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Blood has long served as a model to study organ development owing 
to the accessibility of blood cells and the availability of markers for 
specific cell populations. Blood development initiates at gastrulation 
from multipotent Flk1+ (encoded by Flk1, also known as Kdr) meso-
dermal cells, which initially have the potential to form blood, endothe-
lium and smooth muscle cells1,2. Blood development represents one 
of the earliest stages of organogenesis, as the production of primitive 
erythrocytes is required to support the growing embryo. Single-cell 
gene expression analysis has already been successfully applied to study 
the earliest stages of preimplantation mouse and human develop-
ment3–5, to identify lineage commitment6 and transcriptional regula-
tory7 events in blood, and, more recently, to probe the emergence of 
hematopoietic stem cells (HSCs) from the hemogenic endothelium 
of the dorsal aorta8.

Here we report in vivo gene expression analysis of early blood 
development at the single-cell level, focusing on transcription factors 
as regulators of cell fate. Using qRT-PCR, we analyzed >40 genes in 
3,934 cells with blood and endothelial potential from five populations 
at four sequential stages of post-implantation mouse development 
between embryonic day (E)7.0 and E8.25. We adapted the diffusion 
plot methodology previously reported in nonbiological contexts9 for 

dimensional reduction of single-cell data, where pseudotemporal  
ordering of individual cells revealed a putative developmental  
hierarchy branching toward both blood and endothelial-like fates. To 
discover the underlying regulatory network, we developed a single- 
cell network synthesis (SCNS) toolkit for synthesizing executable 
Boolean network models from binary single-cell expression states, 
which correspond to the on and off patterns of transcription factor 
expression. Using this toolkit we identified a core network of 20 highly 
connected transcription factors, which could reach eight stable states 
representing blood and endothelium. We validated model predictions 
to demonstrate that Sox7 blocks primitive erythroid development, and 
Sox and Hox factors directly regulate expression of the HSC regulator, 
Erg. The SCNS toolkit therefore opens up network reconstruction 
for other systems without the requirement for prior knowledge of 
regulatory interactions.

RESULTS
Capturing cells with blood potential during gastrulation
The first wave of primitive hematopoiesis originates from Flk1+ meso-
derm1,2,10, with all hematopoietic potential in the mouse contained 
within the Flk1+ population from E7.0 onwards. Although some blood 
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progenitor cells lose Flk1 expression just before the onset of circula-
tion11, previous work using a LacZ reporter knocked into the Runx1 
locus showed that hematopoietic potential remains confined to the 
Runx1+ fraction12, which was confirmed with a GFP reporter driven 
by the Runx1 +23 enhancer, which reproduces Runx1 expression8. 
Using Flk1 expression in combination with a Runx1-ires-GFP reporter 
mouse13 therefore allowed us to capture cells with blood potential at 

distinct anatomical stages across a time course of mouse develop-
ment (Fig. 1a,b). Single Flk1+ cells were flow sorted at E7.0 (primitive 
streak, PS), E7.5 (neural plate, NP) and E7.75 (head fold, HF) stages. 
We subdivided E8.25 cells into putative blood and endothelial popu-
lations by isolating GFP+ cells (four somite, 4SG) and Flk1+GFP− 
cells (4SFG−), respectively (Fig. 1b and Supplementary Fig. 1a).  
Cells were sorted from multiple embryos at each time point, with 
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Figure 1 Single-cell gene expression analysis of early blood development. (a) Flk1 and Runx1 staining in E7.5 mesoderm and blood band, respectively. 
Scale bar, 100 µm. (b) Single cells sorted from five populations at four anatomically distinct stages from E7.0–E8.25. (c) Quantification of cells sorted 
and retained for analysis after quality control. (d) Quantification of Flk1+, GFP+ or Flk1+GFP− cells in embryos at each time point from FACS data 
(Supplementary Fig. 1a). Line indicates median. (e) Unsupervised hierarchical clustering was performed using the Spearman correlation and complete 
linkage for the normalized gene expression of the 33 transcription factors and 7 marker genes in all cells. Shown is the level of expression for each gene 
in every cell (see key). Rows represent genes and columns represent cells, with the top colored bar indicating the embryonic stage of origin for each cell 
(see b for color code). Major cell clusters I, II and III are indicated. ND, not detected. 
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3,934 cells going on to subsequent analysis (Fig. 1c). Total cell num-
bers (Supplementary Fig. 1b) and numbers of cells of appropriate 
phenotypes (Fig. 1d) present in each embryo were estimated from 
fluorescence-activated cell sorting (FACS) data, indicating that for 
the first three stages, more than one embryo equivalent of Flk1+ cells 
was collected.

We next quantified the expression of 33 transcription factors 
involved in endothelial and hematopoietic development14, nine 
marker genes, including the embryonic globin Hbb-bH1 and cell 
surface markers such as Cdh5 (VE-Cadherin) and Itga2b (CD41), 
as well as four reference housekeeping genes in all 3,934 cells using 
microfluidic qRT-PCR technology7 (Supplementary Table 1), which 
resulted in >150,000 quantitative expression scores.

