−1(R−1)1,2
2λ1

−σ−1(R−1)2,1
2λ1

0

 (4.5)

We write that the first component of V2 must vanish on the boundary (when r = 0):

V2 = (1 +K−2)(1 +K−1)P0
t(û, v̂) (4.6)

We truncate the operators of order lower than −3, and (4.6) becomes

Ṽ2 =OP−2 ((1 +K−2)(1 +K−1)P0) t(û, v̂)

= ((1 +K−2)(1 +K−1)P0 − i∂sK−1∂ξP0) t(û, v̂)

which reads (see equation (C.5)):(
1 +

θ(s)

λ1

)[(
1 +

γ(s)

λ1

)(
−λ1û
iω

+ v̂

)
+
σ12
2λ1

(
û+

iω

λ1
v̂

)]
+

σ̃12
2λ1

[
− σ21

2λ1

(
−λ1
iω
û+ v̂

)
+

(
1 +

ζ(s)

λ1

)(
û+

iω

λ1
v̂

)]
+
γ′(s)ξ

ωλ21
û+

κ′(s)ξiω2

4λ51
v̂ = 0 (4.7)

where σ12 = σ∗0(R0)12, σ21 = σ∗0(R0)21 and σ̃12 = σ∗−1(R−1)12. According to (A.18) and (B.16), we have:

σ12 =
κω

2iλ1c2
(4.8a)

σ21 =
iκω3

2λ31c
2

(4.8b)

σ̃12 =
κ2ω

4iλ41c
2

[
ω2

c2
+ 2ξ2

]
+

κ′ξω

2λ31c
2

+
κωγ(s)

2iλ21c
2

+
κ′ξ

2ωλ1
(4.8c)

We recall that, from (2.3)
∂rû = −iω v̂

We obtain the following non local absorbing boundary condition(
1 +

θ(s)

λ1

)[(
1 +

γ(s)

λ1

)(
−λ1û
iω
− ∂rû

iω

)
+
σ12
2λ1

(
û− ∂rû

λ1

)]
+
σ̃12
2λ1

[
σ21
2λ1

(
λ1
iω
û+

∂rû

iω

)
+

(
1 +

ζ(s)

λ1

)(
û− ∂rû

λ1

)]
+
γ′(s)ξ

ωλ21
û− κ′(s)ξω

4λ51
∂rû = 0

(4.9)

4.2.1 Asymptotic approximation: small “Angle of incidence”

In that section we choose the “angle of incidence” δ = ξ/ω to be the small parameter. We then get conditions
by applying Taylor expansions to each of the symbols.

A zeroth order condition. If we neglect the terms in O(δ), we get

k =
ω

c
,

1 +
θ + γ − κ

4
ik

+
θγ −

(
θ + γ − κ

2

) κ
4

(ik)2
−

(
γ − κ

2

)(
ζ +

κ

4

) κ
4

(ik)3

 ∂rû
+

ik +
(
γ + θ +

κ

4

)
+
θγ +

(
θ + γ − κ

2

) κ
4

ik
+

(
γ − κ

2

)(
ζ − κ

4

) κ
4

(ik)2

 û = 0 (4.10)
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Figure 6: L2 relative error using ABC (4.10), dependency on the parameters γ, θ and ζ.
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A first order condition. If we neglect the terms in O(δ2), we get

k =
ω

c
,

1 +
θ + γ − κ

4
ik

+
θγ −

(
θ + γ − κ

2

) κ
4

(ik)2
−

(
γ − κ

2

)(
ζ +

κ

4

) κ
4

(ik)3

 ∂rû− κ′

4(ik)3
iξ ∂rû

+

ik +
(
γ + θ +

κ

4

)
+
θγ +

(
θ + γ − κ

2

) κ
4

ik
+

(
γ − κ

2

)(
ζ − κ

4

) κ
4

(ik)2

 û− γ′

(ik)2
iξ û = 0 (4.11)

We can notice that for κ′(s) = 0, (4.11) is equal to (4.10). Therefore the two ABCs are equal for a circular
artificial boundary. For this test case, we will thus only present the L2 relative errors corresponding to the
condition (4.10) in Fig. 4.11. Since the ABC depends on three parameters, we present the error on a grid
(radius ratio, ζ) where each subfigure is a small (θ,γ) map. The error, which is displayed in color scale, highly
diminishes as the radius ratio increases. However, all the subfigures are very different, meaning that the ABC’s
performance depends very strongly on the parameter’s values. The main drawback is that this dependency is
not consistent when the radius ratio growth. In practice, the obstacle can be more complex than a circle, thus
the distance between the obstacle and the boundary is not a constant value throughout the domain. In Fig. 6
we can see that a fixed parameter set cannot be a good choice everywhere if this distance varies in the domain.
Moreover, the presence of the term ξ2∂rû leads to the necessary inversion of a Laplace-Beltrami operator on
the boundary which generates additional computational burden.

A second order condition. If we neglect the terms in O(δ3), we get

k =
ω

c
,

1 +
θ + γ − κ

4
ik

+
θγ −

(
θ + γ − κ

2

) κ
4

(ik)2
−

(
γ − κ

2

)(
ζ +

κ

4

) κ
4

(ik)3

 ∂rû− κ′(s)

4(ik)3
iξ ∂rû

+

−θ + γ − 3κ

4
2(ik)3

+

κ

2

(
γ − 5κ

4

)
− θ

(
γ − κ

2

)
(ik)4

+

κ

4

(
κ

4

(
7γ − 13κ

2

)
+ ζ

(
5γ − 11κ

2

))
2(ik)5

 ξ2∂rû

+

ik +
(
γ + θ +

κ

4

)
+
θγ +

(
θ + γ − κ

2

) κ
4

ik
+

(
γ − κ

2

)(
ζ − κ

4

) κ
4

(ik)2

 û− γ′(s)

(ik)2
iξ û

+

 ik −
κ

2
2(ik)2

−

3κ

4

(
γ − 3κ

2

)
+ θ

(
γ +

3κ

4

)
2(ik)3

+

3κ2

8
(γ − κ)− κζ

(
γ − 5κ

4

)
2(ik)4

 ξ2û = 0 (4.12)

In Fig. 7 the L2 relative errors for the ABC (4.12) are displayed in the same conditions as Fig. (4.10).
Condition (4.12) is a complete condition in the sense that the truncation error of the Taylor expansion is the
same as the order of the pseudo-differential operator K−2. That explains the very low errors obtained with this
condition, especially for high frequency. As for ABC (4.11), the subfigures are very different, meaning that it
will be difficult to choose a parameter set which will give good results for any situation. Moreover, the ABC
involves ξ2∂rû, meaning that a second order operator must be inverted on the boundary.

Remark 4.1

Recall that ξ is the dual variable associated to the curvilinear coordinate s. If we denote ↔ the corre-
sponding between primal (physical) and dual domains, we can remind the reader that:

−iξ ↔ ∂s and − ξ2 ↔ ∂2s
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Let us call

a(s) =
γ′(s)

(ik)2
(4.13a)

A(s) =

− 1

2ik
+

κ

4(ik)2
+

3κ

4

(
γ − 3κ

2

)
+ θ

(
γ +

3κ

4

)
2(ik)3

−

3κ2

8
(γ − κ)− κζ

(
γ − 5κ

4

)
2(ik)4

 (4.13b)

b(s) =
κ′(s)

4(ik)3
(4.13c)

B(s) =

θ + γ − 3κ

4
2(ik)3

−

κ

2

(
γ − 5κ

4

)
− θ

(
γ − κ

2

)
(ik)4

−

κ

4

(
κ

4

(
7γ − 13κ

2

)
+ ζ

(
5γ − 11κ

2

))
2(ik)5

 (4.13d)

Therefore,


−a(s) iξ û←→ a(s)∂sû (4.14a)
−A(s)ξ2 û←→ A(s)∂2s û (4.14b)
−b(s) iξ∂rû←→ b(s)∂s∂rû (4.14c)
−B(s)ξ2∂rû←→ B(s)∂2s∂rû (4.14d)