Development of blood progenitor cells is not synchronized
Unsupervised hierarchical clustering of the 33 transcription factor 
and 9 marker genes across all 3,934 cells revealed three major clusters 
(Fig. 1e). Cluster I was small and comprised mostly PS and NP cells. 
It did not express blood-associated genes, but showed low expression 
of some endothelial genes and high expression of Cdh1 (E-cadherin), 
likely representing mesodermal cells at the primitive streak15. Cluster 
II contained the greatest number of cells and included most of the PS, 
NP, HF and 4SFG− cells, was characterized by endothelial gene expres-
sion, and contained subclusters with elevated expression of hemogenic 
endothelial genes, such as Cdh5, or hematopoietic genes such as Gfi1, 
indicating that this cluster contains a continuum of cells maturing 
from mesodermal to hematopoietic and endothelial fates. Cluster III 
was formed by most of the E8.25 Runx1−GFP+ 4SG cells, and had 
robust expression of hematopoietic genes (including Hbb-bH1, Gata1, 
Nfe2, Gfi1b, Ikzf1 (Ikaros) and Myb), and low expression of endothelial 
genes (Erg, Sox7, Sox17, Hoxb4, Cdh5). The mixing of cells from dif-
ferent anatomical stages by hierarchical clustering analysis therefore 
suggested that developmental maturation of single cells in early meso-
dermal cell populations is asynchronous, with cells at multiple stages 
expressing similar combinations of developmental regulators. This is 
consistent with the gradual ingression of cells through the primitive 
streak and lineage commitment during gastrulation.

Principal component analysis (PCA) of the expression values of all 
3,934 cells confirmed the large-scale mixing of cells from different 
anatomical stages, with only 4SG cells forming a stage-specific group 
(Supplementary Fig. 2a). The PCA was retrospectively colored to 
show which embryo each cell belongs to (Supplementary Fig. 2b), 
to determine whether this mixing is the result of developmental 
asynchrony within embryos or differences in maturation between 
different embryos classified as being of the same anatomical stage. 
We quantified the percentage of cells from each embryo belonging to 
clusters I, II and III, as identified by hierarchical clustering (Fig. 1e  
and Supplementary Fig. 2c,d). This showed that cells collected from 
each embryo at the PS, NP and HF stages were distributed across 
clusters I and II, with the earlier stages showing a greater bias toward 
cluster I than later stages. These results are therefore consistent with 
a model whereby cells representing both early and later stages along 
the differentiation trajectory toward blood are present throughout 

the PS, NP and HF time points, captured as snapshot measurements 
in our high-throughput, single-cell expression profiling.

A proportion of Flk1+ cells will give rise to mesodermal lineages 
other than blood and endothelium, and the extent to which they 
emerge over time and contribute to the variability would need to be 
analyzed using different gene sets. Notably, however, >50% of PS, 
NP and HF cells expressed both Flk1 and Runx1 at the mRNA level, 
highlighting the presence of Flk1+ cells with hemogenic potential8,12 
from the earliest time points (Supplementary Fig. 3). Analysis of 
50-cell pools from the PS, NP and HF stages by RNA-seq showed 
graded expression increases of hematopoietic and endothelial genes 
from the E7.0 to the E7.5 and E7.75 samples. This is entirely consistent 
with the continuous emergence of blood-specified cells deduced from 
our single-cell data, as an increase in the proportion of cells express-
ing a given gene between stages will increase population-averaged 
expression measurements. Key mesodermal and cardiac genes, by 
contrast, showed graded downregulation in the pooled-cell RNA-
seq (Supplementary Fig. 4). These graded expression changes over 
time are not consistent with a discrete on or off switch at a specific 
developmental time point, but could again be due to gradual changes 
in the proportion of cells expressing the marker genes, similar to 
our observations from single-cell analysis of blood and endothelial 
genes. Alternatively, quantitative changes in expression levels within 
a constant proportion of cardiac-specified cells would similarly result 
in a change in the overall expression level of a population and cannot 
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Figure 2 Diffusion plots identify developmental trajectories. Diffusion 
plot of all 3,934 cells calculated from the expression of 33 transcription 
factors and seven marker genes (top left). The expression levels of 
individual genes were then overlaid onto the diffusion plot to highlight 
patterns of expression (see Supplementary Fig. 5 for additional genes). 
Circle, PS; diamond, NP; triangle, HF; cross, 4SG; square, 4SFG− (visible 
in high resolution version of figure).



©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�  advance online publication nature biotechnology

A rt i c l e s

be excluded from the pooled-cell RNA-seq. Therefore, our results 
indicate, at least for cells destined to become blood and endothelium, 
that these cells arise at all stages of the analyzed time course rather 
than in a synchronized fashion at one precise time point, consist-
ent with the gradual nature of gastrulation. Notably, only single-cell 
analysis over a developmental time-course has the power to reveal 
the contribution to cellular heterogeneity made by unsynchronized 
maturation of individual cells.

Diffusion maps identify developmental trajectories
To identify and visualize putative developmental trajectories from the 
PS to 4S stages in the single-cell gene expression data, we developed  
a computational approach for dimension reduction. Our method 
is based on the concept of diffusion distances, which can be  

interpreted as a metric for objects (here, cells) that are related 
to each other through a gradual but stochastic, diffusion-like  
process, such as cellular differentiation. In brief, similarities between 
all 3,934 cells are calculated based on their gene expression pat-
terns, and then visualized globally in a three-dimensional (3D) map  
(Fig. 2 and Supplementary Fig. 5). The resulting components span  
a low-dimensional diffusion-space, in which distance reflects how 
similar cells are in terms of their diffusion distance, and can be 
inferred to represent developmental time.