In the prospect of a variational numerical method, we must be able to write these terms in a symmetric way:

−a(s) iξû−A(s)ξ2û←→ ∂s (A(s) ∂sû) (4.15)

It is then necessary to have ∂sA(s) = a(s) and ∂sB(s) = b(s). Since these equalities must be true for any k,
we must adequate the terms in increasing power of (ik). Consider the part in û (A and a): we must have

∂s

(
κ

4(ik)2

)
=
γ′(s)

(ik)2
, ∂s


3κ

4

(
γ − 3κ

2

)
+ θ

(
γ +

3κ

4

)
2(ik)3

 = 0, ∂s


3κ2

8
(γ − κ)− κζ

(
γ − 5κ

4

)
2(ik)4

 = 0

Therefore there exists constants α2, α3 and α4 independent of s such that:

γ(s) =
κ(s)

4
+ α2,

3κ

4

(
γ − 3κ

2

)
+ θ

(
γ +

3κ

4

)
= α3,

3κ2

8
(γ − κ)− κζ

(
γ − 5κ

4

)
= α4 (4.16)

γ(s) =
κ(s)

4
+ α2, θ(s) =

α3 −
3κ

4

(
α2 −

5κ

4

)
κ+ α2

, ζ(s) =

−α4 +
3κ2

8

(
α2 −

3κ

4

)
κ (α2 − κ)

(4.17)

Using these values, let us consider now the part in ∂ru (B and b): we must have

∂s

θ + γ − 3κ

4
2(ik)3

 =
κ′(s)

4(ik)3
, ∂s


κ

2

(
γ − 5κ

4

)
− θ

(
γ − κ

2

)
(ik)4

 = 0,

∂s


κ

4

(
κ

4

(
7γ − 13κ

2

)
+ ζ

(
5γ − 11κ

2

))
2(ik)5

 = 0

The first equation leads to the existence of a constant β3 such that

α3 − 3κ
4

(
α2 − 5κ

4

)
κ+ α2

+
κ

4
+ α2 −

3κ

4
=
κ

2
+ β3 ⇒ α3 + α2

2 − β3α2 = κ

[
3α2

4
+ β3

]
− κ2

16

The left-hand size of this equation is then equal to a quantity that depends on s, which is in contradiction
with the hypothesis. This ABC is thus not usable in a variational context as soon as the artificial boundary
is not circular.
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Figure 7: L2 relative error using ABC (4.12), dependency on the parameters γ, θ and ζ.
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4.2.2 Asymptotic approximation: “High frequency”

We now perform a high frequency approximation in the sense that now 1/ω is the small parameter. We get the
following conditions

A zeroth order condition. Neglecting terms in O
(

1

ω

)
gives the following zeroth order ABC:

k =
ω

c
, ∂rû+ ik û+

(
γ + θ +

κ

4

)
û = 0 (4.18)

The obtained ABC is the same as (3.21) and leads to the “curvature-ABC” when θ + γ = κ/4. Its behavior is
hence the same and we do not plot the error curve again.

A first order condition. Neglecting terms in O
(

1

ω2

)
gives the following first order ABC:

k =
ω

c
,

1 +
θ + γ − κ

4
ik

 ∂rû +

ik + γ + θ +
κ

4
+
θγ +

(
γ + θ − κ

2

) κ
4

ik

 û +
ξ2

2 ik
û = 0 (4.19)

Fig. 8 shows the L2 relative errors on the obstacle in color scale, in (θ,γ) planes. The dependency on the
radius ratio between the obstacle and the artificial boundary is displayed in abscissa. The ABC gives better
results in high frequency.

A second order condition. Neglecting terms in O
(

1

ω3

)
gives the following second order ABC:

k =
ω

c
,

1 +
θ + γ − κ

4
ik

+
θ
(
γ − κ

4

)
+
κ

4

(κ
2
− γ
)

(ik)2

 ∂rû
+

ik +
(
γ + θ +

κ

4

)
+
θ
(
γ − κ

4

)
+
κ

4

(
γ − κ

2

)
ik

+

(
γ − κ

2

)(
ζ − κ

4

) κ
4

(ik)2

 û
− γ′

(ik)2
iξ û+

[
1

2 ik
− κ

4 (ik)2

]
ξ2û = 0 (4.20)

Fig. 9 shows the L2 errors obtained with the ABC (4.20) in the same conditions as Fig. 6. The first noticeable
property is the very low dependance of the ABC’s performance on the parameter ζ. Moreover, all subfigures
offer the same kind of behavior, meaning that a given parameter set will provide results of the same quality
for different situations. This robustness is a very nice feature to this ABC. The obtained condition (4.20) is
to be compared by the reader with (4.12) since it results from a different asymptotic truncation, at the same
order, of the same non local ABC (4.9). It is however much nicer since no Laplace-Beltrami operator needs to
be inverted on the boundary (no term ξ2 in front of ∂rû). Moreover it involves lower orders of ik, meaning that
the ABC may also be nicer in time domain. We observe that the ratio performance/computational burden is
very interesting with the ABC (4.20).
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Figure 8: L2 relative error using ABC (4.19), dependency on the parameters γ and θ.
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Figure 9: L2 relative error using ABC (4.20), dependency on the parameters γ, θ and ζ.
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Remark 4.2
In the prospect of using this ABC in the time domain, one can wonder if the parameters γ, θ and ζ could
be optimized in order to simplify its expression. Especially, we know that the terms involving ∂rû divided
by ik once or more times will require the solution of auxiliary systems on the artificial boundary. A natural
idea is then to seek parameters values that make the coefficients before these terms vanish. The specific
choice

γ = 0 and θ =
κ

2
, ζ =

κ

4
(4.21)

leads to the following ABC :

∂rû+ ik û+
3κ

4
û+

κ

4

∂rû

ik
+
ξ2 û

2 ik

(
1− κ

2 ik

)
= 0 (4.22)

which is a complete second order ABC. Notice that the latter can be seen as the first order ABC in equa-
tion (3.28) with the specific choice γ = κ/2. This explains why this value leads to better results than the
other ones.

A second order symmetric condition.
Recall that ξ is the dual variable associated to the curvilinear coordinate s. If we denote↔ the corresponding

between primal (physical) and dual domains, we can remind the reader that:

−iξ ↔ ∂s

−ξ2 ↔ ∂2s

Therefore,

−γ
′(s)

(ik)2
iξ û←→ γ′(s)

(ik)2
∂sû (4.23)

− κ(s)

4(ik)2
ξ2û←→ κ(s)

4(ik)2
∂2s û (4.24)

In the prospect of a variational numerical method, the only suitable choice is to take γ = K +
κ

4
, where K is

constant with respect to s, so that

− iξκ
′(s)

4(ik)2
û−

(
K +

κ(s)

4

)
1

(ik)2
ξ2û←→ ∂s

((
K +

κ(s)

4

)
1

(ik)2
∂sû

)
(4.25)

which corresponds to a symmetric term in a variational context. The resulting ABC reads:

k =
ω

c
,

1 +
θ +K

ik
+
θK +

κ

4

(κ
4
−K

)
(ik)2

 ∂rû+

ik +
(
θ +K +

κ

2

)
+
θ
(
K +

κ

2

)
+
κ

4

(
K − κ

4

)
ik

−

(
K − κ

4

) κ
4

(
ζ − κ

4

)
(ik)2

 û− κ′(s)

4(ik)2
iξû+

[
1

2 ik
−
(
K +

κ

4

) 1

(ik)2

]
ξ2û = 0 (4.26)

This ABC thus writes under the following variational form, where ϕ is a test function:

∫ 1 +
θ +K

ik
+
θK +

κ

4

(κ
4
−K

)
(ik)2

 ∂rû ϕ+

∫ ik +
(
θ +K +

κ

2

)
+
θ
(
K +

κ

2

)
+
κ

4

(
K − κ

4

)
ik

−

(
K − κ

4

) κ
4

(
ζ − κ

4

)
(ik)2

 û ϕ+

∫ [
1

2 ik
−
(
K +

κ

4

) 1

(ik)2

]
∂sû ∂sϕ = 0 (4.27)
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Fig 10 shows the relative L2 errors with respect to the parameters θ and ζ of ABC (4.26). The color scale
represents the radius ratio between the artificial boundary and the obstacle (from 1.05 to 500). It can be seen
that the ABC’s performance does not really depend on the parameter ζ, which can therefore be taken equal

to κ/4 in order to make the 1/(ik)2 contribution disappear in the
∫
uϕ term. The dependance in θ is less

pronounced than in previously found ABCs but the value θ = κ/2 seems to be slightly better, especially when
the artificial boundary is far from the obstacle.
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Figure 10: L2 relative error using ABC (4.26), dependency on the parameters θ and ζ.
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5 To sum up...
All ABC can be written under the following form(

a0(ik) + a1(ik) iξ + a2(ik) ξ2
)
∂rû+

(
b0(ik) + b1(ik) iξ + b2(ik) ξ2

)
û = 0 (5.1)

The coefficients for each ABC are summarized in Table 1 for the ABC of section 3 (with a1(ik) = b1(ik) = 0)
and in Table 2 for the ABC of section 4 (with a2(ik) = 0).

a0(ik) b0(ik) a2(ik) b2(ik)

(3.14) Km1 δ0, δ1 1 +
γ − κ/4
ik

ik + γ +
κ

4
0 0

(3.15) Km1 δ0, δ1 (γ = κ/4) 1 ik +
κ

2
0 0

(3.17) Km1 δ2 1 +
γ − κ/4
ik

ik + γ +
κ

4
−γ − 3κ/4

2(ik)3
1

2ik
− κ/4

(ik)2

Km1 δ2 (γ = κ/2) 1 +
κ

4ik
ik +

3κ

4

κ/4

(ik)3
1

2ik
− κ/4

(ik)2

(3.21) Km1 ω0 1 ik + γ +
κ

4
0 0

Km1 ω0 (γ = κ/4) 1 ik +
κ

2
0 0

(3.23) Km1 ω1 1 +
γ − κ/4
ik

ik + γ +
κ

4
0

1

2ik

(3.24) Km1 ω1 (γ = κ/4) 1 ik +
κ

2
0

1

2ik

Km1 ω1 (γ = κ/2) 1 +
κ

4ik
ik +

3κ

4
0

1

2ik

(3.28) Km1 ω2 1 +
γ − κ/4
ik

ik + γ +
κ

4
0

1

2ik
− κ/4

(ik)2

(4.22) Km1 ω2 (γ = κ/2) 1 +
κ

4ik
ik +

3κ

4
0

1

2ik
− κ/4

(ik)2

Table 1: Summary of the coefficients for the ABCs of section 3

Inria



High order ABCs 23

a0(ik) b0(ik) a1(ik) b1(ik) b2(ik)

(4.10) Km2 δ0 1 +
θ + γ − κ

4
ik

ik +
(
γ + θ +

κ

4

)
0 0 0

+
θγ −

(
θ + γ − κ

2

) κ
4

(ik)2
+
θγ +

(
θ + γ − κ

2

) κ
4

ik

−

(
γ − κ

2

)(
ζ +

κ

4

) κ
4

(ik)3
+

(
γ − κ

2

)(
ζ − κ

4

) κ
4

(ik)2

Km2 δ0 1 +
κ

4ik
ik +

3κ

4
0 0 0

(γ =
κ

2
, θ = 0)

(4.11) Km2 δ1 1 +
θ + γ − κ

4
ik

ik +
(
γ + θ +

κ

4

)
− κ′

4(ik)3
− γ′

(ik)2
0

+
θγ −

(
θ + γ − κ

2

) κ
4

(ik)2
+
θγ +

(
θ + γ − κ

2

) κ
4

ik

−

(
γ − κ

2

)(
ζ +

κ

4

) κ
4

(ik)3
+

(
γ − κ

2

)(
ζ − κ

4

) κ
4

(ik)2

Km2 δ1 1 +
κ

4ik
ik +

3κ

4
− κ′

4(ik)3
− κ′

2(ik)2
0

(γ =
κ

2
, θ = 0, ζ =

κ

4
)

(4.18) Km2 ω0 1 ik +
(
γ + θ +

κ

4

)
0 0 0

Km2 ω0 1 ik +
3κ

4
0 0 0

(γ =
κ

2
, θ = 0)

(4.19) Km2 ω1 1 +
θ + γ − κ

4
ik

ik +
(
γ + θ +

κ

4

)
0 0

1

2ik

+
θγ +

(
θ + γ − κ

2

) κ
4

ik

Km2 ω1 1 +
κ

4ik
ik +

3κ

4
0 0

1

2ik
(γ =

κ

2
, θ = 0, ζ =

κ

4
)

(4.20) Km2 ω2 1 +
θ + γ − κ

4
ik

ik +
(
γ + θ +

κ

4

)
0 − γ′

(ik)2
1

2ik
− κ

4(ik)2

+
θγ −

(
θ + γ − κ

2

) κ
4

(ik)2
+
θγ +

(
θ + γ − κ

2

) κ
4

ik

+

(
γ − κ

2

)(
ζ − κ

4

) κ
4

(ik)2

(4.22) Km2 ω2 1 +
κ

4ik
ik +

3κ

4
0 0

1

2ik
− κ

4(ik)2

(γ = 0, θ =
κ

2
, ζ =

κ

4
)

(4.26) Km2 ω2 sym 1 +
θ

ik
+

κ

16(ik)2
ik +

(
θ +

κ

2

)
0 − κ′

4(ik)2
1

2ik
− κ

4(ik)2

(γ = κ/4, ζ = κ/4) +
κ
(
θ − κ

8

)
2(ik)

Table 2: Summary of the coefficients for the ABCs of section 4 (ABC (4.12) is omitted because of its complexity)
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6 Numerical illustration

6.1 Convergence curves
In Fig. 11 we depict the relative L2 error of the Dirichlet trace of the solution on the circular obstacle of
radius R1 = 2, with different ABCs on the concentric circular artificial boundary of radius R2 ∈ [2.01, 2560].
Frequency is taken equal to 0.5 Hz and 5 Hz. Solutions are computed with the same numerical tool as all
previously displayed figures i.e. with Hankel expansion. Each curve corresponds to the use of a different ABC
(see the legend). It is clear on the figures that only complete ABCs converge to order 4 : Km2 delta 2 and Km2
omega 2. All other ABCs eventually exhibit a second order rate of convergence. This means that performing
a second order Taylor expansion on conditions coming from the first term of the pseudo-differential operator
decomposition does not lead to complete ABCs. However, the convergence regime is sometimes reached only
for very large radius ratio, especially for the case of a high frequency. This illustrates the fact that the newly
designed ABCs will be competitive with the usual ones for low frequencies, and this is consistent with the
fact that the Taylor expansion has been pushed one term ahead.
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4 2
Km1 delta             37 %
Km1 delta2           43 %
Km1 omega          64 %
Km1 omega2        44 %
Km2 delta             37 %
Km2 delta2           32 %
Km2 omega          44 %
Km2 omega2        32 %

(a) Freq = 0.5 Hz, γ = κ/4, θ = κ/2 and ζ = κ/4
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4 2
Km1 delta             39 %
Km1 delta2           25 %
Km1 omega          25 %
Km1 omega2        25 %
Km2 delta             39 %
Km2 delta2           25 %
Km2 omega          25 %
Km2 omega2        25 %

(b) Freq = 5 Hz, γ = κ/4, θ = κ/2 and ζ = κ/4

Figure 11: Convergence curves for all the ABCs. Remind that with these values of the parameters, Km1 delta
corresponds to the C-ABC and Km1 omega to the C-ABC with Laplace-Beltrami term. Following the legend
are indicated the errors for the first point of the curve where the absorbing boundary is very close to the obstacle
(R2/R1 = 1.005).