Although there is extensive mixing between PS, NP, HF and 4SFG− 
populations in the diffusion plot, there is a general progression in the 
cell stages present in different regions of the plot from largely early 
E7.0 PS and E7.5 NP cells through the later HF cells to the E8.25 
4SG cells that form a homogeneous cluster, in line with the expected 
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Figure 3 Regulatory network synthesis  
from single-cell expression profiles.  
(a) Discretization of 3,934 expression  
profiles for 33 transcription factors  
yields 3,070 unique binary states,  
1,448 of which can be connected by  
single-gene changes to yield a state graph.  
(b) Representation of resulting state graph,  
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HF; red, 4SG; purple, 4SFG−. Magnification  
of fate transition toward 4SG states, with,  
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indicate activation; blue edges indicate repression. Square boxes represent AND operations. Circles connecting edges indicate multiple update rules.
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developmental progression of the blood system or 4SFG− cells (see 
Supplementary Fig. 6 for projection of individual populations). 
Furthermore, we observed that whereas the E8.25 Flk1+Runx1-GFP− 
(4SFG−) cells mostly mix with earlier Flk1+ cells, a subset that was not 
identified by clustering or PCA branches off. This branch expresses 
endothelial and hemogenic endothelial genes (Cdh5, Erg, Itga2b, 
Pecam1 (CD31), Sox7, Fli1) with lower to absent expression of Etv2 and 
Runx1. This observation is consistent with the known bifurcation of 
blood and endothelium (reviewed in ref. 16) and the downregulation  
of Runx1 in more mature endothelial cells17. This bifurcation was 
more apparent in the diffusion maps than by PCA, independent 
component analysis or t-SNE (Supplementary Fig. 7). Genes that 
mark early, intermediate and late stages of blood development showed 
dynamic expression across the diffusion map (Fig. 2), with Cdh1 
expressed first, followed by Cdh5 and then the embryonic globin 
Hbb-bH1. The transcription factors Etv2, Tal1 (Scl), Runx1 and Gata1 
were expressed in a pattern consistent with their known sequential 
roles during the development of hemangioblasts through to eryth-
roid cells18–25. Dynamic expression patterns were also observed for 
other transcription factors not previously recognized as major regula-
tors of primitive hematopoiesis, including Erg, Sox7 and Hoxb4. The  
diffusion map method therefore represents an attractive approach  
for ordering cells in developmental time, identifying patterns  
of expression for key regulators and bifurcation events not readily 
found with standard algorithms.

Synthesis of a network model for early blood development
The correspondence between the diffusion map and known devel-
opmental timelines suggested that the measured expression changes 
reflect developmental trajectories and might be exploited to define the 
regulatory networks that drive mesodermal cells toward a hematopoi-
etic fate. Cell fate decisions have been modeled successfully using state 
space analysis of asynchronous Boolean regulatory network models26,27.  
In this approach, each gene is associated with a Boolean variable 
(1 or 0), which represents whether the gene is expressed or not 

expressed, respectively, in the cell. Each gene is also given a Boolean 
update rule that specifies how its expression value changes over time 
owing to regulation by other genes. Boolean network dynamics are 
then modeled by a series of asynchronous single-gene changes, and 
state space analysis reveals the final stable states of the model. We  
were interested in the inverse problem: if we think of the single-cell 
expression profiles as the state space of a Boolean network, can we 
identify the underlying gene regulatory logic? Although single-cell data 
have been used to refine static networks curated from the literature28,  
to our knowledge Boolean rules have not been derived directly  
from single-cell expression data without a priori knowledge of the 
structure of the network. To tackle this complex question of reveal-
ing the molecular changes underpinning cell state transitions, we 
developed the SCNS toolkit to synthesize Boolean networks based 
on single-gene transitions in our data.

We first discretized all 3,934 single-cell expression profiles to 
binary states and connected those states that differ in the expression 
of only one gene. The threshold for binary discretization was deter-
mined as described in Online Methods. This yielded a connected 
state transition graph of 1,448 expression states, connected by single-
gene transitions (Fig. 3a,b). The number of times each state occurs is 
indicated in Supplementary Figure 8. The probability of seeing even 
one repeated state or neighbor in the whole theoretical state space is 
negligible, illustrating the nonrandom nature of the data. Most states 
that corresponded to the Runx1-GFP+ 4SG cells clustered together at 
one end of the state transition graph, whereas states corresponding to 
cells from other time points were dispersed between two additional 
clusters. Likely developmental transitions were revealed, with specific 
genes consistently switching on or off along all routes linking the 
major clusters. We therefore considered this state transition graph as 
a possible representation of developmental expression state changes 
based on single-gene switches, and next asked whether this could be 
used for regulatory network reconstruction. Notably, analysis of real 
and simulated populations of 20 cells showed that pools for the same 
stage clustered closely together, which masked variation and therefore 
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would not have provided the number of transcriptional states required 
for network synthesis (Supplementary Fig. 9).