In the legend, the indicated ABCs are followed by the relative L2 error percentage of the first point of the curve.
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This point is obtained with the artificial boundary very close to the obstacle (R2/R1 = 1.005). It illustrates
that the newly designed ABCs really improve the numerical error only when the wavelength is comparable to
the size of the obstacle. Indeed, if the frequency is equal to 5 Hz, the wavelength is small compared to the size
of the obstacle. In this case, Km2 omega2 performs as well as Km1 omega but not better (error = 25 %). But
if the frequency is smaller, equal to 0.5 Hz, the wavelength is comparable to the size of the obstacle and Km2
omega2 performs better (32 %) than Km1 omega (64 %) or Km1 delta (37 %).

6.2 Finite Element simulations
Realistic simulations on arbitrary domains can only be performed by using efficient numerical methods such
as finite elements methods. In the following we present numerical results obtained with Montjoie code (http:
//montjoie.gforge.inria.fr) using Galerkin finite elements Q8. The meshes are generated using Gmsh soft-
ware (http://geuz.org/gmsh). Quantifying the efficiency and accuracy of the ABCs on these arbitrary shapes
requires a reference solution. This is done using a transparent condition based on an integral representation
(see [7]). To avoid integration accuracy loss, and obtain a good reference solution, the artificial boundary car-
rying the transparent condition will be put far away from the obstacle (several wavelengths away).

In the context of finite elements, a variational form of the ABCs is welcome. Unfortunately some of the ABCs
do not own this property : Km1 delta 2 and Km1 omega 2. Another difficulty arises from the ABCs that
include a term of the form a2(ik)ξ2∂ru because such a term requires the inversion of a second order operator
on the artificial boundary. This is technically possible but has not been done yet in the finite elements code
Montjoie. For this reason, Km1 delta 2 and Km2 delta 2 ABCs are not considered in that work. We have thus
implemented the following ABCs : Km1 delta, Km1 omega, Km2 delta, Km2 omega and Km2 omega
2. We recall that they read as:

(∂rû+ ik û) +
(
γ +

κ

4

)
û+

(
γ − κ

4

) ∂rû

ik
= 0 (Km1 delta)

1 +
γ − κ

4
ik

 ∂rû+
[
ik + γ +

κ

4

]
û+

ξ2

2 ik
û = 0 (Km1 omega)

1 +
θ + γ − κ

4
ik

+
θγ −

(
θ + γ − κ

2

) κ
4

(ik)2
−

(
γ − κ

2

)(
ζ +

κ

4

) κ
4

(ik)3

 ∂rû (Km2 delta)

+

ik +
(
γ + θ +

κ

4

)
+
θγ +

(
θ + γ − κ

2

) κ
4

ik
+

(
γ − κ

2

)(
ζ − κ

4

) κ
4

(ik)2

 û = 0

1 +
θ + γ − κ

4
ik

 ∂rû+

ik + γ + θ +
κ

4
+
θγ +

(
γ + θ − κ

2

) κ
4

ik

 û+
ξ2

2 ik
û = 0 (Km2 omega)

[
1 +

θ

ik
+

κ

16(ik)2

]
∂rû+

ik +
(
θ +

κ

2

)
+

κ

2

(
θ − κ

8

)
ik

−

κ

16

(
ζ − κ

4

)
(ik)2

 û (Km2 omega 2)

− κ′(s)

4(ik)2
iξû+

[
1

2 ik
− κ

4 (ik)2

]
ξ2û = 0

6.2.1 Validation of finite element ABC implementation on concentric circles

The first numerical test is done on concentric circles, in order to compare the numerical solutions to the analyt-
ical ones, which are available for this specific geometry. The exterior radius is chosen very close to the obstacle
radius (R1 = 2.0, R2 = 2.01), and the frequency is equal to 0.5 Hz. The reader will notice that this is a very
difficult test case, hence the high values of the error. The transparent condition is computed with an artificial
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boundary with radius R2 = 10.0 (see the total and diffracted field’s real part on figure 12). The computed error
is the L2 relative error of the Dirichlet trace of the solution on the obstacle (R = 2.0) between the numerical
solution and the analytic solution obtained as described earlier (see section 6.1). The first result is that the
transparent condition leads to an error of 3.7× 10−9 % compared to the analytical solution, and can therefore
serve as a reference solution.

Figure 12: Reference solution obtained with eighth order finite elements associated with a transparent condition.

In Fig. 13 we display the mesh of the domain {r, 2.00 ≤ r ≤ 2.01} with ABC on the exterior boundary, and the
real part of the Dirichlet trace of the solution on the obstacle for several simulations. The L2 relative errors are
displayed as a legend and they are listed in table 3 where they are compared to the analytic errors obtained in
section 6.1 (no spatial discretization). The mesh can hardly be seen because the domain is very thin compared
to its size. The results are very comparable (the 1 % discrepancy can be attributed to spatial discretisation,
round off and projection errors) and show that the finite element code leads to the same conclusions as the
analytical one.

(a) Mesh of the domain
{r, 2.00 ≤ r ≤ 2.01}
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Transparent            0 %
Km1 delta               38 %
Km1 omega            65 %
Km2 delta               38 %
Km2 omega            45 %
Km2 omega2          33 %

(b) Real part of the Dirichlet trace of the solution on the obstacle. L2 relative error
compared to the analytical solution is indicated in percent.

Figure 13: Finite element simulations for a circular obstacle of radius R1 = 2 and an artificial circular boundary
of radius R2 = 2.01 with frequency 0.5 Hz. The errors are very high because the artificial condition is set very
close to the obstacle.

In Fig. 14 we represent the L2 relative error on all the domain of each ABC, as a function of parameter
values. When several parameters exist for the ABC (as for Km2 delta and Km2 omega), the legend specifies
at which value the non-varying parameter is set. We can notice on this curve that when the boundary is very
close to the obstacle, the ABCs coming from the 1/ω asymptotic present singularities at some parameter values
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Km1 delta Km1 omega Km2 delta Km2 omega Km2 omega 2
(C-ABC) (C-ABC Laplace Beltrami)

Analytic 37 % 64 % 37 % 44 % 32 %
FEM 38 % 65 % 38 % 45 % 33 %

Table 3: L2 relative error in percent for different ABCs (with parameters chosen to γ = κ/4, θ = κ/2 and
ζ = κ/4), for a circular obstacle of radius R1 = 2 and an artificial circular boundary of radius R2 = 2.01.
Frequency is 0.5 Hz. Comparison between analytically computed solution and finite elements computations.

(which are negative). However, there exists some values of the parameters for which the error is very low
compared to the other ABCs.
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Figure 14: Parameter dependency of the ABCs for the circular obstacle with a circular artificial boundary.

6.2.2 Non convex obstacle and circular ABC

Non convex obstacles are considered in the following numerical examples. The reference solution is computed us-
ing the transparent condition on the boundary of a circle put far away from the obstacle, while the computations
done with the ABCs are done with a circular artificial boundary very close to the obstacle.

In the first example, the non convex shape is a peanut, which can be seen on the displayed meshes in Fig. 15.
The frequency is set to 0.1 Hz, while the angle of the incident wave is 0, 45 and 90◦ with the horizontal axis.
The numerical results for each angle of incidence are displayed in Fig. 16. The reference solution, computed
with a transparent boundary far from the obstacle, is displayed in the left-top corner in a square domain. The
reader can notice that the artificial boundary hence does not appear, the solution is drawn in all the displayed
square. In the same line, different solutions are obtained by using ABCs on the artificial boundary. The first
two are Km1 delta with γ = κ/4, Km1 omega with γ = κ/4, because they coincide with very classical ABCs
(the C-ABC and the C-ABC with Laplace-Beltrami term). The three others are Km2 delta, Km2 omega and
Km2 omega2, and the chosen values of γ and ζ are κ/4 but the value of θ can be different. We have chosen
to represent graphically in Fig. 16 the simulation obtained with the best value depending on θ
as shown in Fig. 17 for the three ABCs Km2 delta, Km2 omega and Km2 omega2, while Km1
delta and Km1 omega are displayed for γ = κ/4 since they therefore coincide with classical ABCs.
This choice will be followed throughout this report hence we will not specify it again. The second
line shows the error as a function of space, and the L2 relative error of the Dirichlet trace on the obstacle is
specified in the subtitles. The meaning of the value under parenthesis will be explained later (see ??). It is then
possible to see where the solution is wrongly computed : it appears to be in the regions of shadow, which differ
with the incidence angle.