The direction of movement between two states in the state transition 
graph is initially not defined. Our method assigns a direction to each 
connection based on overall movement from the early PS to the later 
4SG states, and then finds Boolean update functions for each gene that 
are consistent with its expression changes across the entire transition 
graph. Unlike previous analyses of single-cell gene expression data, 
which have largely relied on statistical properties of the data viewed 
as a whole, our method can recover mechanistic logic and determine 
the direction of interactions. When the method was applied to our 
data set, we obtained a core network of 20 transcription factors with 
endothelial and blood-associated gene modules centered on Sox7, 
Hoxb4 and Erg, and on Gata1 and PU.1 (also known as Spi1), respec-
tively. For some genes, there were multiple possible consistent update 
functions. For example, there are two solutions for Erg, both of which 
include activation by Hoxb4 and Sox17. In total there were 39 possible  
functions, an average of two per gene. This led to 46,656 possible 
models from the different combinations of the 39 update rules (Fig. 3c  
and Supplementary Table 2). Repeating the network synthesis with 
bootstrapping and a different discretization threshold demonstrated 
the robustness of our protocol (Supplementary Tables 3 and 4).

Network synthesis predicts direct regulation of Erg
We next asked whether links in our single-cell expression-derived 
network models can reveal direct regulatory interactions. To provide 
support for our model, we identified high-confidence gene regula-
tory regions in the gene loci of the 20 transcription factors in our 
network by interrogating a compendium of transcription factor ChIP-
seq data from hematopoietic cell types29, followed by identification 
of binding sites for the 20 transcription factors within these regions 
(Supplementary Fig. 10). 27 of the 39 Boolean rules (70%) are sup-
ported by the presence of evolutionarily highly conserved motifs for 
the upstream regulators in the target gene locus (Supplementary 
Table 2), with support for at least one Boolean rule for 16/20 tran-
scription factors. This finding suggested that many of the regulatory 
interactions proposed in our model may be direct upstream regulator/
downstream target gene relationships. To provide further validation, 
we focused on Erg, which our models predicted is activated by Sox17, 
or by Hoxb4 in combination with Lyl1 or Scl (Tal1). By analyzing a 
Hoxb4 ChIP-seq data set30, we showed that Hoxb4 can bind to the 
Erg+85kb enhancer (Supplementary Fig. 11a), which we previously 
showed to be active in blood stem and progenitor cells31,32. Moreover, 
comparative sequence analysis revealed that the Erg+85kb contains 
highly conserved Hox and Sox binding sites (Fig. 4a).

To investigate regulation of Erg by Hox and Sox factors, we 
took advantage of a recently described embryonic stem cell–based 
reporter system in which single-copy enhancer transgenes linked to 
the Hsp68/Venus reporter are targeted to the Hprt locus33, allowing  
robust comparisons of wild-type and mutant enhancer activity  
during in vitro differentiation. We tracked enhancer activity during  
embryoid body differentiation, where cells transit from a Flk1+CD41− 
mesoderm/hemangioblast state, through a Flk1+CD41+ intermediate, 
to a Flk1−CD41+ hematopoietic state33–36. Flow cytometric analysis  
revealed a dynamic pattern of YFP expression for the wild-type 
enhancer, peaking at days 4–5 and highest in the Flk1+CD41+ population  
(Fig. 4b and Supplementary Fig. 11b,c). Similar expression was 
seen in the Sox mutant, whereas mutation of the Hox motifs caused 
a reduction of YFP+ cells, and the combined Hox and Sox mutant 
reduced the proportion of YFP+ cells further still. We also saw similar  
patterns of expression in the other populations, which constitute a larger 
proportion of the embryoid body cells but have a lower percentage  
of YFP+ cells (Fig. 4b and Supplementary Fig. 11b,c). This suggests 
that Hox and Sox factors activate and maintain Erg expression largely 
independently and additively. When abstracted to the Boolean level, 
this result is therefore more consistent with the OR logic in our network  
than with the alternative AND logic, where single mutations would 
result in an effect as strong as the combined mutant.

Model execution reveals key switches during development
Next, we assessed whether our network models faithfully recapitu-
late blood and cardiovascular development, in which endothelial and 
primitive blood cells emerge from a common mesodermal progeni-
tor. To do this, we determined the stable states of the network model 
that correspond to those expression patterns for the 20 transcription 
factors that satisfy all the Boolean network rules, and therefore can 
remain stable. We found that only eight stable states are reachable in 
total across all possible models, including “endothelial-like” (WT-S7) 
and “blood-like” expression states (WT-S2 to S6) (Fig. 5a). Of note, 
432 models had both the endothelial-like state and at least one of the 
blood-like states (WT-6) as stable states, thus capturing the function-
ality of bipotential Flk1+ precursors.

Finally, we explored the consequences of in silico perturbation. 
Overexpression and knockout experiments were simulated for each 
transcription factor and the ability of the network to reach wild-
type or new stable states was assessed (Supplementary Table 5).  
For a number of factors, stable states 6 or 7 were no longer reach-
able. Among these, enforced expression of Sox7, a factor normally  
downregulated when cells transit toward the 4SG state (Fig. 3b), 
resulted in the stabilization of the endothelial module and an inability 
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to reach any of the blood-like states (Fig. 5a). Only two stable states 
were possible, among the lowest for all factors, and furthermore,  
Sox7 is predicted to regulate more targets than any other transcrip-
tion factor, suggesting that perturbing its expression could have  
important downstream consequences (Supplementary Table 5). 
To validate this prediction, we crossed the previously reported 
iSox7+rtTA+ male mice37 with wild-type females, collected embryos 
at E8.25 and performed colony-forming assays (Fig. 5b). Embryos 
carrying both transgenes showed a 50% reduction of primitive  
erythroid colony formation and simultaneous appearance of  
undifferentiated hemangioblast-like colonies following doxycycline-
induced Sox7 expression compared to controls (Fig. 5c and data not 
shown). This suggests, in agreement with modeling data and gene 
expression patterns, that downregulation of Sox7 is important for  
the specification of primitive erythroid cells.