In Fig. 17, we present the value of the L2 relative error of the Dirichlet trace on the obstacle obtained for
the same experiments, as a function of the parameters value. Each parameter is chosen under the form c × κ
where c is a constant, and appears as abscissa of Fig. 17. The ABCs Km1 delta and Km1 omega are depending
on γ while we present the dependency of Km2 delta, Km2 omega and Km2 omega2 on the parameter θ (γ
and ζ are fixed to κ/4 for the experiments). Recall that a more general form could be chosen for the
parameters, for instance a polynomial function of κ or any s-depending function. In this report
we choose to focus on the linear case, but interesting results shall be obtained by considering
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other types of dependency. We can observe that Km1 delta and Km2 delta do not depend strongly on
the parameter (the curves are rather flat) while Km1 omega, Km2 omega and Km2 omega2 show a stronger
dependency on their parameter θ or γ. With the frequency 0.1 Hz, the two first ABCs provide higher errors
than the three last, for which the best value of θ or γ seems to be close to 1. The value of the incidence angle
does not seem to change the tendency of the results, and whatever value chosen for θ, the ABCs coming from
the 1/ω asymptotic seem to perform better than the other ones (see the three first sub-figures). Recall that
only the ABCs coming from the 1/ω asymptotic posses a Laplace-Beltrami term which could therefore explain
their better behavior. Another set of experiments has been lead with and incident angle of 90◦ and a frequency
of 0.05 Hz (twice smaller). The results are displayed in the fourth sub-figure and are graphically displayed in
Fig. 18. In this case, the θ or γ-dependency of Km1 omega, Km2 omega and Km2 omega2 is stronger, leading
to crossing curves : for some values of the parameter θ or γ (close to 1), the 1/omega ABCs perform better
than the other ones, but for other values of the parameter θ or γ (close to −2), the 1/omega ABCs perform less
well than the other ones. This raises the question of how to choose the parameter, whether there is a universal
answer or if the chosen value must be case-dependent. Notice for instance that for the ABC Km1 omega, the
value γ = κ/4 coincides with the classical C-ABC Laplace Beltrami, but this is not the best possible value in
these cases.

In the second example, the non convex shape is a regularized star, which can be seen in Fig. 19. The
frequency is set to 0.5 Hz and the incident wave has a 0◦ angle with the horizontal axis. The numerical results
are displayed in Fig 20 and Fig. 21, in the same configuration as before. The newly designed ABCs provide
good results, although they depend strongly on the parameter’s value. The best value of γ for Km1 omega, and
of θ for Km2 omega and Km2 omega2 seems close to 1.

(a) Mesh for the transparent condition (b) Mesh for ABCs

Figure 15: Meshes used in the simulations for Fig. 16 and Fig. 17.
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(a) Incident angle = 0◦

(b) Incident angle = 45

(c) Incident angle = 90

Figure 16: Peanut-shaped obstacle in a circular artificial boundary. Freq = 0.1 Hz. The analytical solution is
computed in a larger domain than the actually displayed square area. Km1 delta and Km1 omega are computed
with γ = κ/4 while for Km2 delta, Km2 omega and Km2 omega2 we display the simulation obtained with the
best value of θ obtained in Fig. 17. Titles : relative L2 error of the Dirichlet trace of the solution on the obstacle.
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(a) Incident angle = 0◦, Freq = 0.1 Hz
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(b) Incident angle = 45◦, Freq = 0.1 Hz
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(c) Incident angle = 90◦, Freq = 0.1 Hz
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(d) Incident angle = 90◦, Freq = 0.05 Hz

Figure 17: Peanut-shaped obstacle in a circular artificial boundary. Freq = 0.1 or 0.05 Hz

Figure 18: Peanut-shaped obstacle in a circular artificial boundary. Freq = 0.05 Hz. The analytical solution is
computed in a larger domain than the actually displayed square area. Km1 delta and Km1 omega are computed
with γ = κ/4 while for Km2 delta, Km2 omega and Km2 omega2 we display the simulation obtained with the
best value of θ obtained in Fig. 17. Titles : relative L2 error of the Dirichlet trace of the solution on the obstacle.
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(a) Mesh for the transparent condition (b) Mesh for ABCs

Figure 19: Meshes used in the simulations for Fig. 20 and Fig. 21.

Figure 20: Star-shaped obstacle in a circular artificial boundary. Freq = 0.5 Hz. The analytical solution is computed in
a larger domain than the actually displayed square area. Km1 delta and Km1 omega are computed with γ = κ/4 while
for Km2 delta, Km2 omega and Km2 omega2 we display the simulation obtained with the best value of θ obtained in
Fig. 21. Titles : relative L2 error of the Dirichlet trace of the solution on the obstacle.
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Figure 21: Star-shaped obstacle in a circular artificial boundary. Freq = 0.5 Hz
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6.2.3 Elliptic domain and elliptic artificial boundary

An elliptic obstacle is considered in the following numerical examples. The reference solution is computed using
the transparent condition on the boundary of a scaling of the same ellipse put far away from the obstacle,
while the computations done with the ABCs are done with an elliptic artificial boundary very close to the
obstacle. The associated meshes can be seen in Fig. 22. The frequency is set to 0.1 and 1 Hz, while the angle
of the incident wave is 0◦ with the horizontal axis. The numerical results are shown in Fig. 23 and Fig. 24.
When the frequency is 1 Hz, the wavelength is very small compared to the obstacle. In this case, the three
ABCs coming from 1/ω asymptotic perform clearly better (error around 51 %) than the ones coming from the
1/δ asymptotic (error around 66 %), showing that the Laplace Beltrami term is very important. Moreover,
the ABCs performance are about the same for all values of parameters. But when the frequency decreases,
the ABCs depend more and more on the parameters. When the frequency is 0.05 Hz, it is possible to find
parameters values such that the ABCs coming from the 1/ω asymptotic lead to errors close to 27 %, but for
other values of the parameters, the error can grow to more than 100 % which is clearly unacceptable.

(a) Mesh for the transparent condition (b) Mesh for ABCs

Figure 22: Meshes used in the simulations for Fig 23 and Fig. 24.
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(a) Freq = 0.05 Hz

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
30

40

50

60

70

80

90

theta or gamma / kappa

re
la

ti
ve

 L
2 

er
ro

r 
in

 %

Freq = 0.1 Hz

 

 

Km1 delta (gamma)
Km1 omega (gamma)
Km2 delta (gamma=kappa/4, theta, zeta=kappa/4)
Km2 omega (gamma=kappa/4, theta)
Km2 omega2 (theta)

(b) Freq = 0.1 Hz
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(c) Freq = 1 Hz

Figure 23: Parameter dependency for the elliptic domain. Freq = 0.05, 0.1 and 1 Hz.
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(a) Freq = 0.05 Hz

(b) Freq = 0.1 Hz (c) Freq = 1 Hz

Figure 24: Comparison of the ABCs on an elliptic domain. Freq = 0.05, 0.1 and 1 Hz. The analytical solution
is computed in a larger domain than the actually displayed rectangular area. Km1 delta and Km1 omega are
computed with γ = κ/4 while for Km2 delta, Km2 omega and Km2 omega2 we display the simulation obtained
with the best value of θ obtained in Fig. 23. Titles : relative L2 error of the Dirichlet trace of the solution on
the obstacle.
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It has been suggested in [5] that the lack of performance of classical ABCs in such cases comes from the
fact that the grazing waves are not controlled by the usual ABCs. The grazing waves are waves for which the
couple (ω, ξ) satisfies λ1 = 0. Following the approach done in page 140 of [5], it is possible to write an enriched
condition that controls grazing waves, and still falls in our family (5.1), by combining an ABC that controls
grazing waves with any ABC of our family respecting a1 = 0 and a2 = 0:

(∂r + c)
(
a0(ik)∂r +

(
b0(ik) + b1(ik) iξ + b2(ik) ξ2

))
û = 0 (6.1)

where
c ≡ c(ik, κ) = (6κ)

1/3 Γ(2/3)

Γ(1/3)
(ik)2/3 (6.2)

Using the identity of remark 2.2, it gives a new ABC of the form (5.1) with tilded coefficients :(a0 (c− κ) + b0)︸ ︷︷ ︸
ã0

+ b1︸︷︷︸
ã1

iξ + b2︸︷︷︸
ã2

ξ2

 ∂rû+

((ik)2a0 + cb0
)︸ ︷︷ ︸

b̃0

+ cb1︸︷︷︸
b̃1

iξ + (cb2 + a0)︸ ︷︷ ︸
b̃2

ξ2

 û = 0 (6.3)

For instance, for the classical C-ABC, we get:[
1 +

c− κ/2
ik

]
∂rû+

[
ik + c+

κ c

2ik

]
û+

ξ2

ik
û = 0 (6.4)

It is also possible to use it on Km2 delta since no term in ξ2 appears in it (a1 = 0 and a2 = 0). Let us make
computations for the ellipse where the grazing ABC is combined with the C-ABC (Km1 delta with γ = κ/4)
or Km2 delta (the value of parameters will be chosen equal to (γ, θ, ζ) = (0.25, 0.5, 0.25) arbitrarily) and see in
Fig. 25 which errors are obtained. The two ABCs obtained with this method are plotted in the two last sub-
figures and their errors indicated as subtitles. In the table below are indicated the errors obtained for the three
frequencies (recall that the displayed error for Km2 delta is the best possible for all values of θ while here we
are interested in the value θ = 0.5, which explains the discrepancy between the errors in Tab. 4 and in Fig. 25).
It is clear that using the combined ABC is always better than the original ABC (the column C-ABC+grazing
is always better than the column C-ABC and the column Km2 delta + grazing than the column Km2 delta).
Notice that the obtained ABC is better than the high order ABC Km2 omega2 for the frequencies 1.00 and
0.10 Hz but is not better when the frequency is equal to 0.05 Hz.

freq (Hz) C-ABC C-ABC + grazing Km2 delta Km2 delta + grazing Km2 omega2
(0.25, 0.5, 0.25) (0.25, 0.5, 0.25)

0.05 66.88 % 33.55 % 117.56 % 28.06 % 26.27 %
0.10 78.48 % 22.35 % 80.04 % 22.44 % 33.76 %
1.00 66.18 % 27.76 % 66.18 % 27.83 % 51.03 %

Table 4: Comparison of the L2 relative error of the Dirichlet trace of the solution on the obstacle with and
without the control of grazing waves.

In the following of the report (and in previous figures as well), the error obtained with the
control of grazing waves for Km1 delta or Km2 delta will be specified in parenthesis in the
subtitle corresponding to the associated ABC. Notice that the value corresponding to Km2 delta
is the best possible value and can therefore hardly be compared to the value in parenthesis. The
purpose is to compare the value in parenthesis to the newly designed ABC Km2 omega2.
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(a) Freq = 0.05 Hz

(b) Freq = 0.1 Hz (c) Freq = 1 Hz

Figure 25: Comparison of the ABCs with and without the grazing condition on an elliptic domain. The
analytical solution is computed in a larger domain than the actually displayed rectangular area. Km1 delta and
Km1 omega are computed with γ = κ/4 while for Km2 delta, Km2 omega and Km2 omega2 we display the
simulation obtained with the best value of θ obtained in Fig. 23. The last two figures concern the C-ABC +
grazing and the Km2 delta + grazing with (γ, θ, ζ) = (0.25, 0.5, 0.25). Titles : relative L2 error of the Dirichlet
trace of the solution on the obstacle.
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6.2.4 Non convex obstacle with non convex artificial boundary condition.

In the prospect of using the ABCs in an “On-Surface Radiation Conditions” (OSRC) context, let us put the
artificial boundary very close to the obstacle, and respecting its shape. This leads to non-convex artificial
boundaries, and very hard numerical problems.

The first example is the peanut, as shown in Fig. 27 and 26. The frequency is 0.05, 0.10 and 0.50 Hz. When
the frequency is high, the ABCs all perform quasi equivalently (error around 70 %), while the grazing-controlling
ABCs offer a 52 % error. When the frequency diminishes, the results are very disappointing since the ABCs
coming from the 1/ω asymptotic perform less well than the 1/δ ones and anyway the grazing-controlling ABCs
give mush better results. The conclusion of this set of experiments would therefore be that it is essential to
control grazing waves in the context of OSRC.
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(c) Freq = 0.5 Hz

Figure 26: Very close peanut-shaped boundary. Freq = 0.05, 0.1 and 0.5 Hz

The second example is the regularized star, which is even more non-convex, for frequencies 0.01, 0.05, 0.10
and 0.50 Hz as shown in Fig. 28 and 29. In high frequency the conclusions are the same as before (the control
of grazing waves seems to be the best option), but the results are very surprising in low frequency where it
can happen that the best option, from far, is to use Km2 omega2. We think this is linked to the very strong
dependency of the ABCs performance on the parameters values (see Fig. 29). This last set of experiment
instructs us to continue our investigation before drawing further conclusions. Considering another type of
dependency on s for the parameters might be one possibility.
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(a) Freq = 0.05 Hz

(b) Freq = 0.1 Hz

(c) Freq = 0.5 Hz

Figure 27: Very close peanut-shaped boundary. Freq = 0.05, 0.1 and 0.5 Hz. The analytical solution is computed
in a larger domain than the actually displayed rectangular area. Km1 delta and Km1 omega are computed with
γ = κ/4 while for Km2 delta, Km2 omega and Km2 omega2 we display the simulation obtained with the best
value of θ obtained in Fig. 23. Titles : relative L2 error of the Dirichlet trace of the solution on the obstacle.
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(a) Freq = 0.01 Hz

(b) Freq = 0.05 Hz

(c) Freq = 0.1 Hz

(d) Freq = 0.5 Hz

Figure 28: Very close star-shaped boundary. Freq = 0.01, 0.05, 0.1 and 0.5 Hz. The analytical solution is
computed in a larger domain than the actually displayed rectangular area. Km1 delta and Km1 omega are
computed with γ = κ/4 while for Km2 delta, Km2 omega and Km2 omega2 we display the simulation obtained
with the best value of θ obtained in Fig. 29. Titles : relative L2 error of the Dirichlet trace of the solution on
the obstacle.
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Figure 29: Very close star-shaped boundary. Freq = 0.01, 0.05, 0.1 and 0.5 Hz
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A Calculation of the symbols of R0

We compute at the same time the principal symbol of R0 and its symbol of degree −1, which will be useful in
the following. {

σ∗0(R0) = σ∗0
(
(∂rP0)P−10

)
+ σ∗0

(
P0L1P

−1
0

)
+ σ∗0

(
P0L0P

−1
0

)
(A.1a)

σ∗−1(R0) = σ∗−1
(
(∂rP0)P−10

)
+ σ∗−1

(
P0L1P

−1
0

)
+ σ∗−1

(
P0L0P

−1
0

)
(A.1b)

A.1 Symbol of P−10 .

Let Q = P−10 , and Q = σ(Q) = Q0 +Q−1 +Q−2 + . . . We have:

σ(PQ) = σ(I) = I2

⇒ P0Q− i∂sP0∂ξQ−
1

2
∂2sP0∂

2
ξQ = I2 , which is of order 0 : we can identify the terms :

⇒



P0Q0 = I2 ⇒ Q0 = P−10

P0Q−1 − i∂sP0∂ξQ0 = 0⇒ Q−1 = iP−10 ∂sP0∂ξQ0

P0Q−2 − i∂sP0∂ξQ−1 −
1

2
∂2sP0∂

2
ξQ0 = 0⇒ Q−2 = iP−10 ∂sP0∂ξQ−1 +

1

2
P−10 ∂2sP0∂

2
ξQ0

We have :

∂ξQ0 =
∂ξλ1√

2

 iωλ21 0

0
1

iω

 , where ∂ξλ1 =
ξ

h2λ1
(A.2)

∂sP0 =
∂sλ1√

2

−1

iω
0

0
−iω
λ21

 , where ∂sλ1 =
−ξ2rκ′(s)
λ1 h3

(A.3)

hence

Q−1 =
−i(∂ξλ1)(∂sλ1)

2λ21
P−10 (A.4)

A.2 First part.