DISCUSSION
Determining the structure and function of transcriptional regulatory 
networks is crucial to advancing our understanding of developmental 
and disease processes and is therefore a key aim of stem and develop-
mental biology. However, studies to date have mainly used population- 
based data for network construction or have focused on statistical 
properties of populations of single cells for network inference.

Bayesian network methods provide a very computationally efficient 
approach to inferring causal relationships among a set of variables 
and have previously been applied to infer cellular signaling networks 
from single-cell data38. However, these approaches infer a directed 
acyclic graph where there is no feedback between nodes, a limitation 
not shared by our approach. In addition, the inference of edges is 
reliant on network interventions in which many different cell popu-
lations are generated by experimentally perturbing genes, and the 
differences between these populations are used to infer causality. 
Generating such intervention data is very time consuming and can-
not be done when studying wild-type in vivo development. Instead, 
researchers typically look at the pairwise correlation of genes across 
single-cell measurements7,39. For example, partial correlation analysis 
measures the degree of association between two genes while con-
trolling for potential effects of all other genes40. We performed this 
analysis (Supplementary Fig. 12), and found agreement with many 
of the edges in our synthesized network; however, this analysis failed 
to predict the Sox/Hox regulation of Erg, which we validated experi-
mentally. Moreover, connections do not specify which gene is the 
upstream regulator and which is the downstream target, and therefore 
do not reveal mechanistic logic.

To our knowledge no previous study has analyzed the development  
of an entire mammalian organ at single-cell resolution. Here we 
have studied the earliest stages of blood development from meso-
derm through to the emergence of primitive erythroid cells, and 
demonstrate that single-cell expression profiling, coupled with com-
putational approaches for network synthesis, can reveal molecular 
control mechanisms of mammalian organogenesis. Analysis of 46 
genes in blood precursors across 1.25 days of post-implantation 
mouse embryonic development showed that cellular maturation may 
be asynchronous, with individual cells maturing at different speeds 
and a large proportion expressing both Flk1 and Runx1, indicating 
that they are committing to hemogenic endothelial development. The 
graded changes in expression for key regulators of other mesodermal 
fates seen in the cell pools analyzed by RNA-seq are also consistent 
with cells expressing the gene emerging over the time-course ana-
lyzed, although alternative explanations such as changes in the level 
of expression cannot be excluded. Furthermore, our diffusion map 

methodology highlighted the hierarchical nature of organ develop-
ment, with waves of transcription factor and marker expression and 
a bifurcation at the four-somite stage. The presence of embryonic 
globin and erythroid transcription factor Gata1 in one branch and 
endothelial markers such as Pecam1 and Cdh5 in the other suggests 
that this bifurcation represents the separation of blood and endothe-
lial fates14,16. Trapnell et al.41 recently reported an exciting method 
related to our diffusion map approach for the analysis of single-cell, 
RNA-seq, time-course data, where construction of a minimum span-
ning tree ordered differentiating cells in developmental pseudotime. 
Although the authors suggested that this methodology could be used 
to map regulatory networks, such results were not included in their 
paper. Moreover, cells were sampled from cells differentiating in vitro 
rather than directly from embryos.

Here we achieved reconstruction of regulatory network models by 
deriving expression-state graphs from high-throughput, single-cell, 
gene expression profiling data and using the expression-state graphs 
to determine gene regulatory rules. First, gene expression profiles 
are discretized to binary expression states, where 1 represents a gene 
that is expressed and 0 represents no measurable expression. Then, 
pairs of states are connected if they differ in the expression state of 
exactly one gene, resulting in a state graph. Finally, Boolean rules are 
found for each gene, which allow a walk from early states to late states 
by means of a series of single-gene transitions. The result is a set of 
Boolean rules matching the experimental data that can be combined 
into a network model. This method is provided as the SCNS toolkit. 
It requires no prior knowledge of regulatory interactions but instead 
derives its logic directly from the gene expression data.

We followed this method of network synthesis with steady state and 
in silico perturbation analyses that identified blood and endothelial-like 
expression patterns and implicated Sox7 in the regulation of erythroid 
fate, which we subsequently validated using transgenic mouse assays. 
Network synthesis also identified several previously known transcrip-
tion factor interactions, including close linkage of Etv2, Fli1 and Tal1, 
where the latter two are known to function downstream of Etv2 in the 
hemangioblast42,43. To test whether our network model reveals addi-
tional direct interactions, we focused on Erg, an essential transcrip-
tion factor for definitive hematopoiesis and adult HSC function44,45. 
Our network predicted that Erg expression can be activated either by 
Sox17 or Hoxb4. The Erg+85kb enhancer was previously shown to 
be controlled by Ets and Gata factors and to be active during hemat-
opoietic development32 and in HSCs31. However, neither Hox nor Sox 
transcription factors had been implicated in Erg+85kb activity.

Sox7 and Sox17 belong to the SoxF family of transcription factors,  
which have recently been shown to confer arterial identity in combi-
nation with RBPJ/Notch46. Arterial identity is linked with the blood-
forming potential of hemogenic endothelial cells in the embryo. 
Moreover, Hoxb4 expression is also known to enhance blood poten-
tial47, yet there is very little knowledge about how SoxF factors or 
Hoxb4 integrates into the wider network regulating blood development. 
Our integrated approach of single-cell expression profiling coupled  
with network synthesis and subsequent experimental validation  
identifies Erg as a downstream target of Sox and Hox factors during 
early blood specification. Coupled with our observations here that 
downregulation of Sox7 is a key event in the development of primitive 
erythroid cells, our study demonstrates how network modeling from 
single cells can help to reveal the transcriptional hierarchies that control  
mammalian development. Rapid technological advances in our ability 
to perform single-cell profiling48,49 suggest that this approach will 
be widely applicable to other organ systems and may also inform the 
development of improved cellular programming strategies.
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METHODS
Methods and any associated references are available in the online 
version of the paper.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Timed matings and embryo collection. Timed mating were set up between 
homozygous Runx1 reporter male and female mice using the Runx1- 
ires-GFP knock-in mouse previously described13. Animals also contained 
a Gata1-mCherry reporter transgene not used in this study. All animal 
experiments were carried out in accordance with the RIKEN guidelines for 
animal and recombinant DNA experiments. Embryos were staged accord-
ing to morphologic criteria50. Suspensions of embryo cells were prepared as 
described previously12 and single-cell suspensions were stained with Flk-1-
APC (AVAS12 at 1:100 dilution; BD Bioscience). Cells were sorted using a 
FACS Aria II (BD Bioscience) and 100 µm nozzle. 4SG cells were not sorted 
for Flk1 as its expression begins to be downregulated by this time. 4SFG− 
cells were specifically Runx1-GFP− at the protein level in order to exclude 
committed blood cells of the 4SG population, but could express Runx1 at 
the mRNA level.

Single-cell qRT-PCR. Single-cell qRT-PCR was carried out using the 
Fluidigm BioMark platform as described7, with a limit of detection (LOD) 
of Ct 25. The LOD was determined according to Stahlberg et al.51 and manu-
facturer’s instructions. Briefly, standard curves were run on the BioMark 
with six repeats of each dilution. For each gene, the LOD was the average 
Ct value for the last dilution at which all six replicates had positive ampli-
fication. The overall LOD for the gene set was the median Ct value across  
all genes. TaqMan assays (Life Technologies) used are listed in Supplementary 
Table 1. Raw Ct values and normalized data can be found in Supplementary 
Table 7. Gene expression was subtracted from the limit of detection  
and normalized on a cell-wise basis to the mean expression of the four house-
keeping genes (Eif2b1, Mrpl19, Polr2a and Ubc) in each cell. Cells that did 
not express all four housekeeping genes were excluded from subsequent 
analysis, as were cells for which the mean of the four housekeepers was ±3 
s.d. from the mean of all cells. A dCt value of −14 was then assigned where 
a gene was not detected. 85–90% of sorted cells were retained for further 
analysis. Gata2 did not amplify correctly and HoxB3 was not expressed in any 
cells, so these factors have been excluded from the analysis. Further analyses 
were done on the dCt values for all transcription factors and marker genes,  
but not housekeeping genes. Hierarchical clustering was performed in  
R (http://www.r-project.org/) using the hclust package and displayed  
with heatmap.2 from the gplots package. Complete linkage was used as  
recommended by Fluidigm for single-cell expression data, with the distance  
defined as 1 – Spearman rank correlation between samples or genes. 
Optimal ordering of leaves was determined using the cba package. Principal  
components analysis was done using the prcomp function in R and PC scores 
for each cell are shown. Plots were colored retrospectively to indicate the 
anatomical stage of origin of each cell.

RNA sequencing. Cells were sorted into 2 µl of lysis buffer (0.2% (v/v) Triton 
X-100 and 2 U/µl RNase inhibitor (Clontech)) and stored at −80 °C. RNA-seq 
was carried out using the Smart-seq2 protocol according to Picelli et al.52 and 
sequenced on an Illumina HiSeq 2500.

The reads for five biological replicates for each subtype were mapped 
using the RNA-seq aligner STAR version 2.3.0 (ref. 53). Parameters used to  
align with STAR were “–outFilterMultimapScoreRange 1–outSAM-
strandField intronMotif–genomeLoad NoSharedMemory–outStd SAM”.  
Mus musculus Ensembl assembly GRCm38 (equivalent to UCSC mm10) 
was used to build the STAR index file, along with the GTF file (version 
GRCm38.74) from Ensembl. Samtools version 0.1.18 was used to sort the 
STAR SAM output file and convert it to BAM format, which would then  
be used as input for the HTSEQ-counts program. Counts were determined using 
the HTSeq-counts program version 0.6.1 (http://www.huber.embl.de/users/
anders/HTSeq/doc/overview.html) with the parameter “–stranded=no”. FPKM  
values were calculated using in-house scripts and are provided in 
Supplementary Table 8.

Diffusion plots. Our visualization approach is based on the diffusion map 
formalism9. In brief, affinities between all cells based on their expression  
levels are calculated using a diffusion metric. Next, the cells are organized 
in 2D or 3D such that the Euclidean distance between the cells corresponds 

to the diffusion metric. We determined the cell-cell affinities using an  
isotropic Gaussian kernel
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The quantity Pt(i,j) can then be interpreted as the transition probability  
of a diffusion process between cells. Consequently, it is particularly  
well-suited for representing the gradual change in the transcriptional  
landscape related to developmental trajectories. In contrast, other  
methods for dimensionality reduction and visualization of high-dimensional  
data such t-SNE54,55, encourage a representation of the data as disjoint  
clusters, which is less meaningful for modeling continuous developmental 
trajectories.