σ
(
(∂rP0)P−10

)
= ∂r(P0)Q− i∂s∂rP0∂ξQ+ σ−2(. . .)⇒

{
σ∗0
(
(∂rP0)P−10

)
= ∂rP0Q0

σ∗−1
(
(∂rP0)P−10

)
= ∂rP0Q−1 − i∂s∂rP0∂ξQ0

(A.5)

Calculation gives: ∂rP0 =
∂rλ1√

2

−1

iω
0

0
−iω
λ21

 , where ∂rλ1 =
−κ(s)ξ2

h3 λ1
(A.6)

hence, σ∗0
(
(∂rP0)P−10

)
=
∂rλ1

2


1

λ1

−1

iω
−iω
λ21

−1

λ1

 , where ∂rλ1 =
−κ(s)ξ2

h3 λ1
(A.7)
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A.3 Second part.

σ
(
P0L1P

−1
0

)
= σ(P0)σ(L1P

−1
0 )− i∂sσ(P0)∂ξσ(L1P

−1
0 )− 1

2
∂2sP0∂

2
ξσ(L1P

−1
0 ) + σ−2(. . .)

= P0

[
L1Q− i∂sL1∂ξQ−

1

2
∂2sL1∂

2
ξQ+ σ−2(. . .)

]
− i∂sP0∂ξ

[
L1Q− i∂sL1∂ξQ+ σ−2(. . .)

]
− 1

2
∂2sP0∂

2
ξ

(
L1Q

)
+ σ−2(. . .)

σ
(
P0L1P

−1
0

)
= P0

[
L1

[
Q0 +Q−1 +Q−2

]
− i∂sL1∂ξ

[
Q0 +Q−1

]
− 1

2
∂2sL1∂

2
ξQ0

]
− i∂sP0∂ξ

[
L1

[
Q0 +Q−1

]
− i∂sL1∂ξQ0

]
− 1

2
∂2sP0∂

2
ξ

(
L1Q0

)
+ σ−2(. . .)

σ∗1
(
P0L1P

−1
0

)
= P0L1Q0 (A.8)

σ∗0
(
P0L1P

−1
0

)
= P0L1Q−1 − iP0∂sL1∂ξQ0 − i∂sP0∂ξ(L1Q0) (A.9)

σ∗−1
(
P0L1P

−1
0

)
= P0L1Q−2 − iP0∂sL1∂ξQ−1 −

1

2
P0∂

2
sL1∂

2
ξQ0 − i∂sP0∂ξ(L1Q−1)

− ∂sP0∂ξ(∂sL1∂ξQ0)− 1

2
∂2sP0∂

2
ξ

(
L1Q0

)
(A.10)

P0L1Q−1 = − i(∂sλ1)(∂ξλ1)

2λ21
P0L1P−10 = − i(∂sλ1)(∂ξλ1)

2λ21

(
λ1 0
0 −λ1

)
(A.11)

iP0∂sL1∂ξQ0 =
−i(∂ξλ1)(∂sλ1)

λ1

 1 0
iω

λ1
0

 =
iξ3rκ′(s)

h5λ31

 1 0
iω

λ1
0

 (A.12)

i∂sP0∂ξ (L1Q0) =
i(∂sλ1)(∂ξλ1)

2

 0
1

iω
−iω
λ21

2

λ1

 ‘ (A.13)

A.4 Third part.

σ
(
P0L0P

−1
0

)
= P0σ(L0Q)− i∂sP0∂ξσ(L0Q) + σ−2(. . .)

= P0

[
L0Q− i∂sL0∂ξQ+ σ−2(. . .)

]
− i∂sP0∂ξ

[
L0Q+ σ−2(. . .)

]
+ σ−2(. . .)

= P0

[
L0

[
Q0 +Q−1

]
− i∂sL0∂ξQ0

]
− i∂sP0∂ξ

(
L0Q0

)
+ σ−2(. . .)

σ∗0
(
P0L0P

−1
0

)
= P0L0Q0 (A.14)

σ∗−1
(
P0L0P

−1
0

)
= P0L0Q−1 − iP0∂sL0∂ξQ0 − i∂sP0∂ξ

(
L0Q0

)
(A.15)

P0L0Q0 =
1

2


i
∂sh ξ

h3λ1
− κr −∂sh ξ

ωh3
− κr λ1

iω

−∂shωξ
h3 λ21

− iω κr
λ1

−i ∂sh ξ
h3 λ1

− κr

 (A.16)

RR n° 8632



42 Barucq, Bergot, Chabassier & Estecahandy

A.5 It gives...

σ∗0(R0) =
1

2


∂rλ1
λ1

+ i
(∂sλ1)(∂ξλ1)

λ1
+

[
i
∂sh ξ

h3λ1
− κr

]
−∂rλ1

iω
− (∂sλ1)(∂ξλ1)

ω
−
[
∂sh ξ

ωh3
+
κr λ1
iω

]
−∂rλ1iω

λ21
− 3ω(∂sλ1)(∂ξλ1)

λ21
−
[
∂shωξ

h3 λ21
+
iω κr
λ1

]
−∂rλ1

λ1
− i(∂sλ1)(∂ξλ1)

λ1
−
[
i
∂sh ξ

h3 λ1
+ κr

]


(A.17)

Taking r = 0 in this matrix reduces the number of terms:

σ∗0(R0)(r = 0) =

−
κ

2λ21
(2ξ2 − ω2

c2
)

κω

2iλ1c2

iκω3

2λ31c
2

κω2

2λ21c
2

 (A.18)
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B Calculation of σ∗−1(R−1)1,2

We need to know the term σ∗−1(R−1)1,2 in order to establish the CLA. We know by identifying terms in 3.1 that

R−1 = ∂r(K−1)(I +K−1)−1︸ ︷︷ ︸
First term

+ OP−1
(
R0

)︸ ︷︷ ︸
Second term

+OP−1
(
{K−1 ; D1 +R0} (I +K−1)−1

)
︸ ︷︷ ︸

Last term W1

(B.1)

B.1 First term.

We have:

σ∗−1
(
∂r(K−1)(I +K−1)−1

)
= σ∗−1(∂rK−1) = ∂rK−1

The term (∂rK−1)1,2 writes, since we have (3.6):

(∂rK−1)1,2 = ∂r

(
σ∗0(R0)1,2

2λ1

)
=
∂r (σ∗0(R0)1,2)

2λ1
− σ∗0(R0)1,2 (∂rλ1)

2λ21
(B.2)

The second term of (B.2) will considerably diminish when we will evaluate r = 0. Indeed,

σ∗0(R0)1,2(r = 0) = − (∂rλ1)(r = 0)

2iω
− κλ1(r = 0)

2 iω
(B.3)

We need to calculate the first term before taking r = 0. We have,

∂r (σ∗0(R0)1,2) = −∂
2
rλ1
2iω

− (∂2r,sλ1)
(∂ξλ1)

2ω
+ (∂sλ1)(...)− 1

2

[
(∂2r,sh)

ξ

h3ω
+ (∂sh) (...) + ∂r

(
κλ1
h iω

)]
(B.4)

Since (∂sλ1) and (∂sh) will vanish when r = 0, it is unnecessary to calculate their multiplicating terms. Only
four terms are to be considered.



∂2rλ1 = κ ξ2
[
3

κ

h4λ1
+
∂rλ1
λ21h

3

]
(B.5a)

∂2r,sλ1 = −∂r
(
ξ2rκ′

λ1h3

)
= − ξ

2κ′

λ1h3
+ r (...) (B.5b)

∂2r,sh = κ′ (B.5c)

∂r

(
κλ1
h iω

)
=
κ∂rλ1
h iω

− κλ1(∂rh)

h2 iω
(B.5d)

When r = 0, we get



(∂2rλ1)(r = 0) = −κ
2ξ2

λ1

[
−3 +

ξ2

λ21

]
(B.6a)

(∂2r,sλ1)(r = 0) = −ξ
2κ′

λ1
(B.6b)

(∂2r,sh)(r = 0) = κ′ (B.6c)

∂r

(
κλ1
h iω

)
(r = 0) = −κ

2

iω

[
ξ2

λ1
+ λ1

]
(B.6d)RR n° 8632
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Consequently, equation (B.4) becomes, when r = 0,

∂r (σ∗0(R0)1,2) =
κ2ξ2

2iωλ1

[
−3 +

ξ2

λ21

]
+

ξ3κ′

2ωλ21
− 1

2

[
ξ κ′

ω
− κ2

iω

(
ξ2

λ1
+ λ1

)]
=

κ2ξ2

2iωλ1

[
−3 + 1 +

ξ2

λ21

]
+
κ2λ1
2iω

+ κ′
[
ξ3

2ωλ21
− ξ

2ω

]
=

κ2

2iω

[
−2ξ2

λ1
+
ξ4

λ31
+ λ1

]
+
κ′ξ

2ω

[
ξ2 − λ21
λ21

]
=

κ2

2iω

[
−2ξ2λ21 + ξ4 + λ41

λ21

]
+
κ′ξ

2ω

ω2

λ21c
2

=
κ2

2iωλ31

(
ξ2 − λ21

)2
+

κ′ξω

2λ21c
2

=
κ2ω3

2iλ31c
4

+
κ′ξω

2λ21c
2

hence,

(∂rK−1)1,2 (r = 0) =
κ2ω

4iλ41c
2

(
ω2

c2
+ ξ2

)
+

κ′ξω

4λ31c
2

(B.7)

B.2 Second term.
The symbol of OP−1

(
R0

)
was given in (A.1b).

The only contributing term comes from −iP0∂sL0∂ξQ0 and in the end,

σ∗−1(R0)1,2(r = 0) =
ξ κ′

2ωλ1
(B.8)

B.3 Last term.
We use formula 2.8 to calculate the symbol of exactly order −1 of the last term:

σ∗−1(W1) = σ−1
([
K−1D1 −D1K−1 +K−1R0 −R0K−1

]
(I −K−1 + OP−2)

)
= σ−1(K−1D1)− σ−1(D1K−1)− σ−1(K−1D1K−1) + σ−1(D1K−1K−1)

+ σ−1(K−1R0)− σ−1(R0K−1)

= ����K−1D1︸ ︷︷ ︸
order 0

−i∂sK−1∂ξD1 −����D1K−1︸ ︷︷ ︸
order 0

+i∂sD1∂ξK−1 −K−1D1K−1 +D1K−1K−1

+K−1σp(R0)− σp(R0)K−1
σ∗−1(W1) = −i∂sK−1∂ξD1 + i∂sD1∂ξK−1 −K−1D1K−1 +D1K−1K−1 +K−1σp(R0)− σp(R0)K−1

where σp(R0) is given by (A.1a).

B.3.1 First term.

(−i∂sK−1∂ξD1)1,2 = i(∂ξλ1)∂s

(
σ∗0(R0)1,2

2λ1

)
= i(∂ξλ1)

[
∂s(σ

∗
0(R0)1,2)

2λ1
+ (∂sλ1)(...)

]
(−i∂sK−1∂ξD1)1,2 (r = 0) =

iξ

2h2λ21
∂s (σ∗0(R0)1,2) (r = 0) (B.9)

Calculation gives:

∂s (σ∗0(R0)1,2) = −
∂2r,sλ1

2iω
−

(∂2r,sλ1)(∂ξλ1)

2ω
+ (∂sλ1)(...)−

(∂2r,sh)ξ

2h3ω
+ (∂sh)(...) + ∂s

(
−κλ1
2iωh

)
∂s (σ∗0(R0)1,2) (r = 0) =

κ′ξ2

2iωλ1
− κ′λ1

2iω
+ (∂sλ1)(...) + (∂sh)(...) =

κ′

2ωiλ1

(
ξ2 − λ21

)
=

κ′ω

2iλ1c2
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Hence:

(−i∂sK−1∂ξD1)1,2 (r = 0) =
κ′ξω

4λ31c
2

(B.10)

B.3.2 Second term.

Since ∂sD1 = (∂sλ1)(...), it vanishes when r = 0.

B.3.3 Third term.

(−K−1D1K−1)1,2 = −σ
∗
0(R0)1,2

2λ1
(γ(s)− ζ(s))

(−K−1D1K−1)1,2 (r = 0) =
κω

4iλ21c
2

(ζ(s)− γ(s)) (B.11)

B.3.4 Fourth term.

(D1K−1K−1)1,2 =
σ∗0(R0)1,2

2λ1
(γ(s) + ζ(s))

(D1K−1K−1)1,2 (r = 0) =
κω

4iλ21c
2

(γ(s) + ζ(s)) (B.12)

B.3.5 Fifth term.

(K−1σ∗0(R0))1,2 =
σ∗0(R0)1,2

2λ1
(σ∗0(R0)2,2 + 2γ(s))

(K−1σ∗0(R0))1,2 (r = 0) =
κω

4iλ21c
2

(
2γ(s) +

κω2

2λ21c
2

)
(B.13)

B.3.6 Sixth term.

(−σ∗0(R0)K−1)1,2 = −σ
∗
0(R0)1,2

2λ1
(σ∗0(R0)1,1 + 2ζ(s))

(−K−1σ∗0(R0))1,2 (r = 0) = − κω

4iλ21c
2

(
2ζ(s)− κ

2λ21

(
2ξ2 − ω2

c2

))
(B.14)

B.3.7 To sum up...

σ∗−1(W1)(r = 0) =
κ′ξω

4λ31
+

κω

4iλ21

[
ζ(s)−�

��γ(s) +�
��γ(s) + ζ(s) + 2γ(s) +

κω2

2λ21
− 2ζ(s) +

κ

2λ21

(
2ξ2 − ω2

)]
=

κ′ξω

4λ31c
2

+
κω

4iλ21c
2

[
2γ(s) +

κξ2

λ21c
2

]

σ∗−1(W1)(r = 0) =
κ′ξω

4λ31c
2

+
κωγ(s)

2iλ21c
2

+
κ2ξ2ω

4iλ41c
2

(B.15)

B.4 It gives...

If we consider the exact expressions (B.7), (B.8) and (B.15) we have
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σ∗−1(R−1)1,2(r = 0) =
κ2ω

4iλ41c
2

[
ω2

c2
+ 2ξ2

]
+

κ′ξω

2λ31c
2

+
κωγ(s)

2iλ21c
2

+
κ′ξ

2ωλ1
(B.16)
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C Calculation of ∂sK−1∂ξP0

∂ξP0 =
1√
2
∂ξ

−λ1iω 1

1
iω

λ1

 =
∂ξλ1√

2

− 1

iω
0

0
−iω
λ21

 (C.1)

(∂sK−1)1,1 = ∂s

(
γ(s)

λ1

)
=
γ′(s)

λ1
+ r (...) (C.2)

(∂sK−1)1,2 = ∂s

(
κω

4iλ21

)
=
κ′(s)ω

4iλ21
+ r (...) (C.3)

Taking r = 0, we get :

[
∂sK−1(r = 0)∂ξP0(r = 0) t (û, v̂)

]
1

=

γ′(s)λ1

κ′(s)ω

4iλ21
× ×

 ∂ξλ1√
2

 −û
iω
−iωv̂
λ21

 (C.4)

[
∂sK−1(r = 0)∂ξP0(r = 0) t (û, v̂)

]
1

= −γ
′(s) ξ

λ21 iω
û− κ′(s) ξω2

4λ51
v̂ (C.5)
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