In order to account for the nonuniform density ρ of cells in the gene  
expression space (i.e., the potential presence of rare populations), we  
renormalize the affinities P(i,j) between two cells i and j based on the  
local density ρ(i) and ρ(j) to P i j( , ). Furthermore, we encourage a better  
representation of local behavior by using only a subset of neighboring  
cells (20% nearest neighbors) for computing the affinities and by setting the 
diagonal of the affinity matrix P  to zero. We then calculate the eigenvectors 
of P  and retain the eigenvectors with the greatest eigenvalues, which we use 
for visualization.

Network analysis. In computer science, synthesis is a general term for the 
counterpart of verification. In verification, a hand-built model is given, along 
with a specification of how it ought to behave. Then the model is checked 
to ensure it satisfies the specification. In synthesis, a specification is given 
and a model is automatically generated that satisfies this specification. In  
biology, the specification is the experimental data that the model should  
reproduce. In our case, it is the state transition graph, which was derived 
from the single-cell gene expression data. Synthesis has recently been applied  
in the context of biology56. In that work, state machine-like models were  
synthesized, which were consistent with known experimental mutation 
results, given in a genotype-phenotype table. Both the data and the type of 
model considered were different from those dealt with in the current work, 
which called for a different approach.

To synthesize a Boolean network model, we would like to orient the 
transitions in the state graph (previously every pair of states that differ 
in the expression of exactly one gene were connected by an undirected 
edge) such that a given set of final states will be reachable from a given set 
of initial states. We will allow edges to be directed in one direction, both 
directions, or in neither. We would then like to extract the Boolean update 
functions that give rise to these directed transitions. We try to get the best 
possible network by maximizing the number of states in which no transi-
tions induced by the update functions are missing (condition 2, below). 
We can state our synthesis problem formally as follows. We are given a set 
of variables V, corresponding to genes, and an undirected graph G = (N,E)  
where each node n∈N is labeled with a state s:V→{0,1}, and each edge 
{s1,s2}∈E is labeled with the single variable that changes between state s1 
and s2. Note that by s we denote both a state and the node labeled by that 
state, unambiguously. We are also given a designated set IN of initial 
vertices and a designated set FN of final vertices, along with a threshold 
ti for each variable vi∈V.

Our synthesis method searches for an orientation of G, along with an  
update function ui:{0,1}n→{0,1} for each variable vi∈V, such that the  
following conditions hold:

1.  For each edge (s1,s2) labeled with variable vi in the orientated graph, the 
update function for vi takes state s1 to state s2: ui(s1) = s2(i).

http://www.r-project.org/
http://www.huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www.huber.embl.de/users/anders/HTSeq/doc/overview.html
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2.  For every variable vi ∈V, let Ni be the set of states without a vi-labeled 
edge. For every i the number of states s ∈Ni such that ui(s) = s(i) is greater 
than or equal to ti.

3.  Every final vertex f ∈F is reachable from some initial vertex i ∈I by a  
directed path in the orientated graph.

We restrict the update function ui to have the form:

f f1 2^¬

where fj is a Boolean formula that has and-nodes of in-degree two  
and/or-nodes of arbitrary in-degree, and where f1 has a maximum depth of 
Ni and f2 has a maximum depth of Mi. Ni and Mi are given as parameters  
to the method.

The search for edge orientations and associated Boolean update rules is 
encoded as a Boolean satisfiability (SAT) problem. The update functions of 
each variable can be sought after separately, giving rise to reasonably sized 
satisfiability queries. We then combine compatible single-gene update func-
tions by restricting our attention to combinations that permit paths from initial 
to final nodes. Paths between initial and final nodes in oriented graphs are 
found using a breadth-first search for the shortest path between two nodes. 
We restrict our search to these shortest paths both for efficiency reasons and 
to eliminate routes that seem “unbiological,” for example, routes that cross a 
fate transition and then return to where they began. We exhaustively search for 
all satisfying solutions. The method is implemented in the F# programming 
language, and uses the Z3 solver to handle SAT queries.

After assessing the method’s capability to reconstruct literature-derived 
asynchronous Boolean networks from their own state spaces (Supplementary 
Note), we applied it to our biological data. From the resulting synthesized 
Boolean network models, we obtained a core network of 20 factors.

For our initial states, we took the set of the PS states in the earliest state cluster  
in the state transition graph. As the final states, we took a core of the 4SG states 
in the latest cluster. These states are listed Supplementary Table 9.

Note that owing to the intermixing between populations, there is no guaran-
tee that a state measured on E7.75 is further ahead in development than a state 
measured on E7.5 (for example). We therefore only constrain reachability from 
start states to end states, and do not require that experimental measurement 
time is respected. To obtain the thresholds, ti, and the maximum sizes of the 
activating and repressing portions of update functions N and M, we performed 
an optimization step for each gene independently, where the size of allowed 
update functions was steadily increased until Ni reached a maximum. ti was 
then set to 0.66 Ni in order to allow the method room to find Boolean update 
rules that permit a path from initial to final states. To obtain the stable states of 
Boolean network models, the algorithm from Garg et al.57 was applied. Binary 
states can be found in Supplementary Table 10 and cells with equal cell states 
are listed in Supplementary Table 11.

Synthesis bootstrapping. To assess the robustness of the predictions of net-
work synthesis, we performed bootstrapping. A random sample of 75% of the 
3,934 gene expression profiles was retained, and a new state transition graph 
was built from this reduced data set. This state transition graph was then used 
as the basis to synthesize new Boolean rules, using the same parameters as the 
original analysis. The results of repeating this process five times are shown in 
Supplementary Table 3a–e. Bold entries indicate a rule is identical to a rule 
synthesized from the original data set. Underlined entries indicate that a rule is 
contained within a larger rule from the original synthesis. We see that in most 
cases the original rule or a closely related, underlined rule is synthesized. In 
general, the number of possible solutions for a gene’s update function grows 
as the amount of data used is decreased, and including the full data set nar-
rows these possibilities.

Assessing sensitivity of synthesized rules to binary discretization thresh-
old. In order to construct a state transition graph and apply our synthesis  
method, experimental data must first be discretized to binary values 
that indicate whether a gene is expressed or not expressed. The details of  
how we determine this threshold are covered in the section entitled  
“Single-cell q-RT-PCR”.

To assess sensitivity of results to the choice of threshold, we repeated our 
analysis with a more stringent cut off, increasing it by two cycles. This resulted 
in a state transition graph of 1,249 nodes (199 fewer nodes than the original 
state transition graph), which was then used as the basis to synthesize new 
Boolean rules, using the same parameters as the original analysis. The results 
are shown in Supplementary Table 4. Bold entries indicate a rule is identical 
to a rule synthesized from the original data set. Underlined entries indicate 
that a rule is contained within a larger rule from the original synthesis. We 
see that in most cases the original rule or a closely related, underlined rule is 
synthesized. In general, the number of possible solutions for a gene’s update 
function grows as the amount of data used is decreased, and including the full 
data set narrows these possibilities.

Erg+85kb enhancer reporter cassette generation. Hprt locus–targeting, 
enhancer-reporter cassettes containing the Erg+85kb (wild type or mutated) 
element upstream of a Venus YFP fluorescent reporter gene driven by the 
Hsp68 minimal promoter (Erg+85kb/Hsp/Venus) were generated by Gateway 
cloning as previously described33, and verified by sequencing. The coordinates 
of the cloned region in the mouse mm10 genome build are chr16:95439106-
95439643. The wild-type and mutated Erg+85kb elements were initially PCR 
amplified from synthetic Gene Art Strings (Life Technologies) using primers 
with attB sequences (underlined) upstream of enhancer-specific sequence 
(Erg+85attb1F

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCCTAAGGGCCGAG
GTTG, Erg+85attb1R GGGGACCACTTTGTACAAGAAAGCTGGGTGC
ATGAAATC

ACCTTGGAAATTTGTC; see Fig. 4a for sequences of mutated motifs).

Embryonic stem (ES) cell gene targeting, differentiation and analysis. 
Erg+85kb/Hsp/Venus cassettes were targeted to the Hprt locus in Hprt-deficient 
mouse HM-1 ES cells58 to generate clonal lines that were differentiated into 
blood by embryoid body formation and analyzed at the stated time points by 
flow cytometry for Flk1 (as above) and CD41-PECy7 (eBioMWReg30, 1:500, 
BioLegend), all as previously described33. Data are the combined average of 
three biological replicates from two ES cell clones. Two HM-1 lines carry-
ing an enhancer-less Hsp/Venus cassette were used as a control, as described 
previously33.

Sox7 induction and colony assays. Timed matings were set up between 
transgenic male iSox7+rtTA+ and wild-type ICR female mice37. The morn-
ing of vaginal plug detection was considered E0.5. All animal work was done 
under regulations governed by the Home Office Legislation under the Animal 
Scientific Procedures Act (ASPA) 1986. Cells from E8.25 embryos were tested 
in a clonogenic replating assay for hematopoietic progenitors with or with-
out 1 µg/ml doxycycline as previously described37. For each embryo 1/10 
of the cells was used for genotyping and the remaining cells were equally 
divided into −dox and +dox conditions. Primitive erythroid colonies were 
counted after 4 days in culture. Primers used for genotyping were rtTA-F 
ACAAGGTTTTTCACTAGAGAACGCG, rtTA-R AGATCGAAATCGT
CTAGCGCGTCG, iSox7-F CTAGATCTCGAAGGATCTGGAG, iSox7-R 
ATACTTTCTCGGCAGGAGCA.

Availability of computational resources and data. We provide our SCNS 
toolkit and associated data at http://scns.stemcells.cam.ac.uk as well as in 
Supplementary Code. This includes the full code for the synthesis method, 
along with scripts for:

1.  Constructing a state transition graph from single-cell gene expression data.
2.   Automating the process of finding stable states and performing all  

single-gene in silico perturbations of synthesized Boolean networks. This 
second script also categorizes perturbations in terms of alterations to the 
stable states that the model is able to reach. Both a failure to reach states 
normally reachable for the wild-type model, as well as stabilization at  
novel “unnatural” states can be important, with the former mimicking, 
for example, the failure of a cell to develop down a given lineage, whereas 
the latter could be used to gain mechanistic understanding of pathological  
cellular states (such as in cancer cells). For example, to look for factors 

http://scns.stemcells.cam.ac.uk
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involved in blood differentiation, we collected all perturbations which  
retained the desired “endothelial-like” state, removed the undesired 
“blood-like” state, and then ranked these perturbations by the number of 
additional, undesired states that were introduced.
